1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * ACPI support for Intel Lynxpoint LPSS.
4 *
5 * Copyright (C) 2013, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/clkdev.h>
12#include <linux/clk-provider.h>
13#include <linux/dmi.h>
14#include <linux/err.h>
15#include <linux/io.h>
16#include <linux/mutex.h>
17#include <linux/pci.h>
18#include <linux/platform_device.h>
19#include <linux/platform_data/x86/clk-lpss.h>
20#include <linux/platform_data/x86/pmc_atom.h>
21#include <linux/pm_domain.h>
22#include <linux/pm_runtime.h>
23#include <linux/pwm.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26
27#include "internal.h"
28
29#ifdef CONFIG_X86_INTEL_LPSS
30
31#include <asm/cpu_device_id.h>
32#include <asm/intel-family.h>
33#include <asm/iosf_mbi.h>
34
35#define LPSS_ADDR(desc) ((unsigned long)&desc)
36
37#define LPSS_CLK_SIZE	0x04
38#define LPSS_LTR_SIZE	0x18
39
40/* Offsets relative to LPSS_PRIVATE_OFFSET */
41#define LPSS_CLK_DIVIDER_DEF_MASK	(BIT(1) | BIT(16))
42#define LPSS_RESETS			0x04
43#define LPSS_RESETS_RESET_FUNC		BIT(0)
44#define LPSS_RESETS_RESET_APB		BIT(1)
45#define LPSS_GENERAL			0x08
46#define LPSS_GENERAL_LTR_MODE_SW	BIT(2)
47#define LPSS_GENERAL_UART_RTS_OVRD	BIT(3)
48#define LPSS_SW_LTR			0x10
49#define LPSS_AUTO_LTR			0x14
50#define LPSS_LTR_SNOOP_REQ		BIT(15)
51#define LPSS_LTR_SNOOP_MASK		0x0000FFFF
52#define LPSS_LTR_SNOOP_LAT_1US		0x800
53#define LPSS_LTR_SNOOP_LAT_32US		0xC00
54#define LPSS_LTR_SNOOP_LAT_SHIFT	5
55#define LPSS_LTR_SNOOP_LAT_CUTOFF	3000
56#define LPSS_LTR_MAX_VAL		0x3FF
57#define LPSS_TX_INT			0x20
58#define LPSS_TX_INT_MASK		BIT(1)
59
60#define LPSS_PRV_REG_COUNT		9
61
62/* LPSS Flags */
63#define LPSS_CLK			BIT(0)
64#define LPSS_CLK_GATE			BIT(1)
65#define LPSS_CLK_DIVIDER		BIT(2)
66#define LPSS_LTR			BIT(3)
67#define LPSS_SAVE_CTX			BIT(4)
68/*
69 * For some devices the DSDT AML code for another device turns off the device
70 * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
71 * as ctx register values.
72 * Luckily these devices always use the same ctx register values, so we can
73 * work around this by saving the ctx registers once on activation.
74 */
75#define LPSS_SAVE_CTX_ONCE		BIT(5)
76#define LPSS_NO_D3_DELAY		BIT(6)
77
78struct lpss_private_data;
79
80struct lpss_device_desc {
81	unsigned int flags;
82	const char *clk_con_id;
83	unsigned int prv_offset;
84	size_t prv_size_override;
85	struct property_entry *properties;
86	void (*setup)(struct lpss_private_data *pdata);
87	bool resume_from_noirq;
88};
89
90static const struct lpss_device_desc lpss_dma_desc = {
91	.flags = LPSS_CLK,
92};
93
94struct lpss_private_data {
95	struct acpi_device *adev;
96	void __iomem *mmio_base;
97	resource_size_t mmio_size;
98	unsigned int fixed_clk_rate;
99	struct clk *clk;
100	const struct lpss_device_desc *dev_desc;
101	u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
102};
103
104/* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
105static u32 pmc_atom_d3_mask = 0xfe000ffe;
106
107/* LPSS run time quirks */
108static unsigned int lpss_quirks;
109
110/*
111 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
112 *
113 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
114 * it can be powered off automatically whenever the last LPSS device goes down.
115 * In case of no power any access to the DMA controller will hang the system.
116 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
117 * well as on ASuS T100TA transformer.
118 *
119 * This quirk overrides power state of entire LPSS island to keep DMA powered
120 * on whenever we have at least one other device in use.
121 */
122#define LPSS_QUIRK_ALWAYS_POWER_ON	BIT(0)
123
124/* UART Component Parameter Register */
125#define LPSS_UART_CPR			0xF4
126#define LPSS_UART_CPR_AFCE		BIT(4)
127
128static void lpss_uart_setup(struct lpss_private_data *pdata)
129{
130	unsigned int offset;
131	u32 val;
132
133	offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
134	val = readl(pdata->mmio_base + offset);
135	writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
136
137	val = readl(pdata->mmio_base + LPSS_UART_CPR);
138	if (!(val & LPSS_UART_CPR_AFCE)) {
139		offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
140		val = readl(pdata->mmio_base + offset);
141		val |= LPSS_GENERAL_UART_RTS_OVRD;
142		writel(val, pdata->mmio_base + offset);
143	}
144}
145
146static void lpss_deassert_reset(struct lpss_private_data *pdata)
147{
148	unsigned int offset;
149	u32 val;
150
151	offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
152	val = readl(pdata->mmio_base + offset);
153	val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
154	writel(val, pdata->mmio_base + offset);
155}
156
157/*
158 * BYT PWM used for backlight control by the i915 driver on systems without
159 * the Crystal Cove PMIC.
