xref: /kernel/linux/linux-5.10/crypto/drbg.c (revision 8c2ecf20)
1/*
2 * DRBG: Deterministic Random Bits Generator
3 *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
4 *       properties:
5 *		* CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6 *		* Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7 *		* HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8 *		* with and without prediction resistance
9 *
10 * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, and the entire permission notice in its entirety,
17 *    including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 *    products derived from this software without specific prior
23 *    written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions.  (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 *
44 * DRBG Usage
45 * ==========
46 * The SP 800-90A DRBG allows the user to specify a personalization string
47 * for initialization as well as an additional information string for each
48 * random number request. The following code fragments show how a caller
49 * uses the kernel crypto API to use the full functionality of the DRBG.
50 *
51 * Usage without any additional data
52 * ---------------------------------
53 * struct crypto_rng *drng;
54 * int err;
55 * char data[DATALEN];
56 *
57 * drng = crypto_alloc_rng(drng_name, 0, 0);
58 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59 * crypto_free_rng(drng);
60 *
61 *
62 * Usage with personalization string during initialization
63 * -------------------------------------------------------
64 * struct crypto_rng *drng;
65 * int err;
66 * char data[DATALEN];
67 * struct drbg_string pers;
68 * char personalization[11] = "some-string";
69 *
70 * drbg_string_fill(&pers, personalization, strlen(personalization));
71 * drng = crypto_alloc_rng(drng_name, 0, 0);
72 * // The reset completely re-initializes the DRBG with the provided
73 * // personalization string
74 * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76 * crypto_free_rng(drng);
77 *
78 *
79 * Usage with additional information string during random number request
80 * ---------------------------------------------------------------------
81 * struct crypto_rng *drng;
82 * int err;
83 * char data[DATALEN];
84 * char addtl_string[11] = "some-string";
85 * string drbg_string addtl;
86 *
87 * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88 * drng = crypto_alloc_rng(drng_name, 0, 0);
89 * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90 * // the same error codes.
91 * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92 * crypto_free_rng(drng);
93 *
94 *
95 * Usage with personalization and additional information strings
96 * -------------------------------------------------------------
97 * Just mix both scenarios above.
98 */
99
100#include <crypto/drbg.h>
101#include <linux/kernel.h>
102
103/***************************************************************
104 * Backend cipher definitions available to DRBG
105 ***************************************************************/
106
107/*
108 * The order of the DRBG definitions here matter: every DRBG is registered
109 * as stdrng. Each DRBG receives an increasing cra_priority values the later
110 * they are defined in this array (see drbg_fill_array).
111 *
112 * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
113 * the SHA256 / AES 256 over other ciphers. Thus, the favored
114 * DRBGs are the latest entries in this array.
115 */
116static const struct drbg_core drbg_cores[] = {
117#ifdef CONFIG_CRYPTO_DRBG_CTR
118	{
119		.flags = DRBG_CTR | DRBG_STRENGTH128,
120		.statelen = 32, /* 256 bits as defined in 10.2.1 */
121		.blocklen_bytes = 16,
122		.cra_name = "ctr_aes128",
123		.backend_cra_name = "aes",
124	}, {
125		.flags = DRBG_CTR | DRBG_STRENGTH192,
126		.statelen = 40, /* 320 bits as defined in 10.2.1 */
127		.blocklen_bytes = 16,
128		.cra_name = "ctr_aes192",
129		.backend_cra_name = "aes",
130	}, {
131		.flags = DRBG_CTR | DRBG_STRENGTH256,
132		.statelen = 48, /* 384 bits as defined in 10.2.1 */
133		.blocklen_bytes = 16,
134		.cra_name = "ctr_aes256",
135		.backend_cra_name = "aes",
136	},
137#endif /* CONFIG_CRYPTO_DRBG_CTR */
138#ifdef CONFIG_CRYPTO_DRBG_HASH
139	{
140		.flags = DRBG_HASH | DRBG_STRENGTH128,
141		.statelen = 55, /* 440 bits */
142		.blocklen_bytes = 20,
143		.cra_name = "sha1",
144		.backend_cra_name = "sha1",
145	}, {
146		.flags = DRBG_HASH | DRBG_STRENGTH256,
147		.statelen = 111, /* 888 bits */
148		.blocklen_bytes = 48,
149		.cra_name = "sha384",
150		.backend_cra_name = "sha384",
151	}, {
152		.flags = DRBG_HASH | DRBG_STRENGTH256,
153		.statelen = 111, /* 888 bits */
154		.blocklen_bytes = 64,
155		.cra_name = "sha512",
156		.backend_cra_name = "sha512",
157	}, {
158		.flags = DRBG_HASH | DRBG_STRENGTH256,
159		.statelen = 55, /* 440 bits */
160		.blocklen_bytes = 32,
161		.cra_name = "sha256",
162		.backend_cra_name = "sha256",
163	},
164#endif /* CONFIG_CRYPTO_DRBG_HASH */
165#ifdef CONFIG_CRYPTO_DRBG_HMAC
166	{
167		.flags = DRBG_HMAC | DRBG_STRENGTH128,
168		.statelen = 20, /* block length of cipher */
169		.blocklen_bytes = 20,
170		.cra_name = "hmac_sha1",
171		.backend_cra_name = "hmac(sha1)",
172	}, {
173		.flags = DRBG_HMAC | DRBG_STRENGTH256,
174		.statelen = 48, /* block length of cipher */
175		.blocklen_bytes = 48,
176		.cra_name = "hmac_sha384",
177		.backend_cra_name = "hmac(sha384)",
178	}, {
179		.flags = DRBG_HMAC | DRBG_STRENGTH256,
180		.statelen = 64, /* block length of cipher */
181		.blocklen_bytes = 64,
182		.cra_name = "hmac_sha512",
183		.backend_cra_name = "hmac(sha512)",
184	}, {
185		.flags = DRBG_HMAC | DRBG_STRENGTH256,
186		.statelen = 32, /* block length of cipher */
187		.blocklen_bytes = 32,
188		.cra_name = "hmac_sha256",
189		.backend_cra_name = "hmac(sha256)",
190	},
191#endif /* CONFIG_CRYPTO_DRBG_HMAC */
192};
193
194static int drbg_uninstantiate(struct drbg_state *drbg);
195
196/******************************************************************
197 * Generic helper functions
198 ******************************************************************/
199
200/*
201 * Return strength of DRBG according to SP800-90A section 8.4
202 *
203 * @flags DRBG flags reference
204 *
205 * Return: normalized strength in *bytes* value or 32 as default
206 *	   to counter programming errors
207 */
208static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
209{
210	switch (flags & DRBG_STRENGTH_MASK) {
211	case DRBG_STRENGTH128:
212		return 16;
213	case DRBG_STRENGTH192:
214		return 24;
215	case DRBG_STRENGTH256:
216		return 32;
217	default:
218		return 32;
219	}
220}
221
222/*
223 * FIPS 140-2 continuous self test for the noise source
224 * The test is performed on the noise source input data. Thus, the function
225 * implicitly knows the size of the buffer to be equal to the security
226 * strength.
227 *
228 * Note, this function disregards the nonce trailing the entropy data during
229 * initial seeding.
230 *
231 * drbg->drbg_mutex must have been taken.
232 *
233 * @drbg DRBG handle
234 * @entropy buffer of seed data to be checked
235 *
236 * return:
237 *	0 on success
238 *	-EAGAIN on when the CTRNG is not yet primed
239 *	< 0 on error
240 */
241static int drbg_fips_continuous_test(struct drbg_state *drbg,
242				     const unsigned char *entropy)
243{
244	unsigned short entropylen = drbg_sec_strength(drbg->core->flags);
245	int ret = 0;
246
247	if (!IS_ENABLED(CONFIG_CRYPTO_FIPS))
248		return 0;
249
250	/* skip test if we test the overall system */
251	if (list_empty(&drbg->test_data.list))
252		return 0;
253	/* only perform test in FIPS mode */
254	if (!fips_enabled)
255		return 0;
256
257	if (!drbg->fips_primed) {
258		/* Priming of FIPS test */
259		memcpy(drbg->prev, entropy, entropylen);
260		drbg->fips_primed = true;
261		/* priming: another round is needed */
262		return -EAGAIN;
263	}
264	ret = memcmp(drbg->prev, entropy, entropylen);
265	if (!ret)
266		panic("DRBG continuous self test failed\n");
267	memcpy(drbg->prev, entropy, entropylen);
268
269	/* the test shall pass when the two values are not equal */
270	return 0;
271}
272
273/*
274 * Convert an integer into a byte representation of this integer.
