xref: /kernel/linux/linux-5.10/block/blk-merge.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Functions related to segment and merge handling
4 */
5#include <linux/kernel.h>
6#include <linux/module.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
9#include <linux/scatterlist.h>
10#include <linux/blk-cgroup.h>
11
12#include <trace/events/block.h>
13
14#include "blk.h"
15#include "blk-rq-qos.h"
16
17static inline bool bio_will_gap(struct request_queue *q,
18		struct request *prev_rq, struct bio *prev, struct bio *next)
19{
20	struct bio_vec pb, nb;
21
22	if (!bio_has_data(prev) || !queue_virt_boundary(q))
23		return false;
24
25	/*
26	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
27	 * is quite difficult to respect the sg gap limit.  We work hard to
28	 * merge a huge number of small single bios in case of mkfs.
29	 */
30	if (prev_rq)
31		bio_get_first_bvec(prev_rq->bio, &pb);
32	else
33		bio_get_first_bvec(prev, &pb);
34	if (pb.bv_offset & queue_virt_boundary(q))
35		return true;
36
37	/*
38	 * We don't need to worry about the situation that the merged segment
39	 * ends in unaligned virt boundary:
40	 *
41	 * - if 'pb' ends aligned, the merged segment ends aligned
42	 * - if 'pb' ends unaligned, the next bio must include
43	 *   one single bvec of 'nb', otherwise the 'nb' can't
44	 *   merge with 'pb'
45	 */
46	bio_get_last_bvec(prev, &pb);
47	bio_get_first_bvec(next, &nb);
48	if (biovec_phys_mergeable(q, &pb, &nb))
49		return false;
50	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
51}
52
53static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
54{
55	return bio_will_gap(req->q, req, req->biotail, bio);
56}
57
58static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
59{
60	return bio_will_gap(req->q, NULL, bio, req->bio);
61}
62
63static struct bio *blk_bio_discard_split(struct request_queue *q,
64					 struct bio *bio,
65					 struct bio_set *bs,
66					 unsigned *nsegs)
67{
68	unsigned int max_discard_sectors, granularity;
69	int alignment;
70	sector_t tmp;
71	unsigned split_sectors;
72
73	*nsegs = 1;
74
75	/* Zero-sector (unknown) and one-sector granularities are the same.  */
76	granularity = max(q->limits.discard_granularity >> 9, 1U);
77
78	max_discard_sectors = min(q->limits.max_discard_sectors,
79			bio_allowed_max_sectors(q));
80	max_discard_sectors -= max_discard_sectors % granularity;
81
82	if (unlikely(!max_discard_sectors)) {
83		/* XXX: warn */
84		return NULL;
85	}
86
87	if (bio_sectors(bio) <= max_discard_sectors)
88		return NULL;
89
90	split_sectors = max_discard_sectors;
91
92	/*
93	 * If the next starting sector would be misaligned, stop the discard at
94	 * the previous aligned sector.
95	 */
96	alignment = (q->limits.discard_alignment >> 9) % granularity;
97
98	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
99	tmp = sector_div(tmp, granularity);
100
101	if (split_sectors > tmp)
102		split_sectors -= tmp;
103
104	return bio_split(bio, split_sectors, GFP_NOIO, bs);
105}
106
107static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
108		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
109{
110	*nsegs = 0;
111
112	if (!q->limits.max_write_zeroes_sectors)
113		return NULL;
114
115	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
116		return NULL;
117
118	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
119}
120
121static struct bio *blk_bio_write_same_split(struct request_queue *q,
122					    struct bio *bio,
123					    struct bio_set *bs,
124					    unsigned *nsegs)
125{
126	*nsegs = 1;
127
128	if (!q->limits.max_write_same_sectors)
129		return NULL;
130
131	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
132		return NULL;
133
134	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
135}
136
137/*
138 * Return the maximum number of sectors from the start of a bio that may be
139 * submitted as a single request to a block device. If enough sectors remain,
140 * align the end to the physical block size. Otherwise align the end to the
141 * logical block size. This approach minimizes the number of non-aligned
142 * requests that are submitted to a block device if the start of a bio is not
143 * aligned to a physical block boundary.