160 */
161static struct pwm_lookup byt_pwm_lookup[] = {
162	PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
163			       "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
164			       "pwm-lpss-platform"),
165};
166
167static void byt_pwm_setup(struct lpss_private_data *pdata)
168{
169	struct acpi_device *adev = pdata->adev;
170
171	/* Only call pwm_add_table for the first PWM controller */
172	if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
173		return;
174
175	pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
176}
177
178#define LPSS_I2C_ENABLE			0x6c
179
180static void byt_i2c_setup(struct lpss_private_data *pdata)
181{
182	const char *uid_str = acpi_device_uid(pdata->adev);
183	acpi_handle handle = pdata->adev->handle;
184	unsigned long long shared_host = 0;
185	acpi_status status;
186	long uid = 0;
187
188	/* Expected to always be true, but better safe then sorry */
189	if (uid_str)
190		uid = simple_strtol(uid_str, NULL, 10);
191
192	/* Detect I2C bus shared with PUNIT and ignore its d3 status */
193	status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
194	if (ACPI_SUCCESS(status) && shared_host && uid)
195		pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
196
197	lpss_deassert_reset(pdata);
198
199	if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
200		pdata->fixed_clk_rate = 133000000;
201
202	writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
203}
204
205/* BSW PWM used for backlight control by the i915 driver */
206static struct pwm_lookup bsw_pwm_lookup[] = {
207	PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
208			       "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
209			       "pwm-lpss-platform"),
210};
211
212static void bsw_pwm_setup(struct lpss_private_data *pdata)
213{
214	struct acpi_device *adev = pdata->adev;
215
216	/* Only call pwm_add_table for the first PWM controller */
217	if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
218		return;
219
220	pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
221}
222
223static const struct lpss_device_desc lpt_dev_desc = {
224	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
225			| LPSS_SAVE_CTX,
226	.prv_offset = 0x800,
227};
228
229static const struct lpss_device_desc lpt_i2c_dev_desc = {
230	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
231	.prv_offset = 0x800,
232};
233
234static struct property_entry uart_properties[] = {
235	PROPERTY_ENTRY_U32("reg-io-width", 4),
236	PROPERTY_ENTRY_U32("reg-shift", 2),
237	PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
238	{ },
239};
240
241static const struct lpss_device_desc lpt_uart_dev_desc = {
242	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
243			| LPSS_SAVE_CTX,
244	.clk_con_id = "baudclk",
245	.prv_offset = 0x800,
246	.setup = lpss_uart_setup,
247	.properties = uart_properties,
248};
249
250static const struct lpss_device_desc lpt_sdio_dev_desc = {
251	.flags = LPSS_LTR,
252	.prv_offset = 0x1000,
253	.prv_size_override = 0x1018,
254};
255
256static const struct lpss_device_desc byt_pwm_dev_desc = {
257	.flags = LPSS_SAVE_CTX,
258	.prv_offset = 0x800,
259	.setup = byt_pwm_setup,
260};
261
262static const struct lpss_device_desc bsw_pwm_dev_desc = {
263	.flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
264	.prv_offset = 0x800,
265	.setup = bsw_pwm_setup,
266	.resume_from_noirq = true,
267};
268
269static const struct lpss_device_desc byt_uart_dev_desc = {
270	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
271	.clk_con_id = "baudclk",
272	.prv_offset = 0x800,
273	.setup = lpss_uart_setup,
274	.properties = uart_properties,
275};
276
277static const struct lpss_device_desc bsw_uart_dev_desc = {
278	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
279			| LPSS_NO_D3_DELAY,
280	.clk_con_id = "baudclk",
281	.prv_offset = 0x800,
282	.setup = lpss_uart_setup,
283	.properties = uart_properties,
284};
285
286static const struct lpss_device_desc byt_spi_dev_desc = {
287	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
288	.prv_offset = 0x400,
289};
290
291static const struct lpss_device_desc byt_sdio_dev_desc = {
292	.flags = LPSS_CLK,
293};
294
295static const struct lpss_device_desc byt_i2c_dev_desc = {
296	.flags = LPSS_CLK | LPSS_SAVE_CTX,
297	.prv_offset = 0x800,
298	.setup = byt_i2c_setup,
299	.resume_from_noirq = true,
300};
301
302static const struct lpss_device_desc bsw_i2c_dev_desc = {
303	.flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
304	.prv_offset = 0x800,
305	.setup = byt_i2c_setup,
306	.resume_from_noirq = true,
307};
308
309static const struct lpss_device_desc bsw_spi_dev_desc = {
310	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
311			| LPSS_NO_D3_DELAY,
312	.prv_offset = 0x400,
313	.setup = lpss_deassert_reset,
314};
315
316static const struct x86_cpu_id lpss_cpu_ids[] = {
317	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,	NULL),
318	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,	NULL),
319	{}
320};
321
322#else
323
324#define LPSS_ADDR(desc) (0UL)
325
326#endif /* CONFIG_X86_INTEL_LPSS */
327
328static const struct acpi_device_id acpi_lpss_device_ids[] = {
329	/* Generic LPSS devices */