275 * The byte representation is big-endian
276 *
277 * @val value to be converted
278 * @buf buffer holding the converted integer -- caller must ensure that
279 *      buffer size is at least 32 bit
280 */
281#if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
282static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
283{
284	struct s {
285		__be32 conv;
286	};
287	struct s *conversion = (struct s *) buf;
288
289	conversion->conv = cpu_to_be32(val);
290}
291#endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
292
293/******************************************************************
294 * CTR DRBG callback functions
295 ******************************************************************/
296
297#ifdef CONFIG_CRYPTO_DRBG_CTR
298#define CRYPTO_DRBG_CTR_STRING "CTR "
299MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
300MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
301MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
302MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
303MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
304MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
305
306static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
307				 const unsigned char *key);
308static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
309			  const struct drbg_string *in);
310static int drbg_init_sym_kernel(struct drbg_state *drbg);
311static int drbg_fini_sym_kernel(struct drbg_state *drbg);
312static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
313			      u8 *inbuf, u32 inbuflen,
314			      u8 *outbuf, u32 outlen);
315#define DRBG_OUTSCRATCHLEN 256
316
317/* BCC function for CTR DRBG as defined in 10.4.3 */
318static int drbg_ctr_bcc(struct drbg_state *drbg,
319			unsigned char *out, const unsigned char *key,
320			struct list_head *in)
321{
322	int ret = 0;
323	struct drbg_string *curr = NULL;
324	struct drbg_string data;
325	short cnt = 0;
326
327	drbg_string_fill(&data, out, drbg_blocklen(drbg));
328
329	/* 10.4.3 step 2 / 4 */
330	drbg_kcapi_symsetkey(drbg, key);
331	list_for_each_entry(curr, in, list) {
332		const unsigned char *pos = curr->buf;
333		size_t len = curr->len;
334		/* 10.4.3 step 4.1 */
335		while (len) {
336			/* 10.4.3 step 4.2 */
337			if (drbg_blocklen(drbg) == cnt) {
338				cnt = 0;
339				ret = drbg_kcapi_sym(drbg, out, &data);
340				if (ret)
341					return ret;
342			}
343			out[cnt] ^= *pos;
344			pos++;
345			cnt++;
346			len--;
347		}
348	}
349	/* 10.4.3 step 4.2 for last block */
350	if (cnt)
351		ret = drbg_kcapi_sym(drbg, out, &data);
352
353	return ret;
354}
355
356/*
357 * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
358 * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
359 * the scratchpad is used as follows:
360 * drbg_ctr_update:
361 *	temp
362 *		start: drbg->scratchpad
363 *		length: drbg_statelen(drbg) + drbg_blocklen(drbg)
364 *			note: the cipher writing into this variable works
365 *			blocklen-wise. Now, when the statelen is not a multiple
366 *			of blocklen, the generateion loop below "spills over"
367 *			by at most blocklen. Thus, we need to give sufficient
368 *			memory.
369 *	df_data
370 *		start: drbg->scratchpad +
371 *				drbg_statelen(drbg) + drbg_blocklen(drbg)
372 *		length: drbg_statelen(drbg)
373 *
374 * drbg_ctr_df:
375 *	pad
376 *		start: df_data + drbg_statelen(drbg)
377 *		length: drbg_blocklen(drbg)
378 *	iv
379 *		start: pad + drbg_blocklen(drbg)
380 *		length: drbg_blocklen(drbg)
381 *	temp
382 *		start: iv + drbg_blocklen(drbg)
383 *		length: drbg_satelen(drbg) + drbg_blocklen(drbg)
384 *			note: temp is the buffer that the BCC function operates
385 *			on. BCC operates blockwise. drbg_statelen(drbg)
386 *			is sufficient when the DRBG state length is a multiple
387 *			of the block size. For AES192 (and maybe other ciphers)
388 *			this is not correct and the length for temp is
389 *			insufficient (yes, that also means for such ciphers,
390 *			the final output of all BCC rounds are truncated).
391 *			Therefore, add drbg_blocklen(drbg) to cover all
392 *			possibilities.
393 */
394
395/* Derivation Function for CTR DRBG as defined in 10.4.2 */
396static int drbg_ctr_df(struct drbg_state *drbg,
397		       unsigned char *df_data, size_t bytes_to_return,
398		       struct list_head *seedlist)
399{
400	int ret = -EFAULT;
401	unsigned char L_N[8];
402	/* S3 is input */
403	struct drbg_string S1, S2, S4, cipherin;
404	LIST_HEAD(bcc_list);
405	unsigned char *pad = df_data + drbg_statelen(drbg);
406	unsigned char *iv = pad + drbg_blocklen(drbg);
407	unsigned char *temp = iv + drbg_blocklen(drbg);
408	size_t padlen = 0;
409	unsigned int templen = 0;
410	/* 10.4.2 step 7 */
411	unsigned int i = 0;
412	/* 10.4.2 step 8 */
413	const unsigned char *K = (unsigned char *)
414			   "\x00\x01\x02\x03\x04\x05\x06\x07"
415			   "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
416			   "\x10\x11\x12\x13\x14\x15\x16\x17"
417			   "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
418	unsigned char *X;
419	size_t generated_len = 0;
420	size_t inputlen = 0;
421	struct drbg_string *seed = NULL;
422
423	memset(pad, 0, drbg_blocklen(drbg));
424	memset(iv, 0, drbg_blocklen(drbg));
425
426	/* 10.4.2 step 1 is implicit as we work byte-wise */
427
428	/* 10.4.2 step 2 */
429	if ((512/8) < bytes_to_return)
430		return -EINVAL;
431
432	/* 10.4.2 step 2 -- calculate the entire length of all input data */
433	list_for_each_entry(seed, seedlist, list)
434		inputlen += seed->len;
435	drbg_cpu_to_be32(inputlen, &L_N[0]);
436
437	/* 10.4.2 step 3 */
438	drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
439
440	/* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
441	padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
442	/* wrap the padlen appropriately */
443	if (padlen)
444		padlen = drbg_blocklen(drbg) - padlen;
445	/*
446	 * pad / padlen contains the 0x80 byte and the following zero bytes.
447	 * As the calculated padlen value only covers the number of zero
448	 * bytes, this value has to be incremented by one for the 0x80 byte.
449	 */
450	padlen++;
451	pad[0] = 0x80;
452
453	/* 10.4.2 step 4 -- first fill the linked list and then order it */
454	drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
455	list_add_tail(&S1.list, &bcc_list);
456	drbg_string_fill(&S2, L_N, sizeof(L_N));
457	list_add_tail(&S2.list, &bcc_list);
458	list_splice_tail(seedlist, &bcc_list);
459	drbg_string_fill(&S4, pad, padlen);
460	list_add_tail(&S4.list, &bcc_list);
461
462	/* 10.4.2 step 9 */
463	while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
464		/*
465		 * 10.4.2 step 9.1 - the padding is implicit as the buffer
466		 * holds zeros after allocation -- even the increment of i
467		 * is irrelevant as the increment remains within length of i
468		 */
469		drbg_cpu_to_be32(i, iv);
470		/* 10.4.2 step 9.2 -- BCC and concatenation with temp */
471		ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
472		if (ret)
473			goto out;
474		/* 10.4.2 step 9.3 */
475		i++;
476		templen += drbg_blocklen(drbg);
477	}
478
479	/* 10.4.2 step 11 */
480	X = temp + (drbg_keylen(drbg));
481	drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
482
483	/* 10.4.2 step 12: overwriting of outval is implemented in next step */
484
485	/* 10.4.2 step 13 */
486	drbg_kcapi_symsetkey(drbg, temp);
487	while (generated_len < bytes_to_return) {
488		short blocklen = 0;
489		/*
490		 * 10.4.2 step 13.1: the truncation of the key length is
491		 * implicit as the key is only drbg_blocklen in size based on
492		 * the implementation of the cipher function callback
493		 */
494		ret = drbg_kcapi_sym(drbg, X, &cipherin);
495		if (ret)
496			goto out;
497		blocklen = (drbg_blocklen(drbg) <
498				(bytes_to_return - generated_len)) ?
499			    drbg_blocklen(drbg) :
500				(bytes_to_return - generated_len);
501		/* 10.4.2 step 13.2 and 14 */
502		memcpy(df_data + generated_len, X, blocklen);
503		generated_len += blocklen;
504	}
505
506	ret = 0;
507
508out:
509	memset(iv, 0, drbg_blocklen(drbg));
510	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
511	memset(pad, 0, drbg_blocklen(drbg));
512	return ret;
513}
514
515/*
516 * update function of CTR DRBG as defined in 10.2.1.2
517 *
518 * The reseed variable has an enhanced meaning compared to the update
519 * functions of the other DRBGs as follows:
520 * 0 => initial seed from initialization
521 * 1 => reseed via drbg_seed
522 * 2 => first invocation from drbg_ctr_update when addtl is present. In
523 *      this case, the df_data scratchpad is not deleted so that it is
524 *      available for another calls to prevent calling the DF function
525 *      again.
526 * 3 => second invocation from drbg_ctr_update. When the update function
527 *      was called with addtl, the df_data memory already contains the
528 *      DFed addtl information and we do not need to call DF again.
