18c2ecf20Sopenharmony_ci/* gf128mul.c - GF(2^128) multiplication functions 28c2ecf20Sopenharmony_ci * 38c2ecf20Sopenharmony_ci * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. 48c2ecf20Sopenharmony_ci * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org> 58c2ecf20Sopenharmony_ci * 68c2ecf20Sopenharmony_ci * Based on Dr Brian Gladman's (GPL'd) work published at 78c2ecf20Sopenharmony_ci * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php 88c2ecf20Sopenharmony_ci * See the original copyright notice below. 98c2ecf20Sopenharmony_ci * 108c2ecf20Sopenharmony_ci * This program is free software; you can redistribute it and/or modify it 118c2ecf20Sopenharmony_ci * under the terms of the GNU General Public License as published by the Free 128c2ecf20Sopenharmony_ci * Software Foundation; either version 2 of the License, or (at your option) 138c2ecf20Sopenharmony_ci * any later version. 148c2ecf20Sopenharmony_ci */ 158c2ecf20Sopenharmony_ci 168c2ecf20Sopenharmony_ci/* 178c2ecf20Sopenharmony_ci --------------------------------------------------------------------------- 188c2ecf20Sopenharmony_ci Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved. 198c2ecf20Sopenharmony_ci 208c2ecf20Sopenharmony_ci LICENSE TERMS 218c2ecf20Sopenharmony_ci 228c2ecf20Sopenharmony_ci The free distribution and use of this software in both source and binary 238c2ecf20Sopenharmony_ci form is allowed (with or without changes) provided that: 248c2ecf20Sopenharmony_ci 258c2ecf20Sopenharmony_ci 1. distributions of this source code include the above copyright 268c2ecf20Sopenharmony_ci notice, this list of conditions and the following disclaimer; 278c2ecf20Sopenharmony_ci 288c2ecf20Sopenharmony_ci 2. distributions in binary form include the above copyright 298c2ecf20Sopenharmony_ci notice, this list of conditions and the following disclaimer 308c2ecf20Sopenharmony_ci in the documentation and/or other associated materials; 318c2ecf20Sopenharmony_ci 328c2ecf20Sopenharmony_ci 3. the copyright holder's name is not used to endorse products 338c2ecf20Sopenharmony_ci built using this software without specific written permission. 348c2ecf20Sopenharmony_ci 358c2ecf20Sopenharmony_ci ALTERNATIVELY, provided that this notice is retained in full, this product 368c2ecf20Sopenharmony_ci may be distributed under the terms of the GNU General Public License (GPL), 378c2ecf20Sopenharmony_ci in which case the provisions of the GPL apply INSTEAD OF those given above. 388c2ecf20Sopenharmony_ci 398c2ecf20Sopenharmony_ci DISCLAIMER 408c2ecf20Sopenharmony_ci 418c2ecf20Sopenharmony_ci This software is provided 'as is' with no explicit or implied warranties 428c2ecf20Sopenharmony_ci in respect of its properties, including, but not limited to, correctness 438c2ecf20Sopenharmony_ci and/or fitness for purpose. 