1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8#include <linux/kernel.h> 9#include <linux/module.h> 10#include <linux/backing-dev.h> 11#include <linux/bio.h> 12#include <linux/blkdev.h> 13#include <linux/kmemleak.h> 14#include <linux/mm.h> 15#include <linux/init.h> 16#include <linux/slab.h> 17#include <linux/workqueue.h> 18#include <linux/smp.h> 19#include <linux/llist.h> 20#include <linux/list_sort.h> 21#include <linux/cpu.h> 22#include <linux/cache.h> 23#include <linux/sched/sysctl.h> 24#include <linux/sched/topology.h> 25#include <linux/sched/signal.h> 26#include <linux/delay.h> 27#include <linux/crash_dump.h> 28#include <linux/prefetch.h> 29#include <linux/blk-crypto.h> 30 31#include <trace/events/block.h> 32 33#include <linux/blk-mq.h> 34#include <linux/t10-pi.h> 35#include "blk.h" 36#include "blk-mq.h" 37#include "blk-mq-debugfs.h" 38#include "blk-mq-tag.h" 39#include "blk-pm.h" 40#include "blk-stat.h" 41#include "blk-mq-sched.h" 42#include "blk-rq-qos.h" 43 44static DEFINE_PER_CPU(struct list_head, blk_cpu_done); 45 46static void blk_mq_poll_stats_start(struct request_queue *q); 47static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 48 49static int blk_mq_poll_stats_bkt(const struct request *rq) 50{ 51 int ddir, sectors, bucket; 52 53 ddir = rq_data_dir(rq); 54 sectors = blk_rq_stats_sectors(rq); 55 56 bucket = ddir + 2 * ilog2(sectors); 57 58 if (bucket < 0) 59 return -1; 60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 62 63 return bucket; 64} 65 66/* 67 * Check if any of the ctx, dispatch list or elevator 68 * have pending work in this hardware queue. 69 */ 70static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 71{ 72 return !list_empty_careful(&hctx->dispatch) || 73 sbitmap_any_bit_set(&hctx->ctx_map) || 74 blk_mq_sched_has_work(hctx); 75} 76 77/* 78 * Mark this ctx as having pending work in this hardware queue 79 */ 80static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 81 struct blk_mq_ctx *ctx) 82{ 83 const int bit = ctx->index_hw[hctx->type]; 84 85 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 86 sbitmap_set_bit(&hctx->ctx_map, bit); 87} 88 89static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 90 struct blk_mq_ctx *ctx) 91{ 92 const int bit = ctx->index_hw[hctx->type]; 93 94 sbitmap_clear_bit(&hctx->ctx_map, bit); 95} 96 97struct mq_inflight { 98 struct hd_struct *part; 99 unsigned int inflight[2]; 100}; 101 102static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 103 struct request *rq, void *priv, 104 bool reserved) 105{ 106 struct mq_inflight *mi = priv; 107 108 if ((!mi->part->partno || rq->part == mi->part) && 109 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 110 mi->inflight[rq_data_dir(rq)]++; 111 112 return true; 113} 114 115unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part) 116{ 117 struct mq_inflight mi = { .part = part }; 118 119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 120 121 return mi.inflight[0] + mi.inflight[1]; 122} 123 124void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 125 unsigned int inflight[2]) 126{ 127 struct mq_inflight mi = { .part = part }; 128 129 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 130 inflight[0] = mi.inflight[0]; 131 inflight[1] = mi.inflight[1]; 132} 133 134void blk_freeze_queue_start(struct request_queue *q) 135{ 136 mutex_lock(&q->mq_freeze_lock); 137 if (++q->mq_freeze_depth == 1) { 138 percpu_ref_kill(&q->q_usage_counter); 139 mutex_unlock(&q->mq_freeze_lock); 140 if (queue_is_mq(q)) 141 blk_mq_run_hw_queues(q, false); 142 } else { 143 mutex_unlock(&q->mq_freeze_lock); 144 } 145} 146EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 147 148void blk_mq_freeze_queue_wait(struct request_queue *q) 149{ 150 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 151} 152EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 153 154int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 155 unsigned long timeout) 156{ 157 return wait_event_timeout(q->mq_freeze_wq, 158 percpu_ref_is_zero(&q->q_usage_counter), 159 timeout); 160} 161EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 162 163/* 164 * Guarantee no request is in use, so we can change any data structure of 165 * the queue afterward. 166 */ 167void blk_freeze_queue(struct request_queue *q) 168{ 169 /* 170 * In the !blk_mq case we are only calling this to kill the 171 * q_usage_counter, otherwise this increases the freeze depth 172 * and waits for it to return to zero. For this reason there is 173 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 174 * exported to drivers as the only user for unfreeze is blk_mq. 175 */ 176 blk_freeze_queue_start(q); 177 blk_mq_freeze_queue_wait(q); 178} 179 180void blk_mq_freeze_queue(struct request_queue *q) 181{ 182 /* 183 * ...just an alias to keep freeze and unfreeze actions balanced 184 * in the blk_mq_* namespace 185 */ 186 blk_freeze_queue(q); 187} 188EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 189 190void blk_mq_unfreeze_queue(struct request_queue *q) 191{ 192 mutex_lock(&q->mq_freeze_lock); 193 q->mq_freeze_depth--; 194 WARN_ON_ONCE(q->mq_freeze_depth < 0); 195 if (!q->mq_freeze_depth) { 196 percpu_ref_resurrect(&q->q_usage_counter); 197 wake_up_all(&q->mq_freeze_wq); 198 } 199 mutex_unlock(&q->mq_freeze_lock); 200} 201EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 202 203/* 204 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 205 * mpt3sas driver such that this function can be removed. 206 */ 207void blk_mq_quiesce_queue_nowait(struct request_queue *q) 208{ 209 unsigned long flags; 210 211 spin_lock_irqsave(&q->queue_lock, flags); 212 if (!q->quiesce_depth++) 213 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 214 spin_unlock_irqrestore(&q->queue_lock, flags); 215} 216EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 217 218/** 219 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 220 * @q: request queue. 221 * 222 * Note: this function does not prevent that the struct request end_io() 223 * callback function is invoked. Once this function is returned, we make 224 * sure no dispatch can happen until the queue is unquiesced via 225 * blk_mq_unquiesce_queue(). 226 */ 227void blk_mq_quiesce_queue(struct request_queue *q) 228{ 229 struct blk_mq_hw_ctx *hctx; 230 unsigned int i; 231 bool rcu = false; 232 233 blk_mq_quiesce_queue_nowait(q); 234 235 queue_for_each_hw_ctx(q, hctx, i) { 236 if (hctx->flags & BLK_MQ_F_BLOCKING) 237 synchronize_srcu(hctx->srcu); 238 else 239 rcu = true; 240 } 241 if (rcu) 242 synchronize_rcu(); 243} 244EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 245 246/* 247 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 248 * @q: request queue. 249 * 250 * This function recovers queue into the state before quiescing 251 * which is done by blk_mq_quiesce_queue. 252 */ 253void blk_mq_unquiesce_queue(struct request_queue *q) 254{ 255 unsigned long flags; 256 bool run_queue = false; 257 258 spin_lock_irqsave(&q->queue_lock, flags); 259 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 260 ; 261 } else if (!--q->quiesce_depth) { 262 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 263 run_queue = true; 264 } 265 spin_unlock_irqrestore(&q->queue_lock, flags); 266 267 /* dispatch requests which are inserted during quiescing */ 268 if (run_queue) 269 blk_mq_run_hw_queues(q, true); 270} 271EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 272 273void blk_mq_wake_waiters(struct request_queue *q) 274{ 275 struct blk_mq_hw_ctx *hctx; 276 unsigned int i; 277 278 queue_for_each_hw_ctx(q, hctx, i) 279 if (blk_mq_hw_queue_mapped(hctx)) 280 blk_mq_tag_wakeup_all(hctx->tags, true); 281} 282 283/* 284 * Only need start/end time stamping if we have iostat or 285 * blk stats enabled, or using an IO scheduler. 286 */ 287static inline bool blk_mq_need_time_stamp(struct request *rq) 288{ 289 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator; 290} 291 292static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 293 unsigned int tag, u64 alloc_time_ns) 294{ 295 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 296 struct request *rq = tags->static_rqs[tag]; 297 298 if (data->q->elevator) { 299 rq->tag = BLK_MQ_NO_TAG; 300 rq->internal_tag = tag; 301 } else { 302 rq->tag = tag; 303 rq->internal_tag = BLK_MQ_NO_TAG; 304 } 305 306 /* csd/requeue_work/fifo_time is initialized before use */ 307 rq->q = data->q; 308 rq->mq_ctx = data->ctx; 309 rq->mq_hctx = data->hctx; 310 rq->rq_flags = 0; 311 rq->cmd_flags = data->cmd_flags; 312 if (data->flags & BLK_MQ_REQ_PM) 313 rq->rq_flags |= RQF_PM; 314 if (blk_queue_io_stat(data->q)) 315 rq->rq_flags |= RQF_IO_STAT; 316 INIT_LIST_HEAD(&rq->queuelist); 317 INIT_HLIST_NODE(&rq->hash); 318 RB_CLEAR_NODE(&rq->rb_node); 319 rq->rq_disk = NULL; 320 rq->part = NULL; 321#ifdef CONFIG_BLK_RQ_ALLOC_TIME 322 rq->alloc_time_ns = alloc_time_ns; 323#endif 324 if (blk_mq_need_time_stamp(rq)) 325 rq->start_time_ns = ktime_get_ns(); 326 else 327 rq->start_time_ns = 0; 328 rq->io_start_time_ns = 0; 329 rq->stats_sectors = 0; 330 rq->nr_phys_segments = 0; 331#if defined(CONFIG_BLK_DEV_INTEGRITY) 332 rq->nr_integrity_segments = 0; 333#endif 334 blk_crypto_rq_set_defaults(rq); 335 /* tag was already set */ 336 WRITE_ONCE(rq->deadline, 0); 337 338 rq->timeout = 0; 339 340 rq->end_io = NULL; 341 rq->end_io_data = NULL; 342 343 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++; 344 refcount_set(&rq->ref, 1); 345 346 if (!op_is_flush(data->cmd_flags)) { 347 struct elevator_queue *e = data->q->elevator; 348 349 rq->elv.icq = NULL; 350 if (e && e->type->ops.prepare_request) { 351 if (e->type->icq_cache) 352 blk_mq_sched_assign_ioc(rq); 353 354 e->type->ops.prepare_request(rq); 355 rq->rq_flags |= RQF_ELVPRIV; 356 } 357 } 358 359 data->hctx->queued++; 360 return rq; 361} 362 363static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data) 364{ 365 struct request_queue *q = data->q; 366 struct elevator_queue *e = q->elevator; 367 u64 alloc_time_ns = 0; 368 unsigned int tag; 369 370 /* alloc_time includes depth and tag waits */ 371 if (blk_queue_rq_alloc_time(q)) 372 alloc_time_ns = ktime_get_ns(); 373 374 if (data->cmd_flags & REQ_NOWAIT) 375 data->flags |= BLK_MQ_REQ_NOWAIT; 376 377 if (e) { 378 /* 379 * Flush requests are special and go directly to the 380 * dispatch list. Don't include reserved tags in the 381 * limiting, as it isn't useful. 382 */ 383 if (!op_is_flush(data->cmd_flags) && 384 e->type->ops.limit_depth && 385 !(data->flags & BLK_MQ_REQ_RESERVED)) 386 e->type->ops.limit_depth(data->cmd_flags, data); 387 } 388 389retry: 390 data->ctx = blk_mq_get_ctx(q); 391 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 392 if (!e) 393 blk_mq_tag_busy(data->hctx); 394 395 /* 396 * Waiting allocations only fail because of an inactive hctx. In that 397 * case just retry the hctx assignment and tag allocation as CPU hotplug 398 * should have migrated us to an online CPU by now. 399 */ 400 tag = blk_mq_get_tag(data); 401 if (tag == BLK_MQ_NO_TAG) { 402 if (data->flags & BLK_MQ_REQ_NOWAIT) 403 return NULL; 404 405 /* 406 * Give up the CPU and sleep for a random short time to ensure 407 * that thread using a realtime scheduling class are migrated 408 * off the CPU, and thus off the hctx that is going away. 409 */ 410 msleep(3); 411 goto retry; 412 } 413 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns); 414} 415 416struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 417 blk_mq_req_flags_t flags) 418{ 419 struct blk_mq_alloc_data data = { 420 .q = q, 421 .flags = flags, 422 .cmd_flags = op, 423 }; 424 struct request *rq; 425 int ret; 426 427 ret = blk_queue_enter(q, flags); 428 if (ret) 429 return ERR_PTR(ret); 430 431 rq = __blk_mq_alloc_request(&data); 432 if (!rq) 433 goto out_queue_exit; 434 rq->__data_len = 0; 435 rq->__sector = (sector_t) -1; 436 rq->bio = rq->biotail = NULL; 437 return rq; 438out_queue_exit: 439 blk_queue_exit(q); 440 return ERR_PTR(-EWOULDBLOCK); 441} 442EXPORT_SYMBOL(blk_mq_alloc_request); 443 444struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 445 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 446{ 447 struct blk_mq_alloc_data data = { 448 .q = q, 449 .flags = flags, 450 .cmd_flags = op, 451 }; 452 u64 alloc_time_ns = 0; 453 unsigned int cpu; 454 unsigned int tag; 455 int ret; 456 457 /* alloc_time includes depth and tag waits */ 458 if (blk_queue_rq_alloc_time(q)) 459 alloc_time_ns = ktime_get_ns(); 460 461 /* 462 * If the tag allocator sleeps we could get an allocation for a 463 * different hardware context. No need to complicate the low level 464 * allocator for this for the rare use case of a command tied to 465 * a specific queue. 466 */ 467 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 468 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 469 return ERR_PTR(-EINVAL); 470 471 if (hctx_idx >= q->nr_hw_queues) 472 return ERR_PTR(-EIO); 473 474 ret = blk_queue_enter(q, flags); 475 if (ret) 476 return ERR_PTR(ret); 477 478 /* 479 * Check if the hardware context is actually mapped to anything. 480 * If not tell the caller that it should skip this queue. 