1// SPDX-License-Identifier: GPL-2.0
2/*
3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
4 * scalable techniques.
5 *
6 * Copyright (C) 2017 Facebook
7 */
8
9#include <linux/kernel.h>
10#include <linux/blkdev.h>
11#include <linux/blk-mq.h>
12#include <linux/elevator.h>
13#include <linux/module.h>
14#include <linux/sbitmap.h>
15
16#include "blk.h"
17#include "blk-mq.h"
18#include "blk-mq-debugfs.h"
19#include "blk-mq-sched.h"
20#include "blk-mq-tag.h"
21
22#define CREATE_TRACE_POINTS
23#include <trace/events/kyber.h>
24
25/*
26 * Scheduling domains: the device is divided into multiple domains based on the
27 * request type.
28 */
29enum {
30	KYBER_READ,
31	KYBER_WRITE,
32	KYBER_DISCARD,
33	KYBER_OTHER,
34	KYBER_NUM_DOMAINS,
35};
36
37static const char *kyber_domain_names[] = {
38	[KYBER_READ] = "READ",
39	[KYBER_WRITE] = "WRITE",
40	[KYBER_DISCARD] = "DISCARD",
41	[KYBER_OTHER] = "OTHER",
42};
43
44enum {
45	/*
46	 * In order to prevent starvation of synchronous requests by a flood of
47	 * asynchronous requests, we reserve 25% of requests for synchronous
48	 * operations.
49	 */
50	KYBER_ASYNC_PERCENT = 75,
51};
52
53/*
54 * Maximum device-wide depth for each scheduling domain.
55 *
56 * Even for fast devices with lots of tags like NVMe, you can saturate the
57 * device with only a fraction of the maximum possible queue depth. So, we cap
58 * these to a reasonable value.
59 */
60static const unsigned int kyber_depth[] = {
61	[KYBER_READ] = 256,
62	[KYBER_WRITE] = 128,
63	[KYBER_DISCARD] = 64,
64	[KYBER_OTHER] = 16,
65};
66
67/*
68 * Default latency targets for each scheduling domain.
69 */
70static const u64 kyber_latency_targets[] = {
71	[KYBER_READ] = 2ULL * NSEC_PER_MSEC,
72	[KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
73	[KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
74};
75
76/*
77 * Batch size (number of requests we'll dispatch in a row) for each scheduling
78 * domain.
79 */
80static const unsigned int kyber_batch_size[] = {
81	[KYBER_READ] = 16,
82	[KYBER_WRITE] = 8,
83	[KYBER_DISCARD] = 1,
84	[KYBER_OTHER] = 1,
85};
86
87/*
88 * Requests latencies are recorded in a histogram with buckets defined relative
89 * to the target latency:
90 *
91 * <= 1/4 * target latency
92 * <= 1/2 * target latency
93 * <= 3/4 * target latency
94 * <= target latency
95 * <= 1 1/4 * target latency
96 * <= 1 1/2 * target latency
97 * <= 1 3/4 * target latency
98 * > 1 3/4 * target latency
99 */
100enum {
101	/*
102	 * The width of the latency histogram buckets is
103	 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
104	 */
105	KYBER_LATENCY_SHIFT = 2,
106	/*
107	 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
108	 * thus, "good".
109	 */
110	KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
111	/* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
112	KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
113};
114
115/*
116 * We measure both the total latency and the I/O latency (i.e., latency after
117 * submitting to the device).
118 */
119enum {
120	KYBER_TOTAL_LATENCY,
121	KYBER_IO_LATENCY,
122};
123
124static const char *kyber_latency_type_names[] = {
125	[KYBER_TOTAL_LATENCY] = "total",
126	[KYBER_IO_LATENCY] = "I/O",
127};
128
129/*
130 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
131 * domain except for KYBER_OTHER.
132 */
133struct kyber_cpu_latency {
134	atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
135};
136
137/*
138 * There is a same mapping between ctx & hctx and kcq & khd,
139 * we use request->mq_ctx->index_hw to index the kcq in khd.
140 */
141struct kyber_ctx_queue {
142	/*
143	 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
144	 * Also protect the rqs on rq_list when merge.
145	 */
146	spinlock_t lock;
147	struct list_head rq_list[KYBER_NUM_DOMAINS];
148} ____cacheline_aligned_in_smp;
149
150struct kyber_queue_data {
151	struct request_queue *q;
152
153	/*
154	 * Each scheduling domain has a limited number of in-flight requests
155	 * device-wide, limited by these tokens.