448c2ecf20Sopenharmony_ci --------------------------------------------------------------------------- 458c2ecf20Sopenharmony_ci Issue 31/01/2006 468c2ecf20Sopenharmony_ci 478c2ecf20Sopenharmony_ci This file provides fast multiplication in GF(2^128) as required by several 488c2ecf20Sopenharmony_ci cryptographic authentication modes 498c2ecf20Sopenharmony_ci*/ 508c2ecf20Sopenharmony_ci 518c2ecf20Sopenharmony_ci#include <crypto/gf128mul.h> 528c2ecf20Sopenharmony_ci#include <linux/kernel.h> 538c2ecf20Sopenharmony_ci#include <linux/module.h> 548c2ecf20Sopenharmony_ci#include <linux/slab.h> 558c2ecf20Sopenharmony_ci 568c2ecf20Sopenharmony_ci#define gf128mul_dat(q) { \ 578c2ecf20Sopenharmony_ci q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\ 588c2ecf20Sopenharmony_ci q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\ 598c2ecf20Sopenharmony_ci q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\ 608c2ecf20Sopenharmony_ci q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\ 618c2ecf20Sopenharmony_ci q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\ 628c2ecf20Sopenharmony_ci q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\ 638c2ecf20Sopenharmony_ci q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\ 648c2ecf20Sopenharmony_ci q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\ 658c2ecf20Sopenharmony_ci q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\ 668c2ecf20Sopenharmony_ci q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\ 678c2ecf20Sopenharmony_ci q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\ 688c2ecf20Sopenharmony_ci q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\ 698c2ecf20Sopenharmony_ci q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\ 708c2ecf20Sopenharmony_ci q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\ 718c2ecf20Sopenharmony_ci q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\ 728c2ecf20Sopenharmony_ci q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\ 738c2ecf20Sopenharmony_ci q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\ 748c2ecf20Sopenharmony_ci q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\ 758c2ecf20Sopenharmony_ci q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\ 768c2ecf20Sopenharmony_ci q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\ 778c2ecf20Sopenharmony_ci q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\ 788c2ecf20Sopenharmony_ci q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\ 798c2ecf20Sopenharmony_ci q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\ 808c2ecf20Sopenharmony_ci q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\ 818c2ecf20Sopenharmony_ci q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\ 828c2ecf20Sopenharmony_ci q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\ 838c2ecf20Sopenharmony_ci q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\ 