481 */ 482 ret = -EXDEV; 483 data.hctx = q->queue_hw_ctx[hctx_idx]; 484 if (!blk_mq_hw_queue_mapped(data.hctx)) 485 goto out_queue_exit; 486 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 487 if (cpu >= nr_cpu_ids) 488 goto out_queue_exit; 489 data.ctx = __blk_mq_get_ctx(q, cpu); 490 491 if (!q->elevator) 492 blk_mq_tag_busy(data.hctx); 493 494 ret = -EWOULDBLOCK; 495 tag = blk_mq_get_tag(&data); 496 if (tag == BLK_MQ_NO_TAG) 497 goto out_queue_exit; 498 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns); 499 500out_queue_exit: 501 blk_queue_exit(q); 502 return ERR_PTR(ret); 503} 504EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 505 506static void __blk_mq_free_request(struct request *rq) 507{ 508 struct request_queue *q = rq->q; 509 struct blk_mq_ctx *ctx = rq->mq_ctx; 510 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 511 const int sched_tag = rq->internal_tag; 512 513 blk_crypto_free_request(rq); 514 blk_pm_mark_last_busy(rq); 515 rq->mq_hctx = NULL; 516 if (rq->tag != BLK_MQ_NO_TAG) 517 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 518 if (sched_tag != BLK_MQ_NO_TAG) 519 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 520 blk_mq_sched_restart(hctx); 521 blk_queue_exit(q); 522} 523 524void blk_mq_free_request(struct request *rq) 525{ 526 struct request_queue *q = rq->q; 527 struct elevator_queue *e = q->elevator; 528 struct blk_mq_ctx *ctx = rq->mq_ctx; 529 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 530 531 if (rq->rq_flags & RQF_ELVPRIV) { 532 if (e && e->type->ops.finish_request) 533 e->type->ops.finish_request(rq); 534 if (rq->elv.icq) { 535 put_io_context(rq->elv.icq->ioc); 536 rq->elv.icq = NULL; 537 } 538 } 539 540 ctx->rq_completed[rq_is_sync(rq)]++; 541 if (rq->rq_flags & RQF_MQ_INFLIGHT) 542 __blk_mq_dec_active_requests(hctx); 543 544 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 545 laptop_io_completion(q->backing_dev_info); 546 547 rq_qos_done(q, rq); 548 549 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 550 if (refcount_dec_and_test(&rq->ref)) 551 __blk_mq_free_request(rq); 552} 553EXPORT_SYMBOL_GPL(blk_mq_free_request); 554 555inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 556{ 557 u64 now = 0; 558 559 if (blk_mq_need_time_stamp(rq)) 560 now = ktime_get_ns(); 561 562 if (rq->rq_flags & RQF_STATS) { 563 blk_mq_poll_stats_start(rq->q); 564 blk_stat_add(rq, now); 565 } 566 567 blk_mq_sched_completed_request(rq, now); 568 569 blk_account_io_done(rq, now); 570 571 if (rq->end_io) { 572 rq_qos_done(rq->q, rq); 573 rq->end_io(rq, error); 574 } else { 575 blk_mq_free_request(rq); 576 } 577} 578EXPORT_SYMBOL(__blk_mq_end_request); 579 580void blk_mq_end_request(struct request *rq, blk_status_t error) 581{ 582 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 583 BUG(); 584 __blk_mq_end_request(rq, error); 585} 586EXPORT_SYMBOL(blk_mq_end_request); 587 588/* 589 * Softirq action handler - move entries to local list and loop over them 590 * while passing them to the queue registered handler. 591 */ 592static __latent_entropy void blk_done_softirq(struct softirq_action *h) 593{ 594 struct list_head *cpu_list, local_list; 595 596 local_irq_disable(); 597 cpu_list = this_cpu_ptr(&blk_cpu_done); 598 list_replace_init(cpu_list, &local_list); 599 local_irq_enable(); 600 601 while (!list_empty(&local_list)) { 602 struct request *rq; 603 604 rq = list_entry(local_list.next, struct request, ipi_list); 605 list_del_init(&rq->ipi_list); 606 rq->q->mq_ops->complete(rq); 607 } 608} 609 610static void blk_mq_trigger_softirq(struct request *rq) 611{ 612 struct list_head *list; 613 unsigned long flags; 614 615 local_irq_save(flags); 616 list = this_cpu_ptr(&blk_cpu_done); 617 list_add_tail(&rq->ipi_list, list); 618 619 /* 620 * If the list only contains our just added request, signal a raise of 621 * the softirq. If there are already entries there, someone already 622 * raised the irq but it hasn't run yet. 623 */ 624 if (list->next == &rq->ipi_list) 625 raise_softirq_irqoff(BLOCK_SOFTIRQ); 626 local_irq_restore(flags); 627} 628 629static int blk_softirq_cpu_dead(unsigned int cpu) 630{ 631 /* 632 * If a CPU goes away, splice its entries to the current CPU 633 * and trigger a run of the softirq 634 */ 635 local_irq_disable(); 636 list_splice_init(&per_cpu(blk_cpu_done, cpu), 637 this_cpu_ptr(&blk_cpu_done)); 638 raise_softirq_irqoff(BLOCK_SOFTIRQ); 639 local_irq_enable(); 640 641 return 0; 642} 643 644 645static void __blk_mq_complete_request_remote(void *data) 646{ 647 struct request *rq = data; 648 649 /* 650 * For most of single queue controllers, there is only one irq vector 651 * for handling I/O completion, and the only irq's affinity is set 652 * to all possible CPUs. On most of ARCHs, this affinity means the irq 653 * is handled on one specific CPU. 654 * 655 * So complete I/O requests in softirq context in case of single queue 656 * devices to avoid degrading I/O performance due to irqsoff latency. 657 */ 658 if (rq->q->nr_hw_queues == 1) 659 blk_mq_trigger_softirq(rq); 660 else 661 rq->q->mq_ops->complete(rq); 662} 663 664static inline bool blk_mq_complete_need_ipi(struct request *rq) 665{ 666 int cpu = raw_smp_processor_id(); 667 668 if (!IS_ENABLED(CONFIG_SMP) || 669 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 670 return false; 671 672 /* same CPU or cache domain? Complete locally */ 673 if (cpu == rq->mq_ctx->cpu || 674 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 675 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 676 return false; 677 678 /* don't try to IPI to an offline CPU */ 679 return cpu_online(rq->mq_ctx->cpu); 680} 681 682bool blk_mq_complete_request_remote(struct request *rq) 683{ 684 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 685 686 /* 687 * For a polled request, always complete locallly, it's pointless 688 * to redirect the completion. 689 */ 690 if (rq->cmd_flags & REQ_HIPRI) 691 return false; 692 693 if (blk_mq_complete_need_ipi(rq)) { 694 rq->csd.func = __blk_mq_complete_request_remote; 695 rq->csd.info = rq; 696 rq->csd.flags = 0; 697 smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd); 698 } else { 699 if (rq->q->nr_hw_queues > 1) 700 return false; 701 blk_mq_trigger_softirq(rq); 702 } 703 704 return true; 705} 706EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 707 708/** 709 * blk_mq_complete_request - end I/O on a request 710 * @rq: the request being processed 711 * 712 * Description: 713 * Complete a request by scheduling the ->complete_rq operation. 714 **/ 715void blk_mq_complete_request(struct request *rq) 716{ 717 if (!blk_mq_complete_request_remote(rq)) 718 rq->q->mq_ops->complete(rq); 719} 720EXPORT_SYMBOL(blk_mq_complete_request); 721 722static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 723 __releases(hctx->srcu) 724{ 725 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 726 rcu_read_unlock(); 727 else 728 srcu_read_unlock(hctx->srcu, srcu_idx); 729} 730 731static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 732 __acquires(hctx->srcu) 733{ 734 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 735 /* shut up gcc false positive */ 736 *srcu_idx = 0; 737 rcu_read_lock(); 738 } else 739 *srcu_idx = srcu_read_lock(hctx->srcu); 740} 741 742/** 743 * blk_mq_start_request - Start processing a request 744 * @rq: Pointer to request to be started 745 * 746 * Function used by device drivers to notify the block layer that a request 747 * is going to be processed now, so blk layer can do proper initializations 748 * such as starting the timeout timer. 749 */ 750void blk_mq_start_request(struct request *rq) 751{ 752 struct request_queue *q = rq->q; 753 754 trace_block_rq_issue(rq); 755 756 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 757 rq->io_start_time_ns = ktime_get_ns(); 758 rq->stats_sectors = blk_rq_sectors(rq); 759 rq->rq_flags |= RQF_STATS; 760 rq_qos_issue(q, rq); 761 } 762 763 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 764 765 blk_add_timer(rq); 766 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 767 768#ifdef CONFIG_BLK_DEV_INTEGRITY 769 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 770 q->integrity.profile->prepare_fn(rq); 771#endif 772} 773EXPORT_SYMBOL(blk_mq_start_request); 774 775static void __blk_mq_requeue_request(struct request *rq) 776{ 777 struct request_queue *q = rq->q; 778 779 blk_mq_put_driver_tag(rq); 780 781 trace_block_rq_requeue(rq); 782 rq_qos_requeue(q, rq); 783 784 if (blk_mq_request_started(rq)) { 785 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 786 rq->rq_flags &= ~RQF_TIMED_OUT; 787 } 788} 789 790void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 791{ 792 __blk_mq_requeue_request(rq); 793 794 /* this request will be re-inserted to io scheduler queue */ 795 blk_mq_sched_requeue_request(rq); 796 797 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 798} 799EXPORT_SYMBOL(blk_mq_requeue_request); 800 801static void blk_mq_requeue_work(struct work_struct *work) 802{ 803 struct request_queue *q = 804 container_of(work, struct request_queue, requeue_work.work); 805 LIST_HEAD(rq_list); 806 struct request *rq, *next; 807 808 spin_lock_irq(&q->requeue_lock); 809 list_splice_init(&q->requeue_list, &rq_list); 810 spin_unlock_irq(&q->requeue_lock); 811 812 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 813 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 814 continue; 815 816 rq->rq_flags &= ~RQF_SOFTBARRIER; 817 list_del_init(&rq->queuelist); 818 /* 819 * If RQF_DONTPREP, rq has contained some driver specific 820 * data, so insert it to hctx dispatch list to avoid any 821 * merge. 822 */ 823 if (rq->rq_flags & RQF_DONTPREP) 824 blk_mq_request_bypass_insert(rq, false, false); 825 else 826 blk_mq_sched_insert_request(rq, true, false, false); 827 } 828 829 while (!list_empty(&rq_list)) { 830 rq = list_entry(rq_list.next, struct request, queuelist); 831 list_del_init(&rq->queuelist); 832 blk_mq_sched_insert_request(rq, false, false, false); 833 } 834 835 blk_mq_run_hw_queues(q, false); 836} 837 838void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 839 bool kick_requeue_list) 840{ 841 struct request_queue *q = rq->q; 842 unsigned long flags; 843 844 /* 845 * We abuse this flag that is otherwise used by the I/O scheduler to 846 * request head insertion from the workqueue. 847 */ 848 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 849 850 spin_lock_irqsave(&q->requeue_lock, flags); 851 if (at_head) { 852 rq->rq_flags |= RQF_SOFTBARRIER; 853 list_add(&rq->queuelist, &q->requeue_list); 854 } else { 855 list_add_tail(&rq->queuelist, &q->requeue_list); 856 } 857 spin_unlock_irqrestore(&q->requeue_lock, flags); 858 859 if (kick_requeue_list) 860 blk_mq_kick_requeue_list(q); 861} 862 863void blk_mq_kick_requeue_list(struct request_queue *q) 864{ 865 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 866} 867EXPORT_SYMBOL(blk_mq_kick_requeue_list); 868 869void blk_mq_delay_kick_requeue_list(struct request_queue *q, 870 unsigned long msecs) 871{ 872 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 873 msecs_to_jiffies(msecs)); 874} 875EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 876 877struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 878{ 879 if (tag < tags->nr_tags) { 880 prefetch(tags->rqs[tag]); 881 return tags->rqs[tag]; 882 } 883 884 return NULL; 885} 886EXPORT_SYMBOL(blk_mq_tag_to_rq); 887 888static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 889 void *priv, bool reserved) 890{ 891 /* 892 * If we find a request that isn't idle and the queue matches, 893 * we know the queue is busy. Return false to stop the iteration. 894 */ 895 if (blk_mq_request_started(rq) && rq->q == hctx->queue) { 896 bool *busy = priv; 897 898 *busy = true; 899 return false; 900 } 901 902 return true; 903} 904 905bool blk_mq_queue_inflight(struct request_queue *q) 906{ 907 bool busy = false; 908 909 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 910 return busy; 911} 912EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 913 914static void blk_mq_rq_timed_out(struct request *req, bool reserved) 915{ 916 req->rq_flags |= RQF_TIMED_OUT; 917 if (req->q->mq_ops->timeout) { 918 enum blk_eh_timer_return ret; 919 920 ret = req->q->mq_ops->timeout(req, reserved); 921 if (ret == BLK_EH_DONE) 922 return; 923 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 924 } 925 926 blk_add_timer(req); 927} 928 929static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 930{ 931 unsigned long deadline; 932 933 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 934 return false; 935 if (rq->rq_flags & RQF_TIMED_OUT) 936 return false; 937 938 deadline = READ_ONCE(rq->deadline); 939 if (time_after_eq(jiffies, deadline)) 940 return true; 941 942 if (*next == 0) 943 *next = deadline; 944 else if (time_after(*next, deadline)) 945 *next = deadline; 946 return false; 947} 948 949void blk_mq_put_rq_ref(struct request *rq) 950{ 951 if (is_flush_rq(rq)) 952 rq->end_io(rq, 0); 953 else if (refcount_dec_and_test(&rq->ref)) 954 __blk_mq_free_request(rq); 955} 956 957static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 958 struct request *rq, void *priv, bool reserved) 959{ 960 unsigned long *next = priv; 961 962 /* 963 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 964 * be reallocated underneath the timeout handler's processing, then 965 * the expire check is reliable. If the request is not expired, then 966 * it was completed and reallocated as a new request after returning 967 * from blk_mq_check_expired(). 