1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Functions related to setting various queue properties from drivers
4 */
5#include <linux/kernel.h>
6#include <linux/module.h>
7#include <linux/init.h>
8#include <linux/bio.h>
9#include <linux/blkdev.h>
10#include <linux/memblock.h>	/* for max_pfn/max_low_pfn */
11#include <linux/gcd.h>
12#include <linux/lcm.h>
13#include <linux/jiffies.h>
14#include <linux/gfp.h>
15#include <linux/dma-mapping.h>
16
17#include "blk.h"
18#include "blk-wbt.h"
19
20unsigned long blk_max_low_pfn;
21EXPORT_SYMBOL(blk_max_low_pfn);
22
23unsigned long blk_max_pfn;
24
25void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
26{
27	q->rq_timeout = timeout;
28}
29EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
30
31/**
32 * blk_set_default_limits - reset limits to default values
33 * @lim:  the queue_limits structure to reset
34 *
35 * Description:
36 *   Returns a queue_limit struct to its default state.
37 */
38void blk_set_default_limits(struct queue_limits *lim)
39{
40	lim->max_segments = BLK_MAX_SEGMENTS;
41	lim->max_discard_segments = 1;
42	lim->max_integrity_segments = 0;
43	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
44	lim->virt_boundary_mask = 0;
45	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
46	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
47	lim->max_dev_sectors = 0;
48	lim->chunk_sectors = 0;
49	lim->max_write_same_sectors = 0;
50	lim->max_write_zeroes_sectors = 0;
51	lim->max_zone_append_sectors = 0;
52	lim->max_discard_sectors = 0;
53	lim->max_hw_discard_sectors = 0;
54	lim->discard_granularity = 0;
55	lim->discard_alignment = 0;
56	lim->discard_misaligned = 0;
57	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
58	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
59	lim->alignment_offset = 0;
60	lim->io_opt = 0;
61	lim->misaligned = 0;
62	lim->zoned = BLK_ZONED_NONE;
63}
64EXPORT_SYMBOL(blk_set_default_limits);
65
66/**
67 * blk_set_stacking_limits - set default limits for stacking devices
68 * @lim:  the queue_limits structure to reset
69 *
70 * Description:
71 *   Returns a queue_limit struct to its default state. Should be used
72 *   by stacking drivers like DM that have no internal limits.
73 */
74void blk_set_stacking_limits(struct queue_limits *lim)
75{
76	blk_set_default_limits(lim);
77
78	/* Inherit limits from component devices */
79	lim->max_segments = USHRT_MAX;
80	lim->max_discard_segments = USHRT_MAX;
81	lim->max_hw_sectors = UINT_MAX;
82	lim->max_segment_size = UINT_MAX;
83	lim->max_sectors = UINT_MAX;
84	lim->max_dev_sectors = UINT_MAX;
85	lim->max_write_same_sectors = UINT_MAX;
86	lim->max_write_zeroes_sectors = UINT_MAX;
87	lim->max_zone_append_sectors = UINT_MAX;
88}
89EXPORT_SYMBOL(blk_set_stacking_limits);
90
91/**
92 * blk_queue_bounce_limit - set bounce buffer limit for queue
93 * @q: the request queue for the device
94 * @max_addr: the maximum address the device can handle
95 *
96 * Description:
97 *    Different hardware can have different requirements as to what pages
98 *    it can do I/O directly to. A low level driver can call
99 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
100 *    buffers for doing I/O to pages residing above @max_addr.
101 **/
102void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
103{
104	unsigned long b_pfn = max_addr >> PAGE_SHIFT;
105	int dma = 0;
106
107	q->bounce_gfp = GFP_NOIO;
108#if BITS_PER_LONG == 64
109	/*
110	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
111	 * some IOMMUs can handle everything, but I don't know of a
112	 * way to test this here.