848c2ecf20Sopenharmony_ci q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\ 858c2ecf20Sopenharmony_ci q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\ 868c2ecf20Sopenharmony_ci q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\ 878c2ecf20Sopenharmony_ci q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\ 888c2ecf20Sopenharmony_ci q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \ 898c2ecf20Sopenharmony_ci} 908c2ecf20Sopenharmony_ci 918c2ecf20Sopenharmony_ci/* 928c2ecf20Sopenharmony_ci * Given a value i in 0..255 as the byte overflow when a field element 938c2ecf20Sopenharmony_ci * in GF(2^128) is multiplied by x^8, the following macro returns the 948c2ecf20Sopenharmony_ci * 16-bit value that must be XOR-ed into the low-degree end of the 958c2ecf20Sopenharmony_ci * product to reduce it modulo the polynomial x^128 + x^7 + x^2 + x + 1. 968c2ecf20Sopenharmony_ci * 978c2ecf20Sopenharmony_ci * There are two versions of the macro, and hence two tables: one for 988c2ecf20Sopenharmony_ci * the "be" convention where the highest-order bit is the coefficient of 998c2ecf20Sopenharmony_ci * the highest-degree polynomial term, and one for the "le" convention 1008c2ecf20Sopenharmony_ci * where the highest-order bit is the coefficient of the lowest-degree 1018c2ecf20Sopenharmony_ci * polynomial term. In both cases the values are stored in CPU byte 1028c2ecf20Sopenharmony_ci * endianness such that the coefficients are ordered consistently across 1038c2ecf20Sopenharmony_ci * bytes, i.e. in the "be" table bits 15..0 of the stored value 1048c2ecf20Sopenharmony_ci * correspond to the coefficients of x^15..x^0, and in the "le" table 1058c2ecf20Sopenharmony_ci * bits 15..0 correspond to the coefficients of x^0..x^15. 1068c2ecf20Sopenharmony_ci * 1078c2ecf20Sopenharmony_ci * Therefore, provided that the appropriate byte endianness conversions 1088c2ecf20Sopenharmony_ci * are done by the multiplication functions (and these must be in place 1098c2ecf20Sopenharmony_ci * anyway to support both little endian and big endian CPUs), the "be" 1108c2ecf20Sopenharmony_ci * table can be used for multiplications of both "bbe" and "ble" 1118c2ecf20Sopenharmony_ci * elements, and the "le" table can be used for multiplications of both 1128c2ecf20Sopenharmony_ci * "lle" and "lbe" elements. 1138c2ecf20Sopenharmony_ci */ 1148c2ecf20Sopenharmony_ci 1158c2ecf20Sopenharmony_ci#define xda_be(i) ( \ 1168c2ecf20Sopenharmony_ci (i & 0x80 ? 0x4380 : 0) ^ (i & 0x40 ? 0x21c0 : 0) ^ \ 1178c2ecf20Sopenharmony_ci (i & 0x20 ? 0x10e0 : 0) ^ (i & 0x10 ? 0x0870 : 0) ^ \ 1188c2ecf20Sopenharmony_ci (i & 0x08 ? 0x0438 : 0) ^ (i & 0x04 ? 0x021c : 0) ^ \ 1198c2ecf20Sopenharmony_ci (i & 0x02 ? 0x010e : 0) ^ (i & 0x01 ? 0x0087 : 0) \ 1208c2ecf20Sopenharmony_ci) 1218c2ecf20Sopenharmony_ci 1228c2ecf20Sopenharmony_ci#define xda_le(i) ( \ 1238c2ecf20Sopenharmony_ci (i & 0x80 ? 