968 */ 969 if (blk_mq_req_expired(rq, next)) 970 blk_mq_rq_timed_out(rq, reserved); 971 return true; 972} 973 974static void blk_mq_timeout_work(struct work_struct *work) 975{ 976 struct request_queue *q = 977 container_of(work, struct request_queue, timeout_work); 978 unsigned long next = 0; 979 struct blk_mq_hw_ctx *hctx; 980 int i; 981 982 /* A deadlock might occur if a request is stuck requiring a 983 * timeout at the same time a queue freeze is waiting 984 * completion, since the timeout code would not be able to 985 * acquire the queue reference here. 986 * 987 * That's why we don't use blk_queue_enter here; instead, we use 988 * percpu_ref_tryget directly, because we need to be able to 989 * obtain a reference even in the short window between the queue 990 * starting to freeze, by dropping the first reference in 991 * blk_freeze_queue_start, and the moment the last request is 992 * consumed, marked by the instant q_usage_counter reaches 993 * zero. 994 */ 995 if (!percpu_ref_tryget(&q->q_usage_counter)) 996 return; 997 998 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 999 1000 if (next != 0) { 1001 mod_timer(&q->timeout, next); 1002 } else { 1003 /* 1004 * Request timeouts are handled as a forward rolling timer. If 1005 * we end up here it means that no requests are pending and 1006 * also that no request has been pending for a while. Mark 1007 * each hctx as idle. 1008 */ 1009 queue_for_each_hw_ctx(q, hctx, i) { 1010 /* the hctx may be unmapped, so check it here */ 1011 if (blk_mq_hw_queue_mapped(hctx)) 1012 blk_mq_tag_idle(hctx); 1013 } 1014 } 1015 blk_queue_exit(q); 1016} 1017 1018struct flush_busy_ctx_data { 1019 struct blk_mq_hw_ctx *hctx; 1020 struct list_head *list; 1021}; 1022 1023static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1024{ 1025 struct flush_busy_ctx_data *flush_data = data; 1026 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1027 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1028 enum hctx_type type = hctx->type; 1029 1030 spin_lock(&ctx->lock); 1031 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1032 sbitmap_clear_bit(sb, bitnr); 1033 spin_unlock(&ctx->lock); 1034 return true; 1035} 1036 1037/* 1038 * Process software queues that have been marked busy, splicing them 1039 * to the for-dispatch 1040 */ 1041void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1042{ 1043 struct flush_busy_ctx_data data = { 1044 .hctx = hctx, 1045 .list = list, 1046 }; 1047 1048 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1049} 1050EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1051 1052struct dispatch_rq_data { 1053 struct blk_mq_hw_ctx *hctx; 1054 struct request *rq; 1055}; 1056 1057static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1058 void *data) 1059{ 1060 struct dispatch_rq_data *dispatch_data = data; 1061 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1062 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1063 enum hctx_type type = hctx->type; 1064 1065 spin_lock(&ctx->lock); 1066 if (!list_empty(&ctx->rq_lists[type])) { 1067 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1068 list_del_init(&dispatch_data->rq->queuelist); 1069 if (list_empty(&ctx->rq_lists[type])) 1070 sbitmap_clear_bit(sb, bitnr); 1071 } 1072 spin_unlock(&ctx->lock); 1073 1074 return !dispatch_data->rq; 1075} 1076 1077struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1078 struct blk_mq_ctx *start) 1079{ 1080 unsigned off = start ? start->index_hw[hctx->type] : 0; 1081 struct dispatch_rq_data data = { 1082 .hctx = hctx, 1083 .rq = NULL, 1084 }; 1085 1086 __sbitmap_for_each_set(&hctx->ctx_map, off, 1087 dispatch_rq_from_ctx, &data); 1088 1089 return data.rq; 1090} 1091 1092static inline unsigned int queued_to_index(unsigned int queued) 1093{ 1094 if (!queued) 1095 return 0; 1096 1097 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1098} 1099 1100static bool __blk_mq_get_driver_tag(struct request *rq) 1101{ 1102 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags; 1103 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1104 int tag; 1105 1106 blk_mq_tag_busy(rq->mq_hctx); 1107 1108 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1109 bt = rq->mq_hctx->tags->breserved_tags; 1110 tag_offset = 0; 1111 } else { 1112 if (!hctx_may_queue(rq->mq_hctx, bt)) 1113 return false; 1114 } 1115 1116 tag = __sbitmap_queue_get(bt); 1117 if (tag == BLK_MQ_NO_TAG) 1118 return false; 1119 1120 rq->tag = tag + tag_offset; 1121 return true; 1122} 1123 1124static bool blk_mq_get_driver_tag(struct request *rq) 1125{ 1126 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1127 1128 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq)) 1129 return false; 1130 1131 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1132 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1133 rq->rq_flags |= RQF_MQ_INFLIGHT; 1134 __blk_mq_inc_active_requests(hctx); 1135 } 1136 hctx->tags->rqs[rq->tag] = rq; 1137 return true; 1138} 1139 1140static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1141 int flags, void *key) 1142{ 1143 struct blk_mq_hw_ctx *hctx; 1144 1145 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1146 1147 spin_lock(&hctx->dispatch_wait_lock); 1148 if (!list_empty(&wait->entry)) { 1149 struct sbitmap_queue *sbq; 1150 1151 list_del_init(&wait->entry); 1152 sbq = hctx->tags->bitmap_tags; 1153 atomic_dec(&sbq->ws_active); 1154 } 1155 spin_unlock(&hctx->dispatch_wait_lock); 1156 1157 blk_mq_run_hw_queue(hctx, true); 1158 return 1; 1159} 1160 1161/* 1162 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1163 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1164 * restart. For both cases, take care to check the condition again after 1165 * marking us as waiting. 1166 */ 1167static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1168 struct request *rq) 1169{ 1170 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags; 1171 struct wait_queue_head *wq; 1172 wait_queue_entry_t *wait; 1173 bool ret; 1174 1175 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 1176 blk_mq_sched_mark_restart_hctx(hctx); 1177 1178 /* 1179 * It's possible that a tag was freed in the window between the 1180 * allocation failure and adding the hardware queue to the wait 1181 * queue. 1182 * 1183 * Don't clear RESTART here, someone else could have set it. 1184 * At most this will cost an extra queue run. 1185 */ 1186 return blk_mq_get_driver_tag(rq); 1187 } 1188 1189 wait = &hctx->dispatch_wait; 1190 if (!list_empty_careful(&wait->entry)) 1191 return false; 1192 1193 wq = &bt_wait_ptr(sbq, hctx)->wait; 1194 1195 spin_lock_irq(&wq->lock); 1196 spin_lock(&hctx->dispatch_wait_lock); 1197 if (!list_empty(&wait->entry)) { 1198 spin_unlock(&hctx->dispatch_wait_lock); 1199 spin_unlock_irq(&wq->lock); 1200 return false; 1201 } 1202 1203 atomic_inc(&sbq->ws_active); 1204 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1205 __add_wait_queue(wq, wait); 1206 1207 /* 1208 * Add one explicit barrier since blk_mq_get_driver_tag() may 1209 * not imply barrier in case of failure. 1210 * 1211 * Order adding us to wait queue and allocating driver tag. 1212 * 1213 * The pair is the one implied in sbitmap_queue_wake_up() which 1214 * orders clearing sbitmap tag bits and waitqueue_active() in 1215 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless 1216 * 1217 * Otherwise, re-order of adding wait queue and getting driver tag 1218 * may cause __sbitmap_queue_wake_up() to wake up nothing because 1219 * the waitqueue_active() may not observe us in wait queue. 1220 */ 1221 smp_mb(); 1222 1223 /* 1224 * It's possible that a tag was freed in the window between the 1225 * allocation failure and adding the hardware queue to the wait 1226 * queue. 1227 */ 1228 ret = blk_mq_get_driver_tag(rq); 1229 if (!ret) { 1230 spin_unlock(&hctx->dispatch_wait_lock); 1231 spin_unlock_irq(&wq->lock); 1232 return false; 1233 } 1234 1235 /* 1236 * We got a tag, remove ourselves from the wait queue to ensure 1237 * someone else gets the wakeup. 1238 */ 1239 list_del_init(&wait->entry); 1240 atomic_dec(&sbq->ws_active); 1241 spin_unlock(&hctx->dispatch_wait_lock); 1242 spin_unlock_irq(&wq->lock); 1243 1244 return true; 1245} 1246 1247#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1248#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1249/* 1250 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1251 * - EWMA is one simple way to compute running average value 1252 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1253 * - take 4 as factor for avoiding to get too small(0) result, and this 1254 * factor doesn't matter because EWMA decreases exponentially 1255 */ 1256static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1257{ 1258 unsigned int ewma; 1259 1260 ewma = hctx->dispatch_busy; 1261 1262 if (!ewma && !busy) 1263 return; 1264 1265 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1266 if (busy) 1267 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1268 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1269 1270 hctx->dispatch_busy = ewma; 1271} 1272 1273#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1274 1275static void blk_mq_handle_dev_resource(struct request *rq, 1276 struct list_head *list) 1277{ 1278 struct request *next = 1279 list_first_entry_or_null(list, struct request, queuelist); 1280 1281 /* 1282 * If an I/O scheduler has been configured and we got a driver tag for 1283 * the next request already, free it. 1284 */ 1285 if (next) 1286 blk_mq_put_driver_tag(next); 1287 1288 list_add(&rq->queuelist, list); 1289 __blk_mq_requeue_request(rq); 1290} 1291 1292static void blk_mq_handle_zone_resource(struct request *rq, 1293 struct list_head *zone_list) 1294{ 1295 /* 1296 * If we end up here it is because we cannot dispatch a request to a 1297 * specific zone due to LLD level zone-write locking or other zone 1298 * related resource not being available. In this case, set the request 1299 * aside in zone_list for retrying it later. 1300 */ 1301 list_add(&rq->queuelist, zone_list); 1302 __blk_mq_requeue_request(rq); 1303} 1304 1305enum prep_dispatch { 1306 PREP_DISPATCH_OK, 1307 PREP_DISPATCH_NO_TAG, 1308 PREP_DISPATCH_NO_BUDGET, 1309}; 1310 1311static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1312 bool need_budget) 1313{ 1314 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1315 1316 if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) { 1317 blk_mq_put_driver_tag(rq); 1318 return PREP_DISPATCH_NO_BUDGET; 1319 } 1320 1321 if (!blk_mq_get_driver_tag(rq)) { 1322 /* 1323 * The initial allocation attempt failed, so we need to 1324 * rerun the hardware queue when a tag is freed. The 1325 * waitqueue takes care of that. If the queue is run 1326 * before we add this entry back on the dispatch list, 1327 * we'll re-run it below. 1328 */ 1329 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1330 /* 1331 * All budgets not got from this function will be put 1332 * together during handling partial dispatch 1333 */ 1334 if (need_budget) 1335 blk_mq_put_dispatch_budget(rq->q); 1336 return PREP_DISPATCH_NO_TAG; 1337 } 1338 } 1339 1340 return PREP_DISPATCH_OK; 1341} 1342 1343/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1344static void blk_mq_release_budgets(struct request_queue *q, 1345 unsigned int nr_budgets) 1346{ 1347 int i; 1348 1349 for (i = 0; i < nr_budgets; i++) 1350 blk_mq_put_dispatch_budget(q); 1351} 1352 1353/* 1354 * Returns true if we did some work AND can potentially do more. 1355 */ 1356bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1357 unsigned int nr_budgets) 1358{ 1359 enum prep_dispatch prep; 1360 struct request_queue *q = hctx->queue; 1361 struct request *rq, *nxt; 1362 int errors, queued; 1363 blk_status_t ret = BLK_STS_OK; 1364 LIST_HEAD(zone_list); 1365 bool needs_resource = false; 1366 1367 if (list_empty(list)) 1368 return false; 1369 1370 /* 1371 * Now process all the entries, sending them to the driver. 1372 */ 1373 errors = queued = 0; 1374 do { 1375 struct blk_mq_queue_data bd; 1376 1377 rq = list_first_entry(list, struct request, queuelist); 1378 1379 WARN_ON_ONCE(hctx != rq->mq_hctx); 1380 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 1381 if (prep != PREP_DISPATCH_OK) 1382 break; 1383 1384 list_del_init(&rq->queuelist); 1385 1386 bd.rq = rq; 1387 1388 /* 1389 * Flag last if we have no more requests, or if we have more 1390 * but can't assign a driver tag to it. 1391 */ 1392 if (list_empty(list)) 1393 bd.last = true; 1394 else { 1395 nxt = list_first_entry(list, struct request, queuelist); 1396 bd.last = !blk_mq_get_driver_tag(nxt); 1397 } 1398 1399 /* 1400 * once the request is queued to lld, no need to cover the 1401 * budget any more 1402 */ 1403 if (nr_budgets) 1404 nr_budgets--; 1405 ret = q->mq_ops->queue_rq(hctx, &bd); 1406 switch (ret) { 1407 case BLK_STS_OK: 1408 queued++; 1409 break; 1410 case BLK_STS_RESOURCE: 1411 needs_resource = true; 1412 fallthrough; 1413 case BLK_STS_DEV_RESOURCE: 1414 blk_mq_handle_dev_resource(rq, list); 1415 goto out; 1416 case BLK_STS_ZONE_RESOURCE: 1417 /* 1418 * Move the request to zone_list and keep going through 1419 * the dispatch list to find more requests the drive can 1420 * accept. 1421 */ 1422 blk_mq_handle_zone_resource(rq, &zone_list); 1423 needs_resource = true; 1424 break; 1425 default: 1426 errors++; 1427 blk_mq_end_request(rq, BLK_STS_IOERR); 1428 } 1429 } while (!list_empty(list)); 1430out: 1431 if (!list_empty(&zone_list)) 1432 list_splice_tail_init(&zone_list, list); 1433 1434 hctx->dispatched[queued_to_index(queued)]++; 1435 1436 /* If we didn't flush the entire list, we could have told the driver 1437 * there was more coming, but that turned out to be a lie. 1438 */ 1439 if ((!list_empty(list) || errors || needs_resource || 1440 ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued) 1441 q->mq_ops->commit_rqs(hctx); 1442 /* 1443 * Any items that need requeuing? Stuff them into hctx->dispatch, 1444 * that is where we will continue on next queue run. 1445 */ 1446 if (!list_empty(list)) { 1447 bool needs_restart; 1448 /* For non-shared tags, the RESTART check will suffice */ 1449 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 1450 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); 1451 1452 blk_mq_release_budgets(q, nr_budgets); 1453 1454 spin_lock(&hctx->lock); 1455 list_splice_tail_init(list, &hctx->dispatch); 1456 spin_unlock(&hctx->lock); 1457 1458 /* 1459 * Order adding requests to hctx->dispatch and checking 1460 * SCHED_RESTART flag. The pair of this smp_mb() is the one 1461 * in blk_mq_sched_restart(). Avoid restart code path to 1462 * miss the new added requests to hctx->dispatch, meantime 1463 * SCHED_RESTART is observed here. 1464 */ 1465 smp_mb(); 1466 1467 /* 1468 * If SCHED_RESTART was set by the caller of this function and 1469 * it is no longer set that means that it was cleared by another 1470 * thread and hence that a queue rerun is needed. 1471 * 1472 * If 'no_tag' is set, that means that we failed getting 1473 * a driver tag with an I/O scheduler attached. If our dispatch 1474 * waitqueue is no longer active, ensure that we run the queue 1475 * AFTER adding our entries back to the list. 1476 * 1477 * If no I/O scheduler has been configured it is possible that 1478 * the hardware queue got stopped and restarted before requests 1479 * were pushed back onto the dispatch list. Rerun the queue to 1480 * avoid starvation. Notes: 1481 * - blk_mq_run_hw_queue() checks whether or not a queue has 1482 * been stopped before rerunning a queue. 1483 * - Some but not all block drivers stop a queue before 1484 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1485 * and dm-rq. 1486 * 1487 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1488 * bit is set, run queue after a delay to avoid IO stalls 1489 * that could otherwise occur if the queue is idle. We'll do 1490 * similar if we couldn't get budget or couldn't lock a zone 1491 * and SCHED_RESTART is set. 1492 */ 1493 needs_restart = blk_mq_sched_needs_restart(hctx); 1494 if (prep == PREP_DISPATCH_NO_BUDGET) 1495 needs_resource = true; 1496 if (!needs_restart || 1497 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1498 blk_mq_run_hw_queue(hctx, true); 1499 else if (needs_restart && needs_resource) 1500 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1501 1502 blk_mq_update_dispatch_busy(hctx, true); 1503 return false; 1504 } else 1505 blk_mq_update_dispatch_busy(hctx, false); 1506 1507 return (queued + errors) != 0; 1508} 1509 1510/** 1511 * __blk_mq_run_hw_queue - Run a hardware queue. 