1// SPDX-License-Identifier: GPL-2.0
2/*
3 * blk-mq scheduling framework
4 *
5 * Copyright (C) 2016 Jens Axboe
6 */
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/blk-mq.h>
10#include <linux/list_sort.h>
11
12#include <trace/events/block.h>
13
14#include "blk.h"
15#include "blk-mq.h"
16#include "blk-mq-debugfs.h"
17#include "blk-mq-sched.h"
18#include "blk-mq-tag.h"
19#include "blk-wbt.h"
20
21void blk_mq_sched_assign_ioc(struct request *rq)
22{
23	struct request_queue *q = rq->q;
24	struct io_context *ioc;
25	struct io_cq *icq;
26
27	/*
28	 * May not have an IO context if it's a passthrough request
29	 */
30	ioc = current->io_context;
31	if (!ioc)
32		return;
33
34	spin_lock_irq(&q->queue_lock);
35	icq = ioc_lookup_icq(ioc, q);
36	spin_unlock_irq(&q->queue_lock);
37
38	if (!icq) {
39		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
40		if (!icq)
41			return;
42	}
43	get_io_context(icq->ioc);
44	rq->elv.icq = icq;
45}
46
47/*
48 * Mark a hardware queue as needing a restart.
49 */
50void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
51{
52	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
53		return;
54
55	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
56}
57EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
58
59void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
60{
61	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
62		return;
63	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
64
65	/*
66	 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
67	 * in blk_mq_run_hw_queue(). Its pair is the barrier in
68	 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
69	 * meantime new request added to hctx->dispatch is missed to check in
70	 * blk_mq_run_hw_queue().
71	 */
72	smp_mb();
73
74	blk_mq_run_hw_queue(hctx, true);
75}
76
77static int sched_rq_cmp(void *priv, const struct list_head *a,
78			const struct list_head *b)
79{
80	struct request *rqa = container_of(a, struct request, queuelist);
81	struct request *rqb = container_of(b, struct request, queuelist);
82
83	return rqa->mq_hctx > rqb->mq_hctx;
84}
85
86static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
87{
88	struct blk_mq_hw_ctx *hctx =
89		list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
90	struct request *rq;
91	LIST_HEAD(hctx_list);
92	unsigned int count = 0;
93
94	list_for_each_entry(rq, rq_list, queuelist) {
95		if (rq->mq_hctx != hctx) {
96			list_cut_before(&hctx_list, rq_list, &rq->queuelist);
97			goto dispatch;
98		}
99		count++;
100	}
101	list_splice_tail_init(rq_list, &hctx_list);
102
103dispatch:
104	return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
105}
106
107#define BLK_MQ_BUDGET_DELAY	3		/* ms units */
108
109/*
110 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
111 * its queue by itself in its completion handler, so we don't need to
112 * restart queue if .get_budget() fails to get the budget.
113 *
114 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
115 * be run again.  This is necessary to avoid starving flushes.
116 */
117static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
118{
119	struct request_queue *q = hctx->queue;
120	struct elevator_queue *e = q->elevator;
121	bool multi_hctxs = false, run_queue = false;
122	bool dispatched = false, busy = false;
123	unsigned int max_dispatch;
124	LIST_HEAD(rq_list);
125	int count = 0;
126
127	if (hctx->dispatch_busy)
128		max_dispatch = 1;
129	else
130		max_dispatch = hctx->queue->nr_requests;
131
132	do {
133		struct request *rq;
134
135		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
136			break;
137
138		if (!list_empty_careful(&hctx->dispatch)) {
139			busy = true;
140			break;
141		}
142
143		if (!blk_mq_get_dispatch_budget(q))
144			break;
145
146		rq = e->type->ops.dispatch_request(hctx);
147		if (!rq) {
148			blk_mq_put_dispatch_budget(q);
149			/*
150			 * We're releasing without dispatching. Holding the
151			 * budget could have blocked any "hctx"s with the
152			 * same queue and if we didn't dispatch then there's
153			 * no guarantee anyone will kick the queue.  Kick it
154			 * ourselves.
155			 */
156			run_queue = true;
157			break;
158		}
159
160		/*
161		 * Now this rq owns the budget which has to be released
162		 * if this rq won't be queued to driver via .queue_rq()
163		 * in blk_mq_dispatch_rq_list().
164		 */
165		list_add_tail(&rq->queuelist, &rq_list);
166		if (rq->mq_hctx != hctx)
167			multi_hctxs = true;
168	} while (++count < max_dispatch);
169
170	if (!count) {
171		if (run_queue)
172			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
173	} else if (multi_hctxs) {
174		/*
175		 * Requests from different hctx may be dequeued from some
176		 * schedulers, such as bfq and deadline.