144 */
145static inline unsigned get_max_io_size(struct request_queue *q,
146				       struct bio *bio)
147{
148	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
149	unsigned max_sectors = sectors;
150	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
151	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
152	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
153
154	max_sectors += start_offset;
155	max_sectors &= ~(pbs - 1);
156	if (max_sectors > start_offset)
157		return max_sectors - start_offset;
158
159	return sectors & ~(lbs - 1);
160}
161
162static inline unsigned get_max_segment_size(const struct request_queue *q,
163					    struct page *start_page,
164					    unsigned long offset)
165{
166	unsigned long mask = queue_segment_boundary(q);
167
168	offset = mask & (page_to_phys(start_page) + offset);
169
170	/*
171	 * overflow may be triggered in case of zero page physical address
172	 * on 32bit arch, use queue's max segment size when that happens.
173	 */
174	return min_not_zero(mask - offset + 1,
175			(unsigned long)queue_max_segment_size(q));
176}
177
178/**
179 * bvec_split_segs - verify whether or not a bvec should be split in the middle
180 * @q:        [in] request queue associated with the bio associated with @bv
181 * @bv:       [in] bvec to examine
182 * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
183 *            by the number of segments from @bv that may be appended to that
184 *            bio without exceeding @max_segs
185 * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
186 *            by the number of sectors from @bv that may be appended to that
187 *            bio without exceeding @max_sectors
188 * @max_segs: [in] upper bound for *@nsegs
189 * @max_sectors: [in] upper bound for *@sectors
190 *
191 * When splitting a bio, it can happen that a bvec is encountered that is too
192 * big to fit in a single segment and hence that it has to be split in the
193 * middle. This function verifies whether or not that should happen. The value
194 * %true is returned if and only if appending the entire @bv to a bio with
195 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
196 * the block driver.
197 */
198static bool bvec_split_segs(const struct request_queue *q,
199			    const struct bio_vec *bv, unsigned *nsegs,
200			    unsigned *sectors, unsigned max_segs,
201			    unsigned max_sectors)
202{
203	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
204	unsigned len = min(bv->bv_len, max_len);
205	unsigned total_len = 0;
206	unsigned seg_size = 0;
207
208	while (len && *nsegs < max_segs) {
209		seg_size = get_max_segment_size(q, bv->bv_page,
210						bv->bv_offset + total_len);
211		seg_size = min(seg_size, len);
212
213		(*nsegs)++;
214		total_len += seg_size;
215		len -= seg_size;
216
217		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
218			break;
219	}
220
221	*sectors += total_len >> 9;
222
223	/* tell the caller to split the bvec if it is too big to fit */
224	return len > 0 || bv->bv_len > max_len;
225}
226
227/**
228 * blk_bio_segment_split - split a bio in two bios
229 * @q:    [in] request queue pointer
230 * @bio:  [in] bio to be split
231 * @bs:	  [in] bio set to allocate the clone from
232 * @segs: [out] number of segments in the bio with the first half of the sectors
233 *
234 * Clone @bio, update the bi_iter of the clone to represent the first sectors
235 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
236 * following is guaranteed for the cloned bio:
237 * - That it has at most get_max_io_size(@q, @bio) sectors.
238 * - That it has at most queue_max_segments(@q) segments.
239 *
240 * Except for discard requests the cloned bio will point at the bi_io_vec of
241 * the original bio. It is the responsibility of the caller to ensure that the
242 * original bio is not freed before the cloned bio. The caller is also
243 * responsible for ensuring that @bs is only destroyed after processing of the
244 * split bio has finished.
245 */
246static struct bio *blk_bio_segment_split(struct request_queue *q,
247					 struct bio *bio,
248					 struct bio_set *bs,
249					 unsigned *segs)
250{
251	struct bio_vec bv, bvprv, *bvprvp = NULL;
252	struct bvec_iter iter;
253	unsigned nsegs = 0, sectors = 0;
254	const unsigned max_sectors = get_max_io_size(q, bio);
255	const unsigned max_segs = queue_max_segments(q);
256
257	bio_for_each_bvec(bv, bio, iter) {
258		/*
259		 * If the queue doesn't support SG gaps and adding this
260		 * offset would create a gap, disallow it.