156	 */
157	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
158
159	/*
160	 * Async request percentage, converted to per-word depth for
161	 * sbitmap_get_shallow().
162	 */
163	unsigned int async_depth;
164
165	struct kyber_cpu_latency __percpu *cpu_latency;
166
167	/* Timer for stats aggregation and adjusting domain tokens. */
168	struct timer_list timer;
169
170	unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
171
172	unsigned long latency_timeout[KYBER_OTHER];
173
174	int domain_p99[KYBER_OTHER];
175
176	/* Target latencies in nanoseconds. */
177	u64 latency_targets[KYBER_OTHER];
178};
179
180struct kyber_hctx_data {
181	spinlock_t lock;
182	struct list_head rqs[KYBER_NUM_DOMAINS];
183	unsigned int cur_domain;
184	unsigned int batching;
185	struct kyber_ctx_queue *kcqs;
186	struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
187	struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
188	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
189	atomic_t wait_index[KYBER_NUM_DOMAINS];
190};
191
192static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
193			     void *key);
194
195static unsigned int kyber_sched_domain(unsigned int op)
196{
197	switch (op & REQ_OP_MASK) {
198	case REQ_OP_READ:
199		return KYBER_READ;
200	case REQ_OP_WRITE:
201		return KYBER_WRITE;
202	case REQ_OP_DISCARD:
203		return KYBER_DISCARD;
204	default:
205		return KYBER_OTHER;
206	}
207}
208
209static void flush_latency_buckets(struct kyber_queue_data *kqd,
210				  struct kyber_cpu_latency *cpu_latency,
211				  unsigned int sched_domain, unsigned int type)
212{
213	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
214	atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
215	unsigned int bucket;
216
217	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
218		buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
219}
220
221/*
222 * Calculate the histogram bucket with the given percentile rank, or -1 if there
223 * aren't enough samples yet.
224 */
225static int calculate_percentile(struct kyber_queue_data *kqd,
226				unsigned int sched_domain, unsigned int type,
227				unsigned int percentile)
228{
229	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
230	unsigned int bucket, samples = 0, percentile_samples;
231
232	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
233		samples += buckets[bucket];
234
235	if (!samples)
236		return -1;
237
238	/*
239	 * We do the calculation once we have 500 samples or one second passes
240	 * since the first sample was recorded, whichever comes first.
241	 */
242	if (!kqd->latency_timeout[sched_domain])
243		kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
244	if (samples < 500 &&
245	    time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
246		return -1;
247	}
248	kqd->latency_timeout[sched_domain] = 0;
249
250	percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
251	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
252		if (buckets[bucket] >= percentile_samples)
253			break;
254		percentile_samples -= buckets[bucket];
255	}
256	memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
257
258	trace_kyber_latency(kqd->q, kyber_domain_names[sched_domain],
259			    kyber_latency_type_names[type], percentile,
260			    bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
261
262	return bucket;
263}
264
265static void kyber_resize_domain(struct kyber_queue_data *kqd,
266				unsigned int sched_domain, unsigned int depth)
267{
268	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
269	if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
270		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
271		trace_kyber_adjust(kqd->q, kyber_domain_names[sched_domain],
272				   depth);
273	}
274}
275
276static void kyber_timer_fn(struct timer_list *t)
277{
278	struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
279	unsigned int sched_domain;
280	int cpu;
281	bool bad = false;
282
283	/* Sum all of the per-cpu latency histograms. */
284	for_each_online_cpu(cpu) {
285		struct kyber_cpu_latency *cpu_latency;
286
287		cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
288		for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
289			flush_latency_buckets(kqd, cpu_latency, sched_domain,
290					      KYBER_TOTAL_LATENCY);
291			flush_latency_buckets(kqd, cpu_latency, sched_domain,
292					      KYBER_IO_LATENCY);
293		}
294	}
295
296	/*
297	 * Check if any domains have a high I/O latency, which might indicate
298	 * congestion in the device. Note that we use the p90; we don't want to
299	 * be too sensitive to outliers here.
300	 */
301	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
302		int p90;
303
304		p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
305					   90);
306		if (p90 >= KYBER_GOOD_BUCKETS)
307			bad = true;
308	}
309
310	/*
311	 * Adjust the scheduling domain depths. If we determined that there was
312	 * congestion, we throttle all domains with good latencies. Either way,
313	 * we ease up on throttling domains with bad latencies.