529 */
530static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
531			   int reseed)
532{
533	int ret = -EFAULT;
534	/* 10.2.1.2 step 1 */
535	unsigned char *temp = drbg->scratchpad;
536	unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
537				 drbg_blocklen(drbg);
538
539	if (3 > reseed)
540		memset(df_data, 0, drbg_statelen(drbg));
541
542	if (!reseed) {
543		/*
544		 * The DRBG uses the CTR mode of the underlying AES cipher. The
545		 * CTR mode increments the counter value after the AES operation
546		 * but SP800-90A requires that the counter is incremented before
547		 * the AES operation. Hence, we increment it at the time we set
548		 * it by one.
549		 */
550		crypto_inc(drbg->V, drbg_blocklen(drbg));
551
552		ret = crypto_skcipher_setkey(drbg->ctr_handle, drbg->C,
553					     drbg_keylen(drbg));
554		if (ret)
555			goto out;
556	}
557
558	/* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
559	if (seed) {
560		ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
561		if (ret)
562			goto out;
563	}
564
565	ret = drbg_kcapi_sym_ctr(drbg, df_data, drbg_statelen(drbg),
566				 temp, drbg_statelen(drbg));
567	if (ret)
568		return ret;
569
570	/* 10.2.1.2 step 5 */
571	ret = crypto_skcipher_setkey(drbg->ctr_handle, temp,
572				     drbg_keylen(drbg));
573	if (ret)
574		goto out;
575	/* 10.2.1.2 step 6 */
576	memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
577	/* See above: increment counter by one to compensate timing of CTR op */
578	crypto_inc(drbg->V, drbg_blocklen(drbg));
579	ret = 0;
580
581out:
582	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
583	if (2 != reseed)
584		memset(df_data, 0, drbg_statelen(drbg));
585	return ret;
586}
587
588/*
589 * scratchpad use: drbg_ctr_update is called independently from
590 * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
591 */
592/* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
593static int drbg_ctr_generate(struct drbg_state *drbg,
594			     unsigned char *buf, unsigned int buflen,
595			     struct list_head *addtl)
596{
597	int ret;
598	int len = min_t(int, buflen, INT_MAX);
599
600	/* 10.2.1.5.2 step 2 */
601	if (addtl && !list_empty(addtl)) {
602		ret = drbg_ctr_update(drbg, addtl, 2);
603		if (ret)
604			return 0;
605	}
606
607	/* 10.2.1.5.2 step 4.1 */
608	ret = drbg_kcapi_sym_ctr(drbg, NULL, 0, buf, len);
609	if (ret)
610		return ret;
611
612	/* 10.2.1.5.2 step 6 */
613	ret = drbg_ctr_update(drbg, NULL, 3);
614	if (ret)
615		len = ret;
616
617	return len;
618}
619
620static const struct drbg_state_ops drbg_ctr_ops = {
621	.update		= drbg_ctr_update,
622	.generate	= drbg_ctr_generate,
623	.crypto_init	= drbg_init_sym_kernel,
624	.crypto_fini	= drbg_fini_sym_kernel,
625};
626#endif /* CONFIG_CRYPTO_DRBG_CTR */
627
628/******************************************************************
629 * HMAC DRBG callback functions
630 ******************************************************************/
631
632#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
633static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
634			   const struct list_head *in);
635static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
636				  const unsigned char *key);
637static int drbg_init_hash_kernel(struct drbg_state *drbg);
638static int drbg_fini_hash_kernel(struct drbg_state *drbg);
639#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
640
641#ifdef CONFIG_CRYPTO_DRBG_HMAC
642#define CRYPTO_DRBG_HMAC_STRING "HMAC "
643MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
644MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
645MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
646MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
647MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
648MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
649MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
650MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
651
652/* update function of HMAC DRBG as defined in 10.1.2.2 */
653static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
654			    int reseed)
655{
656	int ret = -EFAULT;
657	int i = 0;
658	struct drbg_string seed1, seed2, vdata;
659	LIST_HEAD(seedlist);
660	LIST_HEAD(vdatalist);
661
662	if (!reseed) {
663		/* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
664		memset(drbg->V, 1, drbg_statelen(drbg));
665		drbg_kcapi_hmacsetkey(drbg, drbg->C);
666	}
667
668	drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
669	list_add_tail(&seed1.list, &seedlist);
670	/* buffer of seed2 will be filled in for loop below with one byte */
671	drbg_string_fill(&seed2, NULL, 1);
672	list_add_tail(&seed2.list, &seedlist);
673	/* input data of seed is allowed to be NULL at this point */
674	if (seed)
675		list_splice_tail(seed, &seedlist);
676
677	drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
678	list_add_tail(&vdata.list, &vdatalist);
679	for (i = 2; 0 < i; i--) {
680		/* first round uses 0x0, second 0x1 */
681		unsigned char prefix = DRBG_PREFIX0;
682		if (1 == i)
683			prefix = DRBG_PREFIX1;
684		/* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
685		seed2.buf = &prefix;
686		ret = drbg_kcapi_hash(drbg, drbg->C, &seedlist);
687		if (ret)
688			return ret;
689		drbg_kcapi_hmacsetkey(drbg, drbg->C);
690
691		/* 10.1.2.2 step 2 and 5 -- HMAC for V */
692		ret = drbg_kcapi_hash(drbg, drbg->V, &vdatalist);
693		if (ret)
694			return ret;
695
696		/* 10.1.2.2 step 3 */
697		if (!seed)
698			return ret;
699	}
700
701	return 0;
702}
703
704/* generate function of HMAC DRBG as defined in 10.1.2.5 */
705static int drbg_hmac_generate(struct drbg_state *drbg,
706			      unsigned char *buf,
707			      unsigned int buflen,
708			      struct list_head *addtl)
709{
710	int len = 0;
711	int ret = 0;
712	struct drbg_string data;
713	LIST_HEAD(datalist);
714
715	/* 10.1.2.5 step 2 */
716	if (addtl && !list_empty(addtl)) {
717		ret = drbg_hmac_update(drbg, addtl, 1);
718		if (ret)
719			return ret;
720	}
721
722	drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
723	list_add_tail(&data.list, &datalist);
724	while (len < buflen) {
725		unsigned int outlen = 0;
726		/* 10.1.2.5 step 4.1 */
727		ret = drbg_kcapi_hash(drbg, drbg->V, &datalist);
728		if (ret)
729			return ret;
730		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
731			  drbg_blocklen(drbg) : (buflen - len);
732
733		/* 10.1.2.5 step 4.2 */
734		memcpy(buf + len, drbg->V, outlen);
735		len += outlen;
736	}
737
738	/* 10.1.2.5 step 6 */
739	if (addtl && !list_empty(addtl))
740		ret = drbg_hmac_update(drbg, addtl, 1);
741	else
742		ret = drbg_hmac_update(drbg, NULL, 1);
743	if (ret)
744		return ret;
745
746	return len;
747}
748
749static const struct drbg_state_ops drbg_hmac_ops = {
750	.update		= drbg_hmac_update,
751	.generate	= drbg_hmac_generate,
752	.crypto_init	= drbg_init_hash_kernel,
753	.crypto_fini	= drbg_fini_hash_kernel,
754};
755#endif /* CONFIG_CRYPTO_DRBG_HMAC */
756
757/******************************************************************
758 * Hash DRBG callback functions
759 ******************************************************************/
760
761#ifdef CONFIG_CRYPTO_DRBG_HASH
762#define CRYPTO_DRBG_HASH_STRING "HASH "
763MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
764MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
765MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
766MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
767MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
768MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
769MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
770MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
771
772/*
773 * Increment buffer
774 *
775 * @dst buffer to increment
776 * @add value to add
777 */
778static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
779				const unsigned char *add, size_t addlen)
780{
781	/* implied: dstlen > addlen */
782	unsigned char *dstptr;
783	const unsigned char *addptr;
784	unsigned int remainder = 0;
785	size_t len = addlen;
786
787	dstptr = dst + (dstlen-1);
788	addptr = add + (addlen-1);
789	while (len) {
790		remainder += *dstptr + *addptr;
791		*dstptr = remainder & 0xff;
792		remainder >>= 8;
793		len--; dstptr--; addptr--;
794	}
795	len = dstlen - addlen;
796	while (len && remainder > 0) {
797		remainder = *dstptr + 1;
798		*dstptr = remainder & 0xff;
799		remainder >>= 8;
800		len--; dstptr--;
801	}
802}
803
804/*
805 * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
806 * interlinked, the scratchpad is used as follows:
807 * drbg_hash_update
808 *	start: drbg->scratchpad
809 *	length: drbg_statelen(drbg)
810 * drbg_hash_df:
811 *	start: drbg->scratchpad + drbg_statelen(drbg)
812 *	length: drbg_blocklen(drbg)
813 *
814 * drbg_hash_process_addtl uses the scratchpad, but fully completes
815 * before either of the functions mentioned before are invoked. Therefore,
816 * drbg_hash_process_addtl does not need to be specifically considered.
