1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Functions related to segment and merge handling 4 */ 5#include <linux/kernel.h> 6#include <linux/module.h> 7#include <linux/bio.h> 8#include <linux/blkdev.h> 9#include <linux/scatterlist.h> 10#include <linux/blk-cgroup.h> 11 12#include <trace/events/block.h> 13 14#include "blk.h" 15#include "blk-rq-qos.h" 16 17static inline bool bio_will_gap(struct request_queue *q, 18 struct request *prev_rq, struct bio *prev, struct bio *next) 19{ 20 struct bio_vec pb, nb; 21 22 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 23 return false; 24 25 /* 26 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 27 * is quite difficult to respect the sg gap limit. We work hard to 28 * merge a huge number of small single bios in case of mkfs. 29 */ 30 if (prev_rq) 31 bio_get_first_bvec(prev_rq->bio, &pb); 32 else 33 bio_get_first_bvec(prev, &pb); 34 if (pb.bv_offset & queue_virt_boundary(q)) 35 return true; 36 37 /* 38 * We don't need to worry about the situation that the merged segment 39 * ends in unaligned virt boundary: 40 * 41 * - if 'pb' ends aligned, the merged segment ends aligned 42 * - if 'pb' ends unaligned, the next bio must include 43 * one single bvec of 'nb', otherwise the 'nb' can't 44 * merge with 'pb' 45 */ 46 bio_get_last_bvec(prev, &pb); 47 bio_get_first_bvec(next, &nb); 48 if (biovec_phys_mergeable(q, &pb, &nb)) 49 return false; 50 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 51} 52 53static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 54{ 55 return bio_will_gap(req->q, req, req->biotail, bio); 56} 57 58static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 59{ 60 return bio_will_gap(req->q, NULL, bio, req->bio); 61} 62 63static struct bio *blk_bio_discard_split(struct request_queue *q, 64 struct bio *bio, 65 struct bio_set *bs, 66 unsigned *nsegs) 67{ 68 unsigned int max_discard_sectors, granularity; 69 int alignment; 70 sector_t tmp; 71 unsigned split_sectors; 72 73 *nsegs = 1; 74 75 /* Zero-sector (unknown) and one-sector granularities are the same. */ 76 granularity = max(q->limits.discard_granularity >> 9, 1U); 77 78 max_discard_sectors = min(q->limits.max_discard_sectors, 79 bio_allowed_max_sectors(q)); 80 max_discard_sectors -= max_discard_sectors % granularity; 81 82 if (unlikely(!max_discard_sectors)) { 83 /* XXX: warn */ 84 return NULL; 85 } 86 87 if (bio_sectors(bio) <= max_discard_sectors) 88 return NULL; 89 90 split_sectors = max_discard_sectors; 91 92 /* 93 * If the next starting sector would be misaligned, stop the discard at 94 * the previous aligned sector. 95 */ 96 alignment = (q->limits.discard_alignment >> 9) % granularity; 97 98 tmp = bio->bi_iter.bi_sector + split_sectors - alignment; 99 tmp = sector_div(tmp, granularity); 100 101 if (split_sectors > tmp) 102 split_sectors -= tmp; 103 104 return bio_split(bio, split_sectors, GFP_NOIO, bs); 105} 106 107static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, 108 struct bio *bio, struct bio_set *bs, unsigned *nsegs) 109{ 110 *nsegs = 0; 111 112 if (!q->limits.max_write_zeroes_sectors) 113 return NULL; 114 115 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) 116 return NULL; 117 118 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); 119} 120 121static struct bio *blk_bio_write_same_split(struct request_queue *q, 122 struct bio *bio, 123 struct bio_set *bs, 124 unsigned *nsegs) 125{ 126 *nsegs = 1; 127 128 if (!q->limits.max_write_same_sectors) 129 return NULL; 130 131 if (bio_sectors(bio) <= q->limits.max_write_same_sectors) 132 return NULL; 133 134 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); 135} 136 137/* 138 * Return the maximum number of sectors from the start of a bio that may be 139 * submitted as a single request to a block device. If enough sectors remain, 140 * align the end to the physical block size. Otherwise align the end to the 141 * logical block size. This approach minimizes the number of non-aligned 142 * requests that are submitted to a block device if the start of a bio is not 143 * aligned to a physical block boundary. 