330	{ "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
331
332	/* Lynxpoint LPSS devices */
333	{ "INT33C0", LPSS_ADDR(lpt_dev_desc) },
334	{ "INT33C1", LPSS_ADDR(lpt_dev_desc) },
335	{ "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
336	{ "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
337	{ "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
338	{ "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
339	{ "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
340	{ "INT33C7", },
341
342	/* BayTrail LPSS devices */
343	{ "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
344	{ "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
345	{ "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
346	{ "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
347	{ "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
348	{ "INT33B2", },
349	{ "INT33FC", },
350
351	/* Braswell LPSS devices */
352	{ "80862286", LPSS_ADDR(lpss_dma_desc) },
353	{ "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
354	{ "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
355	{ "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
356	{ "808622C0", LPSS_ADDR(lpss_dma_desc) },
357	{ "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
358
359	/* Broadwell LPSS devices */
360	{ "INT3430", LPSS_ADDR(lpt_dev_desc) },
361	{ "INT3431", LPSS_ADDR(lpt_dev_desc) },
362	{ "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
363	{ "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
364	{ "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
365	{ "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
366	{ "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
367	{ "INT3437", },
368
369	/* Wildcat Point LPSS devices */
370	{ "INT3438", LPSS_ADDR(lpt_dev_desc) },
371
372	{ }
373};
374
375#ifdef CONFIG_X86_INTEL_LPSS
376
377static int is_memory(struct acpi_resource *res, void *not_used)
378{
379	struct resource r;
380	return !acpi_dev_resource_memory(res, &r);
381}
382
383/* LPSS main clock device. */
384static struct platform_device *lpss_clk_dev;
385
386static inline void lpt_register_clock_device(void)
387{
388	lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
389}
390
391static int register_device_clock(struct acpi_device *adev,
392				 struct lpss_private_data *pdata)
393{
394	const struct lpss_device_desc *dev_desc = pdata->dev_desc;
395	const char *devname = dev_name(&adev->dev);
396	struct clk *clk;
397	struct lpss_clk_data *clk_data;
398	const char *parent, *clk_name;
399	void __iomem *prv_base;
400
401	if (!lpss_clk_dev)
402		lpt_register_clock_device();
403
404	if (IS_ERR(lpss_clk_dev))
405		return PTR_ERR(lpss_clk_dev);
406
407	clk_data = platform_get_drvdata(lpss_clk_dev);
408	if (!clk_data)
409		return -ENODEV;
410	clk = clk_data->clk;
411
412	if (!pdata->mmio_base
413	    || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
414		return -ENODATA;
415
416	parent = clk_data->name;
417	prv_base = pdata->mmio_base + dev_desc->prv_offset;
418
419	if (pdata->fixed_clk_rate) {
420		clk = clk_register_fixed_rate(NULL, devname, parent, 0,
421					      pdata->fixed_clk_rate);
422		goto out;
423	}
424
425	if (dev_desc->flags & LPSS_CLK_GATE) {
426		clk = clk_register_gate(NULL, devname, parent, 0,
427					prv_base, 0, 0, NULL);
428		parent = devname;
429	}
430
431	if (dev_desc->flags & LPSS_CLK_DIVIDER) {
432		/* Prevent division by zero */
433		if (!readl(prv_base))
434			writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
435
436		clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
437		if (!clk_name)
438			return -ENOMEM;
439		clk = clk_register_fractional_divider(NULL, clk_name, parent,
440						      0, prv_base,
441						      1, 15, 16, 15, 0, NULL);
442		parent = clk_name;
443
444		clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
445		if (!clk_name) {
446			kfree(parent);
447			return -ENOMEM;
448		}
449		clk = clk_register_gate(NULL, clk_name, parent,
450					CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
451					prv_base, 31, 0, NULL);
452		kfree(parent);
453		kfree(clk_name);
454	}
455out:
456	if (IS_ERR(clk))
457		return PTR_ERR(clk);
458
459	pdata->clk = clk;
460	clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
461	return 0;
462}
463
464struct lpss_device_links {
465	const char *supplier_hid;
466	const char *supplier_uid;
467	const char *consumer_hid;
468	const char *consumer_uid;
469	u32 flags;
470	const struct dmi_system_id *dep_missing_ids;
471};
472
473/* Please keep this list sorted alphabetically by vendor and model */
474static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
475	{
476		.matches = {
477			DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
478			DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
479		},
480	},
481	{}
482};
483
484/*
485 * The _DEP method is used to identify dependencies but instead of creating
486 * device links for every handle in _DEP, only links in the following list are
487 * created. That is necessary because, in the general case, _DEP can refer to
488 * devices that might not have drivers, or that are on different buses, or where
489 * the supplier is not enumerated until after the consumer is probed.