817 */
818
819/* Derivation Function for Hash DRBG as defined in 10.4.1 */
820static int drbg_hash_df(struct drbg_state *drbg,
821			unsigned char *outval, size_t outlen,
822			struct list_head *entropylist)
823{
824	int ret = 0;
825	size_t len = 0;
826	unsigned char input[5];
827	unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
828	struct drbg_string data;
829
830	/* 10.4.1 step 3 */
831	input[0] = 1;
832	drbg_cpu_to_be32((outlen * 8), &input[1]);
833
834	/* 10.4.1 step 4.1 -- concatenation of data for input into hash */
835	drbg_string_fill(&data, input, 5);
836	list_add(&data.list, entropylist);
837
838	/* 10.4.1 step 4 */
839	while (len < outlen) {
840		short blocklen = 0;
841		/* 10.4.1 step 4.1 */
842		ret = drbg_kcapi_hash(drbg, tmp, entropylist);
843		if (ret)
844			goto out;
845		/* 10.4.1 step 4.2 */
846		input[0]++;
847		blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
848			    drbg_blocklen(drbg) : (outlen - len);
849		memcpy(outval + len, tmp, blocklen);
850		len += blocklen;
851	}
852
853out:
854	memset(tmp, 0, drbg_blocklen(drbg));
855	return ret;
856}
857
858/* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
859static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
860			    int reseed)
861{
862	int ret = 0;
863	struct drbg_string data1, data2;
864	LIST_HEAD(datalist);
865	LIST_HEAD(datalist2);
866	unsigned char *V = drbg->scratchpad;
867	unsigned char prefix = DRBG_PREFIX1;
868
869	if (!seed)
870		return -EINVAL;
871
872	if (reseed) {
873		/* 10.1.1.3 step 1 */
874		memcpy(V, drbg->V, drbg_statelen(drbg));
875		drbg_string_fill(&data1, &prefix, 1);
876		list_add_tail(&data1.list, &datalist);
877		drbg_string_fill(&data2, V, drbg_statelen(drbg));
878		list_add_tail(&data2.list, &datalist);
879	}
880	list_splice_tail(seed, &datalist);
881
882	/* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
883	ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
884	if (ret)
885		goto out;
886
887	/* 10.1.1.2 / 10.1.1.3 step 4  */
888	prefix = DRBG_PREFIX0;
889	drbg_string_fill(&data1, &prefix, 1);
890	list_add_tail(&data1.list, &datalist2);
891	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
892	list_add_tail(&data2.list, &datalist2);
893	/* 10.1.1.2 / 10.1.1.3 step 4 */
894	ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
895
896out:
897	memset(drbg->scratchpad, 0, drbg_statelen(drbg));
898	return ret;
899}
900
901/* processing of additional information string for Hash DRBG */
902static int drbg_hash_process_addtl(struct drbg_state *drbg,
903				   struct list_head *addtl)
904{
905	int ret = 0;
906	struct drbg_string data1, data2;
907	LIST_HEAD(datalist);
908	unsigned char prefix = DRBG_PREFIX2;
909
910	/* 10.1.1.4 step 2 */
911	if (!addtl || list_empty(addtl))
912		return 0;
913
914	/* 10.1.1.4 step 2a */
915	drbg_string_fill(&data1, &prefix, 1);
916	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
917	list_add_tail(&data1.list, &datalist);
918	list_add_tail(&data2.list, &datalist);
919	list_splice_tail(addtl, &datalist);
920	ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
921	if (ret)
922		goto out;
923
924	/* 10.1.1.4 step 2b */
925	drbg_add_buf(drbg->V, drbg_statelen(drbg),
926		     drbg->scratchpad, drbg_blocklen(drbg));
927
928out:
929	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
930	return ret;
931}
932
933/* Hashgen defined in 10.1.1.4 */
934static int drbg_hash_hashgen(struct drbg_state *drbg,
935			     unsigned char *buf,
936			     unsigned int buflen)
937{
938	int len = 0;
939	int ret = 0;
940	unsigned char *src = drbg->scratchpad;
941	unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
942	struct drbg_string data;
943	LIST_HEAD(datalist);
944
945	/* 10.1.1.4 step hashgen 2 */
946	memcpy(src, drbg->V, drbg_statelen(drbg));
947
948	drbg_string_fill(&data, src, drbg_statelen(drbg));
949	list_add_tail(&data.list, &datalist);
950	while (len < buflen) {
951		unsigned int outlen = 0;
952		/* 10.1.1.4 step hashgen 4.1 */
953		ret = drbg_kcapi_hash(drbg, dst, &datalist);
954		if (ret) {
955			len = ret;
956			goto out;
957		}
958		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
959			  drbg_blocklen(drbg) : (buflen - len);
960		/* 10.1.1.4 step hashgen 4.2 */
961		memcpy(buf + len, dst, outlen);
962		len += outlen;
963		/* 10.1.1.4 hashgen step 4.3 */
964		if (len < buflen)
965			crypto_inc(src, drbg_statelen(drbg));
966	}
967
968out:
969	memset(drbg->scratchpad, 0,
970	       (drbg_statelen(drbg) + drbg_blocklen(drbg)));
971	return len;
972}
973
974/* generate function for Hash DRBG as defined in  10.1.1.4 */
975static int drbg_hash_generate(struct drbg_state *drbg,
976			      unsigned char *buf, unsigned int buflen,
977			      struct list_head *addtl)
978{
979	int len = 0;
980	int ret = 0;
981	union {
982		unsigned char req[8];
983		__be64 req_int;
984	} u;
985	unsigned char prefix = DRBG_PREFIX3;
986	struct drbg_string data1, data2;
987	LIST_HEAD(datalist);
988
989	/* 10.1.1.4 step 2 */
990	ret = drbg_hash_process_addtl(drbg, addtl);
991	if (ret)
992		return ret;
993	/* 10.1.1.4 step 3 */
994	len = drbg_hash_hashgen(drbg, buf, buflen);
995
996	/* this is the value H as documented in 10.1.1.4 */
997	/* 10.1.1.4 step 4 */
998	drbg_string_fill(&data1, &prefix, 1);
999	list_add_tail(&data1.list, &datalist);
1000	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
1001	list_add_tail(&data2.list, &datalist);
1002	ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
1003	if (ret) {
1004		len = ret;
1005		goto out;
1006	}
1007
1008	/* 10.1.1.4 step 5 */
1009	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1010		     drbg->scratchpad, drbg_blocklen(drbg));
1011	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1012		     drbg->C, drbg_statelen(drbg));
1013	u.req_int = cpu_to_be64(drbg->reseed_ctr);
1014	drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1015
1016out:
1017	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1018	return len;
1019}
1020
1021/*
1022 * scratchpad usage: as update and generate are used isolated, both
1023 * can use the scratchpad
1024 */
1025static const struct drbg_state_ops drbg_hash_ops = {
1026	.update		= drbg_hash_update,
1027	.generate	= drbg_hash_generate,
1028	.crypto_init	= drbg_init_hash_kernel,
1029	.crypto_fini	= drbg_fini_hash_kernel,
1030};
1031#endif /* CONFIG_CRYPTO_DRBG_HASH */
1032
1033/******************************************************************
1034 * Functions common for DRBG implementations
1035 ******************************************************************/
1036
1037static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
1038			      int reseed, enum drbg_seed_state new_seed_state)
1039{
1040	int ret = drbg->d_ops->update(drbg, seed, reseed);
1041
1042	if (ret)
1043		return ret;
1044
1045	drbg->seeded = new_seed_state;
1046	/* 10.1.1.2 / 10.1.1.3 step 5 */
1047	drbg->reseed_ctr = 1;
1048
1049	switch (drbg->seeded) {
1050	case DRBG_SEED_STATE_UNSEEDED:
1051		/* Impossible, but handle it to silence compiler warnings. */
1052		fallthrough;
1053	case DRBG_SEED_STATE_PARTIAL:
1054		/*
1055		 * Require frequent reseeds until the seed source is
1056		 * fully initialized.
1057		 */
1058		drbg->reseed_threshold = 50;
1059		break;
1060
1061	case DRBG_SEED_STATE_FULL:
1062		/*
1063		 * Seed source has become fully initialized, frequent
1064		 * reseeds no longer required.