113	 */
114	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
115		dma = 1;
116	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
117#else
118	if (b_pfn < blk_max_low_pfn)
119		dma = 1;
120	q->limits.bounce_pfn = b_pfn;
121#endif
122	if (dma) {
123		init_emergency_isa_pool();
124		q->bounce_gfp = GFP_NOIO | GFP_DMA;
125		q->limits.bounce_pfn = b_pfn;
126	}
127}
128EXPORT_SYMBOL(blk_queue_bounce_limit);
129
130/**
131 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
132 * @q:  the request queue for the device
133 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
134 *
135 * Description:
136 *    Enables a low level driver to set a hard upper limit,
137 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
138 *    the device driver based upon the capabilities of the I/O
139 *    controller.
140 *
141 *    max_dev_sectors is a hard limit imposed by the storage device for
142 *    READ/WRITE requests. It is set by the disk driver.
143 *
144 *    max_sectors is a soft limit imposed by the block layer for
145 *    filesystem type requests.  This value can be overridden on a
146 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
147 *    The soft limit can not exceed max_hw_sectors.
148 **/
149void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
150{
151	struct queue_limits *limits = &q->limits;
152	unsigned int max_sectors;
153
154	if ((max_hw_sectors << 9) < PAGE_SIZE) {
155		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
156		printk(KERN_INFO "%s: set to minimum %d\n",
157		       __func__, max_hw_sectors);
158	}
159
160	limits->max_hw_sectors = max_hw_sectors;
161	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
162	max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
163	limits->max_sectors = max_sectors;
164	q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
165}
166EXPORT_SYMBOL(blk_queue_max_hw_sectors);
167
168/**
169 * blk_queue_chunk_sectors - set size of the chunk for this queue
170 * @q:  the request queue for the device
171 * @chunk_sectors:  chunk sectors in the usual 512b unit
172 *
173 * Description:
174 *    If a driver doesn't want IOs to cross a given chunk size, it can set
175 *    this limit and prevent merging across chunks. Note that the block layer
176 *    must accept a page worth of data at any offset. So if the crossing of
177 *    chunks is a hard limitation in the driver, it must still be prepared
178 *    to split single page bios.
179 **/
180void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
181{
182	q->limits.chunk_sectors = chunk_sectors;
183}
184EXPORT_SYMBOL(blk_queue_chunk_sectors);
185
186/**
187 * blk_queue_max_discard_sectors - set max sectors for a single discard
188 * @q:  the request queue for the device
189 * @max_discard_sectors: maximum number of sectors to discard
190 **/
191void blk_queue_max_discard_sectors(struct request_queue *q,
192		unsigned int max_discard_sectors)
193{
194	q->limits.max_hw_discard_sectors = max_discard_sectors;
195	q->limits.max_discard_sectors = max_discard_sectors;
196}
197EXPORT_SYMBOL(blk_queue_max_discard_sectors);
198
199/**
200 * blk_queue_max_write_same_sectors - set max sectors for a single write same
201 * @q:  the request queue for the device
202 * @max_write_same_sectors: maximum number of sectors to write per command
203 **/
204void blk_queue_max_write_same_sectors(struct request_queue *q,
205				      unsigned int max_write_same_sectors)
206{
207	q->limits.max_write_same_sectors = max_write_same_sectors;
208}
209EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
210
211/**
212 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
213 *                                      write zeroes
214 * @q:  the request queue for the device
215 * @max_write_zeroes_sectors: maximum number of sectors to write per command
216 **/
217void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
218		unsigned int max_write_zeroes_sectors)
219{
220	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
221}
222EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
223
224/**
225 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
226 * @q:  the request queue for the device
227 * @max_zone_append_sectors: maximum number of sectors to write per command
228 **/
229void blk_queue_max_zone_append_sectors(struct request_queue *q,
230		unsigned int max_zone_append_sectors)
231{
232	unsigned int max_sectors;
233
234	if (WARN_ON(!blk_queue_is_zoned(q)))
235		return;
236
237	max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
238	max_sectors = min(q->limits.chunk_sectors, max_sectors);
239
240	/*
241	 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
242	 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
243	 * or the max_hw_sectors limit not set.