261		 */
262		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
263			goto split;
264
265		if (nsegs < max_segs &&
266		    sectors + (bv.bv_len >> 9) <= max_sectors &&
267		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
268			nsegs++;
269			sectors += bv.bv_len >> 9;
270		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
271					 max_sectors)) {
272			goto split;
273		}
274
275		bvprv = bv;
276		bvprvp = &bvprv;
277	}
278
279	*segs = nsegs;
280	return NULL;
281split:
282	*segs = nsegs;
283	return bio_split(bio, sectors, GFP_NOIO, bs);
284}
285
286/**
287 * __blk_queue_split - split a bio and submit the second half
288 * @bio:     [in, out] bio to be split
289 * @nr_segs: [out] number of segments in the first bio
290 *
291 * Split a bio into two bios, chain the two bios, submit the second half and
292 * store a pointer to the first half in *@bio. If the second bio is still too
293 * big it will be split by a recursive call to this function. Since this
294 * function may allocate a new bio from @bio->bi_disk->queue->bio_split, it is
295 * the responsibility of the caller to ensure that
296 * @bio->bi_disk->queue->bio_split is only released after processing of the
297 * split bio has finished.
298 */
299void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
300{
301	struct request_queue *q = (*bio)->bi_disk->queue;
302	struct bio *split = NULL;
303
304	switch (bio_op(*bio)) {
305	case REQ_OP_DISCARD:
306	case REQ_OP_SECURE_ERASE:
307		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
308		break;
309	case REQ_OP_WRITE_ZEROES:
310		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
311				nr_segs);
312		break;
313	case REQ_OP_WRITE_SAME:
314		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
315				nr_segs);
316		break;
317	default:
318		/*
319		 * All drivers must accept single-segments bios that are <=
320		 * PAGE_SIZE.  This is a quick and dirty check that relies on
321		 * the fact that bi_io_vec[0] is always valid if a bio has data.
322		 * The check might lead to occasional false negatives when bios
323		 * are cloned, but compared to the performance impact of cloned
324		 * bios themselves the loop below doesn't matter anyway.
325		 */
326		if (!q->limits.chunk_sectors &&
327		    (*bio)->bi_vcnt == 1 &&
328		    ((*bio)->bi_io_vec[0].bv_len +
329		     (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
330			*nr_segs = 1;
331			break;
332		}
333		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
334		break;
335	}
336
337	if (split) {
338		/* there isn't chance to merge the splitted bio */
339		split->bi_opf |= REQ_NOMERGE;
340
341		bio_chain(split, *bio);
342		trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
343		submit_bio_noacct(*bio);
344		*bio = split;
345
346		blk_throtl_charge_bio_split(*bio);
347	}
348}
349
350/**
351 * blk_queue_split - split a bio and submit the second half
352 * @bio: [in, out] bio to be split
353 *
354 * Split a bio into two bios, chains the two bios, submit the second half and
355 * store a pointer to the first half in *@bio. Since this function may allocate
356 * a new bio from @bio->bi_disk->queue->bio_split, it is the responsibility of
357 * the caller to ensure that @bio->bi_disk->queue->bio_split is only released
358 * after processing of the split bio has finished.
