xref: /kernel/linux/linux-5.10/block/blk-mq.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/backing-dev.h>
11#include <linux/bio.h>
12#include <linux/blkdev.h>
13#include <linux/kmemleak.h>
14#include <linux/mm.h>
15#include <linux/init.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18#include <linux/smp.h>
19#include <linux/llist.h>
20#include <linux/list_sort.h>
21#include <linux/cpu.h>
22#include <linux/cache.h>
23#include <linux/sched/sysctl.h>
24#include <linux/sched/topology.h>
25#include <linux/sched/signal.h>
26#include <linux/delay.h>
27#include <linux/crash_dump.h>
28#include <linux/prefetch.h>
29#include <linux/blk-crypto.h>
30
31#include <trace/events/block.h>
32
33#include <linux/blk-mq.h>
34#include <linux/t10-pi.h>
35#include "blk.h"
36#include "blk-mq.h"
37#include "blk-mq-debugfs.h"
38#include "blk-mq-tag.h"
39#include "blk-pm.h"
40#include "blk-stat.h"
41#include "blk-mq-sched.h"
42#include "blk-rq-qos.h"
43
44static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45
46static void blk_mq_poll_stats_start(struct request_queue *q);
47static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49static int blk_mq_poll_stats_bkt(const struct request *rq)
50{
51	int ddir, sectors, bucket;
52
53	ddir = rq_data_dir(rq);
54	sectors = blk_rq_stats_sectors(rq);
55
56	bucket = ddir + 2 * ilog2(sectors);
57
58	if (bucket < 0)
59		return -1;
60	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63	return bucket;
64}
65
66/*
67 * Check if any of the ctx, dispatch list or elevator
68 * have pending work in this hardware queue.
69 */
70static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71{
72	return !list_empty_careful(&hctx->dispatch) ||
73		sbitmap_any_bit_set(&hctx->ctx_map) ||
74			blk_mq_sched_has_work(hctx);
75}
76
77/*
78 * Mark this ctx as having pending work in this hardware queue
79 */
80static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81				     struct blk_mq_ctx *ctx)
82{
83	const int bit = ctx->index_hw[hctx->type];
84
85	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86		sbitmap_set_bit(&hctx->ctx_map, bit);
87}
88
89static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90				      struct blk_mq_ctx *ctx)
91{
92	const int bit = ctx->index_hw[hctx->type];
93
94	sbitmap_clear_bit(&hctx->ctx_map, bit);
95}
96
97struct mq_inflight {
98	struct hd_struct *part;
99	unsigned int inflight[2];
100};
101
102static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103				  struct request *rq, void *priv,
104				  bool reserved)
105{
106	struct mq_inflight *mi = priv;
107
108	if ((!mi->part->partno || rq->part == mi->part) &&
109	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110		mi->inflight[rq_data_dir(rq)]++;
111
112	return true;
113}
114
115unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
116{
117	struct mq_inflight mi = { .part = part };
118
119	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120
121	return mi.inflight[0] + mi.inflight[1];
122}
123
124void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
125			 unsigned int inflight[2])
126{
127	struct mq_inflight mi = { .part = part };
128
129	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
130	inflight[0] = mi.inflight[0];
131	inflight[1] = mi.inflight[1];
132}
133
134void blk_freeze_queue_start(struct request_queue *q)
135{
136	mutex_lock(&q->mq_freeze_lock);
137	if (++q->mq_freeze_depth == 1) {
138		percpu_ref_kill(&q->q_usage_counter);
139		mutex_unlock(&q->mq_freeze_lock);
140		if (queue_is_mq(q))
141			blk_mq_run_hw_queues(q, false);
142	} else {
143		mutex_unlock(&q->mq_freeze_lock);
144	}
145}
146EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
147
148void blk_mq_freeze_queue_wait(struct request_queue *q)
149{
150	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
151}
152EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
153
154int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
155				     unsigned long timeout)
156{
157	return wait_event_timeout(q->mq_freeze_wq,
158					percpu_ref_is_zero(&q->q_usage_counter),
159					timeout);
160}
161EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
162
163/*
164 * Guarantee no request is in use, so we can change any data structure of
165 * the queue afterward.
166 */
167void blk_freeze_queue(struct request_queue *q)
168{
169	/*
170	 * In the !blk_mq case we are only calling this to kill the
171	 * q_usage_counter, otherwise this increases the freeze depth
172	 * and waits for it to return to zero.  For this reason there is
173	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
174	 * exported to drivers as the only user for unfreeze is blk_mq.
175	 */
176	blk_freeze_queue_start(q);
177	blk_mq_freeze_queue_wait(q);
178}
179
180void blk_mq_freeze_queue(struct request_queue *q)
181{
182	/*
183	 * ...just an alias to keep freeze and unfreeze actions balanced
184	 * in the blk_mq_* namespace
185	 */
186	blk_freeze_queue(q);
187}
188EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
189
190void blk_mq_unfreeze_queue(struct request_queue *q)
191{
192	mutex_lock(&q->mq_freeze_lock);
193	q->mq_freeze_depth--;
194	WARN_ON_ONCE(q->mq_freeze_depth < 0);
195	if (!q->mq_freeze_depth) {
196		percpu_ref_resurrect(&q->q_usage_counter);
197		wake_up_all(&q->mq_freeze_wq);
198	}
199	mutex_unlock(&q->mq_freeze_lock);
200}
201EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
202
203/*
204 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
205 * mpt3sas driver such that this function can be removed.
206 */
207void blk_mq_quiesce_queue_nowait(struct request_queue *q)
208{
209	unsigned long flags;
210
211	spin_lock_irqsave(&q->queue_lock, flags);
212	if (!q->quiesce_depth++)
213		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214	spin_unlock_irqrestore(&q->queue_lock, flags);
215}
216EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
217
218/**
219 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
220 * @q: request queue.
221 *
222 * Note: this function does not prevent that the struct request end_io()
223 * callback function is invoked. Once this function is returned, we make
224 * sure no dispatch can happen until the queue is unquiesced via
225 * blk_mq_unquiesce_queue().
226 */
227void blk_mq_quiesce_queue(struct request_queue *q)
228{
229	struct blk_mq_hw_ctx *hctx;
230	unsigned int i;
231	bool rcu = false;
232
233	blk_mq_quiesce_queue_nowait(q);
234
235	queue_for_each_hw_ctx(q, hctx, i) {
236		if (hctx->flags & BLK_MQ_F_BLOCKING)
237			synchronize_srcu(hctx->srcu);
238		else
239			rcu = true;
240	}
241	if (rcu)
242		synchronize_rcu();
243}
244EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
245
246/*
247 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
248 * @q: request queue.
249 *
250 * This function recovers queue into the state before quiescing
251 * which is done by blk_mq_quiesce_queue.
252 */
253void blk_mq_unquiesce_queue(struct request_queue *q)
254{
255	unsigned long flags;
256	bool run_queue = false;
257
258	spin_lock_irqsave(&q->queue_lock, flags);
259	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
260		;
261	} else if (!--q->quiesce_depth) {
262		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
263		run_queue = true;
264	}
265	spin_unlock_irqrestore(&q->queue_lock, flags);
266
267	/* dispatch requests which are inserted during quiescing */
268	if (run_queue)
269		blk_mq_run_hw_queues(q, true);
270}
271EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
272
273void blk_mq_wake_waiters(struct request_queue *q)
274{
275	struct blk_mq_hw_ctx *hctx;
276	unsigned int i;
277
278	queue_for_each_hw_ctx(q, hctx, i)
279		if (blk_mq_hw_queue_mapped(hctx))
280			blk_mq_tag_wakeup_all(hctx->tags, true);
281}
282
283/*
284 * Only need start/end time stamping if we have iostat or
285 * blk stats enabled, or using an IO scheduler.
286 */
287static inline bool blk_mq_need_time_stamp(struct request *rq)
288{
289	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
290}
291
292static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
293		unsigned int tag, u64 alloc_time_ns)
294{
295	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
296	struct request *rq = tags->static_rqs[tag];
297
298	if (data->q->elevator) {
299		rq->tag = BLK_MQ_NO_TAG;
300		rq->internal_tag = tag;
301	} else {
302		rq->tag = tag;
303		rq->internal_tag = BLK_MQ_NO_TAG;
304	}
305
306	/* csd/requeue_work/fifo_time is initialized before use */
307	rq->q = data->q;
308	rq->mq_ctx = data->ctx;
309	rq->mq_hctx = data->hctx;
310	rq->rq_flags = 0;
311	rq->cmd_flags = data->cmd_flags;
312	if (data->flags & BLK_MQ_REQ_PM)
313		rq->rq_flags |= RQF_PM;
314	if (blk_queue_io_stat(data->q))
315		rq->rq_flags |= RQF_IO_STAT;
316	INIT_LIST_HEAD(&rq->queuelist);
317	INIT_HLIST_NODE(&rq->hash);
318	RB_CLEAR_NODE(&rq->rb_node);
319	rq->rq_disk = NULL;
320	rq->part = NULL;
321#ifdef CONFIG_BLK_RQ_ALLOC_TIME
322	rq->alloc_time_ns = alloc_time_ns;
323#endif
324	if (blk_mq_need_time_stamp(rq))
325		rq->start_time_ns = ktime_get_ns();
326	else
327		rq->start_time_ns = 0;
328	rq->io_start_time_ns = 0;
329	rq->stats_sectors = 0;
330	rq->nr_phys_segments = 0;
331#if defined(CONFIG_BLK_DEV_INTEGRITY)
332	rq->nr_integrity_segments = 0;
333#endif
334	blk_crypto_rq_set_defaults(rq);
335	/* tag was already set */
336	WRITE_ONCE(rq->deadline, 0);
337
338	rq->timeout = 0;
339
340	rq->end_io = NULL;
341	rq->end_io_data = NULL;
342
343	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
344	refcount_set(&rq->ref, 1);
345
346	if (!op_is_flush(data->cmd_flags)) {
347		struct elevator_queue *e = data->q->elevator;
348
349		rq->elv.icq = NULL;
350		if (e && e->type->ops.prepare_request) {
351			if (e->type->icq_cache)
352				blk_mq_sched_assign_ioc(rq);
353
354			e->type->ops.prepare_request(rq);
355			rq->rq_flags |= RQF_ELVPRIV;
356		}
357	}
358
359	data->hctx->queued++;
360	return rq;
361}
362
363static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
364{
365	struct request_queue *q = data->q;
366	struct elevator_queue *e = q->elevator;
367	u64 alloc_time_ns = 0;
368	unsigned int tag;
369
370	/* alloc_time includes depth and tag waits */
371	if (blk_queue_rq_alloc_time(q))
372		alloc_time_ns = ktime_get_ns();
373
374	if (data->cmd_flags & REQ_NOWAIT)
375		data->flags |= BLK_MQ_REQ_NOWAIT;
376
377	if (e) {
378		/*
379		 * Flush requests are special and go directly to the
380		 * dispatch list. Don't include reserved tags in the
381		 * limiting, as it isn't useful.
382		 */
383		if (!op_is_flush(data->cmd_flags) &&
384		    e->type->ops.limit_depth &&
385		    !(data->flags & BLK_MQ_REQ_RESERVED))
386			e->type->ops.limit_depth(data->cmd_flags, data);
387	}
388
389retry:
390	data->ctx = blk_mq_get_ctx(q);
391	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
392	if (!e)
393		blk_mq_tag_busy(data->hctx);
394
395	/*
396	 * Waiting allocations only fail because of an inactive hctx.  In that
397	 * case just retry the hctx assignment and tag allocation as CPU hotplug
398	 * should have migrated us to an online CPU by now.
399	 */
400	tag = blk_mq_get_tag(data);
401	if (tag == BLK_MQ_NO_TAG) {
402		if (data->flags & BLK_MQ_REQ_NOWAIT)
403			return NULL;
404
405		/*
406		 * Give up the CPU and sleep for a random short time to ensure
407		 * that thread using a realtime scheduling class are migrated
408		 * off the CPU, and thus off the hctx that is going away.
409		 */
410		msleep(3);
411		goto retry;
412	}
413	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
414}
415
416struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
417		blk_mq_req_flags_t flags)
418{
419	struct blk_mq_alloc_data data = {
420		.q		= q,
421		.flags		= flags,
422		.cmd_flags	= op,
423	};
424	struct request *rq;
425	int ret;
426
427	ret = blk_queue_enter(q, flags);
428	if (ret)
429		return ERR_PTR(ret);
430
431	rq = __blk_mq_alloc_request(&data);
432	if (!rq)
433		goto out_queue_exit;
434	rq->__data_len = 0;
435	rq->__sector = (sector_t) -1;
436	rq->bio = rq->biotail = NULL;
437	return rq;
438out_queue_exit:
439	blk_queue_exit(q);
440	return ERR_PTR(-EWOULDBLOCK);
441}
442EXPORT_SYMBOL(blk_mq_alloc_request);
443
444struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
445	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
446{
447	struct blk_mq_alloc_data data = {
448		.q		= q,
449		.flags		= flags,
450		.cmd_flags	= op,
451	};
452	u64 alloc_time_ns = 0;
453	unsigned int cpu;
454	unsigned int tag;
455	int ret;
456
457	/* alloc_time includes depth and tag waits */
458	if (blk_queue_rq_alloc_time(q))
459		alloc_time_ns = ktime_get_ns();
460
461	/*
462	 * If the tag allocator sleeps we could get an allocation for a
463	 * different hardware context.  No need to complicate the low level
464	 * allocator for this for the rare use case of a command tied to
465	 * a specific queue.
466	 */
467	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
468	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
469		return ERR_PTR(-EINVAL);
470
471	if (hctx_idx >= q->nr_hw_queues)
472		return ERR_PTR(-EIO);
473
474	ret = blk_queue_enter(q, flags);
475	if (ret)
476		return ERR_PTR(ret);
477
478	/*
479	 * Check if the hardware context is actually mapped to anything.
480	 * If not tell the caller that it should skip this queue.