144 */ 145static inline unsigned get_max_io_size(struct request_queue *q, 146 struct bio *bio) 147{ 148 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0); 149 unsigned max_sectors = sectors; 150 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT; 151 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT; 152 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1); 153 154 max_sectors += start_offset; 155 max_sectors &= ~(pbs - 1); 156 if (max_sectors > start_offset) 157 return max_sectors - start_offset; 158 159 return sectors & ~(lbs - 1); 160} 161 162static inline unsigned get_max_segment_size(const struct request_queue *q, 163 struct page *start_page, 164 unsigned long offset) 165{ 166 unsigned long mask = queue_segment_boundary(q); 167 168 offset = mask & (page_to_phys(start_page) + offset); 169 170 /* 171 * overflow may be triggered in case of zero page physical address 172 * on 32bit arch, use queue's max segment size when that happens. 173 */ 174 return min_not_zero(mask - offset + 1, 175 (unsigned long)queue_max_segment_size(q)); 176} 177 178/** 179 * bvec_split_segs - verify whether or not a bvec should be split in the middle 180 * @q: [in] request queue associated with the bio associated with @bv 181 * @bv: [in] bvec to examine 182 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 183 * by the number of segments from @bv that may be appended to that 184 * bio without exceeding @max_segs 185 * @sectors: [in,out] Number of sectors in the bio being built. Incremented 186 * by the number of sectors from @bv that may be appended to that 187 * bio without exceeding @max_sectors 188 * @max_segs: [in] upper bound for *@nsegs 189 * @max_sectors: [in] upper bound for *@sectors 190 * 191 * When splitting a bio, it can happen that a bvec is encountered that is too 192 * big to fit in a single segment and hence that it has to be split in the 193 * middle. This function verifies whether or not that should happen. The value 194 * %true is returned if and only if appending the entire @bv to a bio with 195 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 196 * the block driver. 197 */ 198static bool bvec_split_segs(const struct request_queue *q, 199 const struct bio_vec *bv, unsigned *nsegs, 200 unsigned *sectors, unsigned max_segs, 201 unsigned max_sectors) 202{ 203 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9; 204 unsigned len = min(bv->bv_len, max_len); 205 unsigned total_len = 0; 206 unsigned seg_size = 0; 207 208 while (len && *nsegs < max_segs) { 209 seg_size = get_max_segment_size(q, bv->bv_page, 210 bv->bv_offset + total_len); 211 seg_size = min(seg_size, len); 212 213 (*nsegs)++; 214 total_len += seg_size; 215 len -= seg_size; 216 217 if ((bv->bv_offset + total_len) & queue_virt_boundary(q)) 218 break; 219 } 220 221 *sectors += total_len >> 9; 222 223 /* tell the caller to split the bvec if it is too big to fit */ 224 return len > 0 || bv->bv_len > max_len; 225} 226 227/** 228 * blk_bio_segment_split - split a bio in two bios 229 * @q: [in] request queue pointer 230 * @bio: [in] bio to be split 231 * @bs: [in] bio set to allocate the clone from 232 * @segs: [out] number of segments in the bio with the first half of the sectors 233 * 234 * Clone @bio, update the bi_iter of the clone to represent the first sectors 235 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 236 * following is guaranteed for the cloned bio: 237 * - That it has at most get_max_io_size(@q, @bio) sectors. 238 * - That it has at most queue_max_segments(@q) segments. 239 * 240 * Except for discard requests the cloned bio will point at the bi_io_vec of 241 * the original bio. It is the responsibility of the caller to ensure that the 242 * original bio is not freed before the cloned bio. The caller is also 243 * responsible for ensuring that @bs is only destroyed after processing of the 244 * split bio has finished. 