314	 */
315	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
316		unsigned int orig_depth, depth;
317		int p99;
318
319		p99 = calculate_percentile(kqd, sched_domain,
320					   KYBER_TOTAL_LATENCY, 99);
321		/*
322		 * This is kind of subtle: different domains will not
323		 * necessarily have enough samples to calculate the latency
324		 * percentiles during the same window, so we have to remember
325		 * the p99 for the next time we observe congestion; once we do,
326		 * we don't want to throttle again until we get more data, so we
327		 * reset it to -1.
328		 */
329		if (bad) {
330			if (p99 < 0)
331				p99 = kqd->domain_p99[sched_domain];
332			kqd->domain_p99[sched_domain] = -1;
333		} else if (p99 >= 0) {
334			kqd->domain_p99[sched_domain] = p99;
335		}
336		if (p99 < 0)
337			continue;
338
339		/*
340		 * If this domain has bad latency, throttle less. Otherwise,
341		 * throttle more iff we determined that there is congestion.
342		 *
343		 * The new depth is scaled linearly with the p99 latency vs the
344		 * latency target. E.g., if the p99 is 3/4 of the target, then
345		 * we throttle down to 3/4 of the current depth, and if the p99
346		 * is 2x the target, then we double the depth.
347		 */
348		if (bad || p99 >= KYBER_GOOD_BUCKETS) {
349			orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
350			depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
351			kyber_resize_domain(kqd, sched_domain, depth);
352		}
353	}
354}
355
356static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
357{
358	struct kyber_queue_data *kqd;
359	int ret = -ENOMEM;
360	int i;
361
362	kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
363	if (!kqd)
364		goto err;
365
366	kqd->q = q;
367
368	kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
369					    GFP_KERNEL | __GFP_ZERO);
370	if (!kqd->cpu_latency)
371		goto err_kqd;
372
373	timer_setup(&kqd->timer, kyber_timer_fn, 0);
374
375	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
376		WARN_ON(!kyber_depth[i]);
377		WARN_ON(!kyber_batch_size[i]);
378		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
379					      kyber_depth[i], -1, false,
380					      GFP_KERNEL, q->node);
381		if (ret) {
382			while (--i >= 0)
383				sbitmap_queue_free(&kqd->domain_tokens[i]);
384			goto err_buckets;
385		}
386	}
387
388	for (i = 0; i < KYBER_OTHER; i++) {
389		kqd->domain_p99[i] = -1;
390		kqd->latency_targets[i] = kyber_latency_targets[i];
391	}
392
393	return kqd;
394
395err_buckets:
396	free_percpu(kqd->cpu_latency);
397err_kqd:
398	kfree(kqd);
399err:
400	return ERR_PTR(ret);
401}
402
403static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
404{
405	struct kyber_queue_data *kqd;
406	struct elevator_queue *eq;
407
408	eq = elevator_alloc(q, e);
409	if (!eq)
410		return -ENOMEM;
411
412	kqd = kyber_queue_data_alloc(q);
413	if (IS_ERR(kqd)) {
414		kobject_put(&eq->kobj);
415		return PTR_ERR(kqd);
416	}
417
418	blk_stat_enable_accounting(q);
419
420	eq->elevator_data = kqd;
421	q->elevator = eq;
422
423	return 0;
424}
425
426static void kyber_exit_sched(struct elevator_queue *e)
427{
428	struct kyber_queue_data *kqd = e->elevator_data;
429	int i;
430
431	del_timer_sync(&kqd->timer);
432
433	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
434		sbitmap_queue_free(&kqd->domain_tokens[i]);
435	free_percpu(kqd->cpu_latency);
436	kfree(kqd);
437}
438
439static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
440{
441	unsigned int i;
442
443	spin_lock_init(&kcq->lock);
444	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
445		INIT_LIST_HEAD(&kcq->rq_list[i]);
446}
447
448static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx)
449{
450	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
451	struct blk_mq_tags *tags = hctx->sched_tags;
452	unsigned int shift = tags->bitmap_tags->sb.shift;
453
454	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
455
456	sbitmap_queue_min_shallow_depth(tags->bitmap_tags, kqd->async_depth);
457}
458
459static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
460{
461	struct kyber_hctx_data *khd;
462	int i;
463
464	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
465	if (!khd)
466		return -ENOMEM;
467
468	khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
469				       sizeof(struct kyber_ctx_queue),
470				       GFP_KERNEL, hctx->numa_node);