244	 */
245	WARN_ON(!max_sectors);
246
247	q->limits.max_zone_append_sectors = max_sectors;
248}
249EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
250
251/**
252 * blk_queue_max_segments - set max hw segments for a request for this queue
253 * @q:  the request queue for the device
254 * @max_segments:  max number of segments
255 *
256 * Description:
257 *    Enables a low level driver to set an upper limit on the number of
258 *    hw data segments in a request.
259 **/
260void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
261{
262	if (!max_segments) {
263		max_segments = 1;
264		printk(KERN_INFO "%s: set to minimum %d\n",
265		       __func__, max_segments);
266	}
267
268	q->limits.max_segments = max_segments;
269}
270EXPORT_SYMBOL(blk_queue_max_segments);
271
272/**
273 * blk_queue_max_discard_segments - set max segments for discard requests
274 * @q:  the request queue for the device
275 * @max_segments:  max number of segments
276 *
277 * Description:
278 *    Enables a low level driver to set an upper limit on the number of
279 *    segments in a discard request.
280 **/
281void blk_queue_max_discard_segments(struct request_queue *q,
282		unsigned short max_segments)
283{
284	q->limits.max_discard_segments = max_segments;
285}
286EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
287
288/**
289 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
290 * @q:  the request queue for the device
291 * @max_size:  max size of segment in bytes
292 *
293 * Description:
294 *    Enables a low level driver to set an upper limit on the size of a
295 *    coalesced segment
296 **/
297void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
298{
299	if (max_size < PAGE_SIZE) {
300		max_size = PAGE_SIZE;
301		printk(KERN_INFO "%s: set to minimum %d\n",
302		       __func__, max_size);
303	}
304
305	/* see blk_queue_virt_boundary() for the explanation */
306	WARN_ON_ONCE(q->limits.virt_boundary_mask);
307
308	q->limits.max_segment_size = max_size;
309}
310EXPORT_SYMBOL(blk_queue_max_segment_size);
311
312/**
313 * blk_queue_logical_block_size - set logical block size for the queue
314 * @q:  the request queue for the device
315 * @size:  the logical block size, in bytes
316 *
317 * Description:
318 *   This should be set to the lowest possible block size that the
319 *   storage device can address.  The default of 512 covers most
320 *   hardware.
321 **/
322void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
323{
324	q->limits.logical_block_size = size;
325
326	if (q->limits.physical_block_size < size)
327		q->limits.physical_block_size = size;
328
329	if (q->limits.io_min < q->limits.physical_block_size)
330		q->limits.io_min = q->limits.physical_block_size;
331}
332EXPORT_SYMBOL(blk_queue_logical_block_size);
333
334/**
335 * blk_queue_physical_block_size - set physical block size for the queue
336 * @q:  the request queue for the device
337 * @size:  the physical block size, in bytes
338 *
339 * Description:
340 *   This should be set to the lowest possible sector size that the
341 *   hardware can operate on without reverting to read-modify-write
342 *   operations.
343 */
344void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
345{
346	q->limits.physical_block_size = size;
347
348	if (q->limits.physical_block_size < q->limits.logical_block_size)
349		q->limits.physical_block_size = q->limits.logical_block_size;
350
351	if (q->limits.io_min < q->limits.physical_block_size)
352		q->limits.io_min = q->limits.physical_block_size;
353}
354EXPORT_SYMBOL(blk_queue_physical_block_size);
355
356/**
357 * blk_queue_alignment_offset - set physical block alignment offset
358 * @q:	the request queue for the device
359 * @offset: alignment offset in bytes
360 *
361 * Description:
362 *   Some devices are naturally misaligned to compensate for things like
363 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
364 *   should call this function for devices whose first sector is not
365 *   naturally aligned.
366 */
367void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
368{
369	q->limits.alignment_offset =
370		offset & (q->limits.physical_block_size - 1);
371	q->limits.misaligned = 0;
372}
373EXPORT_SYMBOL(blk_queue_alignment_offset);
374
375void blk_queue_update_readahead(struct request_queue *q)
376{
377	/*
378	 * For read-ahead of large files to be effective, we need to read ahead
379	 * at least twice the optimal I/O size.