481	 */
482	ret = -EXDEV;
483	data.hctx = q->queue_hw_ctx[hctx_idx];
484	if (!blk_mq_hw_queue_mapped(data.hctx))
485		goto out_queue_exit;
486	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
487	if (cpu >= nr_cpu_ids)
488		goto out_queue_exit;
489	data.ctx = __blk_mq_get_ctx(q, cpu);
490
491	if (!q->elevator)
492		blk_mq_tag_busy(data.hctx);
493
494	ret = -EWOULDBLOCK;
495	tag = blk_mq_get_tag(&data);
496	if (tag == BLK_MQ_NO_TAG)
497		goto out_queue_exit;
498	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
499
500out_queue_exit:
501	blk_queue_exit(q);
502	return ERR_PTR(ret);
503}
504EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
505
506static void __blk_mq_free_request(struct request *rq)
507{
508	struct request_queue *q = rq->q;
509	struct blk_mq_ctx *ctx = rq->mq_ctx;
510	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
511	const int sched_tag = rq->internal_tag;
512
513	blk_crypto_free_request(rq);
514	blk_pm_mark_last_busy(rq);
515	rq->mq_hctx = NULL;
516	if (rq->tag != BLK_MQ_NO_TAG)
517		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
518	if (sched_tag != BLK_MQ_NO_TAG)
519		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
520	blk_mq_sched_restart(hctx);
521	blk_queue_exit(q);
522}
523
524void blk_mq_free_request(struct request *rq)
525{
526	struct request_queue *q = rq->q;
527	struct elevator_queue *e = q->elevator;
528	struct blk_mq_ctx *ctx = rq->mq_ctx;
529	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
530
531	if (rq->rq_flags & RQF_ELVPRIV) {
532		if (e && e->type->ops.finish_request)
533			e->type->ops.finish_request(rq);
534		if (rq->elv.icq) {
535			put_io_context(rq->elv.icq->ioc);
536			rq->elv.icq = NULL;
537		}
538	}
539
540	ctx->rq_completed[rq_is_sync(rq)]++;
541	if (rq->rq_flags & RQF_MQ_INFLIGHT)
542		__blk_mq_dec_active_requests(hctx);
543
544	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
545		laptop_io_completion(q->backing_dev_info);
546
547	rq_qos_done(q, rq);
548
549	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
550	if (refcount_dec_and_test(&rq->ref))
551		__blk_mq_free_request(rq);
552}
553EXPORT_SYMBOL_GPL(blk_mq_free_request);
554
555inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
556{
557	u64 now = 0;
558
559	if (blk_mq_need_time_stamp(rq))
560		now = ktime_get_ns();
561
562	if (rq->rq_flags & RQF_STATS) {
563		blk_mq_poll_stats_start(rq->q);
564		blk_stat_add(rq, now);
565	}
566
567	blk_mq_sched_completed_request(rq, now);
568
569	blk_account_io_done(rq, now);
570
571	if (rq->end_io) {
572		rq_qos_done(rq->q, rq);
573		rq->end_io(rq, error);
574	} else {
575		blk_mq_free_request(rq);
576	}
577}
578EXPORT_SYMBOL(__blk_mq_end_request);
579
580void blk_mq_end_request(struct request *rq, blk_status_t error)
581{
582	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
583		BUG();
584	__blk_mq_end_request(rq, error);
585}
586EXPORT_SYMBOL(blk_mq_end_request);
587
588/*
589 * Softirq action handler - move entries to local list and loop over them
590 * while passing them to the queue registered handler.
591 */
592static __latent_entropy void blk_done_softirq(struct softirq_action *h)
593{
594	struct list_head *cpu_list, local_list;
595
596	local_irq_disable();
597	cpu_list = this_cpu_ptr(&blk_cpu_done);
598	list_replace_init(cpu_list, &local_list);
599	local_irq_enable();
600
601	while (!list_empty(&local_list)) {
602		struct request *rq;
603
604		rq = list_entry(local_list.next, struct request, ipi_list);
605		list_del_init(&rq->ipi_list);
606		rq->q->mq_ops->complete(rq);
607	}
608}
609
610static void blk_mq_trigger_softirq(struct request *rq)
611{
612	struct list_head *list;
613	unsigned long flags;
614
615	local_irq_save(flags);
616	list = this_cpu_ptr(&blk_cpu_done);
617	list_add_tail(&rq->ipi_list, list);
618
619	/*
620	 * If the list only contains our just added request, signal a raise of
621	 * the softirq.  If there are already entries there, someone already
622	 * raised the irq but it hasn't run yet.
623	 */
624	if (list->next == &rq->ipi_list)
625		raise_softirq_irqoff(BLOCK_SOFTIRQ);
626	local_irq_restore(flags);
627}
628
629static int blk_softirq_cpu_dead(unsigned int cpu)
630{
631	/*
632	 * If a CPU goes away, splice its entries to the current CPU
633	 * and trigger a run of the softirq
634	 */
635	local_irq_disable();
636	list_splice_init(&per_cpu(blk_cpu_done, cpu),
637			 this_cpu_ptr(&blk_cpu_done));
638	raise_softirq_irqoff(BLOCK_SOFTIRQ);
639	local_irq_enable();
640
641	return 0;
642}
643
644
645static void __blk_mq_complete_request_remote(void *data)
646{
647	struct request *rq = data;
648
649	/*
650	 * For most of single queue controllers, there is only one irq vector
651	 * for handling I/O completion, and the only irq's affinity is set
652	 * to all possible CPUs.  On most of ARCHs, this affinity means the irq
653	 * is handled on one specific CPU.
654	 *
655	 * So complete I/O requests in softirq context in case of single queue
656	 * devices to avoid degrading I/O performance due to irqsoff latency.
657	 */
658	if (rq->q->nr_hw_queues == 1)
659		blk_mq_trigger_softirq(rq);
660	else
661		rq->q->mq_ops->complete(rq);
662}
663
664static inline bool blk_mq_complete_need_ipi(struct request *rq)
665{
666	int cpu = raw_smp_processor_id();
667
668	if (!IS_ENABLED(CONFIG_SMP) ||
669	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
670		return false;
671
672	/* same CPU or cache domain?  Complete locally */
673	if (cpu == rq->mq_ctx->cpu ||
674	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
675	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
676		return false;
677
678	/* don't try to IPI to an offline CPU */
679	return cpu_online(rq->mq_ctx->cpu);
680}
681
682bool blk_mq_complete_request_remote(struct request *rq)
683{
684	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
685
686	/*
687	 * For a polled request, always complete locallly, it's pointless
688	 * to redirect the completion.
689	 */
690	if (rq->cmd_flags & REQ_HIPRI)
691		return false;
692
693	if (blk_mq_complete_need_ipi(rq)) {
694		rq->csd.func = __blk_mq_complete_request_remote;
695		rq->csd.info = rq;
696		rq->csd.flags = 0;
697		smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
698	} else {
699		if (rq->q->nr_hw_queues > 1)
700			return false;
701		blk_mq_trigger_softirq(rq);
702	}
703
704	return true;
705}
706EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
707
708/**
709 * blk_mq_complete_request - end I/O on a request
710 * @rq:		the request being processed
711 *
712 * Description:
713 *	Complete a request by scheduling the ->complete_rq operation.
714 **/
715void blk_mq_complete_request(struct request *rq)
716{
717	if (!blk_mq_complete_request_remote(rq))
718		rq->q->mq_ops->complete(rq);
719}
720EXPORT_SYMBOL(blk_mq_complete_request);
721
722static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
723	__releases(hctx->srcu)
724{
725	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
726		rcu_read_unlock();
727	else
728		srcu_read_unlock(hctx->srcu, srcu_idx);
729}
730
731static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
732	__acquires(hctx->srcu)
733{
734	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
735		/* shut up gcc false positive */
736		*srcu_idx = 0;
737		rcu_read_lock();
738	} else
739		*srcu_idx = srcu_read_lock(hctx->srcu);
740}
741
742/**
743 * blk_mq_start_request - Start processing a request
744 * @rq: Pointer to request to be started
745 *
746 * Function used by device drivers to notify the block layer that a request
747 * is going to be processed now, so blk layer can do proper initializations
748 * such as starting the timeout timer.
749 */
750void blk_mq_start_request(struct request *rq)
751{
752	struct request_queue *q = rq->q;
753
754	trace_block_rq_issue(rq);
755
756	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
757		rq->io_start_time_ns = ktime_get_ns();
758		rq->stats_sectors = blk_rq_sectors(rq);
759		rq->rq_flags |= RQF_STATS;
760		rq_qos_issue(q, rq);
761	}
762
763	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
764
765	blk_add_timer(rq);
766	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
767
768#ifdef CONFIG_BLK_DEV_INTEGRITY
769	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
770		q->integrity.profile->prepare_fn(rq);
771#endif
772}
773EXPORT_SYMBOL(blk_mq_start_request);
774
775static void __blk_mq_requeue_request(struct request *rq)
776{
777	struct request_queue *q = rq->q;
778
779	blk_mq_put_driver_tag(rq);
780
781	trace_block_rq_requeue(rq);
782	rq_qos_requeue(q, rq);
783
784	if (blk_mq_request_started(rq)) {
785		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
786		rq->rq_flags &= ~RQF_TIMED_OUT;
787	}
788}
789
790void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
791{
792	__blk_mq_requeue_request(rq);
793
794	/* this request will be re-inserted to io scheduler queue */
795	blk_mq_sched_requeue_request(rq);
796
797	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
798}
799EXPORT_SYMBOL(blk_mq_requeue_request);
800
801static void blk_mq_requeue_work(struct work_struct *work)
802{
803	struct request_queue *q =
804		container_of(work, struct request_queue, requeue_work.work);
805	LIST_HEAD(rq_list);
806	struct request *rq, *next;
807
808	spin_lock_irq(&q->requeue_lock);
809	list_splice_init(&q->requeue_list, &rq_list);
810	spin_unlock_irq(&q->requeue_lock);
811
812	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
813		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
814			continue;
815
816		rq->rq_flags &= ~RQF_SOFTBARRIER;
817		list_del_init(&rq->queuelist);
818		/*
819		 * If RQF_DONTPREP, rq has contained some driver specific
820		 * data, so insert it to hctx dispatch list to avoid any
821		 * merge.
822		 */
823		if (rq->rq_flags & RQF_DONTPREP)
824			blk_mq_request_bypass_insert(rq, false, false);
825		else
826			blk_mq_sched_insert_request(rq, true, false, false);
827	}
828
829	while (!list_empty(&rq_list)) {
830		rq = list_entry(rq_list.next, struct request, queuelist);
831		list_del_init(&rq->queuelist);
832		blk_mq_sched_insert_request(rq, false, false, false);
833	}
834
835	blk_mq_run_hw_queues(q, false);
836}
837
838void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
839				bool kick_requeue_list)
840{
841	struct request_queue *q = rq->q;
842	unsigned long flags;
843
844	/*
845	 * We abuse this flag that is otherwise used by the I/O scheduler to
846	 * request head insertion from the workqueue.
847	 */
848	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
849
850	spin_lock_irqsave(&q->requeue_lock, flags);
851	if (at_head) {
852		rq->rq_flags |= RQF_SOFTBARRIER;
853		list_add(&rq->queuelist, &q->requeue_list);
854	} else {
855		list_add_tail(&rq->queuelist, &q->requeue_list);
856	}
857	spin_unlock_irqrestore(&q->requeue_lock, flags);
858
859	if (kick_requeue_list)
860		blk_mq_kick_requeue_list(q);
861}
862
863void blk_mq_kick_requeue_list(struct request_queue *q)
864{
865	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
866}
867EXPORT_SYMBOL(blk_mq_kick_requeue_list);
868
869void blk_mq_delay_kick_requeue_list(struct request_queue *q,
870				    unsigned long msecs)
871{
872	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
873				    msecs_to_jiffies(msecs));
874}
875EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
876
877struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
878{
879	if (tag < tags->nr_tags) {
880		prefetch(tags->rqs[tag]);
881		return tags->rqs[tag];
882	}
883
884	return NULL;
885}
886EXPORT_SYMBOL(blk_mq_tag_to_rq);
887
888static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
889			       void *priv, bool reserved)
890{
891	/*
892	 * If we find a request that isn't idle and the queue matches,
893	 * we know the queue is busy. Return false to stop the iteration.
894	 */
895	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
896		bool *busy = priv;
897
898		*busy = true;
899		return false;
900	}
901
902	return true;
903}
904
905bool blk_mq_queue_inflight(struct request_queue *q)
906{
907	bool busy = false;
908
909	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
910	return busy;
911}
912EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
913
914static void blk_mq_rq_timed_out(struct request *req, bool reserved)
915{
916	req->rq_flags |= RQF_TIMED_OUT;
917	if (req->q->mq_ops->timeout) {
918		enum blk_eh_timer_return ret;
919
920		ret = req->q->mq_ops->timeout(req, reserved);
921		if (ret == BLK_EH_DONE)
922			return;
923		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
924	}
925
926	blk_add_timer(req);
927}
928
929static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
930{
931	unsigned long deadline;
932
933	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
934		return false;
935	if (rq->rq_flags & RQF_TIMED_OUT)
936		return false;
937
938	deadline = READ_ONCE(rq->deadline);
939	if (time_after_eq(jiffies, deadline))
940		return true;
941
942	if (*next == 0)
943		*next = deadline;
944	else if (time_after(*next, deadline))
945		*next = deadline;
946	return false;
947}
948
949void blk_mq_put_rq_ref(struct request *rq)
950{
951	if (is_flush_rq(rq))
952		rq->end_io(rq, 0);
953	else if (refcount_dec_and_test(&rq->ref))
954		__blk_mq_free_request(rq);
955}
956
957static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
958		struct request *rq, void *priv, bool reserved)
959{
960	unsigned long *next = priv;
961
962	/*
963	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
964	 * be reallocated underneath the timeout handler's processing, then
965	 * the expire check is reliable. If the request is not expired, then
966	 * it was completed and reallocated as a new request after returning
967	 * from blk_mq_check_expired().
968	 */
969	if (blk_mq_req_expired(rq, next))
970		blk_mq_rq_timed_out(rq, reserved);
971	return true;
972}
973
974static void blk_mq_timeout_work(struct work_struct *work)
975{
976	struct request_queue *q =
977		container_of(work, struct request_queue, timeout_work);
978	unsigned long next = 0;
979	struct blk_mq_hw_ctx *hctx;
980	int i;
981
982	/* A deadlock might occur if a request is stuck requiring a
983	 * timeout at the same time a queue freeze is waiting
984	 * completion, since the timeout code would not be able to
985	 * acquire the queue reference here.
986	 *
987	 * That's why we don't use blk_queue_enter here; instead, we use
988	 * percpu_ref_tryget directly, because we need to be able to
989	 * obtain a reference even in the short window between the queue
990	 * starting to freeze, by dropping the first reference in
991	 * blk_freeze_queue_start, and the moment the last request is
992	 * consumed, marked by the instant q_usage_counter reaches
993	 * zero.
994	 */
995	if (!percpu_ref_tryget(&q->q_usage_counter))
996		return;
997
998	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
999
1000	if (next != 0) {
1001		mod_timer(&q->timeout, next);
1002	} else {
1003		/*
1004		 * Request timeouts are handled as a forward rolling timer. If
1005		 * we end up here it means that no requests are pending and
1006		 * also that no request has been pending for a while. Mark
1007		 * each hctx as idle.
