1// SPDX-License-Identifier: GPL-2.0 2/* 3 * blk-mq scheduling framework 4 * 5 * Copyright (C) 2016 Jens Axboe 6 */ 7#include <linux/kernel.h> 8#include <linux/module.h> 9#include <linux/blk-mq.h> 10#include <linux/list_sort.h> 11 12#include <trace/events/block.h> 13 14#include "blk.h" 15#include "blk-mq.h" 16#include "blk-mq-debugfs.h" 17#include "blk-mq-sched.h" 18#include "blk-mq-tag.h" 19#include "blk-wbt.h" 20 21void blk_mq_sched_assign_ioc(struct request *rq) 22{ 23 struct request_queue *q = rq->q; 24 struct io_context *ioc; 25 struct io_cq *icq; 26 27 /* 28 * May not have an IO context if it's a passthrough request 29 */ 30 ioc = current->io_context; 31 if (!ioc) 32 return; 33 34 spin_lock_irq(&q->queue_lock); 35 icq = ioc_lookup_icq(ioc, q); 36 spin_unlock_irq(&q->queue_lock); 37 38 if (!icq) { 39 icq = ioc_create_icq(ioc, q, GFP_ATOMIC); 40 if (!icq) 41 return; 42 } 43 get_io_context(icq->ioc); 44 rq->elv.icq = icq; 45} 46 47/* 48 * Mark a hardware queue as needing a restart. 49 */ 50void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) 51{ 52 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 53 return; 54 55 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 56} 57EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx); 58 59void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx) 60{ 61 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 62 return; 63 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 64 65 /* 66 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch) 67 * in blk_mq_run_hw_queue(). Its pair is the barrier in 68 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART, 69 * meantime new request added to hctx->dispatch is missed to check in 70 * blk_mq_run_hw_queue(). 71 */ 72 smp_mb(); 73 74 blk_mq_run_hw_queue(hctx, true); 75} 76 77static int sched_rq_cmp(void *priv, const struct list_head *a, 78 const struct list_head *b) 79{ 80 struct request *rqa = container_of(a, struct request, queuelist); 81 struct request *rqb = container_of(b, struct request, queuelist); 82 83 return rqa->mq_hctx > rqb->mq_hctx; 84} 85 86static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list) 87{ 88 struct blk_mq_hw_ctx *hctx = 89 list_first_entry(rq_list, struct request, queuelist)->mq_hctx; 90 struct request *rq; 91 LIST_HEAD(hctx_list); 92 unsigned int count = 0; 93 94 list_for_each_entry(rq, rq_list, queuelist) { 95 if (rq->mq_hctx != hctx) { 96 list_cut_before(&hctx_list, rq_list, &rq->queuelist); 97 goto dispatch; 98 } 99 count++; 100 } 101 list_splice_tail_init(rq_list, &hctx_list); 102 103dispatch: 104 return blk_mq_dispatch_rq_list(hctx, &hctx_list, count); 105} 106 107#define BLK_MQ_BUDGET_DELAY 3 /* ms units */ 108 109/* 110 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 111 * its queue by itself in its completion handler, so we don't need to 112 * restart queue if .get_budget() fails to get the budget. 113 * 114 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 115 * be run again. This is necessary to avoid starving flushes. 116 */ 117static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 118{ 119 struct request_queue *q = hctx->queue; 120 struct elevator_queue *e = q->elevator; 121 bool multi_hctxs = false, run_queue = false; 122 bool dispatched = false, busy = false; 123 unsigned int max_dispatch; 124 LIST_HEAD(rq_list); 125 int count = 0; 126 127 if (hctx->dispatch_busy) 128 max_dispatch = 1; 129 else 130 max_dispatch = hctx->queue->nr_requests; 131 132 do { 133 struct request *rq; 134 135 if (e->type->ops.has_work && !e->type->ops.has_work(hctx)) 136 break; 137 138 if (!list_empty_careful(&hctx->dispatch)) { 139 busy = true; 140 break; 141 } 142 143 if (!blk_mq_get_dispatch_budget(q)) 144 break; 145 146 rq = e->type->ops.dispatch_request(hctx); 147 if (!rq) { 148 blk_mq_put_dispatch_budget(q); 149 /* 150 * We're releasing without dispatching. Holding the 151 * budget could have blocked any "hctx"s with the 152 * same queue and if we didn't dispatch then there's 153 * no guarantee anyone will kick the queue. Kick it 154 * ourselves. 