1065		 */
1066		drbg->reseed_threshold = drbg_max_requests(drbg);
1067		break;
1068	}
1069
1070	return ret;
1071}
1072
1073static inline int drbg_get_random_bytes(struct drbg_state *drbg,
1074					unsigned char *entropy,
1075					unsigned int entropylen)
1076{
1077	int ret;
1078
1079	do {
1080		get_random_bytes(entropy, entropylen);
1081		ret = drbg_fips_continuous_test(drbg, entropy);
1082		if (ret && ret != -EAGAIN)
1083			return ret;
1084	} while (ret);
1085
1086	return 0;
1087}
1088
1089static int drbg_seed_from_random(struct drbg_state *drbg)
1090{
1091	struct drbg_string data;
1092	LIST_HEAD(seedlist);
1093	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1094	unsigned char entropy[32];
1095	int ret;
1096
1097	BUG_ON(!entropylen);
1098	BUG_ON(entropylen > sizeof(entropy));
1099
1100	drbg_string_fill(&data, entropy, entropylen);
1101	list_add_tail(&data.list, &seedlist);
1102
1103	ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1104	if (ret)
1105		goto out;
1106
1107	ret = __drbg_seed(drbg, &seedlist, true, DRBG_SEED_STATE_FULL);
1108
1109out:
1110	memzero_explicit(entropy, entropylen);
1111	return ret;
1112}
1113
1114/*
1115 * Seeding or reseeding of the DRBG
1116 *
1117 * @drbg: DRBG state struct
1118 * @pers: personalization / additional information buffer
1119 * @reseed: 0 for initial seed process, 1 for reseeding
1120 *
1121 * return:
1122 *	0 on success
1123 *	error value otherwise
1124 */
1125static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1126		     bool reseed)
1127{
1128	int ret;
1129	unsigned char entropy[((32 + 16) * 2)];
1130	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1131	struct drbg_string data1;
1132	LIST_HEAD(seedlist);
1133	enum drbg_seed_state new_seed_state = DRBG_SEED_STATE_FULL;
1134
1135	/* 9.1 / 9.2 / 9.3.1 step 3 */
1136	if (pers && pers->len > (drbg_max_addtl(drbg))) {
1137		pr_devel("DRBG: personalization string too long %zu\n",
1138			 pers->len);
1139		return -EINVAL;
1140	}
1141
1142	if (list_empty(&drbg->test_data.list)) {
1143		drbg_string_fill(&data1, drbg->test_data.buf,
1144				 drbg->test_data.len);
1145		pr_devel("DRBG: using test entropy\n");
1146	} else {
1147		/*
1148		 * Gather entropy equal to the security strength of the DRBG.
1149		 * With a derivation function, a nonce is required in addition
1150		 * to the entropy. A nonce must be at least 1/2 of the security
1151		 * strength of the DRBG in size. Thus, entropy + nonce is 3/2
1152		 * of the strength. The consideration of a nonce is only
1153		 * applicable during initial seeding.
1154		 */
1155		BUG_ON(!entropylen);
1156		if (!reseed)
1157			entropylen = ((entropylen + 1) / 2) * 3;
1158		BUG_ON((entropylen * 2) > sizeof(entropy));
1159
1160		/* Get seed from in-kernel /dev/urandom */
1161		if (!rng_is_initialized())
1162			new_seed_state = DRBG_SEED_STATE_PARTIAL;
1163
1164		ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1165		if (ret)
1166			goto out;
1167
1168		if (!drbg->jent) {
1169			drbg_string_fill(&data1, entropy, entropylen);
1170			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1171				 entropylen);
1172		} else {
1173			/* Get seed from Jitter RNG */
1174			ret = crypto_rng_get_bytes(drbg->jent,
1175						   entropy + entropylen,
1176						   entropylen);
1177			if (ret) {
1178				pr_devel("DRBG: jent failed with %d\n", ret);
1179
1180				/*
1181				 * Do not treat the transient failure of the
1182				 * Jitter RNG as an error that needs to be
1183				 * reported. The combined number of the
1184				 * maximum reseed threshold times the maximum
1185				 * number of Jitter RNG transient errors is
1186				 * less than the reseed threshold required by
1187				 * SP800-90A allowing us to treat the
1188				 * transient errors as such.
1189				 *
1190				 * However, we mandate that at least the first
1191				 * seeding operation must succeed with the
1192				 * Jitter RNG.
1193				 */
1194				if (!reseed || ret != -EAGAIN)
1195					goto out;
1196			}
1197
1198			drbg_string_fill(&data1, entropy, entropylen * 2);
1199			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1200				 entropylen * 2);
1201		}
1202	}
1203	list_add_tail(&data1.list, &seedlist);
1204
1205	/*
1206	 * concatenation of entropy with personalization str / addtl input)
1207	 * the variable pers is directly handed in by the caller, so check its
1208	 * contents whether it is appropriate
1209	 */
1210	if (pers && pers->buf && 0 < pers->len) {
1211		list_add_tail(&pers->list, &seedlist);
1212		pr_devel("DRBG: using personalization string\n");
1213	}
1214
1215	if (!reseed) {
1216		memset(drbg->V, 0, drbg_statelen(drbg));
1217		memset(drbg->C, 0, drbg_statelen(drbg));
1218	}
1219
1220	ret = __drbg_seed(drbg, &seedlist, reseed, new_seed_state);
1221
1222out:
1223	memzero_explicit(entropy, entropylen * 2);
1224
1225	return ret;
1226}
1227
1228/* Free all substructures in a DRBG state without the DRBG state structure */
1229static inline void drbg_dealloc_state(struct drbg_state *drbg)
1230{
1231	if (!drbg)
1232		return;
1233	kfree_sensitive(drbg->Vbuf);
1234	drbg->Vbuf = NULL;
1235	drbg->V = NULL;
1236	kfree_sensitive(drbg->Cbuf);
1237	drbg->Cbuf = NULL;
1238	drbg->C = NULL;
1239	kfree_sensitive(drbg->scratchpadbuf);
1240	drbg->scratchpadbuf = NULL;
1241	drbg->reseed_ctr = 0;
1242	drbg->d_ops = NULL;
1243	drbg->core = NULL;
1244	if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1245		kfree_sensitive(drbg->prev);
1246		drbg->prev = NULL;
1247		drbg->fips_primed = false;
1248	}
1249}
1250
1251/*
1252 * Allocate all sub-structures for a DRBG state.
1253 * The DRBG state structure must already be allocated.
1254 */
1255static inline int drbg_alloc_state(struct drbg_state *drbg)
1256{
1257	int ret = -ENOMEM;
1258	unsigned int sb_size = 0;
1259
1260	switch (drbg->core->flags & DRBG_TYPE_MASK) {
1261#ifdef CONFIG_CRYPTO_DRBG_HMAC
1262	case DRBG_HMAC:
1263		drbg->d_ops = &drbg_hmac_ops;
1264		break;
1265#endif /* CONFIG_CRYPTO_DRBG_HMAC */
1266#ifdef CONFIG_CRYPTO_DRBG_HASH
1267	case DRBG_HASH:
1268		drbg->d_ops = &drbg_hash_ops;
1269		break;
1270#endif /* CONFIG_CRYPTO_DRBG_HASH */
1271#ifdef CONFIG_CRYPTO_DRBG_CTR
1272	case DRBG_CTR:
1273		drbg->d_ops = &drbg_ctr_ops;
1274		break;
1275#endif /* CONFIG_CRYPTO_DRBG_CTR */
1276	default:
1277		ret = -EOPNOTSUPP;
1278		goto err;
1279	}
1280
1281	ret = drbg->d_ops->crypto_init(drbg);
1282	if (ret < 0)
1283		goto err;
1284
1285	drbg->Vbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1286	if (!drbg->Vbuf) {
1287		ret = -ENOMEM;
1288		goto fini;
1289	}
1290	drbg->V = PTR_ALIGN(drbg->Vbuf, ret + 1);
1291	drbg->Cbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1292	if (!drbg->Cbuf) {
1293		ret = -ENOMEM;
1294		goto fini;
1295	}
1296	drbg->C = PTR_ALIGN(drbg->Cbuf, ret + 1);
1297	/* scratchpad is only generated for CTR and Hash */
1298	if (drbg->core->flags & DRBG_HMAC)
1299		sb_size = 0;
1300	else if (drbg->core->flags & DRBG_CTR)
1301		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1302			  drbg_statelen(drbg) +	/* df_data */
1303			  drbg_blocklen(drbg) +	/* pad */
1304			  drbg_blocklen(drbg) +	/* iv */
1305			  drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1306	else
1307		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1308
1309	if (0 < sb_size) {
1310		drbg->scratchpadbuf = kzalloc(sb_size + ret, GFP_KERNEL);
1311		if (!drbg->scratchpadbuf) {
1312			ret = -ENOMEM;
1313			goto fini;
1314		}
1315		drbg->scratchpad = PTR_ALIGN(drbg->scratchpadbuf, ret + 1);
1316	}
1317
1318	if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1319		drbg->prev = kzalloc(drbg_sec_strength(drbg->core->flags),
1320				     GFP_KERNEL);
1321		if (!drbg->prev) {
1322			ret = -ENOMEM;
1323			goto fini;
1324		}
1325		drbg->fips_primed = false;
1326	}
1327
1328	return 0;
1329
1330fini:
1331	drbg->d_ops->crypto_fini(drbg);
1332err:
1333	drbg_dealloc_state(drbg);
1334	return ret;
1335}
1336
1337/*************************************************************************
1338 * DRBG interface functions
1339 *************************************************************************/
1340
1341/*
1342 * DRBG generate function as required by SP800-90A - this function
1343 * generates random numbers
1344 *
1345 * @drbg DRBG state handle
1346 * @buf Buffer where to store the random numbers -- the buffer must already
1347 *      be pre-allocated by caller
1348 * @buflen Length of output buffer - this value defines the number of random
1349 *	   bytes pulled from DRBG
1350 * @addtl Additional input that is mixed into state, may be NULL -- note
1351 *	  the entropy is pulled by the DRBG internally unconditionally
1352 *	  as defined in SP800-90A. The additional input is mixed into
1353 *	  the state in addition to the pulled entropy.