1008		 */
1009		queue_for_each_hw_ctx(q, hctx, i) {
1010			/* the hctx may be unmapped, so check it here */
1011			if (blk_mq_hw_queue_mapped(hctx))
1012				blk_mq_tag_idle(hctx);
1013		}
1014	}
1015	blk_queue_exit(q);
1016}
1017
1018struct flush_busy_ctx_data {
1019	struct blk_mq_hw_ctx *hctx;
1020	struct list_head *list;
1021};
1022
1023static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1024{
1025	struct flush_busy_ctx_data *flush_data = data;
1026	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1027	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1028	enum hctx_type type = hctx->type;
1029
1030	spin_lock(&ctx->lock);
1031	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1032	sbitmap_clear_bit(sb, bitnr);
1033	spin_unlock(&ctx->lock);
1034	return true;
1035}
1036
1037/*
1038 * Process software queues that have been marked busy, splicing them
1039 * to the for-dispatch
1040 */
1041void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1042{
1043	struct flush_busy_ctx_data data = {
1044		.hctx = hctx,
1045		.list = list,
1046	};
1047
1048	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1049}
1050EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1051
1052struct dispatch_rq_data {
1053	struct blk_mq_hw_ctx *hctx;
1054	struct request *rq;
1055};
1056
1057static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1058		void *data)
1059{
1060	struct dispatch_rq_data *dispatch_data = data;
1061	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1062	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1063	enum hctx_type type = hctx->type;
1064
1065	spin_lock(&ctx->lock);
1066	if (!list_empty(&ctx->rq_lists[type])) {
1067		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1068		list_del_init(&dispatch_data->rq->queuelist);
1069		if (list_empty(&ctx->rq_lists[type]))
1070			sbitmap_clear_bit(sb, bitnr);
1071	}
1072	spin_unlock(&ctx->lock);
1073
1074	return !dispatch_data->rq;
1075}
1076
1077struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1078					struct blk_mq_ctx *start)
1079{
1080	unsigned off = start ? start->index_hw[hctx->type] : 0;
1081	struct dispatch_rq_data data = {
1082		.hctx = hctx,
1083		.rq   = NULL,
1084	};
1085
1086	__sbitmap_for_each_set(&hctx->ctx_map, off,
1087			       dispatch_rq_from_ctx, &data);
1088
1089	return data.rq;
1090}
1091
1092static inline unsigned int queued_to_index(unsigned int queued)
1093{
1094	if (!queued)
1095		return 0;
1096
1097	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1098}
1099
1100static bool __blk_mq_get_driver_tag(struct request *rq)
1101{
1102	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1103	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1104	int tag;
1105
1106	blk_mq_tag_busy(rq->mq_hctx);
1107
1108	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1109		bt = rq->mq_hctx->tags->breserved_tags;
1110		tag_offset = 0;
1111	} else {
1112		if (!hctx_may_queue(rq->mq_hctx, bt))
1113			return false;
1114	}
1115
1116	tag = __sbitmap_queue_get(bt);
1117	if (tag == BLK_MQ_NO_TAG)
1118		return false;
1119
1120	rq->tag = tag + tag_offset;
1121	return true;
1122}
1123
1124static bool blk_mq_get_driver_tag(struct request *rq)
1125{
1126	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1127
1128	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1129		return false;
1130
1131	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1132			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1133		rq->rq_flags |= RQF_MQ_INFLIGHT;
1134		__blk_mq_inc_active_requests(hctx);
1135	}
1136	hctx->tags->rqs[rq->tag] = rq;
1137	return true;
1138}
1139
1140static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1141				int flags, void *key)
1142{
1143	struct blk_mq_hw_ctx *hctx;
1144
1145	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1146
1147	spin_lock(&hctx->dispatch_wait_lock);
1148	if (!list_empty(&wait->entry)) {
1149		struct sbitmap_queue *sbq;
1150
1151		list_del_init(&wait->entry);
1152		sbq = hctx->tags->bitmap_tags;
1153		atomic_dec(&sbq->ws_active);
1154	}
1155	spin_unlock(&hctx->dispatch_wait_lock);
1156
1157	blk_mq_run_hw_queue(hctx, true);
1158	return 1;
1159}
1160
1161/*
1162 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1163 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1164 * restart. For both cases, take care to check the condition again after
1165 * marking us as waiting.
1166 */
1167static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1168				 struct request *rq)
1169{
1170	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1171	struct wait_queue_head *wq;
1172	wait_queue_entry_t *wait;
1173	bool ret;
1174
1175	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1176		blk_mq_sched_mark_restart_hctx(hctx);
1177
1178		/*
1179		 * It's possible that a tag was freed in the window between the
1180		 * allocation failure and adding the hardware queue to the wait
1181		 * queue.
1182		 *
1183		 * Don't clear RESTART here, someone else could have set it.
1184		 * At most this will cost an extra queue run.
1185		 */
1186		return blk_mq_get_driver_tag(rq);
1187	}
1188
1189	wait = &hctx->dispatch_wait;
1190	if (!list_empty_careful(&wait->entry))
1191		return false;
1192
1193	wq = &bt_wait_ptr(sbq, hctx)->wait;
1194
1195	spin_lock_irq(&wq->lock);
1196	spin_lock(&hctx->dispatch_wait_lock);
1197	if (!list_empty(&wait->entry)) {
1198		spin_unlock(&hctx->dispatch_wait_lock);
1199		spin_unlock_irq(&wq->lock);
1200		return false;
1201	}
1202
1203	atomic_inc(&sbq->ws_active);
1204	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1205	__add_wait_queue(wq, wait);
1206
1207	/*
1208	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1209	 * not imply barrier in case of failure.
1210	 *
1211	 * Order adding us to wait queue and allocating driver tag.
1212	 *
1213	 * The pair is the one implied in sbitmap_queue_wake_up() which
1214	 * orders clearing sbitmap tag bits and waitqueue_active() in
1215	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1216	 *
1217	 * Otherwise, re-order of adding wait queue and getting driver tag
1218	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1219	 * the waitqueue_active() may not observe us in wait queue.
1220	 */
1221	smp_mb();
1222
1223	/*
1224	 * It's possible that a tag was freed in the window between the
1225	 * allocation failure and adding the hardware queue to the wait
1226	 * queue.
1227	 */
1228	ret = blk_mq_get_driver_tag(rq);
1229	if (!ret) {
1230		spin_unlock(&hctx->dispatch_wait_lock);
1231		spin_unlock_irq(&wq->lock);
1232		return false;
1233	}
1234
1235	/*
1236	 * We got a tag, remove ourselves from the wait queue to ensure
1237	 * someone else gets the wakeup.
1238	 */
1239	list_del_init(&wait->entry);
1240	atomic_dec(&sbq->ws_active);
1241	spin_unlock(&hctx->dispatch_wait_lock);
1242	spin_unlock_irq(&wq->lock);
1243
1244	return true;
1245}
1246
1247#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1248#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1249/*
1250 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1251 * - EWMA is one simple way to compute running average value
1252 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1253 * - take 4 as factor for avoiding to get too small(0) result, and this
1254 *   factor doesn't matter because EWMA decreases exponentially
1255 */
1256static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1257{
1258	unsigned int ewma;
1259
1260	ewma = hctx->dispatch_busy;
1261
1262	if (!ewma && !busy)
1263		return;
1264
1265	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1266	if (busy)
1267		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1268	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1269
1270	hctx->dispatch_busy = ewma;
1271}
1272
1273#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1274
1275static void blk_mq_handle_dev_resource(struct request *rq,
1276				       struct list_head *list)
1277{
1278	struct request *next =
1279		list_first_entry_or_null(list, struct request, queuelist);
1280
1281	/*
1282	 * If an I/O scheduler has been configured and we got a driver tag for
1283	 * the next request already, free it.
1284	 */
1285	if (next)
1286		blk_mq_put_driver_tag(next);
1287
1288	list_add(&rq->queuelist, list);
1289	__blk_mq_requeue_request(rq);
1290}
1291
1292static void blk_mq_handle_zone_resource(struct request *rq,
1293					struct list_head *zone_list)
1294{
1295	/*
1296	 * If we end up here it is because we cannot dispatch a request to a
1297	 * specific zone due to LLD level zone-write locking or other zone
1298	 * related resource not being available. In this case, set the request
1299	 * aside in zone_list for retrying it later.
1300	 */
1301	list_add(&rq->queuelist, zone_list);
1302	__blk_mq_requeue_request(rq);
1303}
1304
1305enum prep_dispatch {
1306	PREP_DISPATCH_OK,
1307	PREP_DISPATCH_NO_TAG,
1308	PREP_DISPATCH_NO_BUDGET,
1309};
1310
1311static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1312						  bool need_budget)
1313{
1314	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1315
1316	if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1317		blk_mq_put_driver_tag(rq);
1318		return PREP_DISPATCH_NO_BUDGET;
1319	}
1320
1321	if (!blk_mq_get_driver_tag(rq)) {
1322		/*
1323		 * The initial allocation attempt failed, so we need to
1324		 * rerun the hardware queue when a tag is freed. The
1325		 * waitqueue takes care of that. If the queue is run
1326		 * before we add this entry back on the dispatch list,
1327		 * we'll re-run it below.
1328		 */
1329		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1330			/*
1331			 * All budgets not got from this function will be put
1332			 * together during handling partial dispatch
1333			 */
1334			if (need_budget)
1335				blk_mq_put_dispatch_budget(rq->q);
1336			return PREP_DISPATCH_NO_TAG;
1337		}
1338	}
1339
1340	return PREP_DISPATCH_OK;
1341}
1342
1343/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1344static void blk_mq_release_budgets(struct request_queue *q,
1345		unsigned int nr_budgets)
1346{
1347	int i;
1348
1349	for (i = 0; i < nr_budgets; i++)
1350		blk_mq_put_dispatch_budget(q);
1351}
1352
1353/*
1354 * Returns true if we did some work AND can potentially do more.
1355 */
1356bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1357			     unsigned int nr_budgets)
1358{
1359	enum prep_dispatch prep;
1360	struct request_queue *q = hctx->queue;
1361	struct request *rq, *nxt;
1362	int errors, queued;
1363	blk_status_t ret = BLK_STS_OK;
1364	LIST_HEAD(zone_list);
1365	bool needs_resource = false;
1366
1367	if (list_empty(list))
1368		return false;
1369
1370	/*
1371	 * Now process all the entries, sending them to the driver.
1372	 */
1373	errors = queued = 0;
1374	do {
1375		struct blk_mq_queue_data bd;
1376
1377		rq = list_first_entry(list, struct request, queuelist);
1378
1379		WARN_ON_ONCE(hctx != rq->mq_hctx);
1380		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1381		if (prep != PREP_DISPATCH_OK)
1382			break;
1383
1384		list_del_init(&rq->queuelist);
1385
1386		bd.rq = rq;
1387
1388		/*
1389		 * Flag last if we have no more requests, or if we have more
1390		 * but can't assign a driver tag to it.
1391		 */
1392		if (list_empty(list))
1393			bd.last = true;
1394		else {
1395			nxt = list_first_entry(list, struct request, queuelist);
1396			bd.last = !blk_mq_get_driver_tag(nxt);
1397		}
1398
1399		/*
1400		 * once the request is queued to lld, no need to cover the
1401		 * budget any more
1402		 */
1403		if (nr_budgets)
1404			nr_budgets--;
1405		ret = q->mq_ops->queue_rq(hctx, &bd);
1406		switch (ret) {
1407		case BLK_STS_OK:
1408			queued++;
1409			break;
1410		case BLK_STS_RESOURCE:
1411			needs_resource = true;
1412			fallthrough;
1413		case BLK_STS_DEV_RESOURCE:
1414			blk_mq_handle_dev_resource(rq, list);
1415			goto out;
1416		case BLK_STS_ZONE_RESOURCE:
1417			/*
1418			 * Move the request to zone_list and keep going through
1419			 * the dispatch list to find more requests the drive can
1420			 * accept.
1421			 */
1422			blk_mq_handle_zone_resource(rq, &zone_list);
1423			needs_resource = true;
1424			break;
1425		default:
1426			errors++;
1427			blk_mq_end_request(rq, BLK_STS_IOERR);
1428		}
1429	} while (!list_empty(list));
1430out:
1431	if (!list_empty(&zone_list))
1432		list_splice_tail_init(&zone_list, list);
1433
1434	hctx->dispatched[queued_to_index(queued)]++;
1435
1436	/* If we didn't flush the entire list, we could have told the driver
1437	 * there was more coming, but that turned out to be a lie.
1438	 */
1439	if ((!list_empty(list) || errors || needs_resource ||
1440	     ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
1441		q->mq_ops->commit_rqs(hctx);
1442	/*
1443	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1444	 * that is where we will continue on next queue run.
1445	 */
1446	if (!list_empty(list)) {
1447		bool needs_restart;
1448		/* For non-shared tags, the RESTART check will suffice */
1449		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1450			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1451
1452		blk_mq_release_budgets(q, nr_budgets);
1453
1454		spin_lock(&hctx->lock);
1455		list_splice_tail_init(list, &hctx->dispatch);
1456		spin_unlock(&hctx->lock);
1457
1458		/*
1459		 * Order adding requests to hctx->dispatch and checking
1460		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1461		 * in blk_mq_sched_restart(). Avoid restart code path to
1462		 * miss the new added requests to hctx->dispatch, meantime
1463		 * SCHED_RESTART is observed here.
1464		 */
1465		smp_mb();
1466
1467		/*
1468		 * If SCHED_RESTART was set by the caller of this function and
1469		 * it is no longer set that means that it was cleared by another
1470		 * thread and hence that a queue rerun is needed.
1471		 *
1472		 * If 'no_tag' is set, that means that we failed getting
1473		 * a driver tag with an I/O scheduler attached. If our dispatch
1474		 * waitqueue is no longer active, ensure that we run the queue
1475		 * AFTER adding our entries back to the list.
1476		 *
1477		 * If no I/O scheduler has been configured it is possible that
1478		 * the hardware queue got stopped and restarted before requests
1479		 * were pushed back onto the dispatch list. Rerun the queue to
1480		 * avoid starvation. Notes:
1481		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1482		 *   been stopped before rerunning a queue.
1483		 * - Some but not all block drivers stop a queue before
1484		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1485		 *   and dm-rq.
1486		 *
1487		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1488		 * bit is set, run queue after a delay to avoid IO stalls
1489		 * that could otherwise occur if the queue is idle.  We'll do
1490		 * similar if we couldn't get budget or couldn't lock a zone
1491		 * and SCHED_RESTART is set.
1492		 */
1493		needs_restart = blk_mq_sched_needs_restart(hctx);
1494		if (prep == PREP_DISPATCH_NO_BUDGET)
1495			needs_resource = true;
1496		if (!needs_restart ||
1497		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1498			blk_mq_run_hw_queue(hctx, true);
1499		else if (needs_restart && needs_resource)
1500			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1501
1502		blk_mq_update_dispatch_busy(hctx, true);
1503		return false;
1504	} else
1505		blk_mq_update_dispatch_busy(hctx, false);
1506
1507	return (queued + errors) != 0;
1508}
1509
1510/**
1511 * __blk_mq_run_hw_queue - Run a hardware queue.