155 */ 156 run_queue = true; 157 break; 158 } 159 160 /* 161 * Now this rq owns the budget which has to be released 162 * if this rq won't be queued to driver via .queue_rq() 163 * in blk_mq_dispatch_rq_list(). 164 */ 165 list_add_tail(&rq->queuelist, &rq_list); 166 if (rq->mq_hctx != hctx) 167 multi_hctxs = true; 168 } while (++count < max_dispatch); 169 170 if (!count) { 171 if (run_queue) 172 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 173 } else if (multi_hctxs) { 174 /* 175 * Requests from different hctx may be dequeued from some 176 * schedulers, such as bfq and deadline. 177 * 178 * Sort the requests in the list according to their hctx, 179 * dispatch batching requests from same hctx at a time. 180 */ 181 list_sort(NULL, &rq_list, sched_rq_cmp); 182 do { 183 dispatched |= blk_mq_dispatch_hctx_list(&rq_list); 184 } while (!list_empty(&rq_list)); 185 } else { 186 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count); 187 } 188 189 if (busy) 190 return -EAGAIN; 191 return !!dispatched; 192} 193 194static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 195{ 196 unsigned long end = jiffies + HZ; 197 int ret; 198 199 do { 200 ret = __blk_mq_do_dispatch_sched(hctx); 201 if (ret != 1) 202 break; 203 if (need_resched() || time_is_before_jiffies(end)) { 204 blk_mq_delay_run_hw_queue(hctx, 0); 205 break; 206 } 207 } while (1); 208 209 return ret; 210} 211 212static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx, 213 struct blk_mq_ctx *ctx) 214{ 215 unsigned short idx = ctx->index_hw[hctx->type]; 216 217 if (++idx == hctx->nr_ctx) 218 idx = 0; 219 220 return hctx->ctxs[idx]; 221} 222 223/* 224 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 225 * its queue by itself in its completion handler, so we don't need to 226 * restart queue if .get_budget() fails to get the budget. 227 * 228 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 229 * be run again. This is necessary to avoid starving flushes. 230 */ 231static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx) 232{ 233 struct request_queue *q = hctx->queue; 234 LIST_HEAD(rq_list); 235 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from); 236 int ret = 0; 237 struct request *rq; 238 239 do { 240 if (!list_empty_careful(&hctx->dispatch)) { 241 ret = -EAGAIN; 242 break; 243 } 244 245 if (!sbitmap_any_bit_set(&hctx->ctx_map)) 246 break; 247 248 if (!blk_mq_get_dispatch_budget(q)) 249 break; 250 251 rq = blk_mq_dequeue_from_ctx(hctx, ctx); 252 if (!rq) { 253 blk_mq_put_dispatch_budget(q); 254 /* 255 * We're releasing without dispatching. Holding the 256 * budget could have blocked any "hctx"s with the 257 * same queue and if we didn't dispatch then there's 258 * no guarantee anyone will kick the queue. Kick it 259 * ourselves. 260 */ 261 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 262 break; 263 } 264 265 /* 266 * Now this rq owns the budget which has to be released 267 * if this rq won't be queued to driver via .queue_rq() 268 * in blk_mq_dispatch_rq_list(). 