1354 *
1355 * return: 0 when all bytes are generated; < 0 in case of an error
1356 */
1357static int drbg_generate(struct drbg_state *drbg,
1358			 unsigned char *buf, unsigned int buflen,
1359			 struct drbg_string *addtl)
1360{
1361	int len = 0;
1362	LIST_HEAD(addtllist);
1363
1364	if (!drbg->core) {
1365		pr_devel("DRBG: not yet seeded\n");
1366		return -EINVAL;
1367	}
1368	if (0 == buflen || !buf) {
1369		pr_devel("DRBG: no output buffer provided\n");
1370		return -EINVAL;
1371	}
1372	if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1373		pr_devel("DRBG: wrong format of additional information\n");
1374		return -EINVAL;
1375	}
1376
1377	/* 9.3.1 step 2 */
1378	len = -EINVAL;
1379	if (buflen > (drbg_max_request_bytes(drbg))) {
1380		pr_devel("DRBG: requested random numbers too large %u\n",
1381			 buflen);
1382		goto err;
1383	}
1384
1385	/* 9.3.1 step 3 is implicit with the chosen DRBG */
1386
1387	/* 9.3.1 step 4 */
1388	if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1389		pr_devel("DRBG: additional information string too long %zu\n",
1390			 addtl->len);
1391		goto err;
1392	}
1393	/* 9.3.1 step 5 is implicit with the chosen DRBG */
1394
1395	/*
1396	 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1397	 * here. The spec is a bit convoluted here, we make it simpler.
1398	 */
1399	if (drbg->reseed_threshold < drbg->reseed_ctr)
1400		drbg->seeded = DRBG_SEED_STATE_UNSEEDED;
1401
1402	if (drbg->pr || drbg->seeded == DRBG_SEED_STATE_UNSEEDED) {
1403		pr_devel("DRBG: reseeding before generation (prediction "
1404			 "resistance: %s, state %s)\n",
1405			 drbg->pr ? "true" : "false",
1406			 (drbg->seeded ==  DRBG_SEED_STATE_FULL ?
1407			  "seeded" : "unseeded"));
1408		/* 9.3.1 steps 7.1 through 7.3 */
1409		len = drbg_seed(drbg, addtl, true);
1410		if (len)
1411			goto err;
1412		/* 9.3.1 step 7.4 */
1413		addtl = NULL;
1414	} else if (rng_is_initialized() &&
1415		   drbg->seeded == DRBG_SEED_STATE_PARTIAL) {
1416		len = drbg_seed_from_random(drbg);
1417		if (len)
1418			goto err;
1419	}
1420
1421	if (addtl && 0 < addtl->len)
1422		list_add_tail(&addtl->list, &addtllist);
1423	/* 9.3.1 step 8 and 10 */
1424	len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1425
1426	/* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1427	drbg->reseed_ctr++;
1428	if (0 >= len)
1429		goto err;
1430
1431	/*
1432	 * Section 11.3.3 requires to re-perform self tests after some
1433	 * generated random numbers. The chosen value after which self
1434	 * test is performed is arbitrary, but it should be reasonable.
1435	 * However, we do not perform the self tests because of the following
1436	 * reasons: it is mathematically impossible that the initial self tests
1437	 * were successfully and the following are not. If the initial would
1438	 * pass and the following would not, the kernel integrity is violated.
1439	 * In this case, the entire kernel operation is questionable and it
1440	 * is unlikely that the integrity violation only affects the
1441	 * correct operation of the DRBG.
1442	 *
1443	 * Albeit the following code is commented out, it is provided in
1444	 * case somebody has a need to implement the test of 11.3.3.
1445	 */
1446#if 0
1447	if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1448		int err = 0;
1449		pr_devel("DRBG: start to perform self test\n");
1450		if (drbg->core->flags & DRBG_HMAC)
1451			err = alg_test("drbg_pr_hmac_sha256",
1452				       "drbg_pr_hmac_sha256", 0, 0);
1453		else if (drbg->core->flags & DRBG_CTR)
1454			err = alg_test("drbg_pr_ctr_aes128",
1455				       "drbg_pr_ctr_aes128", 0, 0);
1456		else
1457			err = alg_test("drbg_pr_sha256",
1458				       "drbg_pr_sha256", 0, 0);
1459		if (err) {
1460			pr_err("DRBG: periodical self test failed\n");
1461			/*
1462			 * uninstantiate implies that from now on, only errors
1463			 * are returned when reusing this DRBG cipher handle
1464			 */
1465			drbg_uninstantiate(drbg);
1466			return 0;
1467		} else {
1468			pr_devel("DRBG: self test successful\n");
1469		}
1470	}
1471#endif
1472
1473	/*
1474	 * All operations were successful, return 0 as mandated by
1475	 * the kernel crypto API interface.
1476	 */
1477	len = 0;
1478err:
1479	return len;
1480}
1481
1482/*
1483 * Wrapper around drbg_generate which can pull arbitrary long strings
1484 * from the DRBG without hitting the maximum request limitation.
1485 *
1486 * Parameters: see drbg_generate
1487 * Return codes: see drbg_generate -- if one drbg_generate request fails,
1488 *		 the entire drbg_generate_long request fails
1489 */
1490static int drbg_generate_long(struct drbg_state *drbg,
1491			      unsigned char *buf, unsigned int buflen,
1492			      struct drbg_string *addtl)
1493{
1494	unsigned int len = 0;
1495	unsigned int slice = 0;
1496	do {
1497		int err = 0;
1498		unsigned int chunk = 0;
1499		slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1500		chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1501		mutex_lock(&drbg->drbg_mutex);
1502		err = drbg_generate(drbg, buf + len, chunk, addtl);
1503		mutex_unlock(&drbg->drbg_mutex);
1504		if (0 > err)
1505			return err;
1506		len += chunk;
1507	} while (slice > 0 && (len < buflen));
1508	return 0;
1509}
1510
1511static int drbg_prepare_hrng(struct drbg_state *drbg)
1512{
1513	/* We do not need an HRNG in test mode. */
1514	if (list_empty(&drbg->test_data.list))
1515		return 0;
1516
1517	drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
1518	if (IS_ERR(drbg->jent)) {
1519		const int err = PTR_ERR(drbg->jent);
1520
1521		drbg->jent = NULL;
1522		if (fips_enabled)
1523			return err;
1524		pr_info("DRBG: Continuing without Jitter RNG\n");
1525	}
1526
1527	return 0;
1528}
1529
1530/*
1531 * DRBG instantiation function as required by SP800-90A - this function
1532 * sets up the DRBG handle, performs the initial seeding and all sanity
1533 * checks required by SP800-90A
1534 *
1535 * @drbg memory of state -- if NULL, new memory is allocated
1536 * @pers Personalization string that is mixed into state, may be NULL -- note
1537 *	 the entropy is pulled by the DRBG internally unconditionally
1538 *	 as defined in SP800-90A. The additional input is mixed into
1539 *	 the state in addition to the pulled entropy.