1512 * @hctx: Pointer to the hardware queue to run.
1513 *
1514 * Send pending requests to the hardware.
1515 */
1516static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1517{
1518	int srcu_idx;
1519
1520	/*
1521	 * We should be running this queue from one of the CPUs that
1522	 * are mapped to it.
1523	 *
1524	 * There are at least two related races now between setting
1525	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1526	 * __blk_mq_run_hw_queue():
1527	 *
1528	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1529	 *   but later it becomes online, then this warning is harmless
1530	 *   at all
1531	 *
1532	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1533	 *   but later it becomes offline, then the warning can't be
1534	 *   triggered, and we depend on blk-mq timeout handler to
1535	 *   handle dispatched requests to this hctx
1536	 */
1537	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1538		cpu_online(hctx->next_cpu)) {
1539		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1540			raw_smp_processor_id(),
1541			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1542		dump_stack();
1543	}
1544
1545	/*
1546	 * We can't run the queue inline with ints disabled. Ensure that
1547	 * we catch bad users of this early.
1548	 */
1549	WARN_ON_ONCE(in_interrupt());
1550
1551	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1552
1553	hctx_lock(hctx, &srcu_idx);
1554	blk_mq_sched_dispatch_requests(hctx);
1555	hctx_unlock(hctx, srcu_idx);
1556}
1557
1558static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1559{
1560	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1561
1562	if (cpu >= nr_cpu_ids)
1563		cpu = cpumask_first(hctx->cpumask);
1564	return cpu;
1565}
1566
1567/*
1568 * It'd be great if the workqueue API had a way to pass
1569 * in a mask and had some smarts for more clever placement.
1570 * For now we just round-robin here, switching for every
1571 * BLK_MQ_CPU_WORK_BATCH queued items.
1572 */
1573static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1574{
1575	bool tried = false;
1576	int next_cpu = hctx->next_cpu;
1577
1578	if (hctx->queue->nr_hw_queues == 1)
1579		return WORK_CPU_UNBOUND;
1580
1581	if (--hctx->next_cpu_batch <= 0) {
1582select_cpu:
1583		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1584				cpu_online_mask);
1585		if (next_cpu >= nr_cpu_ids)
1586			next_cpu = blk_mq_first_mapped_cpu(hctx);
1587		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1588	}
1589
1590	/*
1591	 * Do unbound schedule if we can't find a online CPU for this hctx,
1592	 * and it should only happen in the path of handling CPU DEAD.
1593	 */
1594	if (!cpu_online(next_cpu)) {
1595		if (!tried) {
1596			tried = true;
1597			goto select_cpu;
1598		}
1599
1600		/*
1601		 * Make sure to re-select CPU next time once after CPUs
1602		 * in hctx->cpumask become online again.
1603		 */
1604		hctx->next_cpu = next_cpu;
1605		hctx->next_cpu_batch = 1;
1606		return WORK_CPU_UNBOUND;
1607	}
1608
1609	hctx->next_cpu = next_cpu;
1610	return next_cpu;
1611}
1612
1613/**
1614 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1615 * @hctx: Pointer to the hardware queue to run.
1616 * @async: If we want to run the queue asynchronously.
1617 * @msecs: Microseconds of delay to wait before running the queue.
1618 *
1619 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1620 * with a delay of @msecs.
1621 */
1622static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1623					unsigned long msecs)
1624{
1625	if (unlikely(blk_mq_hctx_stopped(hctx)))
1626		return;
1627
1628	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1629		int cpu = get_cpu();
1630		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1631			__blk_mq_run_hw_queue(hctx);
1632			put_cpu();
1633			return;
1634		}
1635
1636		put_cpu();
1637	}
1638
1639	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1640				    msecs_to_jiffies(msecs));
1641}
1642
1643/**
1644 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1645 * @hctx: Pointer to the hardware queue to run.
1646 * @msecs: Microseconds of delay to wait before running the queue.
1647 *
1648 * Run a hardware queue asynchronously with a delay of @msecs.
1649 */
1650void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1651{
1652	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1653}
1654EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1655
1656/**
1657 * blk_mq_run_hw_queue - Start to run a hardware queue.
1658 * @hctx: Pointer to the hardware queue to run.
1659 * @async: If we want to run the queue asynchronously.
1660 *
1661 * Check if the request queue is not in a quiesced state and if there are
1662 * pending requests to be sent. If this is true, run the queue to send requests
1663 * to hardware.
1664 */
1665void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1666{
1667	int srcu_idx;
1668	bool need_run;
1669
1670	/*
1671	 * When queue is quiesced, we may be switching io scheduler, or
1672	 * updating nr_hw_queues, or other things, and we can't run queue
1673	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1674	 *
1675	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1676	 * quiesced.
1677	 */
1678	hctx_lock(hctx, &srcu_idx);
1679	need_run = !blk_queue_quiesced(hctx->queue) &&
1680		blk_mq_hctx_has_pending(hctx);
1681	hctx_unlock(hctx, srcu_idx);
1682
1683	if (need_run)
1684		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1685}
1686EXPORT_SYMBOL(blk_mq_run_hw_queue);
1687
1688/**
1689 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1690 * @q: Pointer to the request queue to run.
1691 * @async: If we want to run the queue asynchronously.
1692 */
1693void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1694{
1695	struct blk_mq_hw_ctx *hctx;
1696	int i;
1697
1698	queue_for_each_hw_ctx(q, hctx, i) {
1699		if (blk_mq_hctx_stopped(hctx))
1700			continue;
1701
1702		blk_mq_run_hw_queue(hctx, async);
1703	}
1704}
1705EXPORT_SYMBOL(blk_mq_run_hw_queues);
1706
1707/**
1708 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1709 * @q: Pointer to the request queue to run.
1710 * @msecs: Microseconds of delay to wait before running the queues.
1711 */
1712void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1713{
1714	struct blk_mq_hw_ctx *hctx;
1715	int i;
1716
1717	queue_for_each_hw_ctx(q, hctx, i) {
1718		if (blk_mq_hctx_stopped(hctx))
1719			continue;
1720
1721		blk_mq_delay_run_hw_queue(hctx, msecs);
1722	}
1723}
1724EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1725
1726/**
1727 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1728 * @q: request queue.
1729 *
1730 * The caller is responsible for serializing this function against
1731 * blk_mq_{start,stop}_hw_queue().
1732 */
1733bool blk_mq_queue_stopped(struct request_queue *q)
1734{
1735	struct blk_mq_hw_ctx *hctx;
1736	int i;
1737
1738	queue_for_each_hw_ctx(q, hctx, i)
1739		if (blk_mq_hctx_stopped(hctx))
1740			return true;
1741
1742	return false;
1743}
1744EXPORT_SYMBOL(blk_mq_queue_stopped);
1745
1746/*
1747 * This function is often used for pausing .queue_rq() by driver when
1748 * there isn't enough resource or some conditions aren't satisfied, and
1749 * BLK_STS_RESOURCE is usually returned.
1750 *
1751 * We do not guarantee that dispatch can be drained or blocked
1752 * after blk_mq_stop_hw_queue() returns. Please use
1753 * blk_mq_quiesce_queue() for that requirement.
1754 */
1755void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1756{
1757	cancel_delayed_work(&hctx->run_work);
1758
1759	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1760}
1761EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1762
1763/*
1764 * This function is often used for pausing .queue_rq() by driver when
1765 * there isn't enough resource or some conditions aren't satisfied, and
1766 * BLK_STS_RESOURCE is usually returned.
1767 *
1768 * We do not guarantee that dispatch can be drained or blocked
1769 * after blk_mq_stop_hw_queues() returns. Please use
1770 * blk_mq_quiesce_queue() for that requirement.
1771 */
1772void blk_mq_stop_hw_queues(struct request_queue *q)
1773{
1774	struct blk_mq_hw_ctx *hctx;
1775	int i;
1776
1777	queue_for_each_hw_ctx(q, hctx, i)
1778		blk_mq_stop_hw_queue(hctx);
1779}
1780EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1781
1782void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1783{
1784	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1785
1786	blk_mq_run_hw_queue(hctx, false);
1787}
1788EXPORT_SYMBOL(blk_mq_start_hw_queue);
1789
1790void blk_mq_start_hw_queues(struct request_queue *q)
1791{
1792	struct blk_mq_hw_ctx *hctx;
1793	int i;
1794
1795	queue_for_each_hw_ctx(q, hctx, i)
1796		blk_mq_start_hw_queue(hctx);
1797}
1798EXPORT_SYMBOL(blk_mq_start_hw_queues);
1799
1800void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1801{
1802	if (!blk_mq_hctx_stopped(hctx))
1803		return;
1804
1805	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1806	blk_mq_run_hw_queue(hctx, async);
1807}
1808EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1809
1810void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1811{
1812	struct blk_mq_hw_ctx *hctx;
1813	int i;
1814
1815	queue_for_each_hw_ctx(q, hctx, i)
1816		blk_mq_start_stopped_hw_queue(hctx, async);
1817}
1818EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1819
1820static void blk_mq_run_work_fn(struct work_struct *work)
1821{
1822	struct blk_mq_hw_ctx *hctx;
1823
1824	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1825
1826	/*
1827	 * If we are stopped, don't run the queue.
1828	 */
1829	if (blk_mq_hctx_stopped(hctx))
1830		return;
1831
1832	__blk_mq_run_hw_queue(hctx);
1833}
1834
1835static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1836					    struct request *rq,
1837					    bool at_head)
1838{
1839	struct blk_mq_ctx *ctx = rq->mq_ctx;
1840	enum hctx_type type = hctx->type;
1841
1842	lockdep_assert_held(&ctx->lock);
1843
1844	trace_block_rq_insert(rq);
1845
1846	if (at_head)
1847		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1848	else
1849		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1850}
1851
1852void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1853			     bool at_head)
1854{
1855	struct blk_mq_ctx *ctx = rq->mq_ctx;
1856
1857	lockdep_assert_held(&ctx->lock);
1858
1859	__blk_mq_insert_req_list(hctx, rq, at_head);
1860	blk_mq_hctx_mark_pending(hctx, ctx);
1861}
1862
1863/**
1864 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1865 * @rq: Pointer to request to be inserted.
1866 * @at_head: true if the request should be inserted at the head of the list.
1867 * @run_queue: If we should run the hardware queue after inserting the request.
1868 *
1869 * Should only be used carefully, when the caller knows we want to
1870 * bypass a potential IO scheduler on the target device.
1871 */
1872void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1873				  bool run_queue)
1874{
1875	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1876
1877	spin_lock(&hctx->lock);
1878	if (at_head)
1879		list_add(&rq->queuelist, &hctx->dispatch);
1880	else
1881		list_add_tail(&rq->queuelist, &hctx->dispatch);
1882	spin_unlock(&hctx->lock);
1883
1884	if (run_queue)
1885		blk_mq_run_hw_queue(hctx, false);
1886}
1887
1888void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1889			    struct list_head *list)
1890
1891{
1892	struct request *rq;
1893	enum hctx_type type = hctx->type;
1894
1895	/*
1896	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1897	 * offline now
1898	 */
1899	list_for_each_entry(rq, list, queuelist) {
1900		BUG_ON(rq->mq_ctx != ctx);
1901		trace_block_rq_insert(rq);
1902	}
1903
1904	spin_lock(&ctx->lock);
1905	list_splice_tail_init(list, &ctx->rq_lists[type]);
1906	blk_mq_hctx_mark_pending(hctx, ctx);
1907	spin_unlock(&ctx->lock);
1908}
1909
1910static int plug_rq_cmp(void *priv, const struct list_head *a,
1911		       const struct list_head *b)
1912{
1913	struct request *rqa = container_of(a, struct request, queuelist);
1914	struct request *rqb = container_of(b, struct request, queuelist);
1915
1916	if (rqa->mq_ctx != rqb->mq_ctx)
1917		return rqa->mq_ctx > rqb->mq_ctx;
1918	if (rqa->mq_hctx != rqb->mq_hctx)
1919		return rqa->mq_hctx > rqb->mq_hctx;
1920
1921	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1922}
1923
1924void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1925{
1926	LIST_HEAD(list);
1927
1928	if (list_empty(&plug->mq_list))
1929		return;
1930	list_splice_init(&plug->mq_list, &list);
1931
1932	if (plug->rq_count > 2 && plug->multiple_queues)
1933		list_sort(NULL, &list, plug_rq_cmp);
1934
1935	plug->rq_count = 0;
1936
1937	do {
1938		struct list_head rq_list;
1939		struct request *rq, *head_rq = list_entry_rq(list.next);
1940		struct list_head *pos = &head_rq->queuelist; /* skip first */
1941		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1942		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1943		unsigned int depth = 1;
1944
1945		list_for_each_continue(pos, &list) {
1946			rq = list_entry_rq(pos);
1947			BUG_ON(!rq->q);
1948			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1949				break;
1950			depth++;
1951		}
1952
1953		list_cut_before(&rq_list, &list, pos);
1954		trace_block_unplug(head_rq->q, depth, !from_schedule);
1955		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1956						from_schedule);
1957	} while(!list_empty(&list));
1958}
1959
1960static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1961		unsigned int nr_segs)
1962{
1963	int err;
1964
1965	if (bio->bi_opf & REQ_RAHEAD)
1966		rq->cmd_flags |= REQ_FAILFAST_MASK;
1967
1968	rq->__sector = bio->bi_iter.bi_sector;
1969	rq->write_hint = bio->bi_write_hint;
1970	blk_rq_bio_prep(rq, bio, nr_segs);
1971
1972	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1973	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1974	WARN_ON_ONCE(err);
1975
1976	blk_account_io_start(rq);
1977}
1978
1979static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1980					    struct request *rq,
1981					    blk_qc_t *cookie, bool last)
1982{
1983	struct request_queue *q = rq->q;
1984	struct blk_mq_queue_data bd = {
1985		.rq = rq,
1986		.last = last,
1987	};
1988	blk_qc_t new_cookie;
1989	blk_status_t ret;
1990
1991	new_cookie = request_to_qc_t(hctx, rq);
1992
1993	/*
1994	 * For OK queue, we are done. For error, caller may kill it.
1995	 * Any other error (busy), just add it to our list as we
1996	 * previously would have done.
1997	 */
1998	ret = q->mq_ops->queue_rq(hctx, &bd);
1999	switch (ret) {
2000	case BLK_STS_OK:
2001		blk_mq_update_dispatch_busy(hctx, false);
2002		*cookie = new_cookie;
2003		break;
2004	case BLK_STS_RESOURCE:
2005	case BLK_STS_DEV_RESOURCE:
2006		blk_mq_update_dispatch_busy(hctx, true);
2007		__blk_mq_requeue_request(rq);
2008		break;
2009	default:
2010		blk_mq_update_dispatch_busy(hctx, false);
2011		*cookie = BLK_QC_T_NONE;
2012		break;
2013	}
2014
2015	return ret;
2016}
2017
2018static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2019						struct request *rq,
2020						blk_qc_t *cookie,
2021						bool bypass_insert, bool last)
2022{
2023	struct request_queue *q = rq->q;
2024	bool run_queue = true;
2025
2026	/*
2027	 * RCU or SRCU read lock is needed before checking quiesced flag.