359 */
360void blk_queue_split(struct bio **bio)
361{
362	unsigned int nr_segs;
363
364	__blk_queue_split(bio, &nr_segs);
365}
366EXPORT_SYMBOL(blk_queue_split);
367
368unsigned int blk_recalc_rq_segments(struct request *rq)
369{
370	unsigned int nr_phys_segs = 0;
371	unsigned int nr_sectors = 0;
372	struct req_iterator iter;
373	struct bio_vec bv;
374
375	if (!rq->bio)
376		return 0;
377
378	switch (bio_op(rq->bio)) {
379	case REQ_OP_DISCARD:
380	case REQ_OP_SECURE_ERASE:
381		if (queue_max_discard_segments(rq->q) > 1) {
382			struct bio *bio = rq->bio;
383
384			for_each_bio(bio)
385				nr_phys_segs++;
386			return nr_phys_segs;
387		}
388		return 1;
389	case REQ_OP_WRITE_ZEROES:
390		return 0;
391	case REQ_OP_WRITE_SAME:
392		return 1;
393	}
394
395	rq_for_each_bvec(bv, rq, iter)
396		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
397				UINT_MAX, UINT_MAX);
398	return nr_phys_segs;
399}
400
401static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
402		struct scatterlist *sglist)
403{
404	if (!*sg)
405		return sglist;
406
407	/*
408	 * If the driver previously mapped a shorter list, we could see a
409	 * termination bit prematurely unless it fully inits the sg table
410	 * on each mapping. We KNOW that there must be more entries here
411	 * or the driver would be buggy, so force clear the termination bit
412	 * to avoid doing a full sg_init_table() in drivers for each command.
413	 */
414	sg_unmark_end(*sg);
415	return sg_next(*sg);
416}
417
418static unsigned blk_bvec_map_sg(struct request_queue *q,
419		struct bio_vec *bvec, struct scatterlist *sglist,
420		struct scatterlist **sg)
421{
422	unsigned nbytes = bvec->bv_len;
423	unsigned nsegs = 0, total = 0;
424
425	while (nbytes > 0) {
426		unsigned offset = bvec->bv_offset + total;
427		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
428					offset), nbytes);
429		struct page *page = bvec->bv_page;
430
431		/*
432		 * Unfortunately a fair number of drivers barf on scatterlists
433		 * that have an offset larger than PAGE_SIZE, despite other
434		 * subsystems dealing with that invariant just fine.  For now
435		 * stick to the legacy format where we never present those from
436		 * the block layer, but the code below should be removed once
437		 * these offenders (mostly MMC/SD drivers) are fixed.
438		 */
439		page += (offset >> PAGE_SHIFT);
440		offset &= ~PAGE_MASK;
441
442		*sg = blk_next_sg(sg, sglist);
443		sg_set_page(*sg, page, len, offset);
444
445		total += len;
446		nbytes -= len;
447		nsegs++;
448	}
449
450	return nsegs;
451}
452
453static inline int __blk_bvec_map_sg(struct bio_vec bv,
454		struct scatterlist *sglist, struct scatterlist **sg)
455{
456	*sg = blk_next_sg(sg, sglist);
457	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
458	return 1;
459}
460
461/* only try to merge bvecs into one sg if they are from two bios */
462static inline bool
463__blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
464			   struct bio_vec *bvprv, struct scatterlist **sg)
465{
466
467	int nbytes = bvec->bv_len;
468
469	if (!*sg)
470		return false;
471
472	if ((*sg)->length + nbytes > queue_max_segment_size(q))
473		return false;
474
475	if (!biovec_phys_mergeable(q, bvprv, bvec))
476		return false;
477
478	(*sg)->length += nbytes;
479
480	return true;
481}
482
483static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
484			     struct scatterlist *sglist,
485			     struct scatterlist **sg)
486{
487	struct bio_vec bvec, bvprv = { NULL };
488	struct bvec_iter iter;
489	int nsegs = 0;
490	bool new_bio = false;
491
492	for_each_bio(bio) {
493		bio_for_each_bvec(bvec, bio, iter) {
494			/*
495			 * Only try to merge bvecs from two bios given we
496			 * have done bio internal merge when adding pages
497			 * to bio
498			 */
499			if (new_bio &&
500			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
501				goto next_bvec;
502
503			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
504				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
505			else
506				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
507 next_bvec:
508			new_bio = false;
509		}
510		if (likely(bio->bi_iter.bi_size)) {
511			bvprv = bvec;
512			new_bio = true;
513		}
514	}
515
516	return nsegs;
517}
518
519/*
520 * map a request to scatterlist, return number of sg entries setup. Caller
521 * must make sure sg can hold rq->nr_phys_segments entries
522 */
523int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
524		struct scatterlist *sglist, struct scatterlist **last_sg)
525{
526	int nsegs = 0;
527
528	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
529		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
530	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
531		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
532	else if (rq->bio)
533		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
534
535	if (*last_sg)
536		sg_mark_end(*last_sg);
537
538	/*
539	 * Something must have been wrong if the figured number of
540	 * segment is bigger than number of req's physical segments
541	 */
542	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
543
544	return nsegs;
545}
546EXPORT_SYMBOL(__blk_rq_map_sg);
547
548static inline unsigned int blk_rq_get_max_segments(struct request *rq)
549{
550	if (req_op(rq) == REQ_OP_DISCARD)
551		return queue_max_discard_segments(rq->q);
552	return queue_max_segments(rq->q);
553}
554
555static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
556		unsigned int nr_phys_segs)
557{
558	if (!blk_cgroup_mergeable(req, bio))
559		goto no_merge;
560
561	if (blk_integrity_merge_bio(req->q, req, bio) == false)
562		goto no_merge;
563
564	/* discard request merge won't add new segment */
565	if (req_op(req) == REQ_OP_DISCARD)
566		return 1;
567
568	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
569		goto no_merge;
570
571	/*
572	 * This will form the start of a new hw segment.  Bump both
573	 * counters.