471	if (!khd->kcqs)
472		goto err_khd;
473
474	for (i = 0; i < hctx->nr_ctx; i++)
475		kyber_ctx_queue_init(&khd->kcqs[i]);
476
477	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
478		if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
479				      ilog2(8), GFP_KERNEL, hctx->numa_node)) {
480			while (--i >= 0)
481				sbitmap_free(&khd->kcq_map[i]);
482			goto err_kcqs;
483		}
484	}
485
486	spin_lock_init(&khd->lock);
487
488	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
489		INIT_LIST_HEAD(&khd->rqs[i]);
490		khd->domain_wait[i].sbq = NULL;
491		init_waitqueue_func_entry(&khd->domain_wait[i].wait,
492					  kyber_domain_wake);
493		khd->domain_wait[i].wait.private = hctx;
494		INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
495		atomic_set(&khd->wait_index[i], 0);
496	}
497
498	khd->cur_domain = 0;
499	khd->batching = 0;
500
501	hctx->sched_data = khd;
502	kyber_depth_updated(hctx);
503
504	return 0;
505
506err_kcqs:
507	kfree(khd->kcqs);
508err_khd:
509	kfree(khd);
510	return -ENOMEM;
511}
512
513static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
514{
515	struct kyber_hctx_data *khd = hctx->sched_data;
516	int i;
517
518	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
519		sbitmap_free(&khd->kcq_map[i]);
520	kfree(khd->kcqs);
521	kfree(hctx->sched_data);
522}
523
524static int rq_get_domain_token(struct request *rq)
525{
526	return (long)rq->elv.priv[0];
527}
528
529static void rq_set_domain_token(struct request *rq, int token)
530{
531	rq->elv.priv[0] = (void *)(long)token;
532}
533
534static void rq_clear_domain_token(struct kyber_queue_data *kqd,
535				  struct request *rq)
536{
537	unsigned int sched_domain;
538	int nr;
539
540	nr = rq_get_domain_token(rq);
541	if (nr != -1) {
542		sched_domain = kyber_sched_domain(rq->cmd_flags);
543		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
544				    rq->mq_ctx->cpu);
545	}
546}
547
548static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
549{
550	/*
551	 * We use the scheduler tags as per-hardware queue queueing tokens.
552	 * Async requests can be limited at this stage.
553	 */
554	if (!op_is_sync(op)) {
555		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
556
557		data->shallow_depth = kqd->async_depth;
558	}
559}
560
561static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
562		unsigned int nr_segs)
563{
564	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
565	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
566	struct kyber_hctx_data *khd = hctx->sched_data;
567	struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
568	unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
569	struct list_head *rq_list = &kcq->rq_list[sched_domain];
570	bool merged;
571
572	spin_lock(&kcq->lock);
573	merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
574	spin_unlock(&kcq->lock);
575
576	return merged;
577}
578
579static void kyber_prepare_request(struct request *rq)
580{
581	rq_set_domain_token(rq, -1);
582}
583
584static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
585				  struct list_head *rq_list, bool at_head)
586{
587	struct kyber_hctx_data *khd = hctx->sched_data;
588	struct request *rq, *next;
589
590	list_for_each_entry_safe(rq, next, rq_list, queuelist) {
591		unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
592		struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
593		struct list_head *head = &kcq->rq_list[sched_domain];
594
595		spin_lock(&kcq->lock);
596		if (at_head)
597			list_move(&rq->queuelist, head);
598		else
599			list_move_tail(&rq->queuelist, head);
600		sbitmap_set_bit(&khd->kcq_map[sched_domain],
601				rq->mq_ctx->index_hw[hctx->type]);
602		blk_mq_sched_request_inserted(rq);
603		spin_unlock(&kcq->lock);
604	}
605}
606
607static void kyber_finish_request(struct request *rq)
608{
609	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
610
611	rq_clear_domain_token(kqd, rq);
612}
613
614static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
615			       unsigned int sched_domain, unsigned int type,
616			       u64 target, u64 latency)
617{
618	unsigned int bucket;
619	u64 divisor;
620
621	if (latency > 0) {
622		divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
623		bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
624			       KYBER_LATENCY_BUCKETS - 1);
625	} else {