1540 * @coreref reference to core
1541 * @pr prediction resistance enabled
1542 *
1543 * return
1544 *	0 on success
1545 *	error value otherwise
1546 */
1547static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1548			    int coreref, bool pr)
1549{
1550	int ret;
1551	bool reseed = true;
1552
1553	pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1554		 "%s\n", coreref, pr ? "enabled" : "disabled");
1555	mutex_lock(&drbg->drbg_mutex);
1556
1557	/* 9.1 step 1 is implicit with the selected DRBG type */
1558
1559	/*
1560	 * 9.1 step 2 is implicit as caller can select prediction resistance
1561	 * and the flag is copied into drbg->flags --
1562	 * all DRBG types support prediction resistance
1563	 */
1564
1565	/* 9.1 step 4 is implicit in  drbg_sec_strength */
1566
1567	if (!drbg->core) {
1568		drbg->core = &drbg_cores[coreref];
1569		drbg->pr = pr;
1570		drbg->seeded = DRBG_SEED_STATE_UNSEEDED;
1571		drbg->reseed_threshold = drbg_max_requests(drbg);
1572
1573		ret = drbg_alloc_state(drbg);
1574		if (ret)
1575			goto unlock;
1576
1577		ret = drbg_prepare_hrng(drbg);
1578		if (ret)
1579			goto free_everything;
1580
1581		reseed = false;
1582	}
1583
1584	ret = drbg_seed(drbg, pers, reseed);
1585
1586	if (ret && !reseed)
1587		goto free_everything;
1588
1589	mutex_unlock(&drbg->drbg_mutex);
1590	return ret;
1591
1592unlock:
1593	mutex_unlock(&drbg->drbg_mutex);
1594	return ret;
1595
1596free_everything:
1597	mutex_unlock(&drbg->drbg_mutex);
1598	drbg_uninstantiate(drbg);
1599	return ret;
1600}
1601
1602/*
1603 * DRBG uninstantiate function as required by SP800-90A - this function
1604 * frees all buffers and the DRBG handle
1605 *
1606 * @drbg DRBG state handle
1607 *
1608 * return
1609 *	0 on success
1610 */
1611static int drbg_uninstantiate(struct drbg_state *drbg)
1612{
1613	if (!IS_ERR_OR_NULL(drbg->jent))
1614		crypto_free_rng(drbg->jent);
1615	drbg->jent = NULL;
1616
1617	if (drbg->d_ops)
1618		drbg->d_ops->crypto_fini(drbg);
1619	drbg_dealloc_state(drbg);
1620	/* no scrubbing of test_data -- this shall survive an uninstantiate */
1621	return 0;
1622}
1623
1624/*
1625 * Helper function for setting the test data in the DRBG
1626 *
1627 * @drbg DRBG state handle
1628 * @data test data
1629 * @len test data length
1630 */
1631static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1632				   const u8 *data, unsigned int len)
1633{
1634	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1635
1636	mutex_lock(&drbg->drbg_mutex);
1637	drbg_string_fill(&drbg->test_data, data, len);
1638	mutex_unlock(&drbg->drbg_mutex);
1639}
1640
1641/***************************************************************
1642 * Kernel crypto API cipher invocations requested by DRBG
1643 ***************************************************************/
1644
1645#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1646struct sdesc {
1647	struct shash_desc shash;
1648	char ctx[];
1649};
1650
1651static int drbg_init_hash_kernel(struct drbg_state *drbg)
1652{
1653	struct sdesc *sdesc;
1654	struct crypto_shash *tfm;
1655
1656	tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1657	if (IS_ERR(tfm)) {
1658		pr_info("DRBG: could not allocate digest TFM handle: %s\n",
1659				drbg->core->backend_cra_name);
1660		return PTR_ERR(tfm);
1661	}
1662	BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1663	sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1664			GFP_KERNEL);
1665	if (!sdesc) {
1666		crypto_free_shash(tfm);
1667		return -ENOMEM;
1668	}
1669
1670	sdesc->shash.tfm = tfm;
1671	drbg->priv_data = sdesc;
1672
1673	return crypto_shash_alignmask(tfm);
1674}
1675
1676static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1677{
1678	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1679	if (sdesc) {
1680		crypto_free_shash(sdesc->shash.tfm);
1681		kfree_sensitive(sdesc);
1682	}
1683	drbg->priv_data = NULL;
1684	return 0;
1685}
1686
1687static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
1688				  const unsigned char *key)
1689{
1690	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1691
1692	crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1693}
1694
1695static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
1696			   const struct list_head *in)
1697{
1698	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1699	struct drbg_string *input = NULL;
1700
1701	crypto_shash_init(&sdesc->shash);
1702	list_for_each_entry(input, in, list)
1703		crypto_shash_update(&sdesc->shash, input->buf, input->len);
1704	return crypto_shash_final(&sdesc->shash, outval);
1705}
1706#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1707
1708#ifdef CONFIG_CRYPTO_DRBG_CTR
1709static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1710{
1711	struct crypto_cipher *tfm =
1712		(struct crypto_cipher *)drbg->priv_data;
1713	if (tfm)
1714		crypto_free_cipher(tfm);
1715	drbg->priv_data = NULL;
1716
1717	if (drbg->ctr_handle)
1718		crypto_free_skcipher(drbg->ctr_handle);
1719	drbg->ctr_handle = NULL;
1720
1721	if (drbg->ctr_req)
1722		skcipher_request_free(drbg->ctr_req);
1723	drbg->ctr_req = NULL;
1724
1725	kfree(drbg->outscratchpadbuf);
1726	drbg->outscratchpadbuf = NULL;
1727
1728	return 0;
1729}
1730
1731static int drbg_init_sym_kernel(struct drbg_state *drbg)
1732{
1733	struct crypto_cipher *tfm;
1734	struct crypto_skcipher *sk_tfm;
1735	struct skcipher_request *req;
1736	unsigned int alignmask;
1737	char ctr_name[CRYPTO_MAX_ALG_NAME];
1738
1739	tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1740	if (IS_ERR(tfm)) {
1741		pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
1742				drbg->core->backend_cra_name);
1743		return PTR_ERR(tfm);
1744	}
1745	BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1746	drbg->priv_data = tfm;
1747
1748	if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)",
1749	    drbg->core->backend_cra_name) >= CRYPTO_MAX_ALG_NAME) {
1750		drbg_fini_sym_kernel(drbg);
1751		return -EINVAL;
1752	}
1753	sk_tfm = crypto_alloc_skcipher(ctr_name, 0, 0);
1754	if (IS_ERR(sk_tfm)) {
1755		pr_info("DRBG: could not allocate CTR cipher TFM handle: %s\n",
1756				ctr_name);
1757		drbg_fini_sym_kernel(drbg);
1758		return PTR_ERR(sk_tfm);
1759	}
1760	drbg->ctr_handle = sk_tfm;
1761	crypto_init_wait(&drbg->ctr_wait);
1762
1763	req = skcipher_request_alloc(sk_tfm, GFP_KERNEL);
1764	if (!req) {
1765		pr_info("DRBG: could not allocate request queue\n");
1766		drbg_fini_sym_kernel(drbg);
1767		return -ENOMEM;
1768	}
1769	drbg->ctr_req = req;
1770	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
1771						CRYPTO_TFM_REQ_MAY_SLEEP,
1772					crypto_req_done, &drbg->ctr_wait);
1773
1774	alignmask = crypto_skcipher_alignmask(sk_tfm);
1775	drbg->outscratchpadbuf = kmalloc(DRBG_OUTSCRATCHLEN + alignmask,
1776					 GFP_KERNEL);
1777	if (!drbg->outscratchpadbuf) {
1778		drbg_fini_sym_kernel(drbg);
1779		return -ENOMEM;
1780	}
1781	drbg->outscratchpad = (u8 *)PTR_ALIGN(drbg->outscratchpadbuf,
1782					      alignmask + 1);
1783
1784	sg_init_table(&drbg->sg_in, 1);
1785	sg_init_one(&drbg->sg_out, drbg->outscratchpad, DRBG_OUTSCRATCHLEN);
1786
1787	return alignmask;
1788}
1789
1790static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
1791				 const unsigned char *key)
1792{
1793	struct crypto_cipher *tfm =
1794		(struct crypto_cipher *)drbg->priv_data;
1795
1796	crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1797}
1798
1799static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
1800			  const struct drbg_string *in)
1801{
1802	struct crypto_cipher *tfm =
1803		(struct crypto_cipher *)drbg->priv_data;
1804
1805	/* there is only component in *in */
1806	BUG_ON(in->len < drbg_blocklen(drbg));
1807	crypto_cipher_encrypt_one(tfm, outval, in->buf);
1808	return 0;
1809}
1810
1811static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
1812			      u8 *inbuf, u32 inlen,
1813			      u8 *outbuf, u32 outlen)
1814{
1815	struct scatterlist *sg_in = &drbg->sg_in, *sg_out = &drbg->sg_out;
1816	u32 scratchpad_use = min_t(u32, outlen, DRBG_OUTSCRATCHLEN);
1817	int ret;
1818
1819	if (inbuf) {
1820		/* Use caller-provided input buffer */
1821		sg_set_buf(sg_in, inbuf, inlen);
1822	} else {
1823		/* Use scratchpad for in-place operation */
1824		inlen = scratchpad_use;
1825		memset(drbg->outscratchpad, 0, scratchpad_use);
1826		sg_set_buf(sg_in, drbg->outscratchpad, scratchpad_use);
1827	}
1828
1829	while (outlen) {
1830		u32 cryptlen = min3(inlen, outlen, (u32)DRBG_OUTSCRATCHLEN);
1831
1832		/* Output buffer may not be valid for SGL, use scratchpad */
1833		skcipher_request_set_crypt(drbg->ctr_req, sg_in, sg_out,
1834					   cryptlen, drbg->V);
1835		ret = crypto_wait_req(crypto_skcipher_encrypt(drbg->ctr_req),
1836					&drbg->ctr_wait);
1837		if (ret)
1838			goto out;
1839
1840		crypto_init_wait(&drbg->ctr_wait);
1841
1842		memcpy(outbuf, drbg->outscratchpad, cryptlen);
1843		memzero_explicit(drbg->outscratchpad, cryptlen);
1844
1845		outlen -= cryptlen;
1846		outbuf += cryptlen;
1847	}
1848	ret = 0;
1849
1850out:
1851	return ret;
1852}
1853#endif /* CONFIG_CRYPTO_DRBG_CTR */
1854
1855/***************************************************************
1856 * Kernel crypto API interface to register DRBG
1857 ***************************************************************/
1858
1859/*
1860 * Look up the DRBG flags by given kernel crypto API cra_name
1861 * The code uses the drbg_cores definition to do this
1862 *
1863 * @cra_name kernel crypto API cra_name
1864 * @coreref reference to integer which is filled with the pointer to
1865 *  the applicable core
1866 * @pr reference for setting prediction resistance
1867 *
1868 * return: flags
1869 */
1870static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1871					 int *coreref, bool *pr)
1872{
1873	int i = 0;
1874	size_t start = 0;
1875	int len = 0;
1876
1877	*pr = true;
1878	/* disassemble the names */
1879	if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1880		start = 10;
1881		*pr = false;
1882	} else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1883		start = 8;
1884	} else {
1885		return;
1886	}
1887
1888	/* remove the first part */
1889	len = strlen(cra_driver_name) - start;
1890	for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1891		if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1892			    len)) {
1893			*coreref = i;
1894			return;
1895		}
1896	}
1897}
1898
1899static int drbg_kcapi_init(struct crypto_tfm *tfm)
1900{
1901	struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1902
1903	mutex_init(&drbg->drbg_mutex);
1904
1905	return 0;
1906}
1907
1908static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1909{
1910	drbg_uninstantiate(crypto_tfm_ctx(tfm));
1911}
1912
1913/*
1914 * Generate random numbers invoked by the kernel crypto API:
1915 * The API of the kernel crypto API is extended as follows:
1916 *
1917 * src is additional input supplied to the RNG.