574	 */
575	req->nr_phys_segments += nr_phys_segs;
576	return 1;
577
578no_merge:
579	req_set_nomerge(req->q, req);
580	return 0;
581}
582
583int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
584{
585	if (req_gap_back_merge(req, bio))
586		return 0;
587	if (blk_integrity_rq(req) &&
588	    integrity_req_gap_back_merge(req, bio))
589		return 0;
590	if (!bio_crypt_ctx_back_mergeable(req, bio))
591		return 0;
592	if (blk_rq_sectors(req) + bio_sectors(bio) >
593	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
594		req_set_nomerge(req->q, req);
595		return 0;
596	}
597
598	return ll_new_hw_segment(req, bio, nr_segs);
599}
600
601static int ll_front_merge_fn(struct request *req, struct bio *bio,
602		unsigned int nr_segs)
603{
604	if (req_gap_front_merge(req, bio))
605		return 0;
606	if (blk_integrity_rq(req) &&
607	    integrity_req_gap_front_merge(req, bio))
608		return 0;
609	if (!bio_crypt_ctx_front_mergeable(req, bio))
610		return 0;
611	if (blk_rq_sectors(req) + bio_sectors(bio) >
612	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
613		req_set_nomerge(req->q, req);
614		return 0;
615	}
616
617	return ll_new_hw_segment(req, bio, nr_segs);
618}
619
620static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
621		struct request *next)
622{
623	unsigned short segments = blk_rq_nr_discard_segments(req);
624
625	if (segments >= queue_max_discard_segments(q))
626		goto no_merge;
627	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
628	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
629		goto no_merge;
630
631	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
632	return true;
633no_merge:
634	req_set_nomerge(q, req);
635	return false;
636}
637
638static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
639				struct request *next)
640{
641	int total_phys_segments;
642
643	if (req_gap_back_merge(req, next->bio))
644		return 0;
645
646	/*
647	 * Will it become too large?
648	 */
649	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
650	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
651		return 0;
652
653	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
654	if (total_phys_segments > blk_rq_get_max_segments(req))
655		return 0;
656
657	if (!blk_cgroup_mergeable(req, next->bio))
658		return 0;
659
660	if (blk_integrity_merge_rq(q, req, next) == false)
661		return 0;
662
663	if (!bio_crypt_ctx_merge_rq(req, next))
664		return 0;
665
666	/* Merge is OK... */
667	req->nr_phys_segments = total_phys_segments;
668	return 1;
669}
670
671/**
672 * blk_rq_set_mixed_merge - mark a request as mixed merge
673 * @rq: request to mark as mixed merge
674 *
675 * Description:
676 *     @rq is about to be mixed merged.  Make sure the attributes
677 *     which can be mixed are set in each bio and mark @rq as mixed
678 *     merged.
679 */
680void blk_rq_set_mixed_merge(struct request *rq)
681{
682	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
683	struct bio *bio;
684
685	if (rq->rq_flags & RQF_MIXED_MERGE)
686		return;
687
688	/*
689	 * @rq will no longer represent mixable attributes for all the
690	 * contained bios.  It will just track those of the first one.