626		bucket = 0;
627	}
628
629	atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
630}
631
632static void kyber_completed_request(struct request *rq, u64 now)
633{
634	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
635	struct kyber_cpu_latency *cpu_latency;
636	unsigned int sched_domain;
637	u64 target;
638
639	sched_domain = kyber_sched_domain(rq->cmd_flags);
640	if (sched_domain == KYBER_OTHER)
641		return;
642
643	cpu_latency = get_cpu_ptr(kqd->cpu_latency);
644	target = kqd->latency_targets[sched_domain];
645	add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
646			   target, now - rq->start_time_ns);
647	add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
648			   now - rq->io_start_time_ns);
649	put_cpu_ptr(kqd->cpu_latency);
650
651	timer_reduce(&kqd->timer, jiffies + HZ / 10);
652}
653
654struct flush_kcq_data {
655	struct kyber_hctx_data *khd;
656	unsigned int sched_domain;
657	struct list_head *list;
658};
659
660static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
661{
662	struct flush_kcq_data *flush_data = data;
663	struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
664
665	spin_lock(&kcq->lock);
666	list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
667			      flush_data->list);
668	sbitmap_clear_bit(sb, bitnr);
669	spin_unlock(&kcq->lock);
670
671	return true;
672}
673
674static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
675				  unsigned int sched_domain,
676				  struct list_head *list)
677{
678	struct flush_kcq_data data = {
679		.khd = khd,
680		.sched_domain = sched_domain,
681		.list = list,
682	};
683
684	sbitmap_for_each_set(&khd->kcq_map[sched_domain],
685			     flush_busy_kcq, &data);
686}
687
688static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
689			     void *key)
690{
691	struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
692	struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
693
694	sbitmap_del_wait_queue(wait);
695	blk_mq_run_hw_queue(hctx, true);
696	return 1;
697}
698
699static int kyber_get_domain_token(struct kyber_queue_data *kqd,
700				  struct kyber_hctx_data *khd,
701				  struct blk_mq_hw_ctx *hctx)
702{
703	unsigned int sched_domain = khd->cur_domain;
704	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
705	struct sbq_wait *wait = &khd->domain_wait[sched_domain];
706	struct sbq_wait_state *ws;
707	int nr;
708
709	nr = __sbitmap_queue_get(domain_tokens);
710
711	/*
712	 * If we failed to get a domain token, make sure the hardware queue is
713	 * run when one becomes available. Note that this is serialized on
714	 * khd->lock, but we still need to be careful about the waker.
715	 */
716	if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
717		ws = sbq_wait_ptr(domain_tokens,
718				  &khd->wait_index[sched_domain]);
719		khd->domain_ws[sched_domain] = ws;
720		sbitmap_add_wait_queue(domain_tokens, ws, wait);
721
722		/*
723		 * Try again in case a token was freed before we got on the wait
724		 * queue.
725		 */
726		nr = __sbitmap_queue_get(domain_tokens);
727	}
728
729	/*
730	 * If we got a token while we were on the wait queue, remove ourselves
731	 * from the wait queue to ensure that all wake ups make forward
732	 * progress. It's possible that the waker already deleted the entry
733	 * between the !list_empty_careful() check and us grabbing the lock, but
734	 * list_del_init() is okay with that.
735	 */
736	if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
737		ws = khd->domain_ws[sched_domain];
738		spin_lock_irq(&ws->wait.lock);
739		sbitmap_del_wait_queue(wait);
740		spin_unlock_irq(&ws->wait.lock);
741	}
742
743	return nr;
744}
745
746static struct request *
747kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
748			  struct kyber_hctx_data *khd,
749			  struct blk_mq_hw_ctx *hctx)
750{
751	struct list_head *rqs;
752	struct request *rq;
753	int nr;
754
755	rqs = &khd->rqs[khd->cur_domain];
756
757	/*
758	 * If we already have a flushed request, then we just need to get a
759	 * token for it. Otherwise, if there are pending requests in the kcqs,
760	 * flush the kcqs, but only if we can get a token. If not, we should
761	 * leave the requests in the kcqs so that they can be merged. Note that
762	 * khd->lock serializes the flushes, so if we observed any bit set in
763	 * the kcq_map, we will always get a request.