1512 * @hctx: Pointer to the hardware queue to run. 1513 * 1514 * Send pending requests to the hardware. 1515 */ 1516static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1517{ 1518 int srcu_idx; 1519 1520 /* 1521 * We should be running this queue from one of the CPUs that 1522 * are mapped to it. 1523 * 1524 * There are at least two related races now between setting 1525 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1526 * __blk_mq_run_hw_queue(): 1527 * 1528 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1529 * but later it becomes online, then this warning is harmless 1530 * at all 1531 * 1532 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1533 * but later it becomes offline, then the warning can't be 1534 * triggered, and we depend on blk-mq timeout handler to 1535 * handle dispatched requests to this hctx 1536 */ 1537 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1538 cpu_online(hctx->next_cpu)) { 1539 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1540 raw_smp_processor_id(), 1541 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1542 dump_stack(); 1543 } 1544 1545 /* 1546 * We can't run the queue inline with ints disabled. Ensure that 1547 * we catch bad users of this early. 1548 */ 1549 WARN_ON_ONCE(in_interrupt()); 1550 1551 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1552 1553 hctx_lock(hctx, &srcu_idx); 1554 blk_mq_sched_dispatch_requests(hctx); 1555 hctx_unlock(hctx, srcu_idx); 1556} 1557 1558static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1559{ 1560 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1561 1562 if (cpu >= nr_cpu_ids) 1563 cpu = cpumask_first(hctx->cpumask); 1564 return cpu; 1565} 1566 1567/* 1568 * It'd be great if the workqueue API had a way to pass 1569 * in a mask and had some smarts for more clever placement. 1570 * For now we just round-robin here, switching for every 1571 * BLK_MQ_CPU_WORK_BATCH queued items. 1572 */ 1573static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1574{ 1575 bool tried = false; 1576 int next_cpu = hctx->next_cpu; 1577 1578 if (hctx->queue->nr_hw_queues == 1) 1579 return WORK_CPU_UNBOUND; 1580 1581 if (--hctx->next_cpu_batch <= 0) { 1582select_cpu: 1583 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1584 cpu_online_mask); 1585 if (next_cpu >= nr_cpu_ids) 1586 next_cpu = blk_mq_first_mapped_cpu(hctx); 1587 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1588 } 1589 1590 /* 1591 * Do unbound schedule if we can't find a online CPU for this hctx, 1592 * and it should only happen in the path of handling CPU DEAD. 1593 */ 1594 if (!cpu_online(next_cpu)) { 1595 if (!tried) { 1596 tried = true; 1597 goto select_cpu; 1598 } 1599 1600 /* 1601 * Make sure to re-select CPU next time once after CPUs 1602 * in hctx->cpumask become online again. 1603 */ 1604 hctx->next_cpu = next_cpu; 1605 hctx->next_cpu_batch = 1; 1606 return WORK_CPU_UNBOUND; 1607 } 1608 1609 hctx->next_cpu = next_cpu; 1610 return next_cpu; 1611} 1612 1613/** 1614 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 1615 * @hctx: Pointer to the hardware queue to run. 1616 * @async: If we want to run the queue asynchronously. 1617 * @msecs: Microseconds of delay to wait before running the queue. 1618 * 1619 * If !@async, try to run the queue now. Else, run the queue asynchronously and 1620 * with a delay of @msecs. 1621 */ 1622static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1623 unsigned long msecs) 1624{ 1625 if (unlikely(blk_mq_hctx_stopped(hctx))) 1626 return; 1627 1628 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1629 int cpu = get_cpu(); 1630 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1631 __blk_mq_run_hw_queue(hctx); 1632 put_cpu(); 1633 return; 1634 } 1635 1636 put_cpu(); 1637 } 1638 1639 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1640 msecs_to_jiffies(msecs)); 1641} 1642 1643/** 1644 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 1645 * @hctx: Pointer to the hardware queue to run. 1646 * @msecs: Microseconds of delay to wait before running the queue. 1647 * 1648 * Run a hardware queue asynchronously with a delay of @msecs. 1649 */ 1650void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1651{ 1652 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1653} 1654EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1655 1656/** 1657 * blk_mq_run_hw_queue - Start to run a hardware queue. 1658 * @hctx: Pointer to the hardware queue to run. 1659 * @async: If we want to run the queue asynchronously. 1660 * 1661 * Check if the request queue is not in a quiesced state and if there are 1662 * pending requests to be sent. If this is true, run the queue to send requests 1663 * to hardware. 1664 */ 1665void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1666{ 1667 int srcu_idx; 1668 bool need_run; 1669 1670 /* 1671 * When queue is quiesced, we may be switching io scheduler, or 1672 * updating nr_hw_queues, or other things, and we can't run queue 1673 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1674 * 1675 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1676 * quiesced. 1677 */ 1678 hctx_lock(hctx, &srcu_idx); 1679 need_run = !blk_queue_quiesced(hctx->queue) && 1680 blk_mq_hctx_has_pending(hctx); 1681 hctx_unlock(hctx, srcu_idx); 1682 1683 if (need_run) 1684 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1685} 1686EXPORT_SYMBOL(blk_mq_run_hw_queue); 1687 1688/** 1689 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 1690 * @q: Pointer to the request queue to run. 1691 * @async: If we want to run the queue asynchronously. 1692 */ 1693void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1694{ 1695 struct blk_mq_hw_ctx *hctx; 1696 int i; 1697 1698 queue_for_each_hw_ctx(q, hctx, i) { 1699 if (blk_mq_hctx_stopped(hctx)) 1700 continue; 1701 1702 blk_mq_run_hw_queue(hctx, async); 1703 } 1704} 1705EXPORT_SYMBOL(blk_mq_run_hw_queues); 1706 1707/** 1708 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 1709 * @q: Pointer to the request queue to run. 1710 * @msecs: Microseconds of delay to wait before running the queues. 1711 */ 1712void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 1713{ 1714 struct blk_mq_hw_ctx *hctx; 1715 int i; 1716 1717 queue_for_each_hw_ctx(q, hctx, i) { 1718 if (blk_mq_hctx_stopped(hctx)) 1719 continue; 1720 1721 blk_mq_delay_run_hw_queue(hctx, msecs); 1722 } 1723} 1724EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 1725 1726/** 1727 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1728 * @q: request queue. 1729 * 1730 * The caller is responsible for serializing this function against 1731 * blk_mq_{start,stop}_hw_queue(). 1732 */ 1733bool blk_mq_queue_stopped(struct request_queue *q) 1734{ 1735 struct blk_mq_hw_ctx *hctx; 1736 int i; 1737 1738 queue_for_each_hw_ctx(q, hctx, i) 1739 if (blk_mq_hctx_stopped(hctx)) 1740 return true; 1741 1742 return false; 1743} 1744EXPORT_SYMBOL(blk_mq_queue_stopped); 1745 1746/* 1747 * This function is often used for pausing .queue_rq() by driver when 1748 * there isn't enough resource or some conditions aren't satisfied, and 1749 * BLK_STS_RESOURCE is usually returned. 1750 * 1751 * We do not guarantee that dispatch can be drained or blocked 1752 * after blk_mq_stop_hw_queue() returns. Please use 1753 * blk_mq_quiesce_queue() for that requirement. 1754 */ 1755void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1756{ 1757 cancel_delayed_work(&hctx->run_work); 1758 1759 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1760} 1761EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1762 1763/* 1764 * This function is often used for pausing .queue_rq() by driver when 1765 * there isn't enough resource or some conditions aren't satisfied, and 1766 * BLK_STS_RESOURCE is usually returned. 1767 * 1768 * We do not guarantee that dispatch can be drained or blocked 1769 * after blk_mq_stop_hw_queues() returns. Please use 1770 * blk_mq_quiesce_queue() for that requirement. 1771 */ 1772void blk_mq_stop_hw_queues(struct request_queue *q) 1773{ 1774 struct blk_mq_hw_ctx *hctx; 1775 int i; 1776 1777 queue_for_each_hw_ctx(q, hctx, i) 1778 blk_mq_stop_hw_queue(hctx); 1779} 1780EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1781 1782void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1783{ 1784 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1785 1786 blk_mq_run_hw_queue(hctx, false); 1787} 1788EXPORT_SYMBOL(blk_mq_start_hw_queue); 1789 1790void blk_mq_start_hw_queues(struct request_queue *q) 1791{ 1792 struct blk_mq_hw_ctx *hctx; 1793 int i; 1794 1795 queue_for_each_hw_ctx(q, hctx, i) 1796 blk_mq_start_hw_queue(hctx); 1797} 1798EXPORT_SYMBOL(blk_mq_start_hw_queues); 1799 1800void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1801{ 1802 if (!blk_mq_hctx_stopped(hctx)) 1803 return; 1804 1805 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1806 blk_mq_run_hw_queue(hctx, async); 1807} 1808EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1809 1810void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1811{ 1812 struct blk_mq_hw_ctx *hctx; 1813 int i; 1814 1815 queue_for_each_hw_ctx(q, hctx, i) 1816 blk_mq_start_stopped_hw_queue(hctx, async); 1817} 1818EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1819 1820static void blk_mq_run_work_fn(struct work_struct *work) 1821{ 1822 struct blk_mq_hw_ctx *hctx; 1823 1824 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1825 1826 /* 1827 * If we are stopped, don't run the queue. 1828 */ 1829 if (blk_mq_hctx_stopped(hctx)) 1830 return; 1831 1832 __blk_mq_run_hw_queue(hctx); 1833} 1834 1835static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1836 struct request *rq, 1837 bool at_head) 1838{ 1839 struct blk_mq_ctx *ctx = rq->mq_ctx; 1840 enum hctx_type type = hctx->type; 1841 1842 lockdep_assert_held(&ctx->lock); 1843 1844 trace_block_rq_insert(rq); 1845 1846 if (at_head) 1847 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1848 else 1849 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1850} 1851 1852void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1853 bool at_head) 1854{ 1855 struct blk_mq_ctx *ctx = rq->mq_ctx; 1856 1857 lockdep_assert_held(&ctx->lock); 1858 1859 __blk_mq_insert_req_list(hctx, rq, at_head); 1860 blk_mq_hctx_mark_pending(hctx, ctx); 1861} 1862 1863/** 1864 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 1865 * @rq: Pointer to request to be inserted. 1866 * @at_head: true if the request should be inserted at the head of the list. 1867 * @run_queue: If we should run the hardware queue after inserting the request. 1868 * 1869 * Should only be used carefully, when the caller knows we want to 1870 * bypass a potential IO scheduler on the target device. 1871 */ 1872void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 1873 bool run_queue) 1874{ 1875 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1876 1877 spin_lock(&hctx->lock); 1878 if (at_head) 1879 list_add(&rq->queuelist, &hctx->dispatch); 1880 else 1881 list_add_tail(&rq->queuelist, &hctx->dispatch); 1882 spin_unlock(&hctx->lock); 1883 1884 if (run_queue) 1885 blk_mq_run_hw_queue(hctx, false); 1886} 1887 1888void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1889 struct list_head *list) 1890 1891{ 1892 struct request *rq; 1893 enum hctx_type type = hctx->type; 1894 1895 /* 1896 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1897 * offline now 1898 */ 1899 list_for_each_entry(rq, list, queuelist) { 1900 BUG_ON(rq->mq_ctx != ctx); 1901 trace_block_rq_insert(rq); 1902 } 1903 1904 spin_lock(&ctx->lock); 1905 list_splice_tail_init(list, &ctx->rq_lists[type]); 1906 blk_mq_hctx_mark_pending(hctx, ctx); 1907 spin_unlock(&ctx->lock); 1908} 1909 1910static int plug_rq_cmp(void *priv, const struct list_head *a, 1911 const struct list_head *b) 1912{ 1913 struct request *rqa = container_of(a, struct request, queuelist); 1914 struct request *rqb = container_of(b, struct request, queuelist); 1915 1916 if (rqa->mq_ctx != rqb->mq_ctx) 1917 return rqa->mq_ctx > rqb->mq_ctx; 1918 if (rqa->mq_hctx != rqb->mq_hctx) 1919 return rqa->mq_hctx > rqb->mq_hctx; 1920 1921 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1922} 1923 1924void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1925{ 1926 LIST_HEAD(list); 1927 1928 if (list_empty(&plug->mq_list)) 1929 return; 1930 list_splice_init(&plug->mq_list, &list); 1931 1932 if (plug->rq_count > 2 && plug->multiple_queues) 1933 list_sort(NULL, &list, plug_rq_cmp); 1934 1935 plug->rq_count = 0; 1936 1937 do { 1938 struct list_head rq_list; 1939 struct request *rq, *head_rq = list_entry_rq(list.next); 1940 struct list_head *pos = &head_rq->queuelist; /* skip first */ 1941 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx; 1942 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx; 1943 unsigned int depth = 1; 1944 1945 list_for_each_continue(pos, &list) { 1946 rq = list_entry_rq(pos); 1947 BUG_ON(!rq->q); 1948 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) 1949 break; 1950 depth++; 1951 } 1952 1953 list_cut_before(&rq_list, &list, pos); 1954 trace_block_unplug(head_rq->q, depth, !from_schedule); 1955 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1956 from_schedule); 1957 } while(!list_empty(&list)); 1958} 1959 1960static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 1961 unsigned int nr_segs) 1962{ 1963 int err; 1964 1965 if (bio->bi_opf & REQ_RAHEAD) 1966 rq->cmd_flags |= REQ_FAILFAST_MASK; 1967 1968 rq->__sector = bio->bi_iter.bi_sector; 1969 rq->write_hint = bio->bi_write_hint; 1970 blk_rq_bio_prep(rq, bio, nr_segs); 1971 1972 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 1973 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 1974 WARN_ON_ONCE(err); 1975 1976 blk_account_io_start(rq); 1977} 1978 1979static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1980 struct request *rq, 1981 blk_qc_t *cookie, bool last) 1982{ 1983 struct request_queue *q = rq->q; 1984 struct blk_mq_queue_data bd = { 1985 .rq = rq, 1986 .last = last, 1987 }; 1988 blk_qc_t new_cookie; 1989 blk_status_t ret; 1990 1991 new_cookie = request_to_qc_t(hctx, rq); 1992 1993 /* 1994 * For OK queue, we are done. For error, caller may kill it. 1995 * Any other error (busy), just add it to our list as we 1996 * previously would have done. 1997 */ 1998 ret = q->mq_ops->queue_rq(hctx, &bd); 1999 switch (ret) { 2000 case BLK_STS_OK: 2001 blk_mq_update_dispatch_busy(hctx, false); 2002 *cookie = new_cookie; 2003 break; 2004 case BLK_STS_RESOURCE: 2005 case BLK_STS_DEV_RESOURCE: 2006 blk_mq_update_dispatch_busy(hctx, true); 2007 __blk_mq_requeue_request(rq); 2008 break; 2009 default: 2010 blk_mq_update_dispatch_busy(hctx, false); 2011 *cookie = BLK_QC_T_NONE; 2012 break; 2013 } 2014 2015 return ret; 2016} 2017 2018static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2019 struct request *rq, 2020 blk_qc_t *cookie, 2021 bool bypass_insert, bool last) 2022{ 2023 struct request_queue *q = rq->q; 2024 bool run_queue = true; 2025 2026 /* 2027 * RCU or SRCU read lock is needed before checking quiesced flag. 2028 * 2029 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2030 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2031 * and avoid driver to try to dispatch again. 