177		 *
178		 * Sort the requests in the list according to their hctx,
179		 * dispatch batching requests from same hctx at a time.
180		 */
181		list_sort(NULL, &rq_list, sched_rq_cmp);
182		do {
183			dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
184		} while (!list_empty(&rq_list));
185	} else {
186		dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
187	}
188
189	if (busy)
190		return -EAGAIN;
191	return !!dispatched;
192}
193
194static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
195{
196	unsigned long end = jiffies + HZ;
197	int ret;
198
199	do {
200		ret = __blk_mq_do_dispatch_sched(hctx);
201		if (ret != 1)
202			break;
203		if (need_resched() || time_is_before_jiffies(end)) {
204			blk_mq_delay_run_hw_queue(hctx, 0);
205			break;
206		}
207	} while (1);
208
209	return ret;
210}
211
212static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
213					  struct blk_mq_ctx *ctx)
214{
215	unsigned short idx = ctx->index_hw[hctx->type];
216
217	if (++idx == hctx->nr_ctx)
218		idx = 0;
219
220	return hctx->ctxs[idx];
221}
222
223/*
224 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
225 * its queue by itself in its completion handler, so we don't need to
226 * restart queue if .get_budget() fails to get the budget.
227 *
228 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
229 * be run again.  This is necessary to avoid starving flushes.
230 */
231static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
232{
233	struct request_queue *q = hctx->queue;
234	LIST_HEAD(rq_list);
235	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
236	int ret = 0;
237	struct request *rq;
238
239	do {
240		if (!list_empty_careful(&hctx->dispatch)) {
241			ret = -EAGAIN;
242			break;
243		}
244
245		if (!sbitmap_any_bit_set(&hctx->ctx_map))
246			break;
247
248		if (!blk_mq_get_dispatch_budget(q))
249			break;
250
251		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
252		if (!rq) {
253			blk_mq_put_dispatch_budget(q);
254			/*
255			 * We're releasing without dispatching. Holding the
256			 * budget could have blocked any "hctx"s with the
257			 * same queue and if we didn't dispatch then there's
258			 * no guarantee anyone will kick the queue.  Kick it
259			 * ourselves.
260			 */
261			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
262			break;
263		}
264
265		/*
266		 * Now this rq owns the budget which has to be released
267		 * if this rq won't be queued to driver via .queue_rq()
268		 * in blk_mq_dispatch_rq_list().
269		 */
270		list_add(&rq->queuelist, &rq_list);
271
272		/* round robin for fair dispatch */
273		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
274
275	} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
276
277	WRITE_ONCE(hctx->dispatch_from, ctx);
278	return ret;
279}
280
281static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
282{
283	struct request_queue *q = hctx->queue;
284	struct elevator_queue *e = q->elevator;
285	const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
286	int ret = 0;
287	LIST_HEAD(rq_list);
288
289	/*
290	 * If we have previous entries on our dispatch list, grab them first for
291	 * more fair dispatch.
292	 */
293	if (!list_empty_careful(&hctx->dispatch)) {
294		spin_lock(&hctx->lock);
295		if (!list_empty(&hctx->dispatch))
296			list_splice_init(&hctx->dispatch, &rq_list);
297		spin_unlock(&hctx->lock);
298	}
299
300	/*
301	 * Only ask the scheduler for requests, if we didn't have residual
302	 * requests from the dispatch list. This is to avoid the case where
303	 * we only ever dispatch a fraction of the requests available because
304	 * of low device queue depth. Once we pull requests out of the IO
305	 * scheduler, we can no longer merge or sort them. So it's best to
306	 * leave them there for as long as we can. Mark the hw queue as
307	 * needing a restart in that case.
308	 *
309	 * We want to dispatch from the scheduler if there was nothing
310	 * on the dispatch list or we were able to dispatch from the
311	 * dispatch list.
312	 */
313	if (!list_empty(&rq_list)) {
314		blk_mq_sched_mark_restart_hctx(hctx);
315		if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
316			if (has_sched_dispatch)
317				ret = blk_mq_do_dispatch_sched(hctx);
318			else
319				ret = blk_mq_do_dispatch_ctx(hctx);
320		}
321	} else if (has_sched_dispatch) {
322		ret = blk_mq_do_dispatch_sched(hctx);
323	} else if (hctx->dispatch_busy) {
324		/* dequeue request one by one from sw queue if queue is busy */
325		ret = blk_mq_do_dispatch_ctx(hctx);
326	} else {
327		blk_mq_flush_busy_ctxs(hctx, &rq_list);
328		blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
329	}
330
331	return ret;
332}
333
334void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
335{
336	struct request_queue *q = hctx->queue;
337
338	/* RCU or SRCU read lock is needed before checking quiesced flag */
339	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
340		return;
341
342	hctx->run++;
343
344	/*
345	 * A return of -EAGAIN is an indication that hctx->dispatch is not
346	 * empty and we must run again in order to avoid starving flushes.