380	 */
381	q->backing_dev_info->ra_pages =
382		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
383	q->backing_dev_info->io_pages =
384		queue_max_sectors(q) >> (PAGE_SHIFT - 9);
385}
386EXPORT_SYMBOL_GPL(blk_queue_update_readahead);
387
388/**
389 * blk_limits_io_min - set minimum request size for a device
390 * @limits: the queue limits
391 * @min:  smallest I/O size in bytes
392 *
393 * Description:
394 *   Some devices have an internal block size bigger than the reported
395 *   hardware sector size.  This function can be used to signal the
396 *   smallest I/O the device can perform without incurring a performance
397 *   penalty.
398 */
399void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
400{
401	limits->io_min = min;
402
403	if (limits->io_min < limits->logical_block_size)
404		limits->io_min = limits->logical_block_size;
405
406	if (limits->io_min < limits->physical_block_size)
407		limits->io_min = limits->physical_block_size;
408}
409EXPORT_SYMBOL(blk_limits_io_min);
410
411/**
412 * blk_queue_io_min - set minimum request size for the queue
413 * @q:	the request queue for the device
414 * @min:  smallest I/O size in bytes
415 *
416 * Description:
417 *   Storage devices may report a granularity or preferred minimum I/O
418 *   size which is the smallest request the device can perform without
419 *   incurring a performance penalty.  For disk drives this is often the
420 *   physical block size.  For RAID arrays it is often the stripe chunk
421 *   size.  A properly aligned multiple of minimum_io_size is the
422 *   preferred request size for workloads where a high number of I/O
423 *   operations is desired.
424 */
425void blk_queue_io_min(struct request_queue *q, unsigned int min)
426{
427	blk_limits_io_min(&q->limits, min);
428}
429EXPORT_SYMBOL(blk_queue_io_min);
430
431/**
432 * blk_limits_io_opt - set optimal request size for a device
433 * @limits: the queue limits
434 * @opt:  smallest I/O size in bytes
435 *
436 * Description:
437 *   Storage devices may report an optimal I/O size, which is the
438 *   device's preferred unit for sustained I/O.  This is rarely reported
439 *   for disk drives.  For RAID arrays it is usually the stripe width or
440 *   the internal track size.  A properly aligned multiple of
441 *   optimal_io_size is the preferred request size for workloads where
442 *   sustained throughput is desired.
443 */
444void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
445{
446	limits->io_opt = opt;
447}
448EXPORT_SYMBOL(blk_limits_io_opt);
449
450/**
451 * blk_queue_io_opt - set optimal request size for the queue
452 * @q:	the request queue for the device
453 * @opt:  optimal request size in bytes
454 *
455 * Description:
456 *   Storage devices may report an optimal I/O size, which is the
457 *   device's preferred unit for sustained I/O.  This is rarely reported
458 *   for disk drives.  For RAID arrays it is usually the stripe width or
459 *   the internal track size.  A properly aligned multiple of
460 *   optimal_io_size is the preferred request size for workloads where
461 *   sustained throughput is desired.
462 */
463void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
464{
465	blk_limits_io_opt(&q->limits, opt);
466	q->backing_dev_info->ra_pages =
467		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
468}
469EXPORT_SYMBOL(blk_queue_io_opt);
470
471static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
472{
473	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
474	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
475		sectors = PAGE_SIZE >> SECTOR_SHIFT;
476	return sectors;
477}
478
479/**
480 * blk_stack_limits - adjust queue_limits for stacked devices
481 * @t:	the stacking driver limits (top device)
482 * @b:  the underlying queue limits (bottom, component device)
483 * @start:  first data sector within component device
484 *
485 * Description:
486 *    This function is used by stacking drivers like MD and DM to ensure
487 *    that all component devices have compatible block sizes and
488 *    alignments.  The stacking driver must provide a queue_limits
489 *    struct (top) and then iteratively call the stacking function for
490 *    all component (bottom) devices.  The stacking function will
491 *    attempt to combine the values and ensure proper alignment.