2032 */ 2033 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2034 run_queue = false; 2035 bypass_insert = false; 2036 goto insert; 2037 } 2038 2039 if (q->elevator && !bypass_insert) 2040 goto insert; 2041 2042 if (!blk_mq_get_dispatch_budget(q)) 2043 goto insert; 2044 2045 if (!blk_mq_get_driver_tag(rq)) { 2046 blk_mq_put_dispatch_budget(q); 2047 goto insert; 2048 } 2049 2050 return __blk_mq_issue_directly(hctx, rq, cookie, last); 2051insert: 2052 if (bypass_insert) 2053 return BLK_STS_RESOURCE; 2054 2055 blk_mq_sched_insert_request(rq, false, run_queue, false); 2056 2057 return BLK_STS_OK; 2058} 2059 2060/** 2061 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2062 * @hctx: Pointer of the associated hardware queue. 2063 * @rq: Pointer to request to be sent. 2064 * @cookie: Request queue cookie. 2065 * 2066 * If the device has enough resources to accept a new request now, send the 2067 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2068 * we can try send it another time in the future. Requests inserted at this 2069 * queue have higher priority. 2070 */ 2071static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2072 struct request *rq, blk_qc_t *cookie) 2073{ 2074 blk_status_t ret; 2075 int srcu_idx; 2076 2077 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 2078 2079 hctx_lock(hctx, &srcu_idx); 2080 2081 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 2082 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2083 blk_mq_request_bypass_insert(rq, false, true); 2084 else if (ret != BLK_STS_OK) 2085 blk_mq_end_request(rq, ret); 2086 2087 hctx_unlock(hctx, srcu_idx); 2088} 2089 2090blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2091{ 2092 blk_status_t ret; 2093 int srcu_idx; 2094 blk_qc_t unused_cookie; 2095 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2096 2097 hctx_lock(hctx, &srcu_idx); 2098 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 2099 hctx_unlock(hctx, srcu_idx); 2100 2101 return ret; 2102} 2103 2104void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2105 struct list_head *list) 2106{ 2107 int queued = 0; 2108 int errors = 0; 2109 2110 while (!list_empty(list)) { 2111 blk_status_t ret; 2112 struct request *rq = list_first_entry(list, struct request, 2113 queuelist); 2114 2115 list_del_init(&rq->queuelist); 2116 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2117 if (ret != BLK_STS_OK) { 2118 errors++; 2119 if (ret == BLK_STS_RESOURCE || 2120 ret == BLK_STS_DEV_RESOURCE) { 2121 blk_mq_request_bypass_insert(rq, false, 2122 list_empty(list)); 2123 break; 2124 } 2125 blk_mq_end_request(rq, ret); 2126 } else 2127 queued++; 2128 } 2129 2130 /* 2131 * If we didn't flush the entire list, we could have told 2132 * the driver there was more coming, but that turned out to 2133 * be a lie. 2134 */ 2135 if ((!list_empty(list) || errors) && 2136 hctx->queue->mq_ops->commit_rqs && queued) 2137 hctx->queue->mq_ops->commit_rqs(hctx); 2138} 2139 2140static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 2141{ 2142 list_add_tail(&rq->queuelist, &plug->mq_list); 2143 plug->rq_count++; 2144 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 2145 struct request *tmp; 2146 2147 tmp = list_first_entry(&plug->mq_list, struct request, 2148 queuelist); 2149 if (tmp->q != rq->q) 2150 plug->multiple_queues = true; 2151 } 2152} 2153 2154/* 2155 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 2156 * queues. This is important for md arrays to benefit from merging 2157 * requests. 2158 */ 2159static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 2160{ 2161 if (plug->multiple_queues) 2162 return BLK_MAX_REQUEST_COUNT * 2; 2163 return BLK_MAX_REQUEST_COUNT; 2164} 2165 2166/** 2167 * blk_mq_submit_bio - Create and send a request to block device. 2168 * @bio: Bio pointer. 2169 * 2170 * Builds up a request structure from @q and @bio and send to the device. The 2171 * request may not be queued directly to hardware if: 2172 * * This request can be merged with another one 2173 * * We want to place request at plug queue for possible future merging 2174 * * There is an IO scheduler active at this queue 2175 * 2176 * It will not queue the request if there is an error with the bio, or at the 2177 * request creation. 2178 * 2179 * Returns: Request queue cookie. 2180 */ 2181blk_qc_t blk_mq_submit_bio(struct bio *bio) 2182{ 2183 struct request_queue *q = bio->bi_disk->queue; 2184 const int is_sync = op_is_sync(bio->bi_opf); 2185 const int is_flush_fua = op_is_flush(bio->bi_opf); 2186 struct blk_mq_alloc_data data = { 2187 .q = q, 2188 }; 2189 struct request *rq; 2190 struct blk_plug *plug; 2191 struct request *same_queue_rq = NULL; 2192 unsigned int nr_segs; 2193 blk_qc_t cookie; 2194 blk_status_t ret; 2195 2196 blk_queue_bounce(q, &bio); 2197 __blk_queue_split(&bio, &nr_segs); 2198 2199 if (!bio_integrity_prep(bio)) 2200 goto queue_exit; 2201 2202 if (!is_flush_fua && !blk_queue_nomerges(q) && 2203 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) 2204 goto queue_exit; 2205 2206 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2207 goto queue_exit; 2208 2209 rq_qos_throttle(q, bio); 2210 2211 data.cmd_flags = bio->bi_opf; 2212 rq = __blk_mq_alloc_request(&data); 2213 if (unlikely(!rq)) { 2214 rq_qos_cleanup(q, bio); 2215 if (bio->bi_opf & REQ_NOWAIT) 2216 bio_wouldblock_error(bio); 2217 goto queue_exit; 2218 } 2219 2220 trace_block_getrq(q, bio, bio->bi_opf); 2221 2222 rq_qos_track(q, rq, bio); 2223 2224 cookie = request_to_qc_t(data.hctx, rq); 2225 2226 blk_mq_bio_to_request(rq, bio, nr_segs); 2227 2228 ret = blk_crypto_rq_get_keyslot(rq); 2229 if (ret != BLK_STS_OK) { 2230 bio->bi_status = ret; 2231 bio_endio(bio); 2232 blk_mq_free_request(rq); 2233 return BLK_QC_T_NONE; 2234 } 2235 2236 plug = blk_mq_plug(q, bio); 2237 if (unlikely(is_flush_fua)) { 2238 /* Bypass scheduler for flush requests */ 2239 blk_insert_flush(rq); 2240 blk_mq_run_hw_queue(data.hctx, true); 2241 } else if (plug && (q->nr_hw_queues == 1 || 2242 blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) || 2243 q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) { 2244 /* 2245 * Use plugging if we have a ->commit_rqs() hook as well, as 2246 * we know the driver uses bd->last in a smart fashion. 2247 * 2248 * Use normal plugging if this disk is slow HDD, as sequential 2249 * IO may benefit a lot from plug merging. 2250 */ 2251 unsigned int request_count = plug->rq_count; 2252 struct request *last = NULL; 2253 2254 if (!request_count) 2255 trace_block_plug(q); 2256 else 2257 last = list_entry_rq(plug->mq_list.prev); 2258 2259 if (request_count >= blk_plug_max_rq_count(plug) || (last && 2260 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 2261 blk_flush_plug_list(plug, false); 2262 trace_block_plug(q); 2263 } 2264 2265 blk_add_rq_to_plug(plug, rq); 2266 } else if (q->elevator) { 2267 /* Insert the request at the IO scheduler queue */ 2268 blk_mq_sched_insert_request(rq, false, true, true); 2269 } else if (plug && !blk_queue_nomerges(q)) { 2270 /* 2271 * We do limited plugging. If the bio can be merged, do that. 2272 * Otherwise the existing request in the plug list will be 2273 * issued. So the plug list will have one request at most 2274 * The plug list might get flushed before this. If that happens, 2275 * the plug list is empty, and same_queue_rq is invalid. 2276 */ 2277 if (list_empty(&plug->mq_list)) 2278 same_queue_rq = NULL; 2279 if (same_queue_rq) { 2280 list_del_init(&same_queue_rq->queuelist); 2281 plug->rq_count--; 2282 } 2283 blk_add_rq_to_plug(plug, rq); 2284 trace_block_plug(q); 2285 2286 if (same_queue_rq) { 2287 data.hctx = same_queue_rq->mq_hctx; 2288 trace_block_unplug(q, 1, true); 2289 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2290 &cookie); 2291 } 2292 } else if ((q->nr_hw_queues > 1 && is_sync) || 2293 !data.hctx->dispatch_busy) { 2294 /* 2295 * There is no scheduler and we can try to send directly 2296 * to the hardware. 2297 */ 2298 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2299 } else { 2300 /* Default case. */ 2301 blk_mq_sched_insert_request(rq, false, true, true); 2302 } 2303 2304 return cookie; 2305queue_exit: 2306 blk_queue_exit(q); 2307 return BLK_QC_T_NONE; 2308} 2309 2310static size_t order_to_size(unsigned int order) 2311{ 2312 return (size_t)PAGE_SIZE << order; 2313} 2314 2315/* called before freeing request pool in @tags */ 2316static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set, 2317 struct blk_mq_tags *tags, unsigned int hctx_idx) 2318{ 2319 struct blk_mq_tags *drv_tags = set->tags[hctx_idx]; 2320 struct page *page; 2321 unsigned long flags; 2322 2323 list_for_each_entry(page, &tags->page_list, lru) { 2324 unsigned long start = (unsigned long)page_address(page); 2325 unsigned long end = start + order_to_size(page->private); 2326 int i; 2327 2328 for (i = 0; i < set->queue_depth; i++) { 2329 struct request *rq = drv_tags->rqs[i]; 2330 unsigned long rq_addr = (unsigned long)rq; 2331 2332 if (rq_addr >= start && rq_addr < end) { 2333 WARN_ON_ONCE(refcount_read(&rq->ref) != 0); 2334 cmpxchg(&drv_tags->rqs[i], rq, NULL); 2335 } 2336 } 2337 } 2338 2339 /* 2340 * Wait until all pending iteration is done. 2341 * 2342 * Request reference is cleared and it is guaranteed to be observed 2343 * after the ->lock is released. 2344 */ 2345 spin_lock_irqsave(&drv_tags->lock, flags); 2346 spin_unlock_irqrestore(&drv_tags->lock, flags); 2347} 2348 2349void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2350 unsigned int hctx_idx) 2351{ 2352 struct page *page; 2353 2354 if (tags->rqs && set->ops->exit_request) { 2355 int i; 2356 2357 for (i = 0; i < tags->nr_tags; i++) { 2358 struct request *rq = tags->static_rqs[i]; 2359 2360 if (!rq) 2361 continue; 2362 set->ops->exit_request(set, rq, hctx_idx); 2363 tags->static_rqs[i] = NULL; 2364 } 2365 } 2366 2367 blk_mq_clear_rq_mapping(set, tags, hctx_idx); 2368 2369 while (!list_empty(&tags->page_list)) { 2370 page = list_first_entry(&tags->page_list, struct page, lru); 2371 list_del_init(&page->lru); 2372 /* 2373 * Remove kmemleak object previously allocated in 2374 * blk_mq_alloc_rqs(). 2375 */ 2376 kmemleak_free(page_address(page)); 2377 __free_pages(page, page->private); 2378 } 2379} 2380 2381void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags) 2382{ 2383 kfree(tags->rqs); 2384 tags->rqs = NULL; 2385 kfree(tags->static_rqs); 2386 tags->static_rqs = NULL; 2387 2388 blk_mq_free_tags(tags, flags); 2389} 2390 2391struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2392 unsigned int hctx_idx, 2393 unsigned int nr_tags, 2394 unsigned int reserved_tags, 2395 unsigned int flags) 2396{ 2397 struct blk_mq_tags *tags; 2398 int node; 2399 2400 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2401 if (node == NUMA_NO_NODE) 2402 node = set->numa_node; 2403 2404 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags); 2405 if (!tags) 2406 return NULL; 2407 2408 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2409 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2410 node); 2411 if (!tags->rqs) { 2412 blk_mq_free_tags(tags, flags); 2413 return NULL; 2414 } 2415 2416 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2417 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2418 node); 2419 if (!tags->static_rqs) { 2420 kfree(tags->rqs); 2421 blk_mq_free_tags(tags, flags); 2422 return NULL; 2423 } 2424 2425 return tags; 2426} 2427 2428static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2429 unsigned int hctx_idx, int node) 2430{ 2431 int ret; 2432 2433 if (set->ops->init_request) { 2434 ret = set->ops->init_request(set, rq, hctx_idx, node); 2435 if (ret) 2436 return ret; 2437 } 2438 2439 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2440 return 0; 2441} 2442 2443int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2444 unsigned int hctx_idx, unsigned int depth) 2445{ 2446 unsigned int i, j, entries_per_page, max_order = 4; 2447 size_t rq_size, left; 2448 int node; 2449 2450 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2451 if (node == NUMA_NO_NODE) 2452 node = set->numa_node; 2453 2454 INIT_LIST_HEAD(&tags->page_list); 2455 2456 /* 2457 * rq_size is the size of the request plus driver payload, rounded 2458 * to the cacheline size 2459 */ 2460 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2461 cache_line_size()); 2462 left = rq_size * depth; 2463 2464 for (i = 0; i < depth; ) { 2465 int this_order = max_order; 2466 struct page *page; 2467 int to_do; 2468 void *p; 2469 2470 while (this_order && left < order_to_size(this_order - 1)) 2471 this_order--; 2472 2473 do { 2474 page = alloc_pages_node(node, 2475 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2476 this_order); 2477 if (page) 2478 break; 2479 if (!this_order--) 2480 break; 2481 if (order_to_size(this_order) < rq_size) 2482 break; 2483 } while (1); 2484 2485 if (!page) 2486 goto fail; 2487 2488 page->private = this_order; 2489 list_add_tail(&page->lru, &tags->page_list); 2490 2491 p = page_address(page); 2492 /* 2493 * Allow kmemleak to scan these pages as they contain pointers 2494 * to additional allocations like via ops->init_request(). 