245 */ 246static struct bio *blk_bio_segment_split(struct request_queue *q, 247 struct bio *bio, 248 struct bio_set *bs, 249 unsigned *segs) 250{ 251 struct bio_vec bv, bvprv, *bvprvp = NULL; 252 struct bvec_iter iter; 253 unsigned nsegs = 0, sectors = 0; 254 const unsigned max_sectors = get_max_io_size(q, bio); 255 const unsigned max_segs = queue_max_segments(q); 256 257 bio_for_each_bvec(bv, bio, iter) { 258 /* 259 * If the queue doesn't support SG gaps and adding this 260 * offset would create a gap, disallow it. 261 */ 262 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) 263 goto split; 264 265 if (nsegs < max_segs && 266 sectors + (bv.bv_len >> 9) <= max_sectors && 267 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 268 nsegs++; 269 sectors += bv.bv_len >> 9; 270 } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs, 271 max_sectors)) { 272 goto split; 273 } 274 275 bvprv = bv; 276 bvprvp = &bvprv; 277 } 278 279 *segs = nsegs; 280 return NULL; 281split: 282 *segs = nsegs; 283 return bio_split(bio, sectors, GFP_NOIO, bs); 284} 285 286/** 287 * __blk_queue_split - split a bio and submit the second half 288 * @bio: [in, out] bio to be split 289 * @nr_segs: [out] number of segments in the first bio 290 * 291 * Split a bio into two bios, chain the two bios, submit the second half and 292 * store a pointer to the first half in *@bio. If the second bio is still too 293 * big it will be split by a recursive call to this function. Since this 294 * function may allocate a new bio from @bio->bi_disk->queue->bio_split, it is 295 * the responsibility of the caller to ensure that 296 * @bio->bi_disk->queue->bio_split is only released after processing of the 297 * split bio has finished. 298 */ 299void __blk_queue_split(struct bio **bio, unsigned int *nr_segs) 300{ 301 struct request_queue *q = (*bio)->bi_disk->queue; 302 struct bio *split = NULL; 303 304 switch (bio_op(*bio)) { 305 case REQ_OP_DISCARD: 306 case REQ_OP_SECURE_ERASE: 307 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs); 308 break; 309 case REQ_OP_WRITE_ZEROES: 310 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, 311 nr_segs); 312 break; 313 case REQ_OP_WRITE_SAME: 314 split = blk_bio_write_same_split(q, *bio, &q->bio_split, 315 nr_segs); 316 break; 317 default: 318 /* 319 * All drivers must accept single-segments bios that are <= 320 * PAGE_SIZE. This is a quick and dirty check that relies on 321 * the fact that bi_io_vec[0] is always valid if a bio has data. 322 * The check might lead to occasional false negatives when bios 323 * are cloned, but compared to the performance impact of cloned 324 * bios themselves the loop below doesn't matter anyway. 325 */ 326 if (!q->limits.chunk_sectors && 327 (*bio)->bi_vcnt == 1 && 328 ((*bio)->bi_io_vec[0].bv_len + 329 (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) { 330 *nr_segs = 1; 331 break; 332 } 333 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs); 334 break; 335 } 336 337 if (split) { 338 /* there isn't chance to merge the splitted bio */ 339 split->bi_opf |= REQ_NOMERGE; 340 341 bio_chain(split, *bio); 342 trace_block_split(q, split, (*bio)->bi_iter.bi_sector); 343 submit_bio_noacct(*bio); 344 *bio = split; 345 346 blk_throtl_charge_bio_split(*bio); 347 } 348} 349 350/** 351 * blk_queue_split - split a bio and submit the second half 352 * @bio: [in, out] bio to be split 353 * 354 * Split a bio into two bios, chains the two bios, submit the second half and 355 * store a pointer to the first half in *@bio. Since this function may allocate 356 * a new bio from @bio->bi_disk->queue->bio_split, it is the responsibility of 357 * the caller to ensure that @bio->bi_disk->queue->bio_split is only released 358 * after processing of the split bio has finished. 359 */ 360void blk_queue_split(struct bio **bio) 361{ 362 unsigned int nr_segs; 363 364 __blk_queue_split(bio, &nr_segs); 365} 366EXPORT_SYMBOL(blk_queue_split); 367 368unsigned int blk_recalc_rq_segments(struct request *rq) 369{ 370 unsigned int nr_phys_segs = 0; 371 unsigned int nr_sectors = 0; 372 struct req_iterator iter; 373 struct bio_vec bv; 374 375 if (!rq->bio) 376 return 0; 377 378 switch (bio_op(rq->bio)) { 379 case REQ_OP_DISCARD: 380 case REQ_OP_SECURE_ERASE: 381 if (queue_max_discard_segments(rq->q) > 1) { 382 struct bio *bio = rq->bio; 383 384 for_each_bio(bio) 385 nr_phys_segs++; 386 return nr_phys_segs; 387 } 388 return 1; 389 case REQ_OP_WRITE_ZEROES: 390 return 0; 391 case REQ_OP_WRITE_SAME: 392 return 1; 393 } 394 395 rq_for_each_bvec(bv, rq, iter) 396 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors, 397 UINT_MAX, UINT_MAX); 398 return nr_phys_segs; 399} 400 401static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 402 struct scatterlist *sglist) 403{ 404 if (!