0xe100 : 0) ^ (i & 0x40 ? 0x7080 : 0) ^ \ 1248c2ecf20Sopenharmony_ci (i & 0x20 ? 0x3840 : 0) ^ (i & 0x10 ? 0x1c20 : 0) ^ \ 1258c2ecf20Sopenharmony_ci (i & 0x08 ? 0x0e10 : 0) ^ (i & 0x04 ? 0x0708 : 0) ^ \ 1268c2ecf20Sopenharmony_ci (i & 0x02 ? 0x0384 : 0) ^ (i & 0x01 ? 0x01c2 : 0) \ 1278c2ecf20Sopenharmony_ci) 1288c2ecf20Sopenharmony_ci 1298c2ecf20Sopenharmony_cistatic const u16 gf128mul_table_le[256] = gf128mul_dat(xda_le); 1308c2ecf20Sopenharmony_cistatic const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be); 1318c2ecf20Sopenharmony_ci 1328c2ecf20Sopenharmony_ci/* 1338c2ecf20Sopenharmony_ci * The following functions multiply a field element by x^8 in 1348c2ecf20Sopenharmony_ci * the polynomial field representation. They use 64-bit word operations 1358c2ecf20Sopenharmony_ci * to gain speed but compensate for machine endianness and hence work 1368c2ecf20Sopenharmony_ci * correctly on both styles of machine. 1378c2ecf20Sopenharmony_ci */ 1388c2ecf20Sopenharmony_ci 1398c2ecf20Sopenharmony_cistatic void gf128mul_x8_lle(be128 *x) 1408c2ecf20Sopenharmony_ci{ 1418c2ecf20Sopenharmony_ci u64 a = be64_to_cpu(x->a); 1428c2ecf20Sopenharmony_ci u64 b = be64_to_cpu(x->b); 1438c2ecf20Sopenharmony_ci u64 _tt = gf128mul_table_le[b & 0xff]; 1448c2ecf20Sopenharmony_ci 1458c2ecf20Sopenharmony_ci x->b = cpu_to_be64((b >> 8) | (a << 56)); 1468c2ecf20Sopenharmony_ci x->a = cpu_to_be64((a >> 8) ^ (_tt << 48)); 1478c2ecf20Sopenharmony_ci} 1488c2ecf20Sopenharmony_ci 1498c2ecf20Sopenharmony_cistatic void gf128mul_x8_bbe(be128 *x) 1508c2ecf20Sopenharmony_ci{ 1518c2ecf20Sopenharmony_ci u64 a = be64_to_cpu(x->a); 1528c2ecf20Sopenharmony_ci u64 b = be64_to_cpu(x->b); 1538c2ecf20Sopenharmony_ci u64 _tt = gf128mul_table_be[a >> 56]; 1548c2ecf20Sopenharmony_ci 1558c2ecf20Sopenharmony_ci x->a = cpu_to_be64((a << 8) | (b >> 56)); 1568c2ecf20Sopenharmony_ci x->b = cpu_to_be64((b << 8) ^ _tt); 1578c2ecf20Sopenharmony_ci} 1588c2ecf20Sopenharmony_ci 1598c2ecf20Sopenharmony_civoid gf128mul_x8_ble(le128 *r, const le128 *x) 1608c2ecf20Sopenharmony_ci{ 1618c2ecf20Sopenharmony_ci u64 a = le64_to_cpu(x->a); 1628c2ecf20Sopenharmony_ci u64 b = le64_to_cpu(x->b); 1638c2ecf20Sopenharmony_ci u64 _tt = gf128mul_table_be[a >> 56]; 1648c2ecf20Sopenharmony_ci 1658c2ecf20Sopenharmony_ci r->a = cpu_to_le64((a << 8) | (b >> 56)); 1668c2ecf20Sopenharmony_ci r->b = cpu_to_le64((b << 8) ^ _tt); 1678c2ecf20Sopenharmony_ci} 1688c2ecf20Sopenharmony_ciEXPORT_SYMBOL(gf128mul_x8_ble); 1698c2ecf20Sopenharmony_ci 1708c2ecf20Sopenharmony_civoid gf128mul_lle(be128 *r, const be128 *b) 1718c2ecf20Sopenharmony_ci{ 1728c2ecf20Sopenharmony_ci be128 p[8]; 1738c2ecf20Sopenharmony_ci int i; 1748c2ecf20Sopenharmony_ci 1758c2ecf20Sopenharmony_ci p[0] = *r; 1768c2ecf20Sopenharmony_ci for (i = 0; i < 7; ++i) 