492 *
493 *    Returns 0 if the top and bottom queue_limits are compatible.  The
494 *    top device's block sizes and alignment offsets may be adjusted to
495 *    ensure alignment with the bottom device. If no compatible sizes
496 *    and alignments exist, -1 is returned and the resulting top
497 *    queue_limits will have the misaligned flag set to indicate that
498 *    the alignment_offset is undefined.
499 */
500int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
501		     sector_t start)
502{
503	unsigned int top, bottom, alignment, ret = 0;
504
505	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
506	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
507	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
508	t->max_write_same_sectors = min(t->max_write_same_sectors,
509					b->max_write_same_sectors);
510	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
511					b->max_write_zeroes_sectors);
512	t->max_zone_append_sectors = min(t->max_zone_append_sectors,
513					b->max_zone_append_sectors);
514	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
515
516	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
517					    b->seg_boundary_mask);
518	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
519					    b->virt_boundary_mask);
520
521	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
522	t->max_discard_segments = min_not_zero(t->max_discard_segments,
523					       b->max_discard_segments);
524	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
525						 b->max_integrity_segments);
526
527	t->max_segment_size = min_not_zero(t->max_segment_size,
528					   b->max_segment_size);
529
530	t->misaligned |= b->misaligned;
531
532	alignment = queue_limit_alignment_offset(b, start);
533
534	/* Bottom device has different alignment.  Check that it is
535	 * compatible with the current top alignment.
536	 */
537	if (t->alignment_offset != alignment) {
538
539		top = max(t->physical_block_size, t->io_min)
540			+ t->alignment_offset;
541		bottom = max(b->physical_block_size, b->io_min) + alignment;
542
543		/* Verify that top and bottom intervals line up */
544		if (max(top, bottom) % min(top, bottom)) {
545			t->misaligned = 1;
546			ret = -1;
547		}
548	}
549
550	t->logical_block_size = max(t->logical_block_size,
551				    b->logical_block_size);
552
553	t->physical_block_size = max(t->physical_block_size,
554				     b->physical_block_size);
555
556	t->io_min = max(t->io_min, b->io_min);
557	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
558
559	/* Set non-power-of-2 compatible chunk_sectors boundary */
560	if (b->chunk_sectors)
561		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
562
563	/* Physical block size a multiple of the logical block size? */
564	if (t->physical_block_size & (t->logical_block_size - 1)) {
565		t->physical_block_size = t->logical_block_size;
566		t->misaligned = 1;
567		ret = -1;
568	}
569
570	/* Minimum I/O a multiple of the physical block size? */
571	if (t->io_min & (t->physical_block_size - 1)) {
572		t->io_min = t->physical_block_size;
573		t->misaligned = 1;
574		ret = -1;
575	}
576
577	/* Optimal I/O a multiple of the physical block size? */
578	if (t->io_opt & (t->physical_block_size - 1)) {
579		t->io_opt = 0;
580		t->misaligned = 1;
581		ret = -1;
582	}
583
584	/* chunk_sectors a multiple of the physical block size? */
585	if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
586		t->chunk_sectors = 0;
587		t->misaligned = 1;
588		ret = -1;
589	}
590
591	t->raid_partial_stripes_expensive =
592		max(t->raid_partial_stripes_expensive,
593		    b->raid_partial_stripes_expensive);
594
595	/* Find lowest common alignment_offset */
596	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
597		% max(t->physical_block_size, t->io_min);
598
599	/* Verify that new alignment_offset is on a logical block boundary */
600	if (t->alignment_offset & (t->logical_block_size - 1)) {
601		t->misaligned = 1;
602		ret = -1;
603	}
604
605	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
606	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
607	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
608
609	/* Discard alignment and granularity */
610	if (b->discard_granularity) {
611		alignment = queue_limit_discard_alignment(b, start);
612
613		if (t->discard_granularity != 0 &&
614		    t->discard_alignment != alignment) {
615			top = t->discard_granularity + t->discard_alignment;
616			bottom = b->discard_granularity + alignment;
617
618			/* Verify that top and bottom intervals line up */
619			if ((max(top, bottom) % min(top, bottom)) != 0)
620				t->discard_misaligned = 1;
621		}
622
623		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
624						      b->max_discard_sectors);
625		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
626							 b->max_hw_discard_sectors);
627		t->discard_granularity = max(t->discard_granularity,
628					     b->discard_granularity);
629		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
630			t->discard_granularity;
631	}
632
633	t->zoned = max(t->zoned, b->zoned);
634	return ret;
635}
636EXPORT_SYMBOL(blk_stack_limits);
637
638/**
639 * disk_stack_limits - adjust queue limits for stacked drivers
640 * @disk:  MD/DM gendisk (top)
641 * @bdev:  the underlying block device (bottom)
642 * @offset:  offset to beginning of data within component device
643 *
644 * Description:
645 *    Merges the limits for a top level gendisk and a bottom level
646 *    block_device.