490 */
491static const struct lpss_device_links lpss_device_links[] = {
492	/* CHT External sdcard slot controller depends on PMIC I2C ctrl */
493	{"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
494	/* CHT iGPU depends on PMIC I2C controller */
495	{"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
496	/* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
497	{"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
498	 i2c1_dep_missing_dmi_ids},
499	/* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
500	{"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
501	/* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
502	{"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
503};
504
505static bool acpi_lpss_is_supplier(struct acpi_device *adev,
506				  const struct lpss_device_links *link)
507{
508	return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
509}
510
511static bool acpi_lpss_is_consumer(struct acpi_device *adev,
512				  const struct lpss_device_links *link)
513{
514	return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
515}
516
517struct hid_uid {
518	const char *hid;
519	const char *uid;
520};
521
522static int match_hid_uid(struct device *dev, const void *data)
523{
524	struct acpi_device *adev = ACPI_COMPANION(dev);
525	const struct hid_uid *id = data;
526
527	if (!adev)
528		return 0;
529
530	return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
531}
532
533static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
534{
535	struct device *dev;
536
537	struct hid_uid data = {
538		.hid = hid,
539		.uid = uid,
540	};
541
542	dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
543	if (dev)
544		return dev;
545
546	return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
547}
548
549static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
550{
551	struct acpi_handle_list dep_devices;
552	acpi_status status;
553	int i;
554
555	if (!acpi_has_method(adev->handle, "_DEP"))
556		return false;
557
558	status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
559					 &dep_devices);
560	if (ACPI_FAILURE(status)) {
561		dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
562		return false;
563	}
564
565	for (i = 0; i < dep_devices.count; i++) {
566		if (dep_devices.handles[i] == handle)
567			return true;
568	}
569
570	return false;
571}
572
573static void acpi_lpss_link_consumer(struct device *dev1,
574				    const struct lpss_device_links *link)
575{
576	struct device *dev2;
577
578	dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
579	if (!dev2)
580		return;
581
582	if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
583	    || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
584		device_link_add(dev2, dev1, link->flags);
585
586	put_device(dev2);
587}
588
589static void acpi_lpss_link_supplier(struct device *dev1,
590				    const struct lpss_device_links *link)
591{
592	struct device *dev2;
593
594	dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
595	if (!dev2)
596		return;
597
598	if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
599	    || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
600		device_link_add(dev1, dev2, link->flags);
601
602	put_device(dev2);
603}
604
605static void acpi_lpss_create_device_links(struct acpi_device *adev,
606					  struct platform_device *pdev)
607{
608	int i;
609
610	for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
611		const struct lpss_device_links *link = &lpss_device_links[i];
612
613		if (acpi_lpss_is_supplier(adev, link))
614			acpi_lpss_link_consumer(&pdev->dev, link);
615
616		if (acpi_lpss_is_consumer(adev, link))
617			acpi_lpss_link_supplier(&pdev->dev, link);
618	}
619}
620
621static int acpi_lpss_create_device(struct acpi_device *adev,
622				   const struct acpi_device_id *id)
623{
624	const struct lpss_device_desc *dev_desc;
625	struct lpss_private_data *pdata;
626	struct resource_entry *rentry;
627	struct list_head resource_list;
628	struct platform_device *pdev;
629	int ret;
630
631	dev_desc = (const struct lpss_device_desc *)id->driver_data;
632	if (!dev_desc) {
633		pdev = acpi_create_platform_device(adev, NULL);
634		return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
635	}
636	pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
637	if (!pdata)
638		return -ENOMEM;
639
640	INIT_LIST_HEAD(&resource_list);
641	ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
642	if (ret < 0)
643		goto err_out;
644
645	list_for_each_entry(rentry, &resource_list, node)
646		if (resource_type(rentry->res) == IORESOURCE_MEM) {
647			if (dev_desc->prv_size_override)
648				pdata->mmio_size = dev_desc->prv_size_override;
649			else
650				pdata->mmio_size = resource_size(rentry->res);
651			pdata->mmio_base = ioremap(rentry->res->start,
652						   pdata->mmio_size);
653			break;
654		}
655
656	acpi_dev_free_resource_list(&resource_list);
657
658	if (!pdata->mmio_base) {
659		/* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
660		adev->pnp.type.platform_id = 0;
661		/* Skip the device, but continue the namespace scan. */
662		ret = 0;
663		goto err_out;
664	}
665
666	pdata->adev = adev;
667	pdata->dev_desc = dev_desc;
668
669	if (dev_desc->setup)
670		dev_desc->setup(pdata);
671
672	if (dev_desc->flags & LPSS_CLK) {
673		ret = register_device_clock(adev, pdata);
674		if (ret) {
675			/* Skip the device, but continue the namespace scan. */
676			ret = 0;
677			goto err_out;
678		}
679	}
680
681	/*
682	 * This works around a known issue in ACPI tables where LPSS devices