2028	 *
2029	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2030	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2031	 * and avoid driver to try to dispatch again.
2032	 */
2033	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2034		run_queue = false;
2035		bypass_insert = false;
2036		goto insert;
2037	}
2038
2039	if (q->elevator && !bypass_insert)
2040		goto insert;
2041
2042	if (!blk_mq_get_dispatch_budget(q))
2043		goto insert;
2044
2045	if (!blk_mq_get_driver_tag(rq)) {
2046		blk_mq_put_dispatch_budget(q);
2047		goto insert;
2048	}
2049
2050	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2051insert:
2052	if (bypass_insert)
2053		return BLK_STS_RESOURCE;
2054
2055	blk_mq_sched_insert_request(rq, false, run_queue, false);
2056
2057	return BLK_STS_OK;
2058}
2059
2060/**
2061 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2062 * @hctx: Pointer of the associated hardware queue.
2063 * @rq: Pointer to request to be sent.
2064 * @cookie: Request queue cookie.
2065 *
2066 * If the device has enough resources to accept a new request now, send the
2067 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2068 * we can try send it another time in the future. Requests inserted at this
2069 * queue have higher priority.
2070 */
2071static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2072		struct request *rq, blk_qc_t *cookie)
2073{
2074	blk_status_t ret;
2075	int srcu_idx;
2076
2077	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2078
2079	hctx_lock(hctx, &srcu_idx);
2080
2081	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2082	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2083		blk_mq_request_bypass_insert(rq, false, true);
2084	else if (ret != BLK_STS_OK)
2085		blk_mq_end_request(rq, ret);
2086
2087	hctx_unlock(hctx, srcu_idx);
2088}
2089
2090blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2091{
2092	blk_status_t ret;
2093	int srcu_idx;
2094	blk_qc_t unused_cookie;
2095	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2096
2097	hctx_lock(hctx, &srcu_idx);
2098	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2099	hctx_unlock(hctx, srcu_idx);
2100
2101	return ret;
2102}
2103
2104void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2105		struct list_head *list)
2106{
2107	int queued = 0;
2108	int errors = 0;
2109
2110	while (!list_empty(list)) {
2111		blk_status_t ret;
2112		struct request *rq = list_first_entry(list, struct request,
2113				queuelist);
2114
2115		list_del_init(&rq->queuelist);
2116		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2117		if (ret != BLK_STS_OK) {
2118			errors++;
2119			if (ret == BLK_STS_RESOURCE ||
2120					ret == BLK_STS_DEV_RESOURCE) {
2121				blk_mq_request_bypass_insert(rq, false,
2122							list_empty(list));
2123				break;
2124			}
2125			blk_mq_end_request(rq, ret);
2126		} else
2127			queued++;
2128	}
2129
2130	/*
2131	 * If we didn't flush the entire list, we could have told
2132	 * the driver there was more coming, but that turned out to
2133	 * be a lie.
2134	 */
2135	if ((!list_empty(list) || errors) &&
2136	     hctx->queue->mq_ops->commit_rqs && queued)
2137		hctx->queue->mq_ops->commit_rqs(hctx);
2138}
2139
2140static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2141{
2142	list_add_tail(&rq->queuelist, &plug->mq_list);
2143	plug->rq_count++;
2144	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2145		struct request *tmp;
2146
2147		tmp = list_first_entry(&plug->mq_list, struct request,
2148						queuelist);
2149		if (tmp->q != rq->q)
2150			plug->multiple_queues = true;
2151	}
2152}
2153
2154/*
2155 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2156 * queues. This is important for md arrays to benefit from merging
2157 * requests.
2158 */
2159static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2160{
2161	if (plug->multiple_queues)
2162		return BLK_MAX_REQUEST_COUNT * 2;
2163	return BLK_MAX_REQUEST_COUNT;
2164}
2165
2166/**
2167 * blk_mq_submit_bio - Create and send a request to block device.
2168 * @bio: Bio pointer.
2169 *
2170 * Builds up a request structure from @q and @bio and send to the device. The
2171 * request may not be queued directly to hardware if:
2172 * * This request can be merged with another one
2173 * * We want to place request at plug queue for possible future merging
2174 * * There is an IO scheduler active at this queue
2175 *
2176 * It will not queue the request if there is an error with the bio, or at the
2177 * request creation.
2178 *
2179 * Returns: Request queue cookie.
2180 */
2181blk_qc_t blk_mq_submit_bio(struct bio *bio)
2182{
2183	struct request_queue *q = bio->bi_disk->queue;
2184	const int is_sync = op_is_sync(bio->bi_opf);
2185	const int is_flush_fua = op_is_flush(bio->bi_opf);
2186	struct blk_mq_alloc_data data = {
2187		.q		= q,
2188	};
2189	struct request *rq;
2190	struct blk_plug *plug;
2191	struct request *same_queue_rq = NULL;
2192	unsigned int nr_segs;
2193	blk_qc_t cookie;
2194	blk_status_t ret;
2195
2196	blk_queue_bounce(q, &bio);
2197	__blk_queue_split(&bio, &nr_segs);
2198
2199	if (!bio_integrity_prep(bio))
2200		goto queue_exit;
2201
2202	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2203	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2204		goto queue_exit;
2205
2206	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2207		goto queue_exit;
2208
2209	rq_qos_throttle(q, bio);
2210
2211	data.cmd_flags = bio->bi_opf;
2212	rq = __blk_mq_alloc_request(&data);
2213	if (unlikely(!rq)) {
2214		rq_qos_cleanup(q, bio);
2215		if (bio->bi_opf & REQ_NOWAIT)
2216			bio_wouldblock_error(bio);
2217		goto queue_exit;
2218	}
2219
2220	trace_block_getrq(q, bio, bio->bi_opf);
2221
2222	rq_qos_track(q, rq, bio);
2223
2224	cookie = request_to_qc_t(data.hctx, rq);
2225
2226	blk_mq_bio_to_request(rq, bio, nr_segs);
2227
2228	ret = blk_crypto_rq_get_keyslot(rq);
2229	if (ret != BLK_STS_OK) {
2230		bio->bi_status = ret;
2231		bio_endio(bio);
2232		blk_mq_free_request(rq);
2233		return BLK_QC_T_NONE;
2234	}
2235
2236	plug = blk_mq_plug(q, bio);
2237	if (unlikely(is_flush_fua)) {
2238		/* Bypass scheduler for flush requests */
2239		blk_insert_flush(rq);
2240		blk_mq_run_hw_queue(data.hctx, true);
2241	} else if (plug && (q->nr_hw_queues == 1 ||
2242		   blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2243		   q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2244		/*
2245		 * Use plugging if we have a ->commit_rqs() hook as well, as
2246		 * we know the driver uses bd->last in a smart fashion.
2247		 *
2248		 * Use normal plugging if this disk is slow HDD, as sequential
2249		 * IO may benefit a lot from plug merging.
2250		 */
2251		unsigned int request_count = plug->rq_count;
2252		struct request *last = NULL;
2253
2254		if (!request_count)
2255			trace_block_plug(q);
2256		else
2257			last = list_entry_rq(plug->mq_list.prev);
2258
2259		if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2260		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2261			blk_flush_plug_list(plug, false);
2262			trace_block_plug(q);
2263		}
2264
2265		blk_add_rq_to_plug(plug, rq);
2266	} else if (q->elevator) {
2267		/* Insert the request at the IO scheduler queue */
2268		blk_mq_sched_insert_request(rq, false, true, true);
2269	} else if (plug && !blk_queue_nomerges(q)) {
2270		/*
2271		 * We do limited plugging. If the bio can be merged, do that.
2272		 * Otherwise the existing request in the plug list will be
2273		 * issued. So the plug list will have one request at most
2274		 * The plug list might get flushed before this. If that happens,
2275		 * the plug list is empty, and same_queue_rq is invalid.
2276		 */
2277		if (list_empty(&plug->mq_list))
2278			same_queue_rq = NULL;
2279		if (same_queue_rq) {
2280			list_del_init(&same_queue_rq->queuelist);
2281			plug->rq_count--;
2282		}
2283		blk_add_rq_to_plug(plug, rq);
2284		trace_block_plug(q);
2285
2286		if (same_queue_rq) {
2287			data.hctx = same_queue_rq->mq_hctx;
2288			trace_block_unplug(q, 1, true);
2289			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2290					&cookie);
2291		}
2292	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2293			!data.hctx->dispatch_busy) {
2294		/*
2295		 * There is no scheduler and we can try to send directly
2296		 * to the hardware.
2297		 */
2298		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2299	} else {
2300		/* Default case. */
2301		blk_mq_sched_insert_request(rq, false, true, true);
2302	}
2303
2304	return cookie;
2305queue_exit:
2306	blk_queue_exit(q);
2307	return BLK_QC_T_NONE;
2308}
2309
2310static size_t order_to_size(unsigned int order)
2311{
2312	return (size_t)PAGE_SIZE << order;
2313}
2314
2315/* called before freeing request pool in @tags */
2316static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2317		struct blk_mq_tags *tags, unsigned int hctx_idx)
2318{
2319	struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2320	struct page *page;
2321	unsigned long flags;
2322
2323	list_for_each_entry(page, &tags->page_list, lru) {
2324		unsigned long start = (unsigned long)page_address(page);
2325		unsigned long end = start + order_to_size(page->private);
2326		int i;
2327
2328		for (i = 0; i < set->queue_depth; i++) {
2329			struct request *rq = drv_tags->rqs[i];
2330			unsigned long rq_addr = (unsigned long)rq;
2331
2332			if (rq_addr >= start && rq_addr < end) {
2333				WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2334				cmpxchg(&drv_tags->rqs[i], rq, NULL);
2335			}
2336		}
2337	}
2338
2339	/*
2340	 * Wait until all pending iteration is done.
2341	 *
2342	 * Request reference is cleared and it is guaranteed to be observed
2343	 * after the ->lock is released.
2344	 */
2345	spin_lock_irqsave(&drv_tags->lock, flags);
2346	spin_unlock_irqrestore(&drv_tags->lock, flags);
2347}
2348
2349void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2350		     unsigned int hctx_idx)
2351{
2352	struct page *page;
2353
2354	if (tags->rqs && set->ops->exit_request) {
2355		int i;
2356
2357		for (i = 0; i < tags->nr_tags; i++) {
2358			struct request *rq = tags->static_rqs[i];
2359
2360			if (!rq)
2361				continue;
2362			set->ops->exit_request(set, rq, hctx_idx);
2363			tags->static_rqs[i] = NULL;
2364		}
2365	}
2366
2367	blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2368
2369	while (!list_empty(&tags->page_list)) {
2370		page = list_first_entry(&tags->page_list, struct page, lru);
2371		list_del_init(&page->lru);
2372		/*
2373		 * Remove kmemleak object previously allocated in
2374		 * blk_mq_alloc_rqs().
2375		 */
2376		kmemleak_free(page_address(page));
2377		__free_pages(page, page->private);
2378	}
2379}
2380
2381void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2382{
2383	kfree(tags->rqs);
2384	tags->rqs = NULL;
2385	kfree(tags->static_rqs);
2386	tags->static_rqs = NULL;
2387
2388	blk_mq_free_tags(tags, flags);
2389}
2390
2391struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2392					unsigned int hctx_idx,
2393					unsigned int nr_tags,
2394					unsigned int reserved_tags,
2395					unsigned int flags)
2396{
2397	struct blk_mq_tags *tags;
2398	int node;
2399
2400	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2401	if (node == NUMA_NO_NODE)
2402		node = set->numa_node;
2403
2404	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2405	if (!tags)
2406		return NULL;
2407
2408	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2409				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2410				 node);
2411	if (!tags->rqs) {
2412		blk_mq_free_tags(tags, flags);
2413		return NULL;
2414	}
2415
2416	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2417					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2418					node);
2419	if (!tags->static_rqs) {
2420		kfree(tags->rqs);
2421		blk_mq_free_tags(tags, flags);
2422		return NULL;
2423	}
2424
2425	return tags;
2426}
2427
2428static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2429			       unsigned int hctx_idx, int node)
2430{
2431	int ret;
2432
2433	if (set->ops->init_request) {
2434		ret = set->ops->init_request(set, rq, hctx_idx, node);
2435		if (ret)
2436			return ret;
2437	}
2438
2439	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2440	return 0;
2441}
2442
2443int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2444		     unsigned int hctx_idx, unsigned int depth)
2445{
2446	unsigned int i, j, entries_per_page, max_order = 4;
2447	size_t rq_size, left;
2448	int node;
2449
2450	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2451	if (node == NUMA_NO_NODE)
2452		node = set->numa_node;
2453
2454	INIT_LIST_HEAD(&tags->page_list);
2455
2456	/*
2457	 * rq_size is the size of the request plus driver payload, rounded
2458	 * to the cacheline size
2459	 */
2460	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2461				cache_line_size());
2462	left = rq_size * depth;
2463
2464	for (i = 0; i < depth; ) {
2465		int this_order = max_order;
2466		struct page *page;
2467		int to_do;
2468		void *p;
2469
2470		while (this_order && left < order_to_size(this_order - 1))
2471			this_order--;
2472
2473		do {
2474			page = alloc_pages_node(node,
2475				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2476				this_order);
2477			if (page)
2478				break;
2479			if (!this_order--)
2480				break;
2481			if (order_to_size(this_order) < rq_size)
2482				break;
2483		} while (1);
2484
2485		if (!page)
2486			goto fail;
2487
2488		page->private = this_order;
2489		list_add_tail(&page->lru, &tags->page_list);
2490
2491		p = page_address(page);
2492		/*
2493		 * Allow kmemleak to scan these pages as they contain pointers
2494		 * to additional allocations like via ops->init_request().
2495		 */
2496		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2497		entries_per_page = order_to_size(this_order) / rq_size;
2498		to_do = min(entries_per_page, depth - i);
2499		left -= to_do * rq_size;
2500		for (j = 0; j < to_do; j++) {
2501			struct request *rq = p;
2502
2503			tags->static_rqs[i] = rq;
2504			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2505				tags->static_rqs[i] = NULL;
2506				goto fail;
2507			}
2508
2509			p += rq_size;
2510			i++;
2511		}
2512	}
2513	return 0;
2514
2515fail:
2516	blk_mq_free_rqs(set, tags, hctx_idx);
2517	return -ENOMEM;
2518}
2519
2520struct rq_iter_data {
2521	struct blk_mq_hw_ctx *hctx;
2522	bool has_rq;
2523};
2524
2525static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2526{
2527	struct rq_iter_data *iter_data = data;
2528
2529	if (rq->mq_hctx != iter_data->hctx)
2530		return true;
2531	iter_data->has_rq = true;
2532	return false;
2533}
2534
2535static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2536{
2537	struct blk_mq_tags *tags = hctx->sched_tags ?