*sg) 405 return sglist; 406 407 /* 408 * If the driver previously mapped a shorter list, we could see a 409 * termination bit prematurely unless it fully inits the sg table 410 * on each mapping. We KNOW that there must be more entries here 411 * or the driver would be buggy, so force clear the termination bit 412 * to avoid doing a full sg_init_table() in drivers for each command. 413 */ 414 sg_unmark_end(*sg); 415 return sg_next(*sg); 416} 417 418static unsigned blk_bvec_map_sg(struct request_queue *q, 419 struct bio_vec *bvec, struct scatterlist *sglist, 420 struct scatterlist **sg) 421{ 422 unsigned nbytes = bvec->bv_len; 423 unsigned nsegs = 0, total = 0; 424 425 while (nbytes > 0) { 426 unsigned offset = bvec->bv_offset + total; 427 unsigned len = min(get_max_segment_size(q, bvec->bv_page, 428 offset), nbytes); 429 struct page *page = bvec->bv_page; 430 431 /* 432 * Unfortunately a fair number of drivers barf on scatterlists 433 * that have an offset larger than PAGE_SIZE, despite other 434 * subsystems dealing with that invariant just fine. For now 435 * stick to the legacy format where we never present those from 436 * the block layer, but the code below should be removed once 437 * these offenders (mostly MMC/SD drivers) are fixed. 438 */ 439 page += (offset >> PAGE_SHIFT); 440 offset &= ~PAGE_MASK; 441 442 *sg = blk_next_sg(sg, sglist); 443 sg_set_page(*sg, page, len, offset); 444 445 total += len; 446 nbytes -= len; 447 nsegs++; 448 } 449 450 return nsegs; 451} 452 453static inline int __blk_bvec_map_sg(struct bio_vec bv, 454 struct scatterlist *sglist, struct scatterlist **sg) 455{ 456 *sg = blk_next_sg(sg, sglist); 457 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 458 return 1; 459} 460 461/* only try to merge bvecs into one sg if they are from two bios */ 462static inline bool 463__blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 464 struct bio_vec *bvprv, struct scatterlist **sg) 465{ 466 467 int nbytes = bvec->bv_len; 468 469 if (!*sg) 470 return false; 471 472 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 473 return false; 474 475 if (!biovec_phys_mergeable(q, bvprv, bvec)) 476 return false; 477 478 (*sg)->length += nbytes; 479 480 return true; 481} 482 483static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 484 struct scatterlist *sglist, 485 struct scatterlist **sg) 486{ 487 struct bio_vec bvec, bvprv = { NULL }; 488 struct bvec_iter iter; 489 int nsegs = 0; 490 bool new_bio = false; 491 492 for_each_bio(bio) { 493 bio_for_each_bvec(bvec, bio, iter) { 494 /* 495 * Only try to merge bvecs from two bios given we 496 * have done bio internal merge when adding pages 497 * to bio 498 */ 499 if (new_bio && 500 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 501 goto next_bvec; 502 503 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 504 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 505 else 506 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 507 next_bvec: 508 new_bio = false; 509 } 510 if (likely(bio->bi_iter.bi_size)) { 511 bvprv = bvec; 512 new_bio = true; 513 } 514 } 515 516 return nsegs; 517} 518 519/* 520 * map a request to scatterlist, return number of sg entries setup. Caller 521 * must make sure sg can hold rq->nr_phys_segments entries 522 */ 523int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 524 struct scatterlist *sglist, struct scatterlist **last_sg) 525{ 526 int nsegs = 0; 527 528 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 529 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 530 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) 531 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg); 532 else if (rq->bio) 533 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 534 535 if (*last_sg) 536 sg_mark_end(*last_sg); 537 538 /* 539 * Something must have been wrong if the figured number of 540 * segment is bigger than number of req's physical segments 541 */ 542 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 543 544 return nsegs; 545} 546EXPORT_SYMBOL(__blk_rq_map_sg); 547 548static inline unsigned int blk_rq_get_max_segments(struct request *rq) 549{ 550 if (req_op(rq) == REQ_OP_DISCARD) 551 return queue_max_discard_segments(rq->q); 552 return queue_max_segments(rq->q); 553} 554 555static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 556 unsigned int nr_phys_segs) 557{ 558 if (!blk_cgroup_mergeable(req, bio)) 559 goto no_merge; 560 561 if (blk_integrity_merge_bio(req->q, req, bio) == false) 562 goto no_merge; 563 564 /* discard request merge won't add new segment */ 565 if (req_op(req) == REQ_OP_DISCARD) 566 return 1; 567 568 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) 569 goto no_merge; 570 571 /* 572 * This will form the start of a new hw segment. Bump both 573 * counters. 574 */ 575 req->nr_phys_segments += nr_phys_segs; 576 return 1; 577 578no_merge: 579 req_set_nomerge(req->q, req); 580 return 0; 581} 582 583int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 584{ 585 if (req_gap_back_merge(req, bio)) 586 return 0; 587 if (blk_integrity_rq(req) && 588 integrity_req_gap_back_merge(req, bio)) 589 return 0; 590 if (!bio_crypt_ctx_back_mergeable(req, bio)) 591 return 0; 592 if (blk_rq_sectors(req) + bio_sectors(bio) > 593 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 594 req_set_nomerge(req->q, req); 595 return 0; 596 } 597 598 return ll_new_hw_segment(req, bio, nr_segs); 599} 600 601static int ll_front_merge_fn(struct request *req, struct bio *bio, 602 unsigned int nr_segs) 603{ 604 if (req_gap_front_merge(req, bio)) 605 return 0; 606 if (blk_integrity_rq(req) && 607 integrity_req_gap_front_merge(req, bio)) 608 return 0; 609 if (!bio_crypt_ctx_front_mergeable(req, bio)) 610 return 0; 611 if (blk_rq_sectors(req) + bio_sectors(bio) > 612 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 613 req_set_nomerge(req->q, req); 614 return 0; 615 } 616 617 return ll_new_hw_segment(req, bio, nr_segs); 618} 619 620static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 621 struct request *next) 622{ 623 unsigned short segments = blk_rq_nr_discard_segments(req); 624 625 if (segments >= queue_max_discard_segments(q)) 626 goto no_merge; 627 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 628 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 629 goto no_merge; 630 631 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 632 return true; 633no_merge: 634 req_set_nomerge(q, req); 635 return false; 636} 637 638static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 639 struct request *next) 640{ 641 int total_phys_segments; 642 643 if (req_gap_back_merge(req, next->bio)) 644 return 0; 645 646 /* 647 * Will it become too large? 648 */ 649 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 650 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 651 return 0; 652 653 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 654 if (total_phys_segments > blk_rq_get_max_segments(req)) 655 return 0; 656 657 if (!blk_cgroup_mergeable(req, next->bio)) 658 return 0; 659 660 if (blk_integrity_merge_rq(q, req, next) == false) 661 return 0; 662 663 if (!bio_crypt_ctx_merge_rq(req, next)) 664 return 0; 665 666 /* Merge is OK... */ 667 req->nr_phys_segments = total_phys_segments; 668 return 1; 669} 670 671/** 672 * blk_rq_set_mixed_merge - mark a request as mixed merge 673 * @rq: request to mark as mixed merge 674 * 675 * Description: 676 * @rq is about to be mixed merged. Make sure the attributes 677 * which can be mixed are set in each bio and mark @rq as mixed 678 * merged. 