764	 */
765	rq = list_first_entry_or_null(rqs, struct request, queuelist);
766	if (rq) {
767		nr = kyber_get_domain_token(kqd, khd, hctx);
768		if (nr >= 0) {
769			khd->batching++;
770			rq_set_domain_token(rq, nr);
771			list_del_init(&rq->queuelist);
772			return rq;
773		} else {
774			trace_kyber_throttled(kqd->q,
775					      kyber_domain_names[khd->cur_domain]);
776		}
777	} else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
778		nr = kyber_get_domain_token(kqd, khd, hctx);
779		if (nr >= 0) {
780			kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
781			rq = list_first_entry(rqs, struct request, queuelist);
782			khd->batching++;
783			rq_set_domain_token(rq, nr);
784			list_del_init(&rq->queuelist);
785			return rq;
786		} else {
787			trace_kyber_throttled(kqd->q,
788					      kyber_domain_names[khd->cur_domain]);
789		}
790	}
791
792	/* There were either no pending requests or no tokens. */
793	return NULL;
794}
795
796static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
797{
798	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
799	struct kyber_hctx_data *khd = hctx->sched_data;
800	struct request *rq;
801	int i;
802
803	spin_lock(&khd->lock);
804
805	/*
806	 * First, if we are still entitled to batch, try to dispatch a request
807	 * from the batch.
808	 */
809	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
810		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
811		if (rq)
812			goto out;
813	}
814
815	/*
816	 * Either,
817	 * 1. We were no longer entitled to a batch.
818	 * 2. The domain we were batching didn't have any requests.
819	 * 3. The domain we were batching was out of tokens.
820	 *
821	 * Start another batch. Note that this wraps back around to the original
822	 * domain if no other domains have requests or tokens.
823	 */
824	khd->batching = 0;
825	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
826		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
827			khd->cur_domain = 0;
828		else
829			khd->cur_domain++;
830
831		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
832		if (rq)
833			goto out;
834	}
835
836	rq = NULL;
837out:
838	spin_unlock(&khd->lock);
839	return rq;
840}
841
842static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
843{
844	struct kyber_hctx_data *khd = hctx->sched_data;
845	int i;
846
847	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
848		if (!list_empty_careful(&khd->rqs[i]) ||
849		    sbitmap_any_bit_set(&khd->kcq_map[i]))
850			return true;
851	}
852
853	return false;
854}
855
856#define KYBER_LAT_SHOW_STORE(domain, name)				\
857static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,	\
858				       char *page)			\
859{									\
860	struct kyber_queue_data *kqd = e->elevator_data;		\
861									\
862	return sprintf(page, "%llu\n", kqd->latency_targets[domain]);	\
863}									\
864									\
865static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,	\
866					const char *page, size_t count)	\
867{									\
868	struct kyber_queue_data *kqd = e->elevator_data;		\
869	unsigned long long nsec;					\
870	int ret;							\
871									\
872	ret = kstrtoull(page, 10, &nsec);				\
873	if (ret)							\
874		return ret;						\
875									\
876	kqd->latency_targets[domain] = nsec;				\
877									\
878	return count;							\
879}
880KYBER_LAT_SHOW_STORE(KYBER_READ, read);
881KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
882#undef KYBER_LAT_SHOW_STORE
883
884#define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
885static struct elv_fs_entry kyber_sched_attrs[] = {
886	KYBER_LAT_ATTR(read),
887	KYBER_LAT_ATTR(write),
888	__ATTR_NULL
889};
890#undef KYBER_LAT_ATTR
891
892#ifdef CONFIG_BLK_DEBUG_FS
893#define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
894static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
895{									\
896	struct request_queue *q = data;					\
897	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
898									\
899	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
900	return 0;							\
901}									\
902									\
903static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
904	__acquires(&khd->lock)						\
905{									\
906	struct blk_mq_hw_ctx *hctx = m->private;			\
907	struct kyber_hctx_data *khd = hctx->sched_data;			\
908									\
909	spin_lock(&khd->lock);						\
910	return seq_list_start(&khd->rqs[domain], *pos);			\
911}									\
912									\
913static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