2538			hctx->sched_tags : hctx->tags;
2539	struct rq_iter_data data = {
2540		.hctx	= hctx,
2541	};
2542
2543	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2544	return data.has_rq;
2545}
2546
2547static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2548		struct blk_mq_hw_ctx *hctx)
2549{
2550	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2551		return false;
2552	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2553		return false;
2554	return true;
2555}
2556
2557static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2558{
2559	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2560			struct blk_mq_hw_ctx, cpuhp_online);
2561
2562	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2563	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2564		return 0;
2565
2566	/*
2567	 * Prevent new request from being allocated on the current hctx.
2568	 *
2569	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2570	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2571	 * seen once we return from the tag allocator.
2572	 */
2573	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2574	smp_mb__after_atomic();
2575
2576	/*
2577	 * Try to grab a reference to the queue and wait for any outstanding
2578	 * requests.  If we could not grab a reference the queue has been
2579	 * frozen and there are no requests.
2580	 */
2581	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2582		while (blk_mq_hctx_has_requests(hctx))
2583			msleep(5);
2584		percpu_ref_put(&hctx->queue->q_usage_counter);
2585	}
2586
2587	return 0;
2588}
2589
2590static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2591{
2592	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2593			struct blk_mq_hw_ctx, cpuhp_online);
2594
2595	if (cpumask_test_cpu(cpu, hctx->cpumask))
2596		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2597	return 0;
2598}
2599
2600/*
2601 * 'cpu' is going away. splice any existing rq_list entries from this
2602 * software queue to the hw queue dispatch list, and ensure that it
2603 * gets run.
2604 */
2605static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2606{
2607	struct blk_mq_hw_ctx *hctx;
2608	struct blk_mq_ctx *ctx;
2609	LIST_HEAD(tmp);
2610	enum hctx_type type;
2611
2612	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2613	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2614		return 0;
2615
2616	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2617	type = hctx->type;
2618
2619	spin_lock(&ctx->lock);
2620	if (!list_empty(&ctx->rq_lists[type])) {
2621		list_splice_init(&ctx->rq_lists[type], &tmp);
2622		blk_mq_hctx_clear_pending(hctx, ctx);
2623	}
2624	spin_unlock(&ctx->lock);
2625
2626	if (list_empty(&tmp))
2627		return 0;
2628
2629	spin_lock(&hctx->lock);
2630	list_splice_tail_init(&tmp, &hctx->dispatch);
2631	spin_unlock(&hctx->lock);
2632
2633	blk_mq_run_hw_queue(hctx, true);
2634	return 0;
2635}
2636
2637static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2638{
2639	if (!(hctx->flags & BLK_MQ_F_STACKING))
2640		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2641						    &hctx->cpuhp_online);
2642	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2643					    &hctx->cpuhp_dead);
2644}
2645
2646/*
2647 * Before freeing hw queue, clearing the flush request reference in
2648 * tags->rqs[] for avoiding potential UAF.
2649 */
2650static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2651		unsigned int queue_depth, struct request *flush_rq)
2652{
2653	int i;
2654	unsigned long flags;
2655
2656	/* The hw queue may not be mapped yet */
2657	if (!tags)
2658		return;
2659
2660	WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2661
2662	for (i = 0; i < queue_depth; i++)
2663		cmpxchg(&tags->rqs[i], flush_rq, NULL);
2664
2665	/*
2666	 * Wait until all pending iteration is done.
2667	 *
2668	 * Request reference is cleared and it is guaranteed to be observed
2669	 * after the ->lock is released.
2670	 */
2671	spin_lock_irqsave(&tags->lock, flags);
2672	spin_unlock_irqrestore(&tags->lock, flags);
2673}
2674
2675/* hctx->ctxs will be freed in queue's release handler */
2676static void blk_mq_exit_hctx(struct request_queue *q,
2677		struct blk_mq_tag_set *set,
2678		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2679{
2680	struct request *flush_rq = hctx->fq->flush_rq;
2681
2682	if (blk_mq_hw_queue_mapped(hctx))
2683		blk_mq_tag_idle(hctx);
2684
2685	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2686			set->queue_depth, flush_rq);
2687	if (set->ops->exit_request)
2688		set->ops->exit_request(set, flush_rq, hctx_idx);
2689
2690	if (set->ops->exit_hctx)
2691		set->ops->exit_hctx(hctx, hctx_idx);
2692
2693	blk_mq_remove_cpuhp(hctx);
2694
2695	spin_lock(&q->unused_hctx_lock);
2696	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2697	spin_unlock(&q->unused_hctx_lock);
2698}
2699
2700static void blk_mq_exit_hw_queues(struct request_queue *q,
2701		struct blk_mq_tag_set *set, int nr_queue)
2702{
2703	struct blk_mq_hw_ctx *hctx;
2704	unsigned int i;
2705
2706	queue_for_each_hw_ctx(q, hctx, i) {
2707		if (i == nr_queue)
2708			break;
2709		blk_mq_debugfs_unregister_hctx(hctx);
2710		blk_mq_exit_hctx(q, set, hctx, i);
2711	}
2712}
2713
2714static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2715{
2716	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2717
2718	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2719			   __alignof__(struct blk_mq_hw_ctx)) !=
2720		     sizeof(struct blk_mq_hw_ctx));
2721
2722	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2723		hw_ctx_size += sizeof(struct srcu_struct);
2724
2725	return hw_ctx_size;
2726}
2727
2728static int blk_mq_init_hctx(struct request_queue *q,
2729		struct blk_mq_tag_set *set,
2730		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2731{
2732	hctx->queue_num = hctx_idx;
2733
2734	if (!(hctx->flags & BLK_MQ_F_STACKING))
2735		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2736				&hctx->cpuhp_online);
2737	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2738
2739	hctx->tags = set->tags[hctx_idx];
2740
2741	if (set->ops->init_hctx &&
2742	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2743		goto unregister_cpu_notifier;
2744
2745	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2746				hctx->numa_node))
2747		goto exit_hctx;
2748	return 0;
2749
2750 exit_hctx:
2751	if (set->ops->exit_hctx)
2752		set->ops->exit_hctx(hctx, hctx_idx);
2753 unregister_cpu_notifier:
2754	blk_mq_remove_cpuhp(hctx);
2755	return -1;
2756}
2757
2758static struct blk_mq_hw_ctx *
2759blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2760		int node)
2761{
2762	struct blk_mq_hw_ctx *hctx;
2763	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2764
2765	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2766	if (!hctx)
2767		goto fail_alloc_hctx;
2768
2769	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2770		goto free_hctx;
2771
2772	atomic_set(&hctx->nr_active, 0);
2773	atomic_set(&hctx->elevator_queued, 0);
2774	if (node == NUMA_NO_NODE)
2775		node = set->numa_node;
2776	hctx->numa_node = node;
2777
2778	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2779	spin_lock_init(&hctx->lock);
2780	INIT_LIST_HEAD(&hctx->dispatch);
2781	hctx->queue = q;
2782	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2783
2784	INIT_LIST_HEAD(&hctx->hctx_list);
2785
2786	/*
2787	 * Allocate space for all possible cpus to avoid allocation at
2788	 * runtime
2789	 */
2790	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2791			gfp, node);
2792	if (!hctx->ctxs)
2793		goto free_cpumask;
2794
2795	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2796				gfp, node))
2797		goto free_ctxs;
2798	hctx->nr_ctx = 0;
2799
2800	spin_lock_init(&hctx->dispatch_wait_lock);
2801	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2802	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2803
2804	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2805	if (!hctx->fq)
2806		goto free_bitmap;
2807
2808	if (hctx->flags & BLK_MQ_F_BLOCKING)
2809		init_srcu_struct(hctx->srcu);
2810	blk_mq_hctx_kobj_init(hctx);
2811
2812	return hctx;
2813
2814 free_bitmap:
2815	sbitmap_free(&hctx->ctx_map);
2816 free_ctxs:
2817	kfree(hctx->ctxs);
2818 free_cpumask:
2819	free_cpumask_var(hctx->cpumask);
2820 free_hctx:
2821	kfree(hctx);
2822 fail_alloc_hctx:
2823	return NULL;
2824}
2825
2826static void blk_mq_init_cpu_queues(struct request_queue *q,
2827				   unsigned int nr_hw_queues)
2828{
2829	struct blk_mq_tag_set *set = q->tag_set;
2830	unsigned int i, j;
2831
2832	for_each_possible_cpu(i) {
2833		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2834		struct blk_mq_hw_ctx *hctx;
2835		int k;
2836
2837		__ctx->cpu = i;
2838		spin_lock_init(&__ctx->lock);
2839		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2840			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2841
2842		__ctx->queue = q;
2843
2844		/*
2845		 * Set local node, IFF we have more than one hw queue. If
2846		 * not, we remain on the home node of the device
2847		 */
2848		for (j = 0; j < set->nr_maps; j++) {
2849			hctx = blk_mq_map_queue_type(q, j, i);
2850			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2851				hctx->numa_node = cpu_to_node(i);
2852		}
2853	}
2854}
2855
2856static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2857					int hctx_idx)
2858{
2859	unsigned int flags = set->flags;
2860	int ret = 0;
2861
2862	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2863					set->queue_depth, set->reserved_tags, flags);
2864	if (!set->tags[hctx_idx])
2865		return false;
2866
2867	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2868				set->queue_depth);
2869	if (!ret)
2870		return true;
2871
2872	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2873	set->tags[hctx_idx] = NULL;
2874	return false;
2875}
2876
2877static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2878					 unsigned int hctx_idx)
2879{
2880	unsigned int flags = set->flags;
2881
2882	if (set->tags && set->tags[hctx_idx]) {
2883		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2884		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2885		set->tags[hctx_idx] = NULL;
2886	}
2887}
2888
2889static void blk_mq_map_swqueue(struct request_queue *q)
2890{
2891	unsigned int i, j, hctx_idx;
2892	struct blk_mq_hw_ctx *hctx;
2893	struct blk_mq_ctx *ctx;
2894	struct blk_mq_tag_set *set = q->tag_set;
2895
2896	queue_for_each_hw_ctx(q, hctx, i) {
2897		cpumask_clear(hctx->cpumask);
2898		hctx->nr_ctx = 0;
2899		hctx->dispatch_from = NULL;
2900	}
2901
2902	/*
2903	 * Map software to hardware queues.
2904	 *
2905	 * If the cpu isn't present, the cpu is mapped to first hctx.
2906	 */
2907	for_each_possible_cpu(i) {
2908
2909		ctx = per_cpu_ptr(q->queue_ctx, i);
2910		for (j = 0; j < set->nr_maps; j++) {
2911			if (!set->map[j].nr_queues) {
2912				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2913						HCTX_TYPE_DEFAULT, i);
2914				continue;
2915			}
2916			hctx_idx = set->map[j].mq_map[i];
2917			/* unmapped hw queue can be remapped after CPU topo changed */
2918			if (!set->tags[hctx_idx] &&
2919			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2920				/*
2921				 * If tags initialization fail for some hctx,
2922				 * that hctx won't be brought online.  In this
2923				 * case, remap the current ctx to hctx[0] which
2924				 * is guaranteed to always have tags allocated
2925				 */
2926				set->map[j].mq_map[i] = 0;
2927			}
2928
2929			hctx = blk_mq_map_queue_type(q, j, i);
2930			ctx->hctxs[j] = hctx;
2931			/*
2932			 * If the CPU is already set in the mask, then we've
2933			 * mapped this one already. This can happen if
2934			 * devices share queues across queue maps.
2935			 */
2936			if (cpumask_test_cpu(i, hctx->cpumask))
2937				continue;
2938
2939			cpumask_set_cpu(i, hctx->cpumask);
2940			hctx->type = j;
2941			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2942			hctx->ctxs[hctx->nr_ctx++] = ctx;
2943
2944			/*
2945			 * If the nr_ctx type overflows, we have exceeded the
2946			 * amount of sw queues we can support.
2947			 */
2948			BUG_ON(!hctx->nr_ctx);
2949		}
2950
2951		for (; j < HCTX_MAX_TYPES; j++)
2952			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2953					HCTX_TYPE_DEFAULT, i);
2954	}
2955
2956	queue_for_each_hw_ctx(q, hctx, i) {
2957		/*
2958		 * If no software queues are mapped to this hardware queue,
2959		 * disable it and free the request entries.
2960		 */
2961		if (!hctx->nr_ctx) {
2962			/* Never unmap queue 0.  We need it as a
2963			 * fallback in case of a new remap fails
2964			 * allocation
2965			 */
2966			if (i && set->tags[i])
2967				blk_mq_free_map_and_requests(set, i);
2968
2969			hctx->tags = NULL;
2970			continue;
2971		}
2972
2973		hctx->tags = set->tags[i];
2974		WARN_ON(!hctx->tags);
2975
2976		/*
2977		 * Set the map size to the number of mapped software queues.
2978		 * This is more accurate and more efficient than looping
2979		 * over all possibly mapped software queues.
2980		 */
2981		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2982
2983		/*
2984		 * Initialize batch roundrobin counts
2985		 */
2986		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2987		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2988	}
2989}
2990
2991/*
2992 * Caller needs to ensure that we're either frozen/quiesced, or that
2993 * the queue isn't live yet.