679 */ 680void blk_rq_set_mixed_merge(struct request *rq) 681{ 682 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 683 struct bio *bio; 684 685 if (rq->rq_flags & RQF_MIXED_MERGE) 686 return; 687 688 /* 689 * @rq will no longer represent mixable attributes for all the 690 * contained bios. It will just track those of the first one. 691 * Distributes the attributs to each bio. 692 */ 693 for (bio = rq->bio; bio; bio = bio->bi_next) { 694 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 695 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 696 bio->bi_opf |= ff; 697 } 698 rq->rq_flags |= RQF_MIXED_MERGE; 699} 700 701static void blk_account_io_merge_request(struct request *req) 702{ 703 if (blk_do_io_stat(req)) { 704 part_stat_lock(); 705 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 706 part_stat_unlock(); 707 708 hd_struct_put(req->part); 709 } 710} 711 712static enum elv_merge blk_try_req_merge(struct request *req, 713 struct request *next) 714{ 715 if (blk_discard_mergable(req)) 716 return ELEVATOR_DISCARD_MERGE; 717 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 718 return ELEVATOR_BACK_MERGE; 719 720 return ELEVATOR_NO_MERGE; 721} 722 723/* 724 * For non-mq, this has to be called with the request spinlock acquired. 725 * For mq with scheduling, the appropriate queue wide lock should be held. 726 */ 727static struct request *attempt_merge(struct request_queue *q, 728 struct request *req, struct request *next) 729{ 730 if (!rq_mergeable(req) || !rq_mergeable(next)) 731 return NULL; 732 733 if (req_op(req) != req_op(next)) 734 return NULL; 735 736 if (rq_data_dir(req) != rq_data_dir(next) 737 || req->rq_disk != next->rq_disk) 738 return NULL; 739 740 if (req_op(req) == REQ_OP_WRITE_SAME && 741 !blk_write_same_mergeable(req->bio, next->bio)) 742 return NULL; 743 744 /* 745 * Don't allow merge of different write hints, or for a hint with 746 * non-hint IO. 747 */ 748 if (req->write_hint != next->write_hint) 749 return NULL; 750 751 if (req->ioprio != next->ioprio) 752 return NULL; 753 754 /* 755 * If we are allowed to merge, then append bio list 756 * from next to rq and release next. merge_requests_fn 757 * will have updated segment counts, update sector 758 * counts here. Handle DISCARDs separately, as they 759 * have separate settings. 760 */ 761 762 switch (blk_try_req_merge(req, next)) { 763 case ELEVATOR_DISCARD_MERGE: 764 if (!req_attempt_discard_merge(q, req, next)) 765 return NULL; 766 break; 767 case ELEVATOR_BACK_MERGE: 768 if (!ll_merge_requests_fn(q, req, next)) 769 return NULL; 770 break; 771 default: 772 return NULL; 773 } 774 775 /* 776 * If failfast settings disagree or any of the two is already 777 * a mixed merge, mark both as mixed before proceeding. This 778 * makes sure that all involved bios have mixable attributes 779 * set properly. 780 */ 781 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 782 (req->cmd_flags & REQ_FAILFAST_MASK) != 783 (next->cmd_flags & REQ_FAILFAST_MASK)) { 784 blk_rq_set_mixed_merge(req); 785 blk_rq_set_mixed_merge(next); 786 } 787 788 /* 789 * At this point we have either done a back merge or front merge. We 790 * need the smaller start_time_ns of the merged requests to be the 791 * current request for accounting purposes. 792 */ 793 if (next->start_time_ns < req->start_time_ns) 794 req->start_time_ns = next->start_time_ns; 795 796 req->biotail->bi_next = next->bio; 797 req->biotail = next->biotail; 798 799 req->__data_len += blk_rq_bytes(next); 800 801 if (!blk_discard_mergable(req)) 802 elv_merge_requests(q, req, next); 803 804 blk_crypto_rq_put_keyslot(next); 805 806 /* 807 * 'next' is going away, so update stats accordingly 808 */ 809 blk_account_io_merge_request(next); 810 811 trace_block_rq_merge(next); 812 813 /* 814 * ownership of bio passed from next to req, return 'next' for 815 * the caller to free 816 */ 817 next->bio = NULL; 818 return next; 819} 820 821static struct request *attempt_back_merge(struct request_queue *q, 822 struct request *rq) 823{ 824 struct request *next = elv_latter_request(q, rq); 825 826 if (next) 827 return attempt_merge(q, rq, next); 828 829 return NULL; 830} 831 832static struct request *attempt_front_merge(struct request_queue *q, 833 struct request *rq) 834{ 835 struct request *prev = elv_former_request(q, rq); 836 837 if (prev) 838 return attempt_merge(q, prev, rq); 839 840 return NULL; 841} 842 843/* 844 * Try to merge 'next' into 'rq'. Return true if the merge happened, false 845 * otherwise. The caller is responsible for freeing 'next' if the merge 846 * happened. 