347	 */
348	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
349		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
350			blk_mq_run_hw_queue(hctx, true);
351	}
352}
353
354bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
355		unsigned int nr_segs)
356{
357	struct elevator_queue *e = q->elevator;
358	struct blk_mq_ctx *ctx;
359	struct blk_mq_hw_ctx *hctx;
360	bool ret = false;
361	enum hctx_type type;
362
363	if (e && e->type->ops.bio_merge)
364		return e->type->ops.bio_merge(q, bio, nr_segs);
365
366	ctx = blk_mq_get_ctx(q);
367	hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
368	type = hctx->type;
369	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
370	    list_empty_careful(&ctx->rq_lists[type]))
371		return false;
372
373	/* default per sw-queue merge */
374	spin_lock(&ctx->lock);
375	/*
376	 * Reverse check our software queue for entries that we could
377	 * potentially merge with. Currently includes a hand-wavy stop
378	 * count of 8, to not spend too much time checking for merges.
379	 */
380	if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
381		ctx->rq_merged++;
382		ret = true;
383	}
384
385	spin_unlock(&ctx->lock);
386
387	return ret;
388}
389
390bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
391				   struct list_head *free)
392{
393	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
394}
395EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
396
397void blk_mq_sched_request_inserted(struct request *rq)
398{
399	trace_block_rq_insert(rq);
400}
401EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
402
403static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
404				       bool has_sched,
405				       struct request *rq)
406{
407	/*
408	 * dispatch flush and passthrough rq directly
409	 *
410	 * passthrough request has to be added to hctx->dispatch directly.
411	 * For some reason, device may be in one situation which can't
412	 * handle FS request, so STS_RESOURCE is always returned and the
413	 * FS request will be added to hctx->dispatch. However passthrough
414	 * request may be required at that time for fixing the problem. If
415	 * passthrough request is added to scheduler queue, there isn't any
416	 * chance to dispatch it given we prioritize requests in hctx->dispatch.
417	 */
418	if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
419		return true;
420
421	if (has_sched)
422		rq->rq_flags |= RQF_SORTED;
423
424	return false;
425}
426
427void blk_mq_sched_insert_request(struct request *rq, bool at_head,
428				 bool run_queue, bool async)
429{
430	struct request_queue *q = rq->q;
431	struct elevator_queue *e = q->elevator;
432	struct blk_mq_ctx *ctx = rq->mq_ctx;
433	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
434
435	WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
436
437	if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) {
438		/*
439		 * Firstly normal IO request is inserted to scheduler queue or
440		 * sw queue, meantime we add flush request to dispatch queue(
441		 * hctx->dispatch) directly and there is at most one in-flight
442		 * flush request for each hw queue, so it doesn't matter to add
443		 * flush request to tail or front of the dispatch queue.
444		 *
445		 * Secondly in case of NCQ, flush request belongs to non-NCQ
446		 * command, and queueing it will fail when there is any
447		 * in-flight normal IO request(NCQ command). When adding flush
448		 * rq to the front of hctx->dispatch, it is easier to introduce
449		 * extra time to flush rq's latency because of S_SCHED_RESTART
450		 * compared with adding to the tail of dispatch queue, then
451		 * chance of flush merge is increased, and less flush requests
452		 * will be issued to controller. It is observed that ~10% time
453		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
454		 * drive when adding flush rq to the front of hctx->dispatch.
455		 *
456		 * Simply queue flush rq to the front of hctx->dispatch so that
457		 * intensive flush workloads can benefit in case of NCQ HW.
458		 */
459		at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
460		blk_mq_request_bypass_insert(rq, at_head, false);
461		goto run;
462	}
463
464	if (e && e->type->ops.insert_requests) {
465		LIST_HEAD(list);
466
467		list_add(&rq->queuelist, &list);
468		e->type->ops.insert_requests(hctx, &list, at_head);
469	} else {
470		spin_lock(&ctx->lock);
471		__blk_mq_insert_request(hctx, rq, at_head);
472		spin_unlock(&ctx->lock);
473	}
474
475run:
476	if (run_queue)
477		blk_mq_run_hw_queue(hctx, async);
478}
479
480void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
481				  struct blk_mq_ctx *ctx,
482				  struct list_head *list, bool run_queue_async)
483{
484	struct elevator_queue *e;
485	struct request_queue *q = hctx->queue;
486
487	/*
488	 * blk_mq_sched_insert_requests() is called from flush plug
489	 * context only, and hold one usage counter to prevent queue
490	 * from being released.