1778c2ecf20Sopenharmony_ci gf128mul_x_lle(&p[i + 1], &p[i]); 1788c2ecf20Sopenharmony_ci 1798c2ecf20Sopenharmony_ci memset(r, 0, sizeof(*r)); 1808c2ecf20Sopenharmony_ci for (i = 0;;) { 1818c2ecf20Sopenharmony_ci u8 ch = ((u8 *)b)[15 - i]; 1828c2ecf20Sopenharmony_ci 1838c2ecf20Sopenharmony_ci if (ch & 0x80) 1848c2ecf20Sopenharmony_ci be128_xor(r, r, &p[0]); 1858c2ecf20Sopenharmony_ci if (ch & 0x40) 1868c2ecf20Sopenharmony_ci be128_xor(r, r, &p[1]); 1878c2ecf20Sopenharmony_ci if (ch & 0x20) 1888c2ecf20Sopenharmony_ci be128_xor(r, r, &p[2]); 1898c2ecf20Sopenharmony_ci if (ch & 0x10) 1908c2ecf20Sopenharmony_ci be128_xor(r, r, &p[3]); 1918c2ecf20Sopenharmony_ci if (ch & 0x08) 1928c2ecf20Sopenharmony_ci be128_xor(r, r, &p[4]); 1938c2ecf20Sopenharmony_ci if (ch & 0x04) 1948c2ecf20Sopenharmony_ci be128_xor(r, r, &p[5]); 1958c2ecf20Sopenharmony_ci if (ch & 0x02) 1968c2ecf20Sopenharmony_ci be128_xor(r, r, &p[6]); 1978c2ecf20Sopenharmony_ci if (ch & 0x01) 1988c2ecf20Sopenharmony_ci be128_xor(r, r, &p[7]); 1998c2ecf20Sopenharmony_ci 2008c2ecf20Sopenharmony_ci if (++i >= 16) 2018c2ecf20Sopenharmony_ci break; 2028c2ecf20Sopenharmony_ci 2038c2ecf20Sopenharmony_ci gf128mul_x8_lle(r); 2048c2ecf20Sopenharmony_ci } 2058c2ecf20Sopenharmony_ci} 2068c2ecf20Sopenharmony_ciEXPORT_SYMBOL(gf128mul_lle); 2078c2ecf20Sopenharmony_ci 2088c2ecf20Sopenharmony_civoid gf128mul_bbe(be128 *r, const be128 *b) 2098c2ecf20Sopenharmony_ci{ 2108c2ecf20Sopenharmony_ci be128 p[8]; 2118c2ecf20Sopenharmony_ci int i; 2128c2ecf20Sopenharmony_ci 2138c2ecf20Sopenharmony_ci p[0] = *r; 2148c2ecf20Sopenharmony_ci for (i = 0; i < 7; ++i) 2158c2ecf20Sopenharmony_ci gf128mul_x_bbe(&p[i + 1], &p[i]); 2168c2ecf20Sopenharmony_ci 2178c2ecf20Sopenharmony_ci memset(r, 0, sizeof(*r)); 2188c2ecf20Sopenharmony_ci for (i = 0;;) { 2198c2ecf20Sopenharmony_ci u8 ch = ((u8 *)b)[i]; 2208c2ecf20Sopenharmony_ci 2218c2ecf20Sopenharmony_ci if (ch & 0x80) 2228c2ecf20Sopenharmony_ci be128_xor(r, r, &p[7]); 2238c2ecf20Sopenharmony_ci if (ch & 0x40) 2248c2ecf20Sopenharmony_ci be128_xor(r, r, &p[6]); 2258c2ecf20Sopenharmony_ci if (ch & 0x20) 2268c2ecf20Sopenharmony_ci be128_xor(r, r, &p[5]); 2278c2ecf20Sopenharmony_ci if (ch & 0x10) 2288c2ecf20Sopenharmony_ci be128_xor(r, r, &p[4]); 2298c2ecf20Sopenharmony_ci if (ch & 0x08) 2308c2ecf20Sopenharmony_ci be128_xor(r, r, &p[3]); 2318c2ecf20Sopenharmony_ci if (ch & 0x04) 2328c2ecf20Sopenharmony_ci be128_xor(r, r, &p[2]); 2338c2ecf20Sopenharmony_ci if (ch & 0x02) 2348c2ecf20Sopenharmony_ci be128_xor(r, r, &p[1]); 2358c2ecf20Sopenharmony_ci if (ch & 0x01) 2368c2ecf20Sopenharmony_ci be128_xor(r, r, &p[0]); 2378c2ecf20Sopenharmony_ci 2388c2ecf20Sopenharmony_ci if (++i >= 16) 2398c2ecf20Sopenharmony_ci break; 2408c2ecf20Sopenharmony_ci 2418c2ecf20Sopenharmony_ci gf128mul_x8_bbe(r); 2428c2ecf20Sopenharmony_ci } 2438c2ecf20Sopenharmony_ci} 2448c2ecf20Sopenharmony_ciEXPORT_SYMBOL(gf128mul_bbe); 2458c2ecf20Sopenharmony_ci 2468c2ecf20Sopenharmony_ci/* This version uses 64k bytes of table space. 