2495 */ 2496 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2497 entries_per_page = order_to_size(this_order) / rq_size; 2498 to_do = min(entries_per_page, depth - i); 2499 left -= to_do * rq_size; 2500 for (j = 0; j < to_do; j++) { 2501 struct request *rq = p; 2502 2503 tags->static_rqs[i] = rq; 2504 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2505 tags->static_rqs[i] = NULL; 2506 goto fail; 2507 } 2508 2509 p += rq_size; 2510 i++; 2511 } 2512 } 2513 return 0; 2514 2515fail: 2516 blk_mq_free_rqs(set, tags, hctx_idx); 2517 return -ENOMEM; 2518} 2519 2520struct rq_iter_data { 2521 struct blk_mq_hw_ctx *hctx; 2522 bool has_rq; 2523}; 2524 2525static bool blk_mq_has_request(struct request *rq, void *data, bool reserved) 2526{ 2527 struct rq_iter_data *iter_data = data; 2528 2529 if (rq->mq_hctx != iter_data->hctx) 2530 return true; 2531 iter_data->has_rq = true; 2532 return false; 2533} 2534 2535static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 2536{ 2537 struct blk_mq_tags *tags = hctx->sched_tags ? 2538 hctx->sched_tags : hctx->tags; 2539 struct rq_iter_data data = { 2540 .hctx = hctx, 2541 }; 2542 2543 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 2544 return data.has_rq; 2545} 2546 2547static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 2548 struct blk_mq_hw_ctx *hctx) 2549{ 2550 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu) 2551 return false; 2552 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 2553 return false; 2554 return true; 2555} 2556 2557static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 2558{ 2559 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2560 struct blk_mq_hw_ctx, cpuhp_online); 2561 2562 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 2563 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 2564 return 0; 2565 2566 /* 2567 * Prevent new request from being allocated on the current hctx. 2568 * 2569 * The smp_mb__after_atomic() Pairs with the implied barrier in 2570 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 2571 * seen once we return from the tag allocator. 2572 */ 2573 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2574 smp_mb__after_atomic(); 2575 2576 /* 2577 * Try to grab a reference to the queue and wait for any outstanding 2578 * requests. If we could not grab a reference the queue has been 2579 * frozen and there are no requests. 2580 */ 2581 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 2582 while (blk_mq_hctx_has_requests(hctx)) 2583 msleep(5); 2584 percpu_ref_put(&hctx->queue->q_usage_counter); 2585 } 2586 2587 return 0; 2588} 2589 2590static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 2591{ 2592 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2593 struct blk_mq_hw_ctx, cpuhp_online); 2594 2595 if (cpumask_test_cpu(cpu, hctx->cpumask)) 2596 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2597 return 0; 2598} 2599 2600/* 2601 * 'cpu' is going away. splice any existing rq_list entries from this 2602 * software queue to the hw queue dispatch list, and ensure that it 2603 * gets run. 2604 */ 2605static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2606{ 2607 struct blk_mq_hw_ctx *hctx; 2608 struct blk_mq_ctx *ctx; 2609 LIST_HEAD(tmp); 2610 enum hctx_type type; 2611 2612 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2613 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 2614 return 0; 2615 2616 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2617 type = hctx->type; 2618 2619 spin_lock(&ctx->lock); 2620 if (!list_empty(&ctx->rq_lists[type])) { 2621 list_splice_init(&ctx->rq_lists[type], &tmp); 2622 blk_mq_hctx_clear_pending(hctx, ctx); 2623 } 2624 spin_unlock(&ctx->lock); 2625 2626 if (list_empty(&tmp)) 2627 return 0; 2628 2629 spin_lock(&hctx->lock); 2630 list_splice_tail_init(&tmp, &hctx->dispatch); 2631 spin_unlock(&hctx->lock); 2632 2633 blk_mq_run_hw_queue(hctx, true); 2634 return 0; 2635} 2636 2637static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2638{ 2639 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2640 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2641 &hctx->cpuhp_online); 2642 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2643 &hctx->cpuhp_dead); 2644} 2645 2646/* 2647 * Before freeing hw queue, clearing the flush request reference in 2648 * tags->rqs[] for avoiding potential UAF. 2649 */ 2650static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 2651 unsigned int queue_depth, struct request *flush_rq) 2652{ 2653 int i; 2654 unsigned long flags; 2655 2656 /* The hw queue may not be mapped yet */ 2657 if (!tags) 2658 return; 2659 2660 WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0); 2661 2662 for (i = 0; i < queue_depth; i++) 2663 cmpxchg(&tags->rqs[i], flush_rq, NULL); 2664 2665 /* 2666 * Wait until all pending iteration is done. 2667 * 2668 * Request reference is cleared and it is guaranteed to be observed 2669 * after the ->lock is released. 2670 */ 2671 spin_lock_irqsave(&tags->lock, flags); 2672 spin_unlock_irqrestore(&tags->lock, flags); 2673} 2674 2675/* hctx->ctxs will be freed in queue's release handler */ 2676static void blk_mq_exit_hctx(struct request_queue *q, 2677 struct blk_mq_tag_set *set, 2678 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2679{ 2680 struct request *flush_rq = hctx->fq->flush_rq; 2681 2682 if (blk_mq_hw_queue_mapped(hctx)) 2683 blk_mq_tag_idle(hctx); 2684 2685 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 2686 set->queue_depth, flush_rq); 2687 if (set->ops->exit_request) 2688 set->ops->exit_request(set, flush_rq, hctx_idx); 2689 2690 if (set->ops->exit_hctx) 2691 set->ops->exit_hctx(hctx, hctx_idx); 2692 2693 blk_mq_remove_cpuhp(hctx); 2694 2695 spin_lock(&q->unused_hctx_lock); 2696 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2697 spin_unlock(&q->unused_hctx_lock); 2698} 2699 2700static void blk_mq_exit_hw_queues(struct request_queue *q, 2701 struct blk_mq_tag_set *set, int nr_queue) 2702{ 2703 struct blk_mq_hw_ctx *hctx; 2704 unsigned int i; 2705 2706 queue_for_each_hw_ctx(q, hctx, i) { 2707 if (i == nr_queue) 2708 break; 2709 blk_mq_debugfs_unregister_hctx(hctx); 2710 blk_mq_exit_hctx(q, set, hctx, i); 2711 } 2712} 2713 2714static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2715{ 2716 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2717 2718 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2719 __alignof__(struct blk_mq_hw_ctx)) != 2720 sizeof(struct blk_mq_hw_ctx)); 2721 2722 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2723 hw_ctx_size += sizeof(struct srcu_struct); 2724 2725 return hw_ctx_size; 2726} 2727 2728static int blk_mq_init_hctx(struct request_queue *q, 2729 struct blk_mq_tag_set *set, 2730 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2731{ 2732 hctx->queue_num = hctx_idx; 2733 2734 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2735 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2736 &hctx->cpuhp_online); 2737 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2738 2739 hctx->tags = set->tags[hctx_idx]; 2740 2741 if (set->ops->init_hctx && 2742 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2743 goto unregister_cpu_notifier; 2744 2745 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2746 hctx->numa_node)) 2747 goto exit_hctx; 2748 return 0; 2749 2750 exit_hctx: 2751 if (set->ops->exit_hctx) 2752 set->ops->exit_hctx(hctx, hctx_idx); 2753 unregister_cpu_notifier: 2754 blk_mq_remove_cpuhp(hctx); 2755 return -1; 2756} 2757 2758static struct blk_mq_hw_ctx * 2759blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2760 int node) 2761{ 2762 struct blk_mq_hw_ctx *hctx; 2763 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2764 2765 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2766 if (!hctx) 2767 goto fail_alloc_hctx; 2768 2769 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2770 goto free_hctx; 2771 2772 atomic_set(&hctx->nr_active, 0); 2773 atomic_set(&hctx->elevator_queued, 0); 2774 if (node == NUMA_NO_NODE) 2775 node = set->numa_node; 2776 hctx->numa_node = node; 2777 2778 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2779 spin_lock_init(&hctx->lock); 2780 INIT_LIST_HEAD(&hctx->dispatch); 2781 hctx->queue = q; 2782 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 2783 2784 INIT_LIST_HEAD(&hctx->hctx_list); 2785 2786 /* 2787 * Allocate space for all possible cpus to avoid allocation at 2788 * runtime 2789 */ 2790 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2791 gfp, node); 2792 if (!hctx->ctxs) 2793 goto free_cpumask; 2794 2795 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2796 gfp, node)) 2797 goto free_ctxs; 2798 hctx->nr_ctx = 0; 2799 2800 spin_lock_init(&hctx->dispatch_wait_lock); 2801 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2802 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2803 2804 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 2805 if (!hctx->fq) 2806 goto free_bitmap; 2807 2808 if (hctx->flags & BLK_MQ_F_BLOCKING) 2809 init_srcu_struct(hctx->srcu); 2810 blk_mq_hctx_kobj_init(hctx); 2811 2812 return hctx; 2813 2814 free_bitmap: 2815 sbitmap_free(&hctx->ctx_map); 2816 free_ctxs: 2817 kfree(hctx->ctxs); 2818 free_cpumask: 2819 free_cpumask_var(hctx->cpumask); 2820 free_hctx: 2821 kfree(hctx); 2822 fail_alloc_hctx: 2823 return NULL; 2824} 2825 2826static void blk_mq_init_cpu_queues(struct request_queue *q, 2827 unsigned int nr_hw_queues) 2828{ 2829 struct blk_mq_tag_set *set = q->tag_set; 2830 unsigned int i, j; 2831 2832 for_each_possible_cpu(i) { 2833 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2834 struct blk_mq_hw_ctx *hctx; 2835 int k; 2836 2837 __ctx->cpu = i; 2838 spin_lock_init(&__ctx->lock); 2839 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2840 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2841 2842 __ctx->queue = q; 2843 2844 /* 2845 * Set local node, IFF we have more than one hw queue. If 2846 * not, we remain on the home node of the device 2847 */ 2848 for (j = 0; j < set->nr_maps; j++) { 2849 hctx = blk_mq_map_queue_type(q, j, i); 2850 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2851 hctx->numa_node = cpu_to_node(i); 2852 } 2853 } 2854} 2855 2856static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set, 2857 int hctx_idx) 2858{ 2859 unsigned int flags = set->flags; 2860 int ret = 0; 2861 2862 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2863 set->queue_depth, set->reserved_tags, flags); 2864 if (!set->tags[hctx_idx]) 2865 return false; 2866 2867 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2868 set->queue_depth); 2869 if (!ret) 2870 return true; 2871 2872 blk_mq_free_rq_map(set->tags[hctx_idx], flags); 2873 set->tags[hctx_idx] = NULL; 2874 return false; 2875} 2876 2877static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2878 unsigned int hctx_idx) 2879{ 2880 unsigned int flags = set->flags; 2881 2882 if (set->tags && set->tags[hctx_idx]) { 2883 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2884 blk_mq_free_rq_map(set->tags[hctx_idx], flags); 2885 set->tags[hctx_idx] = NULL; 2886 } 2887} 2888 2889static void blk_mq_map_swqueue(struct request_queue *q) 2890{ 2891 unsigned int i, j, hctx_idx; 2892 struct blk_mq_hw_ctx *hctx; 2893 struct blk_mq_ctx *ctx; 2894 struct blk_mq_tag_set *set = q->tag_set; 2895 2896 queue_for_each_hw_ctx(q, hctx, i) { 2897 cpumask_clear(hctx->cpumask); 2898 hctx->nr_ctx = 0; 2899 hctx->dispatch_from = NULL; 2900 } 2901 2902 /* 2903 * Map software to hardware queues. 2904 * 2905 * If the cpu isn't present, the cpu is mapped to first hctx. 2906 */ 2907 for_each_possible_cpu(i) { 2908 2909 ctx = per_cpu_ptr(q->queue_ctx, i); 2910 for (j = 0; j < set->nr_maps; j++) { 2911 if (!set->map[j].nr_queues) { 2912 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2913 HCTX_TYPE_DEFAULT, i); 2914 continue; 2915 } 2916 hctx_idx = set->map[j].mq_map[i]; 2917 /* unmapped hw queue can be remapped after CPU topo changed */ 2918 if (!set->tags[hctx_idx] && 2919 !__blk_mq_alloc_map_and_request(set, hctx_idx)) { 2920 /* 2921 * If tags initialization fail for some hctx, 2922 * that hctx won't be brought online. In this 2923 * case, remap the current ctx to hctx[0] which 2924 * is guaranteed to always have tags allocated 2925 */ 2926 set->map[j].mq_map[i] = 0; 2927 } 2928 2929 hctx = blk_mq_map_queue_type(q, j, i); 2930 ctx->hctxs[j] = hctx; 2931 /* 2932 * If the CPU is already set in the mask, then we've 2933 * mapped this one already. This can happen if 2934 * devices share queues across queue maps. 2935 */ 2936 if (cpumask_test_cpu(i, hctx->cpumask)) 2937 continue; 2938 2939 cpumask_set_cpu(i, hctx->cpumask); 2940 hctx->type = j; 2941 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2942 hctx->ctxs[hctx->nr_ctx++] = ctx; 2943 2944 /* 2945 * If the nr_ctx type overflows, we have exceeded the 2946 * amount of sw queues we can support. 2947 */ 2948 BUG_ON(!hctx->nr_ctx); 2949 } 2950 2951 for (; j < HCTX_MAX_TYPES; j++) 2952 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2953 HCTX_TYPE_DEFAULT, i); 2954 } 2955 2956 queue_for_each_hw_ctx(q, hctx, i) { 2957 /* 2958 * If no software queues are mapped to this hardware queue, 2959 * disable it and free the request entries. 2960 */ 2961 if (!hctx->nr_ctx) { 2962 /* Never unmap queue 0. We need it as a 2963 * fallback in case of a new remap fails 2964 * allocation 2965 */ 2966 if (i && set->tags[i]) 2967 blk_mq_free_map_and_requests(set, i); 2968 2969 hctx->tags = NULL; 2970 continue; 2971 } 2972 2973 hctx->tags = set->tags[i]; 2974 WARN_ON(!hctx->tags); 2975 2976 /* 2977 * Set the map size to the number of mapped software queues. 2978 * This is more accurate and more efficient than looping 2979 * over all possibly mapped software queues. 