691	 * Distributes the attributs to each bio.
692	 */
693	for (bio = rq->bio; bio; bio = bio->bi_next) {
694		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
695			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
696		bio->bi_opf |= ff;
697	}
698	rq->rq_flags |= RQF_MIXED_MERGE;
699}
700
701static void blk_account_io_merge_request(struct request *req)
702{
703	if (blk_do_io_stat(req)) {
704		part_stat_lock();
705		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
706		part_stat_unlock();
707
708		hd_struct_put(req->part);
709	}
710}
711
712static enum elv_merge blk_try_req_merge(struct request *req,
713					struct request *next)
714{
715	if (blk_discard_mergable(req))
716		return ELEVATOR_DISCARD_MERGE;
717	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
718		return ELEVATOR_BACK_MERGE;
719
720	return ELEVATOR_NO_MERGE;
721}
722
723/*
724 * For non-mq, this has to be called with the request spinlock acquired.
725 * For mq with scheduling, the appropriate queue wide lock should be held.
726 */
727static struct request *attempt_merge(struct request_queue *q,
728				     struct request *req, struct request *next)
729{
730	if (!rq_mergeable(req) || !rq_mergeable(next))
731		return NULL;
732
733	if (req_op(req) != req_op(next))
734		return NULL;
735
736	if (rq_data_dir(req) != rq_data_dir(next)
737	    || req->rq_disk != next->rq_disk)
738		return NULL;
739
740	if (req_op(req) == REQ_OP_WRITE_SAME &&
741	    !blk_write_same_mergeable(req->bio, next->bio))
742		return NULL;
743
744	/*
745	 * Don't allow merge of different write hints, or for a hint with
746	 * non-hint IO.
747	 */
748	if (req->write_hint != next->write_hint)
749		return NULL;
750
751	if (req->ioprio != next->ioprio)
752		return NULL;
753
754	/*
755	 * If we are allowed to merge, then append bio list
756	 * from next to rq and release next. merge_requests_fn
757	 * will have updated segment counts, update sector
758	 * counts here. Handle DISCARDs separately, as they
759	 * have separate settings.
760	 */
761
762	switch (blk_try_req_merge(req, next)) {
763	case ELEVATOR_DISCARD_MERGE:
764		if (!req_attempt_discard_merge(q, req, next))
765			return NULL;
766		break;
767	case ELEVATOR_BACK_MERGE:
768		if (!ll_merge_requests_fn(q, req, next))
769			return NULL;
770		break;
771	default:
772		return NULL;
773	}
774
775	/*
776	 * If failfast settings disagree or any of the two is already
777	 * a mixed merge, mark both as mixed before proceeding.  This
778	 * makes sure that all involved bios have mixable attributes
779	 * set properly.
780	 */
781	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
782	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
783	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
784		blk_rq_set_mixed_merge(req);
785		blk_rq_set_mixed_merge(next);
786	}
787
788	/*
789	 * At this point we have either done a back merge or front merge. We
790	 * need the smaller start_time_ns of the merged requests to be the
791	 * current request for accounting purposes.
792	 */
793	if (next->start_time_ns < req->start_time_ns)
794		req->start_time_ns = next->start_time_ns;
795
796	req->biotail->bi_next = next->bio;
797	req->biotail = next->biotail;
798
799	req->__data_len += blk_rq_bytes(next);
800
801	if (!blk_discard_mergable(req))
802		elv_merge_requests(q, req, next);
803
804	blk_crypto_rq_put_keyslot(next);
805
806	/*
807	 * 'next' is going away, so update stats accordingly
808	 */
809	blk_account_io_merge_request(next);
810
811	trace_block_rq_merge(next);
812
813	/*
814	 * ownership of bio passed from next to req, return 'next' for
815	 * the caller to free
816	 */
817	next->bio = NULL;
818	return next;
819}
820
821static struct request *attempt_back_merge(struct request_queue *q,
822		struct request *rq)
823{
824	struct request *next = elv_latter_request(q, rq);
825
826	if (next)
827		return attempt_merge(q, rq, next);
828
829	return NULL;
830}
831
832static struct request *attempt_front_merge(struct request_queue *q,
833		struct request *rq)
834{
835	struct request *prev = elv_former_request(q, rq);
836
837	if (prev)
838		return attempt_merge(q, prev, rq);
839
840	return NULL;
841}
842
843/*
844 * Try to merge 'next' into 'rq'. Return true if the merge happened, false
845 * otherwise. The caller is responsible for freeing 'next' if the merge
846 * happened.