683	 * have _PS0 and _PS3 without _PSC (and no power resources), so
684	 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
685	 */
686	acpi_device_fix_up_power(adev);
687
688	adev->driver_data = pdata;
689	pdev = acpi_create_platform_device(adev, dev_desc->properties);
690	if (!IS_ERR_OR_NULL(pdev)) {
691		acpi_lpss_create_device_links(adev, pdev);
692		return 1;
693	}
694
695	ret = PTR_ERR(pdev);
696	adev->driver_data = NULL;
697
698 err_out:
699	kfree(pdata);
700	return ret;
701}
702
703static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
704{
705	return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
706}
707
708static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
709			     unsigned int reg)
710{
711	writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
712}
713
714static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
715{
716	struct acpi_device *adev;
717	struct lpss_private_data *pdata;
718	unsigned long flags;
719	int ret;
720
721	ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
722	if (WARN_ON(ret))
723		return ret;
724
725	spin_lock_irqsave(&dev->power.lock, flags);
726	if (pm_runtime_suspended(dev)) {
727		ret = -EAGAIN;
728		goto out;
729	}
730	pdata = acpi_driver_data(adev);
731	if (WARN_ON(!pdata || !pdata->mmio_base)) {
732		ret = -ENODEV;
733		goto out;
734	}
735	*val = __lpss_reg_read(pdata, reg);
736
737 out:
738	spin_unlock_irqrestore(&dev->power.lock, flags);
739	return ret;
740}
741
742static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
743			     char *buf)
744{
745	u32 ltr_value = 0;
746	unsigned int reg;
747	int ret;
748
749	reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
750	ret = lpss_reg_read(dev, reg, &ltr_value);
751	if (ret)
752		return ret;
753
754	return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
755}
756
757static ssize_t lpss_ltr_mode_show(struct device *dev,
758				  struct device_attribute *attr, char *buf)
759{
760	u32 ltr_mode = 0;
761	char *outstr;
762	int ret;
763
764	ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
765	if (ret)
766		return ret;
767
768	outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
769	return sprintf(buf, "%s\n", outstr);
770}
771
772static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
773static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
774static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
775
776static struct attribute *lpss_attrs[] = {
777	&dev_attr_auto_ltr.attr,
778	&dev_attr_sw_ltr.attr,
779	&dev_attr_ltr_mode.attr,
780	NULL,
781};
782
783static const struct attribute_group lpss_attr_group = {
784	.attrs = lpss_attrs,
785	.name = "lpss_ltr",
786};
787
788static void acpi_lpss_set_ltr(struct device *dev, s32 val)
789{
790	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
791	u32 ltr_mode, ltr_val;
792
793	ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
794	if (val < 0) {
795		if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
796			ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
797			__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
798		}
799		return;
800	}
801	ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
802	if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
803		ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
804		val = LPSS_LTR_MAX_VAL;
805	} else if (val > LPSS_LTR_MAX_VAL) {
806		ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
807		val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
808	} else {
809		ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
810	}
811	ltr_val |= val;
812	__lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
813	if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
814		ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
815		__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
816	}
817}
818
819#ifdef CONFIG_PM
820/**
821 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
822 * @dev: LPSS device
823 * @pdata: pointer to the private data of the LPSS device
824 *
825 * Most LPSS devices have private registers which may loose their context when
826 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
827 * prv_reg_ctx array.
828 */
829static void acpi_lpss_save_ctx(struct device *dev,
830			       struct lpss_private_data *pdata)
831{
832	unsigned int i;
833
834	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
835		unsigned long offset = i * sizeof(u32);
836
837		pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
838		dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
839			pdata->prv_reg_ctx[i], offset);
840	}
841}
842
843/**
844 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
845 * @dev: LPSS device
846 * @pdata: pointer to the private data of the LPSS device
847 *
848 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
849 */
850static void acpi_lpss_restore_ctx(struct device *dev,
851				  struct lpss_private_data *pdata)
852{
853	unsigned int i;
854
855	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
856		unsigned long offset = i * sizeof(u32);
857
858		__lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
859		dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
860			pdata->prv_reg_ctx[i], offset);
861	}
862}
863
864static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
865{
866	/*
867	 * The following delay is needed or the subsequent write operations may
868	 * fail. The LPSS devices are actually PCI devices and the PCI spec
869	 * expects 10ms delay before the device can be accessed after D3 to D0
870	 * transition. However some platforms like BSW does not need this delay.