269 */ 270 list_add(&rq->queuelist, &rq_list); 271 272 /* round robin for fair dispatch */ 273 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx); 274 275 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1)); 276 277 WRITE_ONCE(hctx->dispatch_from, ctx); 278 return ret; 279} 280 281static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 282{ 283 struct request_queue *q = hctx->queue; 284 struct elevator_queue *e = q->elevator; 285 const bool has_sched_dispatch = e && e->type->ops.dispatch_request; 286 int ret = 0; 287 LIST_HEAD(rq_list); 288 289 /* 290 * If we have previous entries on our dispatch list, grab them first for 291 * more fair dispatch. 292 */ 293 if (!list_empty_careful(&hctx->dispatch)) { 294 spin_lock(&hctx->lock); 295 if (!list_empty(&hctx->dispatch)) 296 list_splice_init(&hctx->dispatch, &rq_list); 297 spin_unlock(&hctx->lock); 298 } 299 300 /* 301 * Only ask the scheduler for requests, if we didn't have residual 302 * requests from the dispatch list. This is to avoid the case where 303 * we only ever dispatch a fraction of the requests available because 304 * of low device queue depth. Once we pull requests out of the IO 305 * scheduler, we can no longer merge or sort them. So it's best to 306 * leave them there for as long as we can. Mark the hw queue as 307 * needing a restart in that case. 308 * 309 * We want to dispatch from the scheduler if there was nothing 310 * on the dispatch list or we were able to dispatch from the 311 * dispatch list. 312 */ 313 if (!list_empty(&rq_list)) { 314 blk_mq_sched_mark_restart_hctx(hctx); 315 if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) { 316 if (has_sched_dispatch) 317 ret = blk_mq_do_dispatch_sched(hctx); 318 else 319 ret = blk_mq_do_dispatch_ctx(hctx); 320 } 321 } else if (has_sched_dispatch) { 322 ret = blk_mq_do_dispatch_sched(hctx); 323 } else if (hctx->dispatch_busy) { 324 /* dequeue request one by one from sw queue if queue is busy */ 325 ret = blk_mq_do_dispatch_ctx(hctx); 326 } else { 327 blk_mq_flush_busy_ctxs(hctx, &rq_list); 328 blk_mq_dispatch_rq_list(hctx, &rq_list, 0); 329 } 330 331 return ret; 332} 333 334void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 335{ 336 struct request_queue *q = hctx->queue; 337 338 /* RCU or SRCU read lock is needed before checking quiesced flag */ 339 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) 340 return; 341 342 hctx->run++; 343 344 /* 345 * A return of -EAGAIN is an indication that hctx->dispatch is not 346 * empty and we must run again in order to avoid starving flushes. 347 */ 348 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) { 349 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) 350 blk_mq_run_hw_queue(hctx, true); 351 } 352} 353 354bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, 355 unsigned int nr_segs) 356{ 357 struct elevator_queue *e = q->elevator; 358 struct blk_mq_ctx *ctx; 359 struct blk_mq_hw_ctx *hctx; 360 bool ret = false; 361 enum hctx_type type; 362 363 if (e && e->type->ops.bio_merge) 364 return e->type->ops.bio_merge(q, bio, nr_segs); 365 366 ctx = blk_mq_get_ctx(q); 367 hctx = blk_mq_map_queue(q, bio->bi_opf, ctx); 368 type = hctx->type; 369 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) || 370 list_empty_careful(&ctx->rq_lists[type])) 371 return false; 372 373 /* default per sw-queue merge */ 374 spin_lock(&ctx->lock); 375 /* 376 * Reverse check our software queue for entries that we could 377 * potentially merge with. Currently includes a hand-wavy stop 378 * count of 8, to not spend too much time checking for merges. 379 */ 380 if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) { 381 ctx->rq_merged++; 382 ret = true; 383 } 384 385 spin_unlock(&ctx->lock); 386 387 return ret; 388} 389 390bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq, 391 struct list_head *free) 392{ 393 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free); 394} 395EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 396 397void blk_mq_sched_request_inserted(struct request *rq) 398{ 399 trace_block_rq_insert(rq); 400} 401EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted); 402 403static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, 404 bool has_sched, 405 struct request *rq) 406{ 407 /* 408 * dispatch flush and passthrough rq directly 409 * 410 * passthrough request has to be added to hctx->dispatch directly. 