2980 */ 2981 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2982 2983 /* 2984 * Initialize batch roundrobin counts 2985 */ 2986 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2987 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2988 } 2989} 2990 2991/* 2992 * Caller needs to ensure that we're either frozen/quiesced, or that 2993 * the queue isn't live yet. 2994 */ 2995static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2996{ 2997 struct blk_mq_hw_ctx *hctx; 2998 int i; 2999 3000 queue_for_each_hw_ctx(q, hctx, i) { 3001 if (shared) { 3002 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3003 } else { 3004 blk_mq_tag_idle(hctx); 3005 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3006 } 3007 } 3008} 3009 3010static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3011 bool shared) 3012{ 3013 struct request_queue *q; 3014 3015 lockdep_assert_held(&set->tag_list_lock); 3016 3017 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3018 blk_mq_freeze_queue(q); 3019 queue_set_hctx_shared(q, shared); 3020 blk_mq_unfreeze_queue(q); 3021 } 3022} 3023 3024static void blk_mq_del_queue_tag_set(struct request_queue *q) 3025{ 3026 struct blk_mq_tag_set *set = q->tag_set; 3027 3028 mutex_lock(&set->tag_list_lock); 3029 list_del(&q->tag_set_list); 3030 if (list_is_singular(&set->tag_list)) { 3031 /* just transitioned to unshared */ 3032 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3033 /* update existing queue */ 3034 blk_mq_update_tag_set_shared(set, false); 3035 } 3036 mutex_unlock(&set->tag_list_lock); 3037 INIT_LIST_HEAD(&q->tag_set_list); 3038} 3039 3040static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3041 struct request_queue *q) 3042{ 3043 mutex_lock(&set->tag_list_lock); 3044 3045 /* 3046 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3047 */ 3048 if (!list_empty(&set->tag_list) && 3049 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3050 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3051 /* update existing queue */ 3052 blk_mq_update_tag_set_shared(set, true); 3053 } 3054 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3055 queue_set_hctx_shared(q, true); 3056 list_add_tail(&q->tag_set_list, &set->tag_list); 3057 3058 mutex_unlock(&set->tag_list_lock); 3059} 3060 3061/* All allocations will be freed in release handler of q->mq_kobj */ 3062static int blk_mq_alloc_ctxs(struct request_queue *q) 3063{ 3064 struct blk_mq_ctxs *ctxs; 3065 int cpu; 3066 3067 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3068 if (!ctxs) 3069 return -ENOMEM; 3070 3071 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3072 if (!ctxs->queue_ctx) 3073 goto fail; 3074 3075 for_each_possible_cpu(cpu) { 3076 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3077 ctx->ctxs = ctxs; 3078 } 3079 3080 q->mq_kobj = &ctxs->kobj; 3081 q->queue_ctx = ctxs->queue_ctx; 3082 3083 return 0; 3084 fail: 3085 kfree(ctxs); 3086 return -ENOMEM; 3087} 3088 3089/* 3090 * It is the actual release handler for mq, but we do it from 3091 * request queue's release handler for avoiding use-after-free 3092 * and headache because q->mq_kobj shouldn't have been introduced, 3093 * but we can't group ctx/kctx kobj without it. 3094 */ 3095void blk_mq_release(struct request_queue *q) 3096{ 3097 struct blk_mq_hw_ctx *hctx, *next; 3098 int i; 3099 3100 queue_for_each_hw_ctx(q, hctx, i) 3101 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 3102 3103 /* all hctx are in .unused_hctx_list now */ 3104 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 3105 list_del_init(&hctx->hctx_list); 3106 kobject_put(&hctx->kobj); 3107 } 3108 3109 kfree(q->queue_hw_ctx); 3110 3111 /* 3112 * release .mq_kobj and sw queue's kobject now because 3113 * both share lifetime with request queue. 3114 */ 3115 blk_mq_sysfs_deinit(q); 3116} 3117 3118struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 3119 void *queuedata) 3120{ 3121 struct request_queue *uninit_q, *q; 3122 3123 uninit_q = blk_alloc_queue(set->numa_node); 3124 if (!uninit_q) 3125 return ERR_PTR(-ENOMEM); 3126 uninit_q->queuedata = queuedata; 3127 3128 /* 3129 * Initialize the queue without an elevator. device_add_disk() will do 3130 * the initialization. 3131 */ 3132 q = blk_mq_init_allocated_queue(set, uninit_q, false); 3133 if (IS_ERR(q)) 3134 blk_cleanup_queue(uninit_q); 3135 3136 return q; 3137} 3138EXPORT_SYMBOL_GPL(blk_mq_init_queue_data); 3139 3140struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 3141{ 3142 return blk_mq_init_queue_data(set, NULL); 3143} 3144EXPORT_SYMBOL(blk_mq_init_queue); 3145 3146/* 3147 * Helper for setting up a queue with mq ops, given queue depth, and 3148 * the passed in mq ops flags. 3149 */ 3150struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 3151 const struct blk_mq_ops *ops, 3152 unsigned int queue_depth, 3153 unsigned int set_flags) 3154{ 3155 struct request_queue *q; 3156 int ret; 3157 3158 memset(set, 0, sizeof(*set)); 3159 set->ops = ops; 3160 set->nr_hw_queues = 1; 3161 set->nr_maps = 1; 3162 set->queue_depth = queue_depth; 3163 set->numa_node = NUMA_NO_NODE; 3164 set->flags = set_flags; 3165 3166 ret = blk_mq_alloc_tag_set(set); 3167 if (ret) 3168 return ERR_PTR(ret); 3169 3170 q = blk_mq_init_queue(set); 3171 if (IS_ERR(q)) { 3172 blk_mq_free_tag_set(set); 3173 return q; 3174 } 3175 3176 return q; 3177} 3178EXPORT_SYMBOL(blk_mq_init_sq_queue); 3179 3180static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 3181 struct blk_mq_tag_set *set, struct request_queue *q, 3182 int hctx_idx, int node) 3183{ 3184 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 3185 3186 /* reuse dead hctx first */ 3187 spin_lock(&q->unused_hctx_lock); 3188 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 3189 if (tmp->numa_node == node) { 3190 hctx = tmp; 3191 break; 3192 } 3193 } 3194 if (hctx) 3195 list_del_init(&hctx->hctx_list); 3196 spin_unlock(&q->unused_hctx_lock); 3197 3198 if (!hctx) 3199 hctx = blk_mq_alloc_hctx(q, set, node); 3200 if (!hctx) 3201 goto fail; 3202 3203 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 3204 goto free_hctx; 3205 3206 return hctx; 3207 3208 free_hctx: 3209 kobject_put(&hctx->kobj); 3210 fail: 3211 return NULL; 3212} 3213 3214static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 3215 struct request_queue *q) 3216{ 3217 int i, j, end; 3218 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 3219 3220 if (q->nr_hw_queues < set->nr_hw_queues) { 3221 struct blk_mq_hw_ctx **new_hctxs; 3222 3223 new_hctxs = kcalloc_node(set->nr_hw_queues, 3224 sizeof(*new_hctxs), GFP_KERNEL, 3225 set->numa_node); 3226 if (!new_hctxs) 3227 return; 3228 if (hctxs) 3229 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 3230 sizeof(*hctxs)); 3231 q->queue_hw_ctx = new_hctxs; 3232 kfree(hctxs); 3233 hctxs = new_hctxs; 3234 } 3235 3236 /* protect against switching io scheduler */ 3237 mutex_lock(&q->sysfs_lock); 3238 for (i = 0; i < set->nr_hw_queues; i++) { 3239 int node; 3240 struct blk_mq_hw_ctx *hctx; 3241 3242 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 3243 /* 3244 * If the hw queue has been mapped to another numa node, 3245 * we need to realloc the hctx. If allocation fails, fallback 3246 * to use the previous one. 3247 */ 3248 if (hctxs[i] && (hctxs[i]->numa_node == node)) 3249 continue; 3250 3251 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 3252 if (hctx) { 3253 if (hctxs[i]) 3254 blk_mq_exit_hctx(q, set, hctxs[i], i); 3255 hctxs[i] = hctx; 3256 } else { 3257 if (hctxs[i]) 3258 pr_warn("Allocate new hctx on node %d fails,\ 3259 fallback to previous one on node %d\n", 3260 node, hctxs[i]->numa_node); 3261 else 3262 break; 3263 } 3264 } 3265 /* 3266 * Increasing nr_hw_queues fails. Free the newly allocated 3267 * hctxs and keep the previous q->nr_hw_queues. 3268 */ 3269 if (i != set->nr_hw_queues) { 3270 j = q->nr_hw_queues; 3271 end = i; 3272 } else { 3273 j = i; 3274 end = q->nr_hw_queues; 3275 q->nr_hw_queues = set->nr_hw_queues; 3276 } 3277 3278 for (; j < end; j++) { 3279 struct blk_mq_hw_ctx *hctx = hctxs[j]; 3280 3281 if (hctx) { 3282 blk_mq_exit_hctx(q, set, hctx, j); 3283 hctxs[j] = NULL; 3284 } 3285 } 3286 mutex_unlock(&q->sysfs_lock); 3287} 3288 3289struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 3290 struct request_queue *q, 3291 bool elevator_init) 3292{ 3293 /* mark the queue as mq asap */ 3294 q->mq_ops = set->ops; 3295 3296 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 3297 blk_mq_poll_stats_bkt, 3298 BLK_MQ_POLL_STATS_BKTS, q); 3299 if (!q->poll_cb) 3300 goto err_exit; 3301 3302 if (blk_mq_alloc_ctxs(q)) 3303 goto err_poll; 3304 3305 /* init q->mq_kobj and sw queues' kobjects */ 3306 blk_mq_sysfs_init(q); 3307 3308 INIT_LIST_HEAD(&q->unused_hctx_list); 3309 spin_lock_init(&q->unused_hctx_lock); 3310 3311 blk_mq_realloc_hw_ctxs(set, q); 3312 if (!q->nr_hw_queues) 3313 goto err_hctxs; 3314 3315 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 3316 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 3317 3318 q->tag_set = set; 3319 3320 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 3321 if (set->nr_maps > HCTX_TYPE_POLL && 3322 set->map[HCTX_TYPE_POLL].nr_queues) 3323 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 3324 3325 q->sg_reserved_size = INT_MAX; 3326 3327 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 3328 INIT_LIST_HEAD(&q->requeue_list); 3329 spin_lock_init(&q->requeue_lock); 3330 3331 q->nr_requests = set->queue_depth; 3332 3333 /* 3334 * Default to classic polling 3335 */ 3336 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 3337 3338 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 3339 blk_mq_add_queue_tag_set(set, q); 3340 blk_mq_map_swqueue(q); 3341 3342 if (elevator_init) 3343 elevator_init_mq(q); 3344 3345 return q; 3346 3347err_hctxs: 3348 kfree(q->queue_hw_ctx); 3349 q->nr_hw_queues = 0; 3350 blk_mq_sysfs_deinit(q); 3351err_poll: 3352 blk_stat_free_callback(q->poll_cb); 3353 q->poll_cb = NULL; 3354err_exit: 3355 q->mq_ops = NULL; 3356 return ERR_PTR(-ENOMEM); 3357} 3358EXPORT_SYMBOL(blk_mq_init_allocated_queue); 3359 3360/* tags can _not_ be used after returning from blk_mq_exit_queue */ 3361void blk_mq_exit_queue(struct request_queue *q) 3362{ 3363 struct blk_mq_tag_set *set = q->tag_set; 3364 3365 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 3366 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 3367 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 3368 blk_mq_del_queue_tag_set(q); 3369} 3370 3371static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 3372{ 3373 int i; 3374 3375 for (i = 0; i < set->nr_hw_queues; i++) { 3376 if (!__blk_mq_alloc_map_and_request(set, i)) 3377 goto out_unwind; 3378 cond_resched(); 3379 } 3380 3381 return 0; 3382 3383out_unwind: 3384 while (--i >= 0) 3385 blk_mq_free_map_and_requests(set, i); 3386 3387 return -ENOMEM; 3388} 3389 3390/* 3391 * Allocate the request maps associated with this tag_set. Note that this 3392 * may reduce the depth asked for, if memory is tight. set->queue_depth 3393 * will be updated to reflect the allocated depth. 3394 */ 3395static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set) 3396{ 3397 unsigned int depth; 3398 int err; 3399 3400 depth = set->queue_depth; 3401 do { 3402 err = __blk_mq_alloc_rq_maps(set); 3403 if (!err) 3404 break; 3405 3406 set->queue_depth >>= 1; 3407 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 3408 err = -ENOMEM; 3409 break; 3410 } 3411 } while (set->queue_depth); 3412 3413 if (!set->queue_depth || err) { 3414 pr_err("blk-mq: failed to allocate request map\n"); 3415 return -ENOMEM; 3416 } 3417 3418 if (depth != set->queue_depth) 3419 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 3420 depth, set->queue_depth); 3421 3422 return 0; 3423} 3424 3425static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 3426{ 3427 /* 3428 * blk_mq_map_queues() and multiple .map_queues() implementations 3429 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 3430 * number of hardware queues. 3431 */ 3432 if (set->nr_maps == 1) 3433 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 3434 3435 if (set->ops->map_queues && !is_kdump_kernel()) { 3436 int i; 3437 3438 /* 3439 * transport .map_queues is usually done in the following 3440 * way: 3441 * 3442 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 3443 * mask = get_cpu_mask(queue) 3444 * for_each_cpu(cpu, mask) 3445 * set->map[x].mq_map[cpu] = queue; 3446 * } 3447 * 3448 * When we need to remap, the table has to be cleared for 3449 * killing stale mapping since one CPU may not be mapped 3450 * to any hw queue. 3451 */ 3452 for (i = 0; i < set->nr_maps; i++) 3453 blk_mq_clear_mq_map(&set->map[i]); 3454 3455 return set->ops->map_queues(set); 3456 } else { 3457 BUG_ON(set->nr_maps > 1); 3458 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3459 } 3460} 3461 3462static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 3463 int cur_nr_hw_queues, int new_nr_hw_queues) 3464{ 3465 struct blk_mq_tags **new_tags; 3466 3467 if (cur_nr_hw_queues >= new_nr_hw_queues) 3468 return 0; 3469 3470 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 3471 GFP_KERNEL, set->numa_node); 3472 if (!new_tags) 3473 return -ENOMEM; 3474 3475 if (set->tags) 3476 memcpy(new_tags, set->tags, cur_nr_hw_queues * 3477 sizeof(*set->tags)); 3478 kfree(set->tags); 3479 set->tags = new_tags; 3480 set->nr_hw_queues = new_nr_hw_queues; 3481 3482 return 0; 3483} 3484 3485/* 3486 * Alloc a tag set to be associated with one or more request queues. 3487 * May fail with EINVAL for various error conditions. May adjust the 3488 * requested depth down, if it's too large. In that case, the set 3489 * value will be stored in set->queue_depth. 3490 */ 3491int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3492{ 3493 int i, ret; 3494 3495 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3496 3497 if (!set->nr_hw_queues) 3498 return -EINVAL; 3499 if (!set->queue_depth) 3500 return -EINVAL; 3501 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3502 return -EINVAL; 3503 3504 if (!set->ops->queue_rq) 3505 return -EINVAL; 3506 3507 if (!set->ops->get_budget ^ !set->ops->put_budget) 3508 return -EINVAL; 3509 3510 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3511 pr_info("blk-mq: reduced tag depth to %u\n", 3512 BLK_MQ_MAX_DEPTH); 3513 set->queue_depth = BLK_MQ_MAX_DEPTH; 3514 } 3515 3516 if (!set->nr_maps) 3517 set->nr_maps = 1; 3518 else if (set->nr_maps > HCTX_MAX_TYPES) 3519 return -EINVAL; 3520 3521 /* 3522 * If a crashdump is active, then we are potentially in a very 3523 * memory constrained environment. Limit us to 1 queue and 3524 * 64 tags to prevent using too much memory. 