871	 */
872	unsigned int delay = 10;	/* default 10ms delay */
873
874	if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
875		delay = 0;
876
877	msleep(delay);
878}
879
880static int acpi_lpss_activate(struct device *dev)
881{
882	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
883	int ret;
884
885	ret = acpi_dev_resume(dev);
886	if (ret)
887		return ret;
888
889	acpi_lpss_d3_to_d0_delay(pdata);
890
891	/*
892	 * This is called only on ->probe() stage where a device is either in
893	 * known state defined by BIOS or most likely powered off. Due to this
894	 * we have to deassert reset line to be sure that ->probe() will
895	 * recognize the device.
896	 */
897	if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
898		lpss_deassert_reset(pdata);
899
900#ifdef CONFIG_PM
901	if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
902		acpi_lpss_save_ctx(dev, pdata);
903#endif
904
905	return 0;
906}
907
908static void acpi_lpss_dismiss(struct device *dev)
909{
910	acpi_dev_suspend(dev, false);
911}
912
913/* IOSF SB for LPSS island */
914#define LPSS_IOSF_UNIT_LPIOEP		0xA0
915#define LPSS_IOSF_UNIT_LPIO1		0xAB
916#define LPSS_IOSF_UNIT_LPIO2		0xAC
917
918#define LPSS_IOSF_PMCSR			0x84
919#define LPSS_PMCSR_D0			0
920#define LPSS_PMCSR_D3hot		3
921#define LPSS_PMCSR_Dx_MASK		GENMASK(1, 0)
922
923#define LPSS_IOSF_GPIODEF0		0x154
924#define LPSS_GPIODEF0_DMA1_D3		BIT(2)
925#define LPSS_GPIODEF0_DMA2_D3		BIT(3)
926#define LPSS_GPIODEF0_DMA_D3_MASK	GENMASK(3, 2)
927#define LPSS_GPIODEF0_DMA_LLP		BIT(13)
928
929static DEFINE_MUTEX(lpss_iosf_mutex);
930static bool lpss_iosf_d3_entered = true;
931
932static void lpss_iosf_enter_d3_state(void)
933{
934	u32 value1 = 0;
935	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
936	u32 value2 = LPSS_PMCSR_D3hot;
937	u32 mask2 = LPSS_PMCSR_Dx_MASK;
938	/*
939	 * PMC provides an information about actual status of the LPSS devices.
940	 * Here we read the values related to LPSS power island, i.e. LPSS
941	 * devices, excluding both LPSS DMA controllers, along with SCC domain.
942	 */
943	u32 func_dis, d3_sts_0, pmc_status;
944	int ret;
945
946	ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
947	if (ret)
948		return;
949
950	mutex_lock(&lpss_iosf_mutex);
951
952	ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
953	if (ret)
954		goto exit;
955
956	/*
957	 * Get the status of entire LPSS power island per device basis.
958	 * Shutdown both LPSS DMA controllers if and only if all other devices
959	 * are already in D3hot.
960	 */
961	pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
962	if (pmc_status)
963		goto exit;
964
965	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
966			LPSS_IOSF_PMCSR, value2, mask2);
967
968	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
969			LPSS_IOSF_PMCSR, value2, mask2);
970
971	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
972			LPSS_IOSF_GPIODEF0, value1, mask1);
973
974	lpss_iosf_d3_entered = true;
975
976exit:
977	mutex_unlock(&lpss_iosf_mutex);
978}
979
980static void lpss_iosf_exit_d3_state(void)
981{
982	u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
983		     LPSS_GPIODEF0_DMA_LLP;
984	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
985	u32 value2 = LPSS_PMCSR_D0;
986	u32 mask2 = LPSS_PMCSR_Dx_MASK;
987
988	mutex_lock(&lpss_iosf_mutex);
989
990	if (!lpss_iosf_d3_entered)
991		goto exit;
992
993	lpss_iosf_d3_entered = false;
994
995	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
996			LPSS_IOSF_GPIODEF0, value1, mask1);
997
998	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
999			LPSS_IOSF_PMCSR, value2, mask2);
1000
1001	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1002			LPSS_IOSF_PMCSR, value2, mask2);
1003
1004exit:
1005	mutex_unlock(&lpss_iosf_mutex);
1006}
1007
1008static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1009{
1010	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1011	int ret;
1012
1013	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1014		acpi_lpss_save_ctx(dev, pdata);
1015
1016	ret = acpi_dev_suspend(dev, wakeup);
1017
1018	/*
1019	 * This call must be last in the sequence, otherwise PMC will return
1020	 * wrong status for devices being about to be powered off. See
1021	 * lpss_iosf_enter_d3_state() for further information.
1022	 */
1023	if (acpi_target_system_state() == ACPI_STATE_S0 &&
1024	    lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1025		lpss_iosf_enter_d3_state();
1026
1027	return ret;
1028}
1029
1030static int acpi_lpss_resume(struct device *dev)
1031{
1032	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1033	int ret;
1034
1035	/*
1036	 * This call is kept first to be in symmetry with
1037	 * acpi_lpss_runtime_suspend() one.