411 * For some reason, device may be in one situation which can't 412 * handle FS request, so STS_RESOURCE is always returned and the 413 * FS request will be added to hctx->dispatch. However passthrough 414 * request may be required at that time for fixing the problem. If 415 * passthrough request is added to scheduler queue, there isn't any 416 * chance to dispatch it given we prioritize requests in hctx->dispatch. 417 */ 418 if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq)) 419 return true; 420 421 if (has_sched) 422 rq->rq_flags |= RQF_SORTED; 423 424 return false; 425} 426 427void blk_mq_sched_insert_request(struct request *rq, bool at_head, 428 bool run_queue, bool async) 429{ 430 struct request_queue *q = rq->q; 431 struct elevator_queue *e = q->elevator; 432 struct blk_mq_ctx *ctx = rq->mq_ctx; 433 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 434 435 WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG)); 436 437 if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) { 438 /* 439 * Firstly normal IO request is inserted to scheduler queue or 440 * sw queue, meantime we add flush request to dispatch queue( 441 * hctx->dispatch) directly and there is at most one in-flight 442 * flush request for each hw queue, so it doesn't matter to add 443 * flush request to tail or front of the dispatch queue. 444 * 445 * Secondly in case of NCQ, flush request belongs to non-NCQ 446 * command, and queueing it will fail when there is any 447 * in-flight normal IO request(NCQ command). When adding flush 448 * rq to the front of hctx->dispatch, it is easier to introduce 449 * extra time to flush rq's latency because of S_SCHED_RESTART 450 * compared with adding to the tail of dispatch queue, then 451 * chance of flush merge is increased, and less flush requests 452 * will be issued to controller. It is observed that ~10% time 453 * is saved in blktests block/004 on disk attached to AHCI/NCQ 454 * drive when adding flush rq to the front of hctx->dispatch. 455 * 456 * Simply queue flush rq to the front of hctx->dispatch so that 457 * intensive flush workloads can benefit in case of NCQ HW. 458 */ 459 at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head; 460 blk_mq_request_bypass_insert(rq, at_head, false); 461 goto run; 462 } 463 464 if (e && e->type->ops.insert_requests) { 465 LIST_HEAD(list); 466 467 list_add(&rq->queuelist, &list); 468 e->type->ops.insert_requests(hctx, &list, at_head); 469 } else { 470 spin_lock(&ctx->lock); 471 __blk_mq_insert_request(hctx, rq, at_head); 472 spin_unlock(&ctx->lock); 473 } 474 475run: 476 if (run_queue) 477 blk_mq_run_hw_queue(hctx, async); 478} 479 480void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx, 481 struct blk_mq_ctx *ctx, 482 struct list_head *list, bool run_queue_async) 483{ 484 struct elevator_queue *e; 485 struct request_queue *q = hctx->queue; 486 487 /* 488 * blk_mq_sched_insert_requests() is called from flush plug 489 * context only, and hold one usage counter to prevent queue 490 * from being released. 491 */ 492 percpu_ref_get(&q->q_usage_counter); 493 494 e = hctx->queue->elevator; 495 if (e && e->type->ops.insert_requests) 496 e->type->ops.insert_requests(hctx, list, false); 497 else { 498 /* 499 * try to issue requests directly if the hw queue isn't 500 * busy in case of 'none' scheduler, and this way may save 501 * us one extra enqueue & dequeue to sw queue. 