647 */
648void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
649		       sector_t offset)
650{
651	struct request_queue *t = disk->queue;
652
653	if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
654			get_start_sect(bdev) + (offset >> 9)) < 0) {
655		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
656
657		disk_name(disk, 0, top);
658		bdevname(bdev, bottom);
659
660		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
661		       top, bottom);
662	}
663
664	blk_queue_update_readahead(disk->queue);
665}
666EXPORT_SYMBOL(disk_stack_limits);
667
668/**
669 * blk_queue_update_dma_pad - update pad mask
670 * @q:     the request queue for the device
671 * @mask:  pad mask
672 *
673 * Update dma pad mask.
674 *
675 * Appending pad buffer to a request modifies the last entry of a
676 * scatter list such that it includes the pad buffer.
677 **/
678void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
679{
680	if (mask > q->dma_pad_mask)
681		q->dma_pad_mask = mask;
682}
683EXPORT_SYMBOL(blk_queue_update_dma_pad);
684
685/**
686 * blk_queue_segment_boundary - set boundary rules for segment merging
687 * @q:  the request queue for the device
688 * @mask:  the memory boundary mask
689 **/
690void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
691{
692	if (mask < PAGE_SIZE - 1) {
693		mask = PAGE_SIZE - 1;
694		printk(KERN_INFO "%s: set to minimum %lx\n",
695		       __func__, mask);
696	}
697
698	q->limits.seg_boundary_mask = mask;
699}
700EXPORT_SYMBOL(blk_queue_segment_boundary);
701
702/**
703 * blk_queue_virt_boundary - set boundary rules for bio merging
704 * @q:  the request queue for the device
705 * @mask:  the memory boundary mask
706 **/
707void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
708{
709	q->limits.virt_boundary_mask = mask;
710
711	/*
712	 * Devices that require a virtual boundary do not support scatter/gather
713	 * I/O natively, but instead require a descriptor list entry for each
714	 * page (which might not be idential to the Linux PAGE_SIZE).  Because
715	 * of that they are not limited by our notion of "segment size".
716	 */
717	if (mask)
718		q->limits.max_segment_size = UINT_MAX;
719}
720EXPORT_SYMBOL(blk_queue_virt_boundary);
721
722/**
723 * blk_queue_dma_alignment - set dma length and memory alignment
724 * @q:     the request queue for the device
725 * @mask:  alignment mask
726 *
727 * description:
728 *    set required memory and length alignment for direct dma transactions.
729 *    this is used when building direct io requests for the queue.
730 *
731 **/
732void blk_queue_dma_alignment(struct request_queue *q, int mask)
733{
734	q->dma_alignment = mask;
735}
736EXPORT_SYMBOL(blk_queue_dma_alignment);
737
738/**
739 * blk_queue_update_dma_alignment - update dma length and memory alignment
740 * @q:     the request queue for the device
741 * @mask:  alignment mask
742 *
743 * description:
744 *    update required memory and length alignment for direct dma transactions.
745 *    If the requested alignment is larger than the current alignment, then
746 *    the current queue alignment is updated to the new value, otherwise it
747 *    is left alone.  The design of this is to allow multiple objects
748 *    (driver, device, transport etc) to set their respective
749 *    alignments without having them interfere.