847 */ 848bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 849 struct request *next) 850{ 851 return attempt_merge(q, rq, next); 852} 853 854bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 855{ 856 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 857 return false; 858 859 if (req_op(rq) != bio_op(bio)) 860 return false; 861 862 /* different data direction or already started, don't merge */ 863 if (bio_data_dir(bio) != rq_data_dir(rq)) 864 return false; 865 866 /* must be same device */ 867 if (rq->rq_disk != bio->bi_disk) 868 return false; 869 870 /* don't merge across cgroup boundaries */ 871 if (!blk_cgroup_mergeable(rq, bio)) 872 return false; 873 874 /* only merge integrity protected bio into ditto rq */ 875 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 876 return false; 877 878 /* Only merge if the crypt contexts are compatible */ 879 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 880 return false; 881 882 /* must be using the same buffer */ 883 if (req_op(rq) == REQ_OP_WRITE_SAME && 884 !blk_write_same_mergeable(rq->bio, bio)) 885 return false; 886 887 /* 888 * Don't allow merge of different write hints, or for a hint with 889 * non-hint IO. 890 */ 891 if (rq->write_hint != bio->bi_write_hint) 892 return false; 893 894 if (rq->ioprio != bio_prio(bio)) 895 return false; 896 897 return true; 898} 899 900enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 901{ 902 if (blk_discard_mergable(rq)) 903 return ELEVATOR_DISCARD_MERGE; 904 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 905 return ELEVATOR_BACK_MERGE; 906 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 907 return ELEVATOR_FRONT_MERGE; 908 return ELEVATOR_NO_MERGE; 909} 910 911static void blk_account_io_merge_bio(struct request *req) 912{ 913 if (!blk_do_io_stat(req)) 914 return; 915 916 part_stat_lock(); 917 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 918 part_stat_unlock(); 919} 920 921enum bio_merge_status { 922 BIO_MERGE_OK, 923 BIO_MERGE_NONE, 924 BIO_MERGE_FAILED, 925}; 926 927static enum bio_merge_status bio_attempt_back_merge(struct request *req, 928 struct bio *bio, unsigned int nr_segs) 929{ 930 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 931 932 if (!ll_back_merge_fn(req, bio, nr_segs)) 933 return BIO_MERGE_FAILED; 934 935 trace_block_bio_backmerge(req->q, req, bio); 936 rq_qos_merge(req->q, req, bio); 937 938 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 939 blk_rq_set_mixed_merge(req); 940 941 req->biotail->bi_next = bio; 942 req->biotail = bio; 943 req->__data_len += bio->bi_iter.bi_size; 944 945 bio_crypt_free_ctx(bio); 946 947 blk_account_io_merge_bio(req); 948 return BIO_MERGE_OK; 949} 950 951static enum bio_merge_status bio_attempt_front_merge(struct request *req, 952 struct bio *bio, unsigned int nr_segs) 953{ 954 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 955 956 if (!ll_front_merge_fn(req, bio, nr_segs)) 957 return BIO_MERGE_FAILED; 958 959 trace_block_bio_frontmerge(req->q, req, bio); 960 rq_qos_merge(req->q, req, bio); 961 962 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 963 blk_rq_set_mixed_merge(req); 964 965 bio->bi_next = req->bio; 966 req->bio = bio; 967 968 req->__sector = bio->bi_iter.bi_sector; 969 req->__data_len += bio->bi_iter.bi_size; 970 971 bio_crypt_do_front_merge(req, bio); 972 973 blk_account_io_merge_bio(req); 974 return BIO_MERGE_OK; 975} 976 977static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, 978 struct request *req, struct bio *bio) 979{ 980 unsigned short segments = blk_rq_nr_discard_segments(req); 981 982 if (segments >= queue_max_discard_segments(q)) 983 goto no_merge; 984 if (blk_rq_sectors(req) + bio_sectors(bio) > 985 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 986 goto no_merge; 987 988 rq_qos_merge(q, req, bio); 989 990 req->biotail->bi_next = bio; 991 req->biotail = bio; 992 req->__data_len += bio->bi_iter.bi_size; 993 req->nr_phys_segments = segments + 1; 994 995 blk_account_io_merge_bio(req); 996 return BIO_MERGE_OK; 997no_merge: 998 req_set_nomerge(q, req); 999 return BIO_MERGE_FAILED; 1000} 1001 1002static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, 1003 struct request *rq, 1004 struct bio *bio, 1005 unsigned int nr_segs, 1006 bool sched_allow_merge) 1007{ 1008 if (!blk_rq_merge_ok(rq, bio)) 1009 