502 */ 503 if (!hctx->dispatch_busy && !e && !run_queue_async) { 504 blk_mq_try_issue_list_directly(hctx, list); 505 if (list_empty(list)) 506 goto out; 507 } 508 blk_mq_insert_requests(hctx, ctx, list); 509 } 510 511 blk_mq_run_hw_queue(hctx, run_queue_async); 512 out: 513 percpu_ref_put(&q->q_usage_counter); 514} 515 516static int blk_mq_sched_alloc_tags(struct request_queue *q, 517 struct blk_mq_hw_ctx *hctx, 518 unsigned int hctx_idx) 519{ 520 struct blk_mq_tag_set *set = q->tag_set; 521 /* Clear HCTX_SHARED so tags are init'ed */ 522 unsigned int flags = set->flags & ~BLK_MQ_F_TAG_HCTX_SHARED; 523 int ret; 524 525 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests, 526 set->reserved_tags, flags); 527 if (!hctx->sched_tags) 528 return -ENOMEM; 529 530 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests); 531 if (ret) { 532 blk_mq_free_rq_map(hctx->sched_tags, flags); 533 hctx->sched_tags = NULL; 534 } 535 536 return ret; 537} 538 539/* called in queue's release handler, tagset has gone away */ 540static void blk_mq_sched_tags_teardown(struct request_queue *q) 541{ 542 struct blk_mq_hw_ctx *hctx; 543 int i; 544 545 queue_for_each_hw_ctx(q, hctx, i) { 546 /* Clear HCTX_SHARED so tags are freed */ 547 unsigned int flags = hctx->flags & ~BLK_MQ_F_TAG_HCTX_SHARED; 548 549 if (hctx->sched_tags) { 550 blk_mq_free_rq_map(hctx->sched_tags, flags); 551 hctx->sched_tags = NULL; 552 } 553 } 554} 555 556int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) 557{ 558 struct blk_mq_hw_ctx *hctx; 559 struct elevator_queue *eq; 560 unsigned int i; 561 int ret; 562 563 if (!e) { 564 q->elevator = NULL; 565 q->nr_requests = q->tag_set->queue_depth; 566 return 0; 567 } 568 569 /* 570 * Default to double of smaller one between hw queue_depth and 128, 571 * since we don't split into sync/async like the old code did. 572 * Additionally, this is a per-hw queue depth. 573 */ 574 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth, 575 BLKDEV_MAX_RQ); 576 577 queue_for_each_hw_ctx(q, hctx, i) { 578 ret = blk_mq_sched_alloc_tags(q, hctx, i); 579 if (ret) 580 goto err; 581 } 582 583 ret = e->ops.init_sched(q, e); 584 if (ret) 585 goto err; 586 587 blk_mq_debugfs_register_sched(q); 588 589 queue_for_each_hw_ctx(q, hctx, i) { 590 if (e->ops.init_hctx) { 591 ret = e->ops.init_hctx(hctx, i); 592 if (ret) { 593 eq = q->elevator; 594 blk_mq_sched_free_requests(q); 595 blk_mq_exit_sched(q, eq); 596 kobject_put(&eq->kobj); 597 return ret; 598 } 599 } 600 blk_mq_debugfs_register_sched_hctx(q, hctx); 601 } 602 603 return 0; 604 605err: 606 blk_mq_sched_free_requests(q); 607 blk_mq_sched_tags_teardown(q); 608 q->elevator = NULL; 609 return ret; 610} 611 612/* 613 * called in either blk_queue_cleanup or elevator_switch, tagset 614 * is required for freeing requests 615 */ 616void blk_mq_sched_free_requests(struct request_queue *q) 617{ 618 struct blk_mq_hw_ctx *hctx; 619 int i; 620 621 queue_for_each_hw_ctx(q, hctx, i) { 622 if (hctx->sched_tags) 623 blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i); 624 } 625} 626 627void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) 628{ 629 struct blk_mq_hw_ctx *hctx; 630 unsigned int i; 631 632 queue_for_each_hw_ctx(q, hctx, i) { 633 blk_mq_debugfs_unregister_sched_hctx(hctx); 634 if (e->type->ops.exit_hctx && hctx->sched_data) { 635 e->type->ops.exit_hctx(hctx, i); 636 hctx->sched_data = NULL; 637 } 638 } 639 blk_mq_debugfs_unregister_sched(q); 640 if (e->type->ops.exit_sched) 641 e->type->ops.exit_sched(e); 642 blk_mq_sched_tags_teardown(q); 643 q->elevator = NULL; 644} 645