491	 */
492	percpu_ref_get(&q->q_usage_counter);
493
494	e = hctx->queue->elevator;
495	if (e && e->type->ops.insert_requests)
496		e->type->ops.insert_requests(hctx, list, false);
497	else {
498		/*
499		 * try to issue requests directly if the hw queue isn't
500		 * busy in case of 'none' scheduler, and this way may save
501		 * us one extra enqueue & dequeue to sw queue.
502		 */
503		if (!hctx->dispatch_busy && !e && !run_queue_async) {
504			blk_mq_try_issue_list_directly(hctx, list);
505			if (list_empty(list))
506				goto out;
507		}
508		blk_mq_insert_requests(hctx, ctx, list);
509	}
510
511	blk_mq_run_hw_queue(hctx, run_queue_async);
512 out:
513	percpu_ref_put(&q->q_usage_counter);
514}
515
516static int blk_mq_sched_alloc_tags(struct request_queue *q,
517				   struct blk_mq_hw_ctx *hctx,
518				   unsigned int hctx_idx)
519{
520	struct blk_mq_tag_set *set = q->tag_set;
521	/* Clear HCTX_SHARED so tags are init'ed */
522	unsigned int flags = set->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
523	int ret;
524
525	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
526					       set->reserved_tags, flags);
527	if (!hctx->sched_tags)
528		return -ENOMEM;
529
530	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
531	if (ret) {
532		blk_mq_free_rq_map(hctx->sched_tags, flags);
533		hctx->sched_tags = NULL;
534	}
535
536	return ret;
537}
538
539/* called in queue's release handler, tagset has gone away */
540static void blk_mq_sched_tags_teardown(struct request_queue *q)
541{
542	struct blk_mq_hw_ctx *hctx;
543	int i;
544
545	queue_for_each_hw_ctx(q, hctx, i) {
546		/* Clear HCTX_SHARED so tags are freed */
547		unsigned int flags = hctx->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
548
549		if (hctx->sched_tags) {
550			blk_mq_free_rq_map(hctx->sched_tags, flags);
551			hctx->sched_tags = NULL;
552		}
553	}
554}
555
556int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
557{
558	struct blk_mq_hw_ctx *hctx;
559	struct elevator_queue *eq;
560	unsigned int i;
561	int ret;
562
563	if (!e) {
564		q->elevator = NULL;
565		q->nr_requests = q->tag_set->queue_depth;
566		return 0;
567	}
568
569	/*
570	 * Default to double of smaller one between hw queue_depth and 128,
571	 * since we don't split into sync/async like the old code did.
572	 * Additionally, this is a per-hw queue depth.
573	 */
574	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
575				   BLKDEV_MAX_RQ);
576
577	queue_for_each_hw_ctx(q, hctx, i) {
578		ret = blk_mq_sched_alloc_tags(q, hctx, i);
579		if (ret)
580			goto err;
581	}
582
583	ret = e->ops.init_sched(q, e);
584	if (ret)
585		goto err;
586
587	blk_mq_debugfs_register_sched(q);
588
589	queue_for_each_hw_ctx(q, hctx, i) {
590		if (e->ops.init_hctx) {
591			ret = e->ops.init_hctx(hctx, i);
592			if (ret) {
593				eq = q->elevator;
594				blk_mq_sched_free_requests(q);
595				blk_mq_exit_sched(q, eq);
596				kobject_put(&eq->kobj);
597				return ret;
598			}
599		}
600		blk_mq_debugfs_register_sched_hctx(q, hctx);
601	}
602
603	return 0;
604
605err:
606	blk_mq_sched_free_requests(q);
607	blk_mq_sched_tags_teardown(q);
608	q->elevator = NULL;
609	return ret;
610}
611
612/*
613 * called in either blk_queue_cleanup or elevator_switch, tagset
614 * is required for freeing requests
615 */
616void blk_mq_sched_free_requests(struct request_queue *q)
617{
618	struct blk_mq_hw_ctx *hctx;
619	int i;
620
621	queue_for_each_hw_ctx(q, hctx, i) {
622		if (hctx->sched_tags)
623			blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
624	}
625}
626
627void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
628{
629	struct blk_mq_hw_ctx *hctx;
630	unsigned int i;
631
632	queue_for_each_hw_ctx(q, hctx, i) {
633		blk_mq_debugfs_unregister_sched_hctx(hctx);
634		if (e->type->ops.exit_hctx && hctx->sched_data) {
635			e->type->ops.exit_hctx(hctx, i);
636			hctx->sched_data = NULL;
637		}
638	}
639	blk_mq_debugfs_unregister_sched(q);
640	if (e->type->ops.exit_sched)
641		e->type->ops.exit_sched(e);
642	blk_mq_sched_tags_teardown(q);
643	q->elevator = NULL;
644}
645