2478c2ecf20Sopenharmony_ci A 16 byte buffer has to be multiplied by a 16 byte key 2488c2ecf20Sopenharmony_ci value in GF(2^128). If we consider a GF(2^128) value in 2498c2ecf20Sopenharmony_ci the buffer's lowest byte, we can construct a table of 2508c2ecf20Sopenharmony_ci the 256 16 byte values that result from the 256 values 2518c2ecf20Sopenharmony_ci of this byte. This requires 4096 bytes. But we also 2528c2ecf20Sopenharmony_ci need tables for each of the 16 higher bytes in the 2538c2ecf20Sopenharmony_ci buffer as well, which makes 64 kbytes in total. 2548c2ecf20Sopenharmony_ci*/ 2558c2ecf20Sopenharmony_ci/* additional explanation 2568c2ecf20Sopenharmony_ci * t[0][BYTE] contains g*BYTE 2578c2ecf20Sopenharmony_ci * t[1][BYTE] contains g*x^8*BYTE 2588c2ecf20Sopenharmony_ci * .. 2598c2ecf20Sopenharmony_ci * t[15][BYTE] contains g*x^120*BYTE */ 2608c2ecf20Sopenharmony_cistruct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g) 2618c2ecf20Sopenharmony_ci{ 2628c2ecf20Sopenharmony_ci struct gf128mul_64k *t; 2638c2ecf20Sopenharmony_ci int i, j, k; 2648c2ecf20Sopenharmony_ci 2658c2ecf20Sopenharmony_ci t = kzalloc(sizeof(*t), GFP_KERNEL); 2668c2ecf20Sopenharmony_ci if (!t) 2678c2ecf20Sopenharmony_ci goto out; 2688c2ecf20Sopenharmony_ci 2698c2ecf20Sopenharmony_ci for (i = 0; i < 16; i++) { 2708c2ecf20Sopenharmony_ci t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL); 2718c2ecf20Sopenharmony_ci if (!t->t[i]) { 2728c2ecf20Sopenharmony_ci gf128mul_free_64k(t); 2738c2ecf20Sopenharmony_ci t = NULL; 2748c2ecf20Sopenharmony_ci goto out; 2758c2ecf20Sopenharmony_ci } 2768c2ecf20Sopenharmony_ci } 2778c2ecf20Sopenharmony_ci 2788c2ecf20Sopenharmony_ci t->t[0]->t[1] = *g; 2798c2ecf20Sopenharmony_ci for (j = 1; j <= 64; j <<= 1) 2808c2ecf20Sopenharmony_ci gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]); 2818c2ecf20Sopenharmony_ci 2828c2ecf20Sopenharmony_ci for (i = 0;;) { 2838c2ecf20Sopenharmony_ci for (j = 2; j < 256; j += j) 2848c2ecf20Sopenharmony_ci for (k = 1; k < j; ++k) 2858c2ecf20Sopenharmony_ci be128_xor(&t->t[i]->t[j + k], 2868c2ecf20Sopenharmony_ci &t->t[i]->t[j], &t->t[i]->t[k]); 2878c2ecf20Sopenharmony_ci 2888c2ecf20Sopenharmony_ci if (++i >= 16) 2898c2ecf20Sopenharmony_ci break; 2908c2ecf20Sopenharmony_ci 2918c2ecf20Sopenharmony_ci for (j = 128; j > 0; j >>= 1) { 2928c2ecf20Sopenharmony_ci t->t[i]->t[j] = t->t[i - 1]->t[j]; 2938c2ecf20Sopenharmony_ci gf128mul_x8_bbe(&t->t[i]->t[j]); 2948c2ecf20Sopenharmony_ci } 2958c2ecf20Sopenharmony_ci } 2968c2ecf20Sopenharmony_ci 2978c2ecf20Sopenharmony_ciout: 2988c2ecf20Sopenharmony_ci return t; 2998c2ecf20Sopenharmony_ci} 3008c2ecf20Sopenharmony_ciEXPORT_SYMBOL(gf128mul_init_64k_bbe); 