1918 * slen is the length of src.
1919 * dst is the output buffer where random data is to be stored.
1920 * dlen is the length of dst.
1921 */
1922static int drbg_kcapi_random(struct crypto_rng *tfm,
1923			     const u8 *src, unsigned int slen,
1924			     u8 *dst, unsigned int dlen)
1925{
1926	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1927	struct drbg_string *addtl = NULL;
1928	struct drbg_string string;
1929
1930	if (slen) {
1931		/* linked list variable is now local to allow modification */
1932		drbg_string_fill(&string, src, slen);
1933		addtl = &string;
1934	}
1935
1936	return drbg_generate_long(drbg, dst, dlen, addtl);
1937}
1938
1939/*
1940 * Seed the DRBG invoked by the kernel crypto API
1941 */
1942static int drbg_kcapi_seed(struct crypto_rng *tfm,
1943			   const u8 *seed, unsigned int slen)
1944{
1945	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1946	struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1947	bool pr = false;
1948	struct drbg_string string;
1949	struct drbg_string *seed_string = NULL;
1950	int coreref = 0;
1951
1952	drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1953			      &pr);
1954	if (0 < slen) {
1955		drbg_string_fill(&string, seed, slen);
1956		seed_string = &string;
1957	}
1958
1959	return drbg_instantiate(drbg, seed_string, coreref, pr);
1960}
1961
1962/***************************************************************
1963 * Kernel module: code to load the module
1964 ***************************************************************/
1965
1966/*
1967 * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1968 * of the error handling.
1969 *
1970 * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1971 * as seed source of get_random_bytes does not fail.
1972 *
1973 * Note 2: There is no sensible way of testing the reseed counter
1974 * enforcement, so skip it.
1975 */
1976static inline int __init drbg_healthcheck_sanity(void)
1977{
1978	int len = 0;
1979#define OUTBUFLEN 16
1980	unsigned char buf[OUTBUFLEN];
1981	struct drbg_state *drbg = NULL;
1982	int ret = -EFAULT;
1983	int rc = -EFAULT;
1984	bool pr = false;
1985	int coreref = 0;
1986	struct drbg_string addtl;
1987	size_t max_addtllen, max_request_bytes;
1988
1989	/* only perform test in FIPS mode */
1990	if (!fips_enabled)
1991		return 0;
1992
1993#ifdef CONFIG_CRYPTO_DRBG_CTR
1994	drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
1995#elif defined CONFIG_CRYPTO_DRBG_HASH
1996	drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
1997#else
1998	drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
1999#endif
2000
2001	drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
2002	if (!drbg)
2003		return -ENOMEM;
2004
2005	mutex_init(&drbg->drbg_mutex);
2006	drbg->core = &drbg_cores[coreref];
2007	drbg->reseed_threshold = drbg_max_requests(drbg);
2008
2009	/*
2010	 * if the following tests fail, it is likely that there is a buffer
2011	 * overflow as buf is much smaller than the requested or provided
2012	 * string lengths -- in case the error handling does not succeed
2013	 * we may get an OOPS. And we want to get an OOPS as this is a
2014	 * grave bug.
2015	 */
2016
2017	max_addtllen = drbg_max_addtl(drbg);
2018	max_request_bytes = drbg_max_request_bytes(drbg);
2019	drbg_string_fill(&addtl, buf, max_addtllen + 1);
2020	/* overflow addtllen with additonal info string */
2021	len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
2022	BUG_ON(0 < len);
2023	/* overflow max_bits */
2024	len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
2025	BUG_ON(0 < len);
2026
2027	/* overflow max addtllen with personalization string */
2028	ret = drbg_seed(drbg, &addtl, false);
2029	BUG_ON(0 == ret);
2030	/* all tests passed */
2031	rc = 0;
2032
2033	pr_devel("DRBG: Sanity tests for failure code paths successfully "
2034		 "completed\n");
2035
2036	kfree(drbg);
2037	return rc;
2038}
2039
2040static struct rng_alg drbg_algs[22];
2041
2042/*
2043 * Fill the array drbg_algs used to register the different DRBGs
2044 * with the kernel crypto API. To fill the array, the information
2045 * from drbg_cores[] is used.
2046 */
2047static inline void __init drbg_fill_array(struct rng_alg *alg,
2048					  const struct drbg_core *core, int pr)
2049{
2050	int pos = 0;
2051	static int priority = 200;
2052
2053	memcpy(alg->base.cra_name, "stdrng", 6);
2054	if (pr) {
2055		memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
2056		pos = 8;
2057	} else {
2058		memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
2059		pos = 10;
2060	}
2061	memcpy(alg->base.cra_driver_name + pos, core->cra_name,
2062	       strlen(core->cra_name));
2063
2064	alg->base.cra_priority = priority;
2065	priority++;
2066	/*
2067	 * If FIPS mode enabled, the selected DRBG shall have the
2068	 * highest cra_priority over other stdrng instances to ensure
2069	 * it is selected.
2070	 */
2071	if (fips_enabled)
2072		alg->base.cra_priority += 200;
2073
2074	alg->base.cra_ctxsize 	= sizeof(struct drbg_state);
2075	alg->base.cra_module	= THIS_MODULE;
2076	alg->base.cra_init	= drbg_kcapi_init;
2077	alg->base.cra_exit	= drbg_kcapi_cleanup;
2078	alg->generate		= drbg_kcapi_random;
2079	alg->seed		= drbg_kcapi_seed;
2080	alg->set_ent		= drbg_kcapi_set_entropy;
2081	alg->seedsize		= 0;
2082}
2083
2084static int __init drbg_init(void)
2085{
2086	unsigned int i = 0; /* pointer to drbg_algs */
2087	unsigned int j = 0; /* pointer to drbg_cores */
2088	int ret;
2089
2090	ret = drbg_healthcheck_sanity();
2091	if (ret)
2092		return ret;
2093
2094	if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
2095		pr_info("DRBG: Cannot register all DRBG types"
2096			"(slots needed: %zu, slots available: %zu)\n",
2097			ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
2098		return -EFAULT;
2099	}
2100
2101	/*
2102	 * each DRBG definition can be used with PR and without PR, thus
2103	 * we instantiate each DRBG in drbg_cores[] twice.
2104	 *
2105	 * As the order of placing them into the drbg_algs array matters
2106	 * (the later DRBGs receive a higher cra_priority) we register the
2107	 * prediction resistance DRBGs first as the should not be too
2108	 * interesting.
2109	 */
2110	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2111		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
2112	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2113		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
2114	return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2115}
2116
2117static void __exit drbg_exit(void)
2118{
2119	crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2120}
2121
2122subsys_initcall(drbg_init);
2123module_exit(drbg_exit);
2124#ifndef CRYPTO_DRBG_HASH_STRING
2125#define CRYPTO_DRBG_HASH_STRING ""
2126#endif
2127#ifndef CRYPTO_DRBG_HMAC_STRING
2128#define CRYPTO_DRBG_HMAC_STRING ""
2129#endif
2130#ifndef CRYPTO_DRBG_CTR_STRING
2131#define CRYPTO_DRBG_CTR_STRING ""
2132#endif
2133MODULE_LICENSE("GPL");
2134MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
2135MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
2136		   "using following cores: "
2137		   CRYPTO_DRBG_HASH_STRING
2138		   CRYPTO_DRBG_HMAC_STRING
2139		   CRYPTO_DRBG_CTR_STRING);
2140MODULE_ALIAS_CRYPTO("stdrng");
2141