1038	 */
1039	if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1040		lpss_iosf_exit_d3_state();
1041
1042	ret = acpi_dev_resume(dev);
1043	if (ret)
1044		return ret;
1045
1046	acpi_lpss_d3_to_d0_delay(pdata);
1047
1048	if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1049		acpi_lpss_restore_ctx(dev, pdata);
1050
1051	return 0;
1052}
1053
1054#ifdef CONFIG_PM_SLEEP
1055static int acpi_lpss_do_suspend_late(struct device *dev)
1056{
1057	int ret;
1058
1059	if (dev_pm_skip_suspend(dev))
1060		return 0;
1061
1062	ret = pm_generic_suspend_late(dev);
1063	return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1064}
1065
1066static int acpi_lpss_suspend_late(struct device *dev)
1067{
1068	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1069
1070	if (pdata->dev_desc->resume_from_noirq)
1071		return 0;
1072
1073	return acpi_lpss_do_suspend_late(dev);
1074}
1075
1076static int acpi_lpss_suspend_noirq(struct device *dev)
1077{
1078	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1079	int ret;
1080
1081	if (pdata->dev_desc->resume_from_noirq) {
1082		/*
1083		 * The driver's ->suspend_late callback will be invoked by
1084		 * acpi_lpss_do_suspend_late(), with the assumption that the
1085		 * driver really wanted to run that code in ->suspend_noirq, but
1086		 * it could not run after acpi_dev_suspend() and the driver
1087		 * expected the latter to be called in the "late" phase.
1088		 */
1089		ret = acpi_lpss_do_suspend_late(dev);
1090		if (ret)
1091			return ret;
1092	}
1093
1094	return acpi_subsys_suspend_noirq(dev);
1095}
1096
1097static int acpi_lpss_do_resume_early(struct device *dev)
1098{
1099	int ret = acpi_lpss_resume(dev);
1100
1101	return ret ? ret : pm_generic_resume_early(dev);
1102}
1103
1104static int acpi_lpss_resume_early(struct device *dev)
1105{
1106	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1107
1108	if (pdata->dev_desc->resume_from_noirq)
1109		return 0;
1110
1111	if (dev_pm_skip_resume(dev))
1112		return 0;
1113
1114	return acpi_lpss_do_resume_early(dev);
1115}
1116
1117static int acpi_lpss_resume_noirq(struct device *dev)
1118{
1119	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1120	int ret;
1121
1122	/* Follow acpi_subsys_resume_noirq(). */
1123	if (dev_pm_skip_resume(dev))
1124		return 0;
1125
1126	ret = pm_generic_resume_noirq(dev);
1127	if (ret)
1128		return ret;
1129
1130	if (!pdata->dev_desc->resume_from_noirq)
1131		return 0;
1132
1133	/*
1134	 * The driver's ->resume_early callback will be invoked by
1135	 * acpi_lpss_do_resume_early(), with the assumption that the driver
1136	 * really wanted to run that code in ->resume_noirq, but it could not
1137	 * run before acpi_dev_resume() and the driver expected the latter to be
1138	 * called in the "early" phase.
1139	 */
1140	return acpi_lpss_do_resume_early(dev);
1141}
1142
1143static int acpi_lpss_do_restore_early(struct device *dev)
1144{
1145	int ret = acpi_lpss_resume(dev);
1146
1147	return ret ? ret : pm_generic_restore_early(dev);
1148}
1149
1150static int acpi_lpss_restore_early(struct device *dev)
1151{
1152	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1153
1154	if (pdata->dev_desc->resume_from_noirq)
1155		return 0;
1156
1157	return acpi_lpss_do_restore_early(dev);
1158}
1159
1160static int acpi_lpss_restore_noirq(struct device *dev)
1161{
1162	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1163	int ret;
1164
1165	ret = pm_generic_restore_noirq(dev);
1166	if (ret)
1167		return ret;
1168
1169	if (!pdata->dev_desc->resume_from_noirq)
1170		return 0;
1171
1172	/* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1173	return acpi_lpss_do_restore_early(dev);
1174}
1175
1176static int acpi_lpss_do_poweroff_late(struct device *dev)
1177{
1178	int ret = pm_generic_poweroff_late(dev);
1179
1180	return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1181}
1182
1183static int acpi_lpss_poweroff_late(struct device *dev)
1184{
1185	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1186
1187	if (dev_pm_skip_suspend(dev))
1188		return 0;
1189
1190	if (pdata->dev_desc->resume_from_noirq)
1191		return 0;
1192
1193	return acpi_lpss_do_poweroff_late(dev);
1194}
1195
1196static int acpi_lpss_poweroff_noirq(struct device *dev)
1197{
1198	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1199
1200	if (dev_pm_skip_suspend(dev))
1201		return 0;
1202
1203	if (pdata->dev_desc->resume_from_noirq) {
1204		/* This is analogous to the acpi_lpss_suspend_noirq() case. */