2994 */
2995static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2996{
2997	struct blk_mq_hw_ctx *hctx;
2998	int i;
2999
3000	queue_for_each_hw_ctx(q, hctx, i) {
3001		if (shared) {
3002			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3003		} else {
3004			blk_mq_tag_idle(hctx);
3005			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3006		}
3007	}
3008}
3009
3010static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3011					 bool shared)
3012{
3013	struct request_queue *q;
3014
3015	lockdep_assert_held(&set->tag_list_lock);
3016
3017	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3018		blk_mq_freeze_queue(q);
3019		queue_set_hctx_shared(q, shared);
3020		blk_mq_unfreeze_queue(q);
3021	}
3022}
3023
3024static void blk_mq_del_queue_tag_set(struct request_queue *q)
3025{
3026	struct blk_mq_tag_set *set = q->tag_set;
3027
3028	mutex_lock(&set->tag_list_lock);
3029	list_del(&q->tag_set_list);
3030	if (list_is_singular(&set->tag_list)) {
3031		/* just transitioned to unshared */
3032		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3033		/* update existing queue */
3034		blk_mq_update_tag_set_shared(set, false);
3035	}
3036	mutex_unlock(&set->tag_list_lock);
3037	INIT_LIST_HEAD(&q->tag_set_list);
3038}
3039
3040static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3041				     struct request_queue *q)
3042{
3043	mutex_lock(&set->tag_list_lock);
3044
3045	/*
3046	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3047	 */
3048	if (!list_empty(&set->tag_list) &&
3049	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3050		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3051		/* update existing queue */
3052		blk_mq_update_tag_set_shared(set, true);
3053	}
3054	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3055		queue_set_hctx_shared(q, true);
3056	list_add_tail(&q->tag_set_list, &set->tag_list);
3057
3058	mutex_unlock(&set->tag_list_lock);
3059}
3060
3061/* All allocations will be freed in release handler of q->mq_kobj */
3062static int blk_mq_alloc_ctxs(struct request_queue *q)
3063{
3064	struct blk_mq_ctxs *ctxs;
3065	int cpu;
3066
3067	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3068	if (!ctxs)
3069		return -ENOMEM;
3070
3071	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3072	if (!ctxs->queue_ctx)
3073		goto fail;
3074
3075	for_each_possible_cpu(cpu) {
3076		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3077		ctx->ctxs = ctxs;
3078	}
3079
3080	q->mq_kobj = &ctxs->kobj;
3081	q->queue_ctx = ctxs->queue_ctx;
3082
3083	return 0;
3084 fail:
3085	kfree(ctxs);
3086	return -ENOMEM;
3087}
3088
3089/*
3090 * It is the actual release handler for mq, but we do it from
3091 * request queue's release handler for avoiding use-after-free
3092 * and headache because q->mq_kobj shouldn't have been introduced,
3093 * but we can't group ctx/kctx kobj without it.
3094 */
3095void blk_mq_release(struct request_queue *q)
3096{
3097	struct blk_mq_hw_ctx *hctx, *next;
3098	int i;
3099
3100	queue_for_each_hw_ctx(q, hctx, i)
3101		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3102
3103	/* all hctx are in .unused_hctx_list now */
3104	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3105		list_del_init(&hctx->hctx_list);
3106		kobject_put(&hctx->kobj);
3107	}
3108
3109	kfree(q->queue_hw_ctx);
3110
3111	/*
3112	 * release .mq_kobj and sw queue's kobject now because
3113	 * both share lifetime with request queue.
3114	 */
3115	blk_mq_sysfs_deinit(q);
3116}
3117
3118struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3119		void *queuedata)
3120{
3121	struct request_queue *uninit_q, *q;
3122
3123	uninit_q = blk_alloc_queue(set->numa_node);
3124	if (!uninit_q)
3125		return ERR_PTR(-ENOMEM);
3126	uninit_q->queuedata = queuedata;
3127
3128	/*
3129	 * Initialize the queue without an elevator. device_add_disk() will do
3130	 * the initialization.
3131	 */
3132	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3133	if (IS_ERR(q))
3134		blk_cleanup_queue(uninit_q);
3135
3136	return q;
3137}
3138EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3139
3140struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3141{
3142	return blk_mq_init_queue_data(set, NULL);
3143}
3144EXPORT_SYMBOL(blk_mq_init_queue);
3145
3146/*
3147 * Helper for setting up a queue with mq ops, given queue depth, and
3148 * the passed in mq ops flags.
3149 */
3150struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3151					   const struct blk_mq_ops *ops,
3152					   unsigned int queue_depth,
3153					   unsigned int set_flags)
3154{
3155	struct request_queue *q;
3156	int ret;
3157
3158	memset(set, 0, sizeof(*set));
3159	set->ops = ops;
3160	set->nr_hw_queues = 1;
3161	set->nr_maps = 1;
3162	set->queue_depth = queue_depth;
3163	set->numa_node = NUMA_NO_NODE;
3164	set->flags = set_flags;
3165
3166	ret = blk_mq_alloc_tag_set(set);
3167	if (ret)
3168		return ERR_PTR(ret);
3169
3170	q = blk_mq_init_queue(set);
3171	if (IS_ERR(q)) {
3172		blk_mq_free_tag_set(set);
3173		return q;
3174	}
3175
3176	return q;
3177}
3178EXPORT_SYMBOL(blk_mq_init_sq_queue);
3179
3180static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3181		struct blk_mq_tag_set *set, struct request_queue *q,
3182		int hctx_idx, int node)
3183{
3184	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3185
3186	/* reuse dead hctx first */
3187	spin_lock(&q->unused_hctx_lock);
3188	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3189		if (tmp->numa_node == node) {
3190			hctx = tmp;
3191			break;
3192		}
3193	}
3194	if (hctx)
3195		list_del_init(&hctx->hctx_list);
3196	spin_unlock(&q->unused_hctx_lock);
3197
3198	if (!hctx)
3199		hctx = blk_mq_alloc_hctx(q, set, node);
3200	if (!hctx)
3201		goto fail;
3202
3203	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3204		goto free_hctx;
3205
3206	return hctx;
3207
3208 free_hctx:
3209	kobject_put(&hctx->kobj);
3210 fail:
3211	return NULL;
3212}
3213
3214static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3215						struct request_queue *q)
3216{
3217	int i, j, end;
3218	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3219
3220	if (q->nr_hw_queues < set->nr_hw_queues) {
3221		struct blk_mq_hw_ctx **new_hctxs;
3222
3223		new_hctxs = kcalloc_node(set->nr_hw_queues,
3224				       sizeof(*new_hctxs), GFP_KERNEL,
3225				       set->numa_node);
3226		if (!new_hctxs)
3227			return;
3228		if (hctxs)
3229			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3230			       sizeof(*hctxs));
3231		q->queue_hw_ctx = new_hctxs;
3232		kfree(hctxs);
3233		hctxs = new_hctxs;
3234	}
3235
3236	/* protect against switching io scheduler  */
3237	mutex_lock(&q->sysfs_lock);
3238	for (i = 0; i < set->nr_hw_queues; i++) {
3239		int node;
3240		struct blk_mq_hw_ctx *hctx;
3241
3242		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3243		/*
3244		 * If the hw queue has been mapped to another numa node,
3245		 * we need to realloc the hctx. If allocation fails, fallback
3246		 * to use the previous one.
3247		 */
3248		if (hctxs[i] && (hctxs[i]->numa_node == node))
3249			continue;
3250
3251		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3252		if (hctx) {
3253			if (hctxs[i])
3254				blk_mq_exit_hctx(q, set, hctxs[i], i);
3255			hctxs[i] = hctx;
3256		} else {
3257			if (hctxs[i])
3258				pr_warn("Allocate new hctx on node %d fails,\
3259						fallback to previous one on node %d\n",
3260						node, hctxs[i]->numa_node);
3261			else
3262				break;
3263		}
3264	}
3265	/*
3266	 * Increasing nr_hw_queues fails. Free the newly allocated
3267	 * hctxs and keep the previous q->nr_hw_queues.
3268	 */
3269	if (i != set->nr_hw_queues) {
3270		j = q->nr_hw_queues;
3271		end = i;
3272	} else {
3273		j = i;
3274		end = q->nr_hw_queues;
3275		q->nr_hw_queues = set->nr_hw_queues;
3276	}
3277
3278	for (; j < end; j++) {
3279		struct blk_mq_hw_ctx *hctx = hctxs[j];
3280
3281		if (hctx) {
3282			blk_mq_exit_hctx(q, set, hctx, j);
3283			hctxs[j] = NULL;
3284		}
3285	}
3286	mutex_unlock(&q->sysfs_lock);
3287}
3288
3289struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3290						  struct request_queue *q,
3291						  bool elevator_init)
3292{
3293	/* mark the queue as mq asap */
3294	q->mq_ops = set->ops;
3295
3296	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3297					     blk_mq_poll_stats_bkt,
3298					     BLK_MQ_POLL_STATS_BKTS, q);
3299	if (!q->poll_cb)
3300		goto err_exit;
3301
3302	if (blk_mq_alloc_ctxs(q))
3303		goto err_poll;
3304
3305	/* init q->mq_kobj and sw queues' kobjects */
3306	blk_mq_sysfs_init(q);
3307
3308	INIT_LIST_HEAD(&q->unused_hctx_list);
3309	spin_lock_init(&q->unused_hctx_lock);
3310
3311	blk_mq_realloc_hw_ctxs(set, q);
3312	if (!q->nr_hw_queues)
3313		goto err_hctxs;
3314
3315	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3316	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3317
3318	q->tag_set = set;
3319
3320	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3321	if (set->nr_maps > HCTX_TYPE_POLL &&
3322	    set->map[HCTX_TYPE_POLL].nr_queues)
3323		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3324
3325	q->sg_reserved_size = INT_MAX;
3326
3327	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3328	INIT_LIST_HEAD(&q->requeue_list);
3329	spin_lock_init(&q->requeue_lock);
3330
3331	q->nr_requests = set->queue_depth;
3332
3333	/*
3334	 * Default to classic polling
3335	 */
3336	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3337
3338	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3339	blk_mq_add_queue_tag_set(set, q);
3340	blk_mq_map_swqueue(q);
3341
3342	if (elevator_init)
3343		elevator_init_mq(q);
3344
3345	return q;
3346
3347err_hctxs:
3348	kfree(q->queue_hw_ctx);
3349	q->nr_hw_queues = 0;
3350	blk_mq_sysfs_deinit(q);
3351err_poll:
3352	blk_stat_free_callback(q->poll_cb);
3353	q->poll_cb = NULL;
3354err_exit:
3355	q->mq_ops = NULL;
3356	return ERR_PTR(-ENOMEM);
3357}
3358EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3359
3360/* tags can _not_ be used after returning from blk_mq_exit_queue */
3361void blk_mq_exit_queue(struct request_queue *q)
3362{
3363	struct blk_mq_tag_set *set = q->tag_set;
3364
3365	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3366	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3367	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3368	blk_mq_del_queue_tag_set(q);
3369}
3370
3371static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3372{
3373	int i;
3374
3375	for (i = 0; i < set->nr_hw_queues; i++) {
3376		if (!__blk_mq_alloc_map_and_request(set, i))
3377			goto out_unwind;
3378		cond_resched();
3379	}
3380
3381	return 0;
3382
3383out_unwind:
3384	while (--i >= 0)
3385		blk_mq_free_map_and_requests(set, i);
3386
3387	return -ENOMEM;
3388}
3389
3390/*
3391 * Allocate the request maps associated with this tag_set. Note that this
3392 * may reduce the depth asked for, if memory is tight. set->queue_depth
3393 * will be updated to reflect the allocated depth.
3394 */
3395static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3396{
3397	unsigned int depth;
3398	int err;
3399
3400	depth = set->queue_depth;
3401	do {
3402		err = __blk_mq_alloc_rq_maps(set);
3403		if (!err)
3404			break;
3405
3406		set->queue_depth >>= 1;
3407		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3408			err = -ENOMEM;
3409			break;
3410		}
3411	} while (set->queue_depth);
3412
3413	if (!set->queue_depth || err) {
3414		pr_err("blk-mq: failed to allocate request map\n");
3415		return -ENOMEM;
3416	}
3417
3418	if (depth != set->queue_depth)
3419		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3420						depth, set->queue_depth);
3421
3422	return 0;
3423}
3424
3425static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3426{
3427	/*
3428	 * blk_mq_map_queues() and multiple .map_queues() implementations
3429	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3430	 * number of hardware queues.
3431	 */
3432	if (set->nr_maps == 1)
3433		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3434
3435	if (set->ops->map_queues && !is_kdump_kernel()) {
3436		int i;
3437
3438		/*
3439		 * transport .map_queues is usually done in the following
3440		 * way:
3441		 *
3442		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3443		 * 	mask = get_cpu_mask(queue)
3444		 * 	for_each_cpu(cpu, mask)
3445		 * 		set->map[x].mq_map[cpu] = queue;
3446		 * }
3447		 *
3448		 * When we need to remap, the table has to be cleared for
3449		 * killing stale mapping since one CPU may not be mapped
3450		 * to any hw queue.
3451		 */
3452		for (i = 0; i < set->nr_maps; i++)
3453			blk_mq_clear_mq_map(&set->map[i]);
3454
3455		return set->ops->map_queues(set);
3456	} else {
3457		BUG_ON(set->nr_maps > 1);
3458		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3459	}
3460}
3461
3462static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3463				  int cur_nr_hw_queues, int new_nr_hw_queues)
3464{
3465	struct blk_mq_tags **new_tags;
3466
3467	if (cur_nr_hw_queues >= new_nr_hw_queues)
3468		return 0;
3469
3470	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3471				GFP_KERNEL, set->numa_node);
3472	if (!new_tags)
3473		return -ENOMEM;
3474
3475	if (set->tags)
3476		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3477		       sizeof(*set->tags));
3478	kfree(set->tags);
3479	set->tags = new_tags;
3480	set->nr_hw_queues = new_nr_hw_queues;
3481
3482	return 0;
3483}
3484
3485/*
3486 * Alloc a tag set to be associated with one or more request queues.
3487 * May fail with EINVAL for various error conditions. May adjust the
3488 * requested depth down, if it's too large. In that case, the set
3489 * value will be stored in set->queue_depth.
3490 */
3491int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3492{
3493	int i, ret;
3494
3495	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3496
3497	if (!set->nr_hw_queues)
3498		return -EINVAL;
3499	if (!set->queue_depth)
3500		return -EINVAL;
3501	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3502		return -EINVAL;
3503
3504	if (!set->ops->queue_rq)
3505		return -EINVAL;
3506
3507	if (!set->ops->get_budget ^ !set->ops->put_budget)
3508		return -EINVAL;
3509
3510	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3511		pr_info("blk-mq: reduced tag depth to %u\n",
3512			BLK_MQ_MAX_DEPTH);
3513		set->queue_depth = BLK_MQ_MAX_DEPTH;
3514	}
3515
3516	if (!set->nr_maps)
3517		set->nr_maps = 1;
3518	else if (set->nr_maps > HCTX_MAX_TYPES)
3519		return -EINVAL;
3520
3521	/*
3522	 * If a crashdump is active, then we are potentially in a very
3523	 * memory constrained environment. Limit us to 1 queue and
3524	 * 64 tags to prevent using too much memory.