750 *
751 **/
752void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
753{
754	BUG_ON(mask > PAGE_SIZE);
755
756	if (mask > q->dma_alignment)
757		q->dma_alignment = mask;
758}
759EXPORT_SYMBOL(blk_queue_update_dma_alignment);
760
761/**
762 * blk_set_queue_depth - tell the block layer about the device queue depth
763 * @q:		the request queue for the device
764 * @depth:		queue depth
765 *
766 */
767void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
768{
769	q->queue_depth = depth;
770	rq_qos_queue_depth_changed(q);
771}
772EXPORT_SYMBOL(blk_set_queue_depth);
773
774/**
775 * blk_queue_write_cache - configure queue's write cache
776 * @q:		the request queue for the device
777 * @wc:		write back cache on or off
778 * @fua:	device supports FUA writes, if true
779 *
780 * Tell the block layer about the write cache of @q.
781 */
782void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
783{
784	if (wc)
785		blk_queue_flag_set(QUEUE_FLAG_WC, q);
786	else
787		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
788	if (fua)
789		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
790	else
791		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
792
793	wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
794}
795EXPORT_SYMBOL_GPL(blk_queue_write_cache);
796
797/**
798 * blk_queue_required_elevator_features - Set a queue required elevator features
799 * @q:		the request queue for the target device
800 * @features:	Required elevator features OR'ed together
801 *
802 * Tell the block layer that for the device controlled through @q, only the
803 * only elevators that can be used are those that implement at least the set of
804 * features specified by @features.
805 */
806void blk_queue_required_elevator_features(struct request_queue *q,
807					  unsigned int features)
808{
809	q->required_elevator_features = features;
810}
811EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
812
813/**
814 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
815 * @q:		the request queue for the device
816 * @dev:	the device pointer for dma
817 *
818 * Tell the block layer about merging the segments by dma map of @q.
819 */
820bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
821				       struct device *dev)
822{
823	unsigned long boundary = dma_get_merge_boundary(dev);
824
825	if (!boundary)
826		return false;
827
828	/* No need to update max_segment_size. see blk_queue_virt_boundary() */
829	blk_queue_virt_boundary(q, boundary);
830
831	return true;
832}
833EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
834
835/**
836 * blk_queue_set_zoned - configure a disk queue zoned model.
837 * @disk:	the gendisk of the queue to configure
838 * @model:	the zoned model to set
839 *
840 * Set the zoned model of the request queue of @disk according to @model.
841 * When @model is BLK_ZONED_HM (host managed), this should be called only
842 * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
843 * If @model specifies BLK_ZONED_HA (host aware), the effective model used
844 * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
845 * on the disk.
846 */
847void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
848{
849	switch (model) {
850	case BLK_ZONED_HM:
851		/*
852		 * Host managed devices are supported only if
853		 * CONFIG_BLK_DEV_ZONED is enabled.
854		 */
855		WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
856		break;
857	case BLK_ZONED_HA:
858		/*
859		 * Host aware devices can be treated either as regular block
860		 * devices (similar to drive managed devices) or as zoned block
861		 * devices to take advantage of the zone command set, similarly
862		 * to host managed devices. We try the latter if there are no
863		 * partitions and zoned block device support is enabled, else
864		 * we do nothing special as far as the block layer is concerned.
865		 */
866		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
867		    disk_has_partitions(disk))
868			model = BLK_ZONED_NONE;
869		break;
870	case BLK_ZONED_NONE:
871	default:
872		if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
873			model = BLK_ZONED_NONE;
874		break;
875	}
876
877	disk->queue->limits.zoned = model;
878}
879EXPORT_SYMBOL_GPL(blk_queue_set_zoned);
880
881static int __init blk_settings_init(void)
882{
883	blk_max_low_pfn = max_low_pfn - 1;
884	blk_max_pfn = max_pfn - 1;
885	return 0;
886}
887subsys_initcall(blk_settings_init);
888