return BIO_MERGE_NONE; 1010 1011 switch (blk_try_merge(rq, bio)) { 1012 case ELEVATOR_BACK_MERGE: 1013 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1014 return bio_attempt_back_merge(rq, bio, nr_segs); 1015 break; 1016 case ELEVATOR_FRONT_MERGE: 1017 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1018 return bio_attempt_front_merge(rq, bio, nr_segs); 1019 break; 1020 case ELEVATOR_DISCARD_MERGE: 1021 return bio_attempt_discard_merge(q, rq, bio); 1022 default: 1023 return BIO_MERGE_NONE; 1024 } 1025 1026 return BIO_MERGE_FAILED; 1027} 1028 1029/** 1030 * blk_attempt_plug_merge - try to merge with %current's plugged list 1031 * @q: request_queue new bio is being queued at 1032 * @bio: new bio being queued 1033 * @nr_segs: number of segments in @bio 1034 * @same_queue_rq: pointer to &struct request that gets filled in when 1035 * another request associated with @q is found on the plug list 1036 * (optional, may be %NULL) 1037 * 1038 * Determine whether @bio being queued on @q can be merged with a request 1039 * on %current's plugged list. Returns %true if merge was successful, 1040 * otherwise %false. 1041 * 1042 * Plugging coalesces IOs from the same issuer for the same purpose without 1043 * going through @q->queue_lock. As such it's more of an issuing mechanism 1044 * than scheduling, and the request, while may have elvpriv data, is not 1045 * added on the elevator at this point. In addition, we don't have 1046 * reliable access to the elevator outside queue lock. Only check basic 1047 * merging parameters without querying the elevator. 1048 * 1049 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1050 */ 1051bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1052 unsigned int nr_segs, struct request **same_queue_rq) 1053{ 1054 struct blk_plug *plug; 1055 struct request *rq; 1056 struct list_head *plug_list; 1057 1058 plug = blk_mq_plug(q, bio); 1059 if (!plug) 1060 return false; 1061 1062 plug_list = &plug->mq_list; 1063 1064 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1065 if (rq->q == q && same_queue_rq) { 1066 /* 1067 * Only blk-mq multiple hardware queues case checks the 1068 * rq in the same queue, there should be only one such 1069 * rq in a queue 1070 **/ 1071 *same_queue_rq = rq; 1072 } 1073 1074 if (rq->q != q) 1075 continue; 1076 1077 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == 1078 BIO_MERGE_OK) 1079 return true; 1080 } 1081 1082 return false; 1083} 1084 1085/* 1086 * Iterate list of requests and see if we can merge this bio with any 1087 * of them. 1088 */ 1089bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 1090 struct bio *bio, unsigned int nr_segs) 1091{ 1092 struct request *rq; 1093 int checked = 8; 1094 1095 list_for_each_entry_reverse(rq, list, queuelist) { 1096 if (!checked--) 1097 break; 1098 1099 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { 1100 case BIO_MERGE_NONE: 1101 continue; 1102 case BIO_MERGE_OK: 1103 return true; 1104 case BIO_MERGE_FAILED: 1105 return false; 1106 } 1107 1108 } 1109 1110 return false; 1111} 1112EXPORT_SYMBOL_GPL(blk_bio_list_merge); 1113 1114bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 1115 unsigned int nr_segs, struct request **merged_request) 1116{ 1117 struct request *rq; 1118 1119 switch (elv_merge(q, &rq, bio)) { 1120 case ELEVATOR_BACK_MERGE: 1121 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1122 return false; 1123 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1124 return false; 1125 *merged_request = attempt_back_merge(q, rq); 1126 if (!*merged_request) 1127 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 1128 return true; 1129 case ELEVATOR_FRONT_MERGE: 1130 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1131 return false; 1132 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1133 return false; 1134 *merged_request = attempt_front_merge(q, rq); 1135 if (!*merged_request) 1136 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 1137 return true; 1138 case ELEVATOR_DISCARD_MERGE: 1139 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; 1140 default: 1141 return false; 1142 } 1143} 1144EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 1145