914				     loff_t *pos)			\
915{									\
916	struct blk_mq_hw_ctx *hctx = m->private;			\
917	struct kyber_hctx_data *khd = hctx->sched_data;			\
918									\
919	return seq_list_next(v, &khd->rqs[domain], pos);		\
920}									\
921									\
922static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
923	__releases(&khd->lock)						\
924{									\
925	struct blk_mq_hw_ctx *hctx = m->private;			\
926	struct kyber_hctx_data *khd = hctx->sched_data;			\
927									\
928	spin_unlock(&khd->lock);					\
929}									\
930									\
931static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
932	.start	= kyber_##name##_rqs_start,				\
933	.next	= kyber_##name##_rqs_next,				\
934	.stop	= kyber_##name##_rqs_stop,				\
935	.show	= blk_mq_debugfs_rq_show,				\
936};									\
937									\
938static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
939{									\
940	struct blk_mq_hw_ctx *hctx = data;				\
941	struct kyber_hctx_data *khd = hctx->sched_data;			\
942	wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;	\
943									\
944	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
945	return 0;							\
946}
947KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
948KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
949KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
950KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
951#undef KYBER_DEBUGFS_DOMAIN_ATTRS
952
953static int kyber_async_depth_show(void *data, struct seq_file *m)
954{
955	struct request_queue *q = data;
956	struct kyber_queue_data *kqd = q->elevator->elevator_data;
957
958	seq_printf(m, "%u\n", kqd->async_depth);
959	return 0;
960}
961
962static int kyber_cur_domain_show(void *data, struct seq_file *m)
963{
964	struct blk_mq_hw_ctx *hctx = data;
965	struct kyber_hctx_data *khd = hctx->sched_data;
966
967	seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
968	return 0;
969}
970
971static int kyber_batching_show(void *data, struct seq_file *m)
972{
973	struct blk_mq_hw_ctx *hctx = data;
974	struct kyber_hctx_data *khd = hctx->sched_data;
975
976	seq_printf(m, "%u\n", khd->batching);
977	return 0;
978}
979
980#define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
981	{#name "_tokens", 0400, kyber_##name##_tokens_show}
982static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
983	KYBER_QUEUE_DOMAIN_ATTRS(read),
984	KYBER_QUEUE_DOMAIN_ATTRS(write),
985	KYBER_QUEUE_DOMAIN_ATTRS(discard),
986	KYBER_QUEUE_DOMAIN_ATTRS(other),
987	{"async_depth", 0400, kyber_async_depth_show},
988	{},
989};
990#undef KYBER_QUEUE_DOMAIN_ATTRS
991
992#define KYBER_HCTX_DOMAIN_ATTRS(name)					\
993	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
994	{#name "_waiting", 0400, kyber_##name##_waiting_show}
995static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
996	KYBER_HCTX_DOMAIN_ATTRS(read),
997	KYBER_HCTX_DOMAIN_ATTRS(write),
998	KYBER_HCTX_DOMAIN_ATTRS(discard),
999	KYBER_HCTX_DOMAIN_ATTRS(other),
1000	{"cur_domain", 0400, kyber_cur_domain_show},
1001	{"batching", 0400, kyber_batching_show},
1002	{},
1003};
1004#undef KYBER_HCTX_DOMAIN_ATTRS
1005#endif
1006
1007static struct elevator_type kyber_sched = {
1008	.ops = {
1009		.init_sched = kyber_init_sched,
1010		.exit_sched = kyber_exit_sched,
1011		.init_hctx = kyber_init_hctx,
1012		.exit_hctx = kyber_exit_hctx,
1013		.limit_depth = kyber_limit_depth,
1014		.bio_merge = kyber_bio_merge,
1015		.prepare_request = kyber_prepare_request,
1016		.insert_requests = kyber_insert_requests,
1017		.finish_request = kyber_finish_request,
1018		.requeue_request = kyber_finish_request,
1019		.completed_request = kyber_completed_request,
1020		.dispatch_request = kyber_dispatch_request,
1021		.has_work = kyber_has_work,
1022		.depth_updated = kyber_depth_updated,
1023	},
1024#ifdef CONFIG_BLK_DEBUG_FS
1025	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1026	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1027#endif
1028	.elevator_attrs = kyber_sched_attrs,
1029	.elevator_name = "kyber",
1030	.elevator_owner = THIS_MODULE,
1031};
1032
1033static int __init kyber_init(void)
1034{
1035	return elv_register(&kyber_sched);
1036}
1037
1038static void __exit kyber_exit(void)
1039{
1040	elv_unregister(&kyber_sched);
1041}
1042
1043module_init(kyber_init);
1044module_exit(kyber_exit);
1045
1046MODULE_AUTHOR("Omar Sandoval");
1047MODULE_LICENSE("GPL");
1048MODULE_DESCRIPTION("Kyber I/O scheduler");
1049