3525	 */
3526	if (is_kdump_kernel()) {
3527		set->nr_hw_queues = 1;
3528		set->nr_maps = 1;
3529		set->queue_depth = min(64U, set->queue_depth);
3530	}
3531	/*
3532	 * There is no use for more h/w queues than cpus if we just have
3533	 * a single map
3534	 */
3535	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3536		set->nr_hw_queues = nr_cpu_ids;
3537
3538	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3539		return -ENOMEM;
3540
3541	ret = -ENOMEM;
3542	for (i = 0; i < set->nr_maps; i++) {
3543		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3544						  sizeof(set->map[i].mq_map[0]),
3545						  GFP_KERNEL, set->numa_node);
3546		if (!set->map[i].mq_map)
3547			goto out_free_mq_map;
3548		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3549	}
3550
3551	ret = blk_mq_update_queue_map(set);
3552	if (ret)
3553		goto out_free_mq_map;
3554
3555	ret = blk_mq_alloc_map_and_requests(set);
3556	if (ret)
3557		goto out_free_mq_map;
3558
3559	if (blk_mq_is_sbitmap_shared(set->flags)) {
3560		atomic_set(&set->active_queues_shared_sbitmap, 0);
3561
3562		if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3563			ret = -ENOMEM;
3564			goto out_free_mq_rq_maps;
3565		}
3566	}
3567
3568	mutex_init(&set->tag_list_lock);
3569	INIT_LIST_HEAD(&set->tag_list);
3570
3571	return 0;
3572
3573out_free_mq_rq_maps:
3574	for (i = 0; i < set->nr_hw_queues; i++)
3575		blk_mq_free_map_and_requests(set, i);
3576out_free_mq_map:
3577	for (i = 0; i < set->nr_maps; i++) {
3578		kfree(set->map[i].mq_map);
3579		set->map[i].mq_map = NULL;
3580	}
3581	kfree(set->tags);
3582	set->tags = NULL;
3583	return ret;
3584}
3585EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3586
3587void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3588{
3589	int i, j;
3590
3591	for (i = 0; i < set->nr_hw_queues; i++)
3592		blk_mq_free_map_and_requests(set, i);
3593
3594	if (blk_mq_is_sbitmap_shared(set->flags))
3595		blk_mq_exit_shared_sbitmap(set);
3596
3597	for (j = 0; j < set->nr_maps; j++) {
3598		kfree(set->map[j].mq_map);
3599		set->map[j].mq_map = NULL;
3600	}
3601
3602	kfree(set->tags);
3603	set->tags = NULL;
3604}
3605EXPORT_SYMBOL(blk_mq_free_tag_set);
3606
3607int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3608{
3609	struct blk_mq_tag_set *set = q->tag_set;
3610	struct blk_mq_hw_ctx *hctx;
3611	int i, ret;
3612
3613	if (!set)
3614		return -EINVAL;
3615
3616	if (q->nr_requests == nr)
3617		return 0;
3618
3619	blk_mq_freeze_queue(q);
3620	blk_mq_quiesce_queue(q);
3621
3622	ret = 0;
3623	queue_for_each_hw_ctx(q, hctx, i) {
3624		if (!hctx->tags)
3625			continue;
3626		/*
3627		 * If we're using an MQ scheduler, just update the scheduler
3628		 * queue depth. This is similar to what the old code would do.
3629		 */
3630		if (!hctx->sched_tags) {
3631			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3632							false);
3633			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3634				blk_mq_tag_resize_shared_sbitmap(set, nr);
3635		} else {
3636			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3637							nr, true);
3638		}
3639		if (ret)
3640			break;
3641		if (q->elevator && q->elevator->type->ops.depth_updated)
3642			q->elevator->type->ops.depth_updated(hctx);
3643	}
3644
3645	if (!ret)
3646		q->nr_requests = nr;
3647
3648	blk_mq_unquiesce_queue(q);
3649	blk_mq_unfreeze_queue(q);
3650
3651	return ret;
3652}
3653
3654/*
3655 * request_queue and elevator_type pair.
3656 * It is just used by __blk_mq_update_nr_hw_queues to cache
3657 * the elevator_type associated with a request_queue.
3658 */
3659struct blk_mq_qe_pair {
3660	struct list_head node;
3661	struct request_queue *q;
3662	struct elevator_type *type;
3663};
3664
3665/*
3666 * Cache the elevator_type in qe pair list and switch the
3667 * io scheduler to 'none'
3668 */
3669static bool blk_mq_elv_switch_none(struct list_head *head,
3670		struct request_queue *q)
3671{
3672	struct blk_mq_qe_pair *qe;
3673
3674	if (!q->elevator)
3675		return true;
3676
3677	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3678	if (!qe)
3679		return false;
3680
3681	INIT_LIST_HEAD(&qe->node);
3682	qe->q = q;
3683	qe->type = q->elevator->type;
3684	list_add(&qe->node, head);
3685
3686	mutex_lock(&q->sysfs_lock);
3687	/*
3688	 * After elevator_switch_mq, the previous elevator_queue will be
3689	 * released by elevator_release. The reference of the io scheduler
3690	 * module get by elevator_get will also be put. So we need to get
3691	 * a reference of the io scheduler module here to prevent it to be
3692	 * removed.
3693	 */
3694	__module_get(qe->type->elevator_owner);
3695	elevator_switch_mq(q, NULL);
3696	mutex_unlock(&q->sysfs_lock);
3697
3698	return true;
3699}
3700
3701static void blk_mq_elv_switch_back(struct list_head *head,
3702		struct request_queue *q)
3703{
3704	struct blk_mq_qe_pair *qe;
3705	struct elevator_type *t = NULL;
3706
3707	list_for_each_entry(qe, head, node)
3708		if (qe->q == q) {
3709			t = qe->type;
3710			break;
3711		}
3712
3713	if (!t)
3714		return;
3715
3716	list_del(&qe->node);
3717	kfree(qe);
3718
3719	mutex_lock(&q->sysfs_lock);
3720	elevator_switch_mq(q, t);
3721	mutex_unlock(&q->sysfs_lock);
3722}
3723
3724static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3725							int nr_hw_queues)
3726{
3727	struct request_queue *q;
3728	LIST_HEAD(head);
3729	int prev_nr_hw_queues;
3730
3731	lockdep_assert_held(&set->tag_list_lock);
3732
3733	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3734		nr_hw_queues = nr_cpu_ids;
3735	if (nr_hw_queues < 1)
3736		return;
3737	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3738		return;
3739
3740	list_for_each_entry(q, &set->tag_list, tag_set_list)
3741		blk_mq_freeze_queue(q);
3742	/*
3743	 * Switch IO scheduler to 'none', cleaning up the data associated
3744	 * with the previous scheduler. We will switch back once we are done
3745	 * updating the new sw to hw queue mappings.
3746	 */
3747	list_for_each_entry(q, &set->tag_list, tag_set_list)
3748		if (!blk_mq_elv_switch_none(&head, q))
3749			goto switch_back;
3750
3751	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3752		blk_mq_debugfs_unregister_hctxs(q);
3753		blk_mq_sysfs_unregister(q);
3754	}
3755
3756	prev_nr_hw_queues = set->nr_hw_queues;
3757	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3758	    0)
3759		goto reregister;
3760
3761	set->nr_hw_queues = nr_hw_queues;
3762fallback:
3763	blk_mq_update_queue_map(set);
3764	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3765		blk_mq_realloc_hw_ctxs(set, q);
3766		if (q->nr_hw_queues != set->nr_hw_queues) {
3767			int i = prev_nr_hw_queues;
3768
3769			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3770					nr_hw_queues, prev_nr_hw_queues);
3771			for (; i < set->nr_hw_queues; i++)
3772				blk_mq_free_map_and_requests(set, i);
3773
3774			set->nr_hw_queues = prev_nr_hw_queues;
3775			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3776			goto fallback;
3777		}
3778		blk_mq_map_swqueue(q);
3779	}
3780
3781reregister:
3782	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3783		blk_mq_sysfs_register(q);
3784		blk_mq_debugfs_register_hctxs(q);
3785	}
3786
3787switch_back:
3788	list_for_each_entry(q, &set->tag_list, tag_set_list)
3789		blk_mq_elv_switch_back(&head, q);
3790
3791	list_for_each_entry(q, &set->tag_list, tag_set_list)
3792		blk_mq_unfreeze_queue(q);
3793}
3794
3795void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3796{
3797	mutex_lock(&set->tag_list_lock);
3798	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3799	mutex_unlock(&set->tag_list_lock);
3800}
3801EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3802
3803/* Enable polling stats and return whether they were already enabled. */
3804static bool blk_poll_stats_enable(struct request_queue *q)
3805{
3806	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3807	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3808		return true;
3809	blk_stat_add_callback(q, q->poll_cb);
3810	return false;
3811}
3812
3813static void blk_mq_poll_stats_start(struct request_queue *q)
3814{
3815	/*
3816	 * We don't arm the callback if polling stats are not enabled or the
3817	 * callback is already active.
3818	 */
3819	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3820	    blk_stat_is_active(q->poll_cb))
3821		return;
3822
3823	blk_stat_activate_msecs(q->poll_cb, 100);
3824}
3825
3826static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3827{
3828	struct request_queue *q = cb->data;
3829	int bucket;
3830
3831	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3832		if (cb->stat[bucket].nr_samples)
3833			q->poll_stat[bucket] = cb->stat[bucket];
3834	}
3835}
3836
3837static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3838				       struct request *rq)
3839{
3840	unsigned long ret = 0;
3841	int bucket;
3842
3843	/*
3844	 * If stats collection isn't on, don't sleep but turn it on for
3845	 * future users
3846	 */
3847	if (!blk_poll_stats_enable(q))
3848		return 0;
3849
3850	/*
3851	 * As an optimistic guess, use half of the mean service time
3852	 * for this type of request. We can (and should) make this smarter.
3853	 * For instance, if the completion latencies are tight, we can
3854	 * get closer than just half the mean. This is especially
3855	 * important on devices where the completion latencies are longer
3856	 * than ~10 usec. We do use the stats for the relevant IO size
3857	 * if available which does lead to better estimates.
3858	 */
3859	bucket = blk_mq_poll_stats_bkt(rq);
3860	if (bucket < 0)
3861		return ret;
3862
3863	if (q->poll_stat[bucket].nr_samples)
3864		ret = (q->poll_stat[bucket].mean + 1) / 2;
3865
3866	return ret;
3867}
3868
3869static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3870				     struct request *rq)
3871{
3872	struct hrtimer_sleeper hs;
3873	enum hrtimer_mode mode;
3874	unsigned int nsecs;
3875	ktime_t kt;
3876
3877	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3878		return false;
3879
3880	/*
3881	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3882	 *
3883	 *  0:	use half of prev avg
3884	 * >0:	use this specific value
3885	 */
3886	if (q->poll_nsec > 0)
3887		nsecs = q->poll_nsec;
3888	else
3889		nsecs = blk_mq_poll_nsecs(q, rq);
3890
3891	if (!nsecs)
3892		return false;
3893
3894	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3895
3896	/*
3897	 * This will be replaced with the stats tracking code, using
3898	 * 'avg_completion_time / 2' as the pre-sleep target.
3899	 */
3900	kt = nsecs;
3901
3902	mode = HRTIMER_MODE_REL;
3903	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3904	hrtimer_set_expires(&hs.timer, kt);
3905
3906	do {
3907		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3908			break;
3909		set_current_state(TASK_UNINTERRUPTIBLE);
3910		hrtimer_sleeper_start_expires(&hs, mode);
3911		if (hs.task)
3912			io_schedule();
3913		hrtimer_cancel(&hs.timer);
3914		mode = HRTIMER_MODE_ABS;
3915	} while (hs.task && !signal_pending(current));
3916
3917	__set_current_state(TASK_RUNNING);
3918	destroy_hrtimer_on_stack(&hs.timer);
3919	return true;
3920}
3921
3922static bool blk_mq_poll_hybrid(struct request_queue *q,
3923			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3924{
3925	struct request *rq;
3926
3927	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3928		return false;
3929
3930	if (!blk_qc_t_is_internal(cookie))
3931		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3932	else {
3933		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3934		/*
3935		 * With scheduling, if the request has completed, we'll
3936		 * get a NULL return here, as we clear the sched tag when
3937		 * that happens. The request still remains valid, like always,
3938		 * so we should be safe with just the NULL check.
3939		 */
3940		if (!rq)
3941			return false;
3942	}
3943
3944	return blk_mq_poll_hybrid_sleep(q, rq);
3945}
3946
3947/**
3948 * blk_poll - poll for IO completions
3949 * @q:  the queue
3950 * @cookie: cookie passed back at IO submission time
3951 * @spin: whether to spin for completions
3952 *
3953 * Description:
3954 *    Poll for completions on the passed in queue. Returns number of
3955 *    completed entries found. If @spin is true, then blk_poll will continue
3956 *    looping until at least one completion is found, unless the task is
3957 *    otherwise marked running (or we need to reschedule).
3958 */
3959int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3960{
3961	struct blk_mq_hw_ctx *hctx;
3962	long state;
3963
3964	if (!blk_qc_t_valid(cookie) ||
3965	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3966		return 0;
3967
3968	if (current->plug)
3969		blk_flush_plug_list(current->plug, false);
3970
3971	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3972
3973	/*
3974	 * If we sleep, have the caller restart the poll loop to reset
3975	 * the state. Like for the other success return cases, the
3976	 * caller is responsible for checking if the IO completed. If
3977	 * the IO isn't complete, we'll get called again and will go
3978	 * straight to the busy poll loop.
3979	 */
3980	if (blk_mq_poll_hybrid(q, hctx, cookie))
3981		return 1;
3982
3983	hctx->poll_considered++;
3984
3985	state = current->state;
3986	do {
3987		int ret;
3988
3989		hctx->poll_invoked++;
3990
3991		ret = q->mq_ops->poll(hctx);
3992		if (ret > 0) {
3993			hctx->poll_success++;
3994			__set_current_state(TASK_RUNNING);
3995			return ret;
3996		}
3997
3998		if (signal_pending_state(state, current))
3999			__set_current_state(TASK_RUNNING);
4000
4001		if (current->state == TASK_RUNNING)
4002			return 1;
4003		if (ret < 0 || !spin)
4004			break;
4005		cpu_relax();
4006	} while (!need_resched());
4007
4008	__set_current_state(TASK_RUNNING);
4009	return 0;
4010}
4011EXPORT_SYMBOL_GPL(blk_poll);
4012
4013unsigned int blk_mq_rq_cpu(struct request *rq)
4014{
4015	return rq->mq_ctx->cpu;
4016}
4017EXPORT_SYMBOL(blk_mq_rq_cpu);
4018
4019void blk_mq_cancel_work_sync(struct request_queue *q)
4020{
4021	if (queue_is_mq(q)) {
4022		struct blk_mq_hw_ctx *hctx;
4023		int i;
4024
4025		cancel_delayed_work_sync(&q->requeue_work);
4026
4027		queue_for_each_hw_ctx(q, hctx, i)
4028			cancel_delayed_work_sync(&hctx->run_work);
4029	}
4030}
4031
4032static int __init blk_mq_init(void)
4033{
4034	int i;
4035
4036	for_each_possible_cpu(i)
4037		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
4038	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4039
4040	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4041				  "block/softirq:dead", NULL,
4042				  blk_softirq_cpu_dead);
4043	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4044				blk_mq_hctx_notify_dead);
4045	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4046				blk_mq_hctx_notify_online,
4047				blk_mq_hctx_notify_offline);
4048	return 0;
4049}
4050subsys_initcall(blk_mq_init);
4051