3525 */ 3526 if (is_kdump_kernel()) { 3527 set->nr_hw_queues = 1; 3528 set->nr_maps = 1; 3529 set->queue_depth = min(64U, set->queue_depth); 3530 } 3531 /* 3532 * There is no use for more h/w queues than cpus if we just have 3533 * a single map 3534 */ 3535 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3536 set->nr_hw_queues = nr_cpu_ids; 3537 3538 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0) 3539 return -ENOMEM; 3540 3541 ret = -ENOMEM; 3542 for (i = 0; i < set->nr_maps; i++) { 3543 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3544 sizeof(set->map[i].mq_map[0]), 3545 GFP_KERNEL, set->numa_node); 3546 if (!set->map[i].mq_map) 3547 goto out_free_mq_map; 3548 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3549 } 3550 3551 ret = blk_mq_update_queue_map(set); 3552 if (ret) 3553 goto out_free_mq_map; 3554 3555 ret = blk_mq_alloc_map_and_requests(set); 3556 if (ret) 3557 goto out_free_mq_map; 3558 3559 if (blk_mq_is_sbitmap_shared(set->flags)) { 3560 atomic_set(&set->active_queues_shared_sbitmap, 0); 3561 3562 if (blk_mq_init_shared_sbitmap(set, set->flags)) { 3563 ret = -ENOMEM; 3564 goto out_free_mq_rq_maps; 3565 } 3566 } 3567 3568 mutex_init(&set->tag_list_lock); 3569 INIT_LIST_HEAD(&set->tag_list); 3570 3571 return 0; 3572 3573out_free_mq_rq_maps: 3574 for (i = 0; i < set->nr_hw_queues; i++) 3575 blk_mq_free_map_and_requests(set, i); 3576out_free_mq_map: 3577 for (i = 0; i < set->nr_maps; i++) { 3578 kfree(set->map[i].mq_map); 3579 set->map[i].mq_map = NULL; 3580 } 3581 kfree(set->tags); 3582 set->tags = NULL; 3583 return ret; 3584} 3585EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3586 3587void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3588{ 3589 int i, j; 3590 3591 for (i = 0; i < set->nr_hw_queues; i++) 3592 blk_mq_free_map_and_requests(set, i); 3593 3594 if (blk_mq_is_sbitmap_shared(set->flags)) 3595 blk_mq_exit_shared_sbitmap(set); 3596 3597 for (j = 0; j < set->nr_maps; j++) { 3598 kfree(set->map[j].mq_map); 3599 set->map[j].mq_map = NULL; 3600 } 3601 3602 kfree(set->tags); 3603 set->tags = NULL; 3604} 3605EXPORT_SYMBOL(blk_mq_free_tag_set); 3606 3607int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3608{ 3609 struct blk_mq_tag_set *set = q->tag_set; 3610 struct blk_mq_hw_ctx *hctx; 3611 int i, ret; 3612 3613 if (!set) 3614 return -EINVAL; 3615 3616 if (q->nr_requests == nr) 3617 return 0; 3618 3619 blk_mq_freeze_queue(q); 3620 blk_mq_quiesce_queue(q); 3621 3622 ret = 0; 3623 queue_for_each_hw_ctx(q, hctx, i) { 3624 if (!hctx->tags) 3625 continue; 3626 /* 3627 * If we're using an MQ scheduler, just update the scheduler 3628 * queue depth. This is similar to what the old code would do. 3629 */ 3630 if (!hctx->sched_tags) { 3631 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3632 false); 3633 if (!ret && blk_mq_is_sbitmap_shared(set->flags)) 3634 blk_mq_tag_resize_shared_sbitmap(set, nr); 3635 } else { 3636 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3637 nr, true); 3638 } 3639 if (ret) 3640 break; 3641 if (q->elevator && q->elevator->type->ops.depth_updated) 3642 q->elevator->type->ops.depth_updated(hctx); 3643 } 3644 3645 if (!ret) 3646 q->nr_requests = nr; 3647 3648 blk_mq_unquiesce_queue(q); 3649 blk_mq_unfreeze_queue(q); 3650 3651 return ret; 3652} 3653 3654/* 3655 * request_queue and elevator_type pair. 3656 * It is just used by __blk_mq_update_nr_hw_queues to cache 3657 * the elevator_type associated with a request_queue. 3658 */ 3659struct blk_mq_qe_pair { 3660 struct list_head node; 3661 struct request_queue *q; 3662 struct elevator_type *type; 3663}; 3664 3665/* 3666 * Cache the elevator_type in qe pair list and switch the 3667 * io scheduler to 'none' 3668 */ 3669static bool blk_mq_elv_switch_none(struct list_head *head, 3670 struct request_queue *q) 3671{ 3672 struct blk_mq_qe_pair *qe; 3673 3674 if (!q->elevator) 3675 return true; 3676 3677 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3678 if (!qe) 3679 return false; 3680 3681 INIT_LIST_HEAD(&qe->node); 3682 qe->q = q; 3683 qe->type = q->elevator->type; 3684 list_add(&qe->node, head); 3685 3686 mutex_lock(&q->sysfs_lock); 3687 /* 3688 * After elevator_switch_mq, the previous elevator_queue will be 3689 * released by elevator_release. The reference of the io scheduler 3690 * module get by elevator_get will also be put. So we need to get 3691 * a reference of the io scheduler module here to prevent it to be 3692 * removed. 3693 */ 3694 __module_get(qe->type->elevator_owner); 3695 elevator_switch_mq(q, NULL); 3696 mutex_unlock(&q->sysfs_lock); 3697 3698 return true; 3699} 3700 3701static void blk_mq_elv_switch_back(struct list_head *head, 3702 struct request_queue *q) 3703{ 3704 struct blk_mq_qe_pair *qe; 3705 struct elevator_type *t = NULL; 3706 3707 list_for_each_entry(qe, head, node) 3708 if (qe->q == q) { 3709 t = qe->type; 3710 break; 3711 } 3712 3713 if (!t) 3714 return; 3715 3716 list_del(&qe->node); 3717 kfree(qe); 3718 3719 mutex_lock(&q->sysfs_lock); 3720 elevator_switch_mq(q, t); 3721 mutex_unlock(&q->sysfs_lock); 3722} 3723 3724static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3725 int nr_hw_queues) 3726{ 3727 struct request_queue *q; 3728 LIST_HEAD(head); 3729 int prev_nr_hw_queues; 3730 3731 lockdep_assert_held(&set->tag_list_lock); 3732 3733 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3734 nr_hw_queues = nr_cpu_ids; 3735 if (nr_hw_queues < 1) 3736 return; 3737 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 3738 return; 3739 3740 list_for_each_entry(q, &set->tag_list, tag_set_list) 3741 blk_mq_freeze_queue(q); 3742 /* 3743 * Switch IO scheduler to 'none', cleaning up the data associated 3744 * with the previous scheduler. We will switch back once we are done 3745 * updating the new sw to hw queue mappings. 3746 */ 3747 list_for_each_entry(q, &set->tag_list, tag_set_list) 3748 if (!blk_mq_elv_switch_none(&head, q)) 3749 goto switch_back; 3750 3751 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3752 blk_mq_debugfs_unregister_hctxs(q); 3753 blk_mq_sysfs_unregister(q); 3754 } 3755 3756 prev_nr_hw_queues = set->nr_hw_queues; 3757 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 3758 0) 3759 goto reregister; 3760 3761 set->nr_hw_queues = nr_hw_queues; 3762fallback: 3763 blk_mq_update_queue_map(set); 3764 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3765 blk_mq_realloc_hw_ctxs(set, q); 3766 if (q->nr_hw_queues != set->nr_hw_queues) { 3767 int i = prev_nr_hw_queues; 3768 3769 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3770 nr_hw_queues, prev_nr_hw_queues); 3771 for (; i < set->nr_hw_queues; i++) 3772 blk_mq_free_map_and_requests(set, i); 3773 3774 set->nr_hw_queues = prev_nr_hw_queues; 3775 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3776 goto fallback; 3777 } 3778 blk_mq_map_swqueue(q); 3779 } 3780 3781reregister: 3782 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3783 blk_mq_sysfs_register(q); 3784 blk_mq_debugfs_register_hctxs(q); 3785 } 3786 3787switch_back: 3788 list_for_each_entry(q, &set->tag_list, tag_set_list) 3789 blk_mq_elv_switch_back(&head, q); 3790 3791 list_for_each_entry(q, &set->tag_list, tag_set_list) 3792 blk_mq_unfreeze_queue(q); 3793} 3794 3795void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3796{ 3797 mutex_lock(&set->tag_list_lock); 3798 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3799 mutex_unlock(&set->tag_list_lock); 3800} 3801EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3802 3803/* Enable polling stats and return whether they were already enabled. */ 3804static bool blk_poll_stats_enable(struct request_queue *q) 3805{ 3806 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3807 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3808 return true; 3809 blk_stat_add_callback(q, q->poll_cb); 3810 return false; 3811} 3812 3813static void blk_mq_poll_stats_start(struct request_queue *q) 3814{ 3815 /* 3816 * We don't arm the callback if polling stats are not enabled or the 3817 * callback is already active. 3818 */ 3819 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3820 blk_stat_is_active(q->poll_cb)) 3821 return; 3822 3823 blk_stat_activate_msecs(q->poll_cb, 100); 3824} 3825 3826static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3827{ 3828 struct request_queue *q = cb->data; 3829 int bucket; 3830 3831 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3832 if (cb->stat[bucket].nr_samples) 3833 q->poll_stat[bucket] = cb->stat[bucket]; 3834 } 3835} 3836 3837static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3838 struct request *rq) 3839{ 3840 unsigned long ret = 0; 3841 int bucket; 3842 3843 /* 3844 * If stats collection isn't on, don't sleep but turn it on for 3845 * future users 3846 */ 3847 if (!blk_poll_stats_enable(q)) 3848 return 0; 3849 3850 /* 3851 * As an optimistic guess, use half of the mean service time 3852 * for this type of request. We can (and should) make this smarter. 3853 * For instance, if the completion latencies are tight, we can 3854 * get closer than just half the mean. This is especially 3855 * important on devices where the completion latencies are longer 3856 * than ~10 usec. We do use the stats for the relevant IO size 3857 * if available which does lead to better estimates. 3858 */ 3859 bucket = blk_mq_poll_stats_bkt(rq); 3860 if (bucket < 0) 3861 return ret; 3862 3863 if (q->poll_stat[bucket].nr_samples) 3864 ret = (q->poll_stat[bucket].mean + 1) / 2; 3865 3866 return ret; 3867} 3868 3869static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3870 struct request *rq) 3871{ 3872 struct hrtimer_sleeper hs; 3873 enum hrtimer_mode mode; 3874 unsigned int nsecs; 3875 ktime_t kt; 3876 3877 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3878 return false; 3879 3880 /* 3881 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3882 * 3883 * 0: use half of prev avg 3884 * >0: use this specific value 3885 */ 3886 if (q->poll_nsec > 0) 3887 nsecs = q->poll_nsec; 3888 else 3889 nsecs = blk_mq_poll_nsecs(q, rq); 3890 3891 if (!nsecs) 3892 return false; 3893 3894 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3895 3896 /* 3897 * This will be replaced with the stats tracking code, using 3898 * 'avg_completion_time / 2' as the pre-sleep target. 3899 */ 3900 kt = nsecs; 3901 3902 mode = HRTIMER_MODE_REL; 3903 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 3904 hrtimer_set_expires(&hs.timer, kt); 3905 3906 do { 3907 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3908 break; 3909 set_current_state(TASK_UNINTERRUPTIBLE); 3910 hrtimer_sleeper_start_expires(&hs, mode); 3911 if (hs.task) 3912 io_schedule(); 3913 hrtimer_cancel(&hs.timer); 3914 mode = HRTIMER_MODE_ABS; 3915 } while (hs.task && !signal_pending(current)); 3916 3917 __set_current_state(TASK_RUNNING); 3918 destroy_hrtimer_on_stack(&hs.timer); 3919 return true; 3920} 3921 3922static bool blk_mq_poll_hybrid(struct request_queue *q, 3923 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3924{ 3925 struct request *rq; 3926 3927 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3928 return false; 3929 3930 if (!blk_qc_t_is_internal(cookie)) 3931 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3932 else { 3933 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3934 /* 3935 * With scheduling, if the request has completed, we'll 3936 * get a NULL return here, as we clear the sched tag when 3937 * that happens. The request still remains valid, like always, 3938 * so we should be safe with just the NULL check. 3939 */ 3940 if (!rq) 3941 return false; 3942 } 3943 3944 return blk_mq_poll_hybrid_sleep(q, rq); 3945} 3946 3947/** 3948 * blk_poll - poll for IO completions 3949 * @q: the queue 3950 * @cookie: cookie passed back at IO submission time 3951 * @spin: whether to spin for completions 3952 * 3953 * Description: 3954 * Poll for completions on the passed in queue. Returns number of 3955 * completed entries found. If @spin is true, then blk_poll will continue 3956 * looping until at least one completion is found, unless the task is 3957 * otherwise marked running (or we need to reschedule). 3958 */ 3959int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3960{ 3961 struct blk_mq_hw_ctx *hctx; 3962 long state; 3963 3964 if (!blk_qc_t_valid(cookie) || 3965 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3966 return 0; 3967 3968 if (current->plug) 3969 blk_flush_plug_list(current->plug, false); 3970 3971 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3972 3973 /* 3974 * If we sleep, have the caller restart the poll loop to reset 3975 * the state. Like for the other success return cases, the 3976 * caller is responsible for checking if the IO completed. If 3977 * the IO isn't complete, we'll get called again and will go 3978 * straight to the busy poll loop. 3979 */ 3980 if (blk_mq_poll_hybrid(q, hctx, cookie)) 3981 return 1; 3982 3983 hctx->poll_considered++; 3984 3985 state = current->state; 3986 do { 3987 int ret; 3988 3989 hctx->poll_invoked++; 3990 3991 ret = q->mq_ops->poll(hctx); 3992 if (ret > 0) { 3993 hctx->poll_success++; 3994 __set_current_state(TASK_RUNNING); 3995 return ret; 3996 } 3997 3998 if (signal_pending_state(state, current)) 3999 __set_current_state(TASK_RUNNING); 4000 4001 if (current->state == TASK_RUNNING) 4002 return 1; 4003 if (ret < 0 || !spin) 4004 break; 4005 cpu_relax(); 4006 } while (!need_resched()); 4007 4008 __set_current_state(TASK_RUNNING); 4009 return 0; 4010} 4011EXPORT_SYMBOL_GPL(blk_poll); 4012 4013unsigned int blk_mq_rq_cpu(struct request *rq) 4014{ 4015 return rq->mq_ctx->cpu; 4016} 4017EXPORT_SYMBOL(blk_mq_rq_cpu); 4018 4019void blk_mq_cancel_work_sync(struct request_queue *q) 4020{ 4021 if (queue_is_mq(q)) { 4022 struct blk_mq_hw_ctx *hctx; 4023 int i; 4024 4025 cancel_delayed_work_sync(&q->requeue_work); 4026 4027 queue_for_each_hw_ctx(q, hctx, i) 4028 cancel_delayed_work_sync(&hctx->run_work); 4029 } 4030} 4031 4032static int __init blk_mq_init(void) 4033{ 4034 int i; 4035 4036 for_each_possible_cpu(i) 4037 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i)); 4038 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4039 4040 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4041 "block/softirq:dead", NULL, 4042 blk_softirq_cpu_dead); 4043 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4044 blk_mq_hctx_notify_dead); 4045 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4046 blk_mq_hctx_notify_online, 4047 blk_mq_hctx_notify_offline); 4048 return 0; 4049} 4050subsys_initcall(blk_mq_init); 4051