3018c2ecf20Sopenharmony_ci 3028c2ecf20Sopenharmony_civoid gf128mul_free_64k(struct gf128mul_64k *t) 3038c2ecf20Sopenharmony_ci{ 3048c2ecf20Sopenharmony_ci int i; 3058c2ecf20Sopenharmony_ci 3068c2ecf20Sopenharmony_ci for (i = 0; i < 16; i++) 3078c2ecf20Sopenharmony_ci kfree_sensitive(t->t[i]); 3088c2ecf20Sopenharmony_ci kfree_sensitive(t); 3098c2ecf20Sopenharmony_ci} 3108c2ecf20Sopenharmony_ciEXPORT_SYMBOL(gf128mul_free_64k); 3118c2ecf20Sopenharmony_ci 3128c2ecf20Sopenharmony_civoid gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t) 3138c2ecf20Sopenharmony_ci{ 3148c2ecf20Sopenharmony_ci u8 *ap = (u8 *)a; 3158c2ecf20Sopenharmony_ci be128 r[1]; 3168c2ecf20Sopenharmony_ci int i; 3178c2ecf20Sopenharmony_ci 3188c2ecf20Sopenharmony_ci *r = t->t[0]->t[ap[15]]; 3198c2ecf20Sopenharmony_ci for (i = 1; i < 16; ++i) 3208c2ecf20Sopenharmony_ci be128_xor(r, r, &t->t[i]->t[ap[15 - i]]); 3218c2ecf20Sopenharmony_ci *a = *r; 3228c2ecf20Sopenharmony_ci} 3238c2ecf20Sopenharmony_ciEXPORT_SYMBOL(gf128mul_64k_bbe); 3248c2ecf20Sopenharmony_ci 3258c2ecf20Sopenharmony_ci/* This version uses 4k bytes of table space. 3268c2ecf20Sopenharmony_ci A 16 byte buffer has to be multiplied by a 16 byte key 3278c2ecf20Sopenharmony_ci value in GF(2^128). If we consider a GF(2^128) value in a 3288c2ecf20Sopenharmony_ci single byte, we can construct a table of the 256 16 byte 3298c2ecf20Sopenharmony_ci values that result from the 256 values of this byte. 3308c2ecf20Sopenharmony_ci This requires 4096 bytes. If we take the highest byte in 3318c2ecf20Sopenharmony_ci the buffer and use this table to get the result, we then 3328c2ecf20Sopenharmony_ci have to multiply by x^120 to get the final value. For the 3338c2ecf20Sopenharmony_ci next highest byte the result has to be multiplied by x^112 3348c2ecf20Sopenharmony_ci and so on. But we can do this by accumulating the result 3358c2ecf20Sopenharmony_ci in an accumulator starting with the result for the top 3368c2ecf20Sopenharmony_ci byte. We repeatedly multiply the accumulator value by 3378c2ecf20Sopenharmony_ci x^8 and then add in (i.e. xor) the 16 bytes of the next 3388c2ecf20Sopenharmony_ci lower byte in the buffer, stopping when we reach the 3398c2ecf20Sopenharmony_ci lowest byte. This requires a 4096 byte table. 3408c2ecf20Sopenharmony_ci*/ 3418c2ecf20Sopenharmony_cistruct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g) 3428c2ecf20Sopenharmony_ci{ 3438c2ecf20Sopenharmony_ci struct gf128mul_4k *t; 3448c2ecf20Sopenharmony_ci int j, k; 3458c2ecf20Sopenharmony_ci 3468c2ecf20Sopenharmony_ci t = kzalloc(sizeof(*t), GFP_KERNEL); 3478c2ecf20Sopenharmony_ci if (!t) 3488c2ecf20Sopenharmony_ci goto out; 3498c2ecf20Sopenharmony_ci 3508c2ecf20Sopenharmony_ci t->t[128] = *g; 3518c2ecf20Sopenharmony_ci for (j = 64; j > 0; j >>= 1) 3528c2ecf20Sopenharmony_ci gf128mul_x_lle(&t->t[j], &t->t[j+j]); 