1205		int ret = acpi_lpss_do_poweroff_late(dev);
1206		if (ret)
1207			return ret;
1208	}
1209
1210	return pm_generic_poweroff_noirq(dev);
1211}
1212#endif /* CONFIG_PM_SLEEP */
1213
1214static int acpi_lpss_runtime_suspend(struct device *dev)
1215{
1216	int ret = pm_generic_runtime_suspend(dev);
1217
1218	return ret ? ret : acpi_lpss_suspend(dev, true);
1219}
1220
1221static int acpi_lpss_runtime_resume(struct device *dev)
1222{
1223	int ret = acpi_lpss_resume(dev);
1224
1225	return ret ? ret : pm_generic_runtime_resume(dev);
1226}
1227#endif /* CONFIG_PM */
1228
1229static struct dev_pm_domain acpi_lpss_pm_domain = {
1230#ifdef CONFIG_PM
1231	.activate = acpi_lpss_activate,
1232	.dismiss = acpi_lpss_dismiss,
1233#endif
1234	.ops = {
1235#ifdef CONFIG_PM
1236#ifdef CONFIG_PM_SLEEP
1237		.prepare = acpi_subsys_prepare,
1238		.complete = acpi_subsys_complete,
1239		.suspend = acpi_subsys_suspend,
1240		.suspend_late = acpi_lpss_suspend_late,
1241		.suspend_noirq = acpi_lpss_suspend_noirq,
1242		.resume_noirq = acpi_lpss_resume_noirq,
1243		.resume_early = acpi_lpss_resume_early,
1244		.freeze = acpi_subsys_freeze,
1245		.poweroff = acpi_subsys_poweroff,
1246		.poweroff_late = acpi_lpss_poweroff_late,
1247		.poweroff_noirq = acpi_lpss_poweroff_noirq,
1248		.restore_noirq = acpi_lpss_restore_noirq,
1249		.restore_early = acpi_lpss_restore_early,
1250#endif
1251		.runtime_suspend = acpi_lpss_runtime_suspend,
1252		.runtime_resume = acpi_lpss_runtime_resume,
1253#endif
1254	},
1255};
1256
1257static int acpi_lpss_platform_notify(struct notifier_block *nb,
1258				     unsigned long action, void *data)
1259{
1260	struct platform_device *pdev = to_platform_device(data);
1261	struct lpss_private_data *pdata;
1262	struct acpi_device *adev;
1263	const struct acpi_device_id *id;
1264
1265	id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1266	if (!id || !id->driver_data)
1267		return 0;
1268
1269	if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1270		return 0;
1271
1272	pdata = acpi_driver_data(adev);
1273	if (!pdata)
1274		return 0;
1275
1276	if (pdata->mmio_base &&
1277	    pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1278		dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1279		return 0;
1280	}
1281
1282	switch (action) {
1283	case BUS_NOTIFY_BIND_DRIVER:
1284		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1285		break;
1286	case BUS_NOTIFY_DRIVER_NOT_BOUND:
1287	case BUS_NOTIFY_UNBOUND_DRIVER:
1288		dev_pm_domain_set(&pdev->dev, NULL);
1289		break;
1290	case BUS_NOTIFY_ADD_DEVICE:
1291		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1292		if (pdata->dev_desc->flags & LPSS_LTR)
1293			return sysfs_create_group(&pdev->dev.kobj,
1294						  &lpss_attr_group);
1295		break;
1296	case BUS_NOTIFY_DEL_DEVICE:
1297		if (pdata->dev_desc->flags & LPSS_LTR)
1298			sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1299		dev_pm_domain_set(&pdev->dev, NULL);
1300		break;
1301	default:
1302		break;
1303	}
1304
1305	return 0;
1306}
1307
1308static struct notifier_block acpi_lpss_nb = {
1309	.notifier_call = acpi_lpss_platform_notify,
1310};
1311
1312static void acpi_lpss_bind(struct device *dev)
1313{
1314	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1315
1316	if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1317		return;
1318
1319	if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1320		dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1321	else
1322		dev_err(dev, "MMIO size insufficient to access LTR\n");
1323}
1324
1325static void acpi_lpss_unbind(struct device *dev)
1326{
1327	dev->power.set_latency_tolerance = NULL;
1328}
1329
1330static struct acpi_scan_handler lpss_handler = {
1331	.ids = acpi_lpss_device_ids,
1332	.attach = acpi_lpss_create_device,
1333	.bind = acpi_lpss_bind,
1334	.unbind = acpi_lpss_unbind,
1335};
1336
1337void __init acpi_lpss_init(void)
1338{
1339	const struct x86_cpu_id *id;
1340	int ret;
1341
1342	ret = lpt_clk_init();
1343	if (ret)
1344		return;
1345
1346	id = x86_match_cpu(lpss_cpu_ids);
1347	if (id)
1348		lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1349
1350	bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1351	acpi_scan_add_handler(&lpss_handler);
1352}
1353
1354#else
1355
1356static struct acpi_scan_handler lpss_handler = {
1357	.ids = acpi_lpss_device_ids,
1358};
1359
1360void __init acpi_lpss_init(void)
1361{
1362	acpi_scan_add_handler(&lpss_handler);
1363}
1364
1365#endif /* CONFIG_X86_INTEL_LPSS */
1366