3538c2ecf20Sopenharmony_ci 3548c2ecf20Sopenharmony_ci for (j = 2; j < 256; j += j) 3558c2ecf20Sopenharmony_ci for (k = 1; k < j; ++k) 3568c2ecf20Sopenharmony_ci be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); 3578c2ecf20Sopenharmony_ci 3588c2ecf20Sopenharmony_ciout: 3598c2ecf20Sopenharmony_ci return t; 3608c2ecf20Sopenharmony_ci} 3618c2ecf20Sopenharmony_ciEXPORT_SYMBOL(gf128mul_init_4k_lle); 3628c2ecf20Sopenharmony_ci 3638c2ecf20Sopenharmony_cistruct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g) 3648c2ecf20Sopenharmony_ci{ 3658c2ecf20Sopenharmony_ci struct gf128mul_4k *t; 3668c2ecf20Sopenharmony_ci int j, k; 3678c2ecf20Sopenharmony_ci 3688c2ecf20Sopenharmony_ci t = kzalloc(sizeof(*t), GFP_KERNEL); 3698c2ecf20Sopenharmony_ci if (!t) 3708c2ecf20Sopenharmony_ci goto out; 3718c2ecf20Sopenharmony_ci 3728c2ecf20Sopenharmony_ci t->t[1] = *g; 3738c2ecf20Sopenharmony_ci for (j = 1; j <= 64; j <<= 1) 3748c2ecf20Sopenharmony_ci gf128mul_x_bbe(&t->t[j + j], &t->t[j]); 3758c2ecf20Sopenharmony_ci 3768c2ecf20Sopenharmony_ci for (j = 2; j < 256; j += j) 3778c2ecf20Sopenharmony_ci for (k = 1; k < j; ++k) 3788c2ecf20Sopenharmony_ci be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); 3798c2ecf20Sopenharmony_ci 3808c2ecf20Sopenharmony_ciout: 3818c2ecf20Sopenharmony_ci return t; 3828c2ecf20Sopenharmony_ci} 3838c2ecf20Sopenharmony_ciEXPORT_SYMBOL(gf128mul_init_4k_bbe); 3848c2ecf20Sopenharmony_ci 3858c2ecf20Sopenharmony_civoid gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t) 3868c2ecf20Sopenharmony_ci{ 3878c2ecf20Sopenharmony_ci u8 *ap = (u8 *)a; 3888c2ecf20Sopenharmony_ci be128 r[1]; 3898c2ecf20Sopenharmony_ci int i = 15; 3908c2ecf20Sopenharmony_ci 3918c2ecf20Sopenharmony_ci *r = t->t[ap[15]]; 3928c2ecf20Sopenharmony_ci while (i--) { 3938c2ecf20Sopenharmony_ci gf128mul_x8_lle(r); 3948c2ecf20Sopenharmony_ci be128_xor(r, r, &t->t[ap[i]]); 3958c2ecf20Sopenharmony_ci } 3968c2ecf20Sopenharmony_ci *a = *r; 3978c2ecf20Sopenharmony_ci} 3988c2ecf20Sopenharmony_ciEXPORT_SYMBOL(gf128mul_4k_lle); 3998c2ecf20Sopenharmony_ci 4008c2ecf20Sopenharmony_civoid gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t) 4018c2ecf20Sopenharmony_ci{ 4028c2ecf20Sopenharmony_ci u8 *ap = (u8 *)a; 4038c2ecf20Sopenharmony_ci be128 r[1]; 4048c2ecf20Sopenharmony_ci int i = 0; 4058c2ecf20Sopenharmony_ci 4068c2ecf20Sopenharmony_ci *r = t->t[ap[0]]; 4078c2ecf20Sopenharmony_ci while (++i < 16) { 4088c2ecf20Sopenharmony_ci gf128mul_x8_bbe(r); 4098c2ecf20Sopenharmony_ci be128_xor(r, r, &t->t[ap[i]]); 4108c2ecf20Sopenharmony_ci } 4118c2ecf20Sopenharmony_ci *a = *r; 4128c2ecf20Sopenharmony_ci} 4138c2ecf20Sopenharmony_ciEXPORT_SYMBOL(gf128mul_4k_bbe); 4148c2ecf20Sopenharmony_ci 4158c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL"); 4168c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)"); 417