847 */
848bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
849			   struct request *next)
850{
851	return attempt_merge(q, rq, next);
852}
853
854bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
855{
856	if (!rq_mergeable(rq) || !bio_mergeable(bio))
857		return false;
858
859	if (req_op(rq) != bio_op(bio))
860		return false;
861
862	/* different data direction or already started, don't merge */
863	if (bio_data_dir(bio) != rq_data_dir(rq))
864		return false;
865
866	/* must be same device */
867	if (rq->rq_disk != bio->bi_disk)
868		return false;
869
870	/* don't merge across cgroup boundaries */
871	if (!blk_cgroup_mergeable(rq, bio))
872		return false;
873
874	/* only merge integrity protected bio into ditto rq */
875	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
876		return false;
877
878	/* Only merge if the crypt contexts are compatible */
879	if (!bio_crypt_rq_ctx_compatible(rq, bio))
880		return false;
881
882	/* must be using the same buffer */
883	if (req_op(rq) == REQ_OP_WRITE_SAME &&
884	    !blk_write_same_mergeable(rq->bio, bio))
885		return false;
886
887	/*
888	 * Don't allow merge of different write hints, or for a hint with
889	 * non-hint IO.
890	 */
891	if (rq->write_hint != bio->bi_write_hint)
892		return false;
893
894	if (rq->ioprio != bio_prio(bio))
895		return false;
896
897	return true;
898}
899
900enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
901{
902	if (blk_discard_mergable(rq))
903		return ELEVATOR_DISCARD_MERGE;
904	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
905		return ELEVATOR_BACK_MERGE;
906	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
907		return ELEVATOR_FRONT_MERGE;
908	return ELEVATOR_NO_MERGE;
909}
910
911static void blk_account_io_merge_bio(struct request *req)
912{
913	if (!blk_do_io_stat(req))
914		return;
915
916	part_stat_lock();
917	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
918	part_stat_unlock();
919}
920
921enum bio_merge_status {
922	BIO_MERGE_OK,
923	BIO_MERGE_NONE,
924	BIO_MERGE_FAILED,
925};
926
927static enum bio_merge_status bio_attempt_back_merge(struct request *req,
928		struct bio *bio, unsigned int nr_segs)
929{
930	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
931
932	if (!ll_back_merge_fn(req, bio, nr_segs))
933		return BIO_MERGE_FAILED;
934
935	trace_block_bio_backmerge(req->q, req, bio);
936	rq_qos_merge(req->q, req, bio);
937
938	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
939		blk_rq_set_mixed_merge(req);
940
941	req->biotail->bi_next = bio;
942	req->biotail = bio;
943	req->__data_len += bio->bi_iter.bi_size;
944
945	bio_crypt_free_ctx(bio);
946
947	blk_account_io_merge_bio(req);
948	return BIO_MERGE_OK;
949}
950
951static enum bio_merge_status bio_attempt_front_merge(struct request *req,
952		struct bio *bio, unsigned int nr_segs)
953{
954	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
955
956	if (!ll_front_merge_fn(req, bio, nr_segs))
957		return BIO_MERGE_FAILED;
958
959	trace_block_bio_frontmerge(req->q, req, bio);
960	rq_qos_merge(req->q, req, bio);
961
962	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
963		blk_rq_set_mixed_merge(req);
964
965	bio->bi_next = req->bio;
966	req->bio = bio;
967
968	req->__sector = bio->bi_iter.bi_sector;
969	req->__data_len += bio->bi_iter.bi_size;
970
971	bio_crypt_do_front_merge(req, bio);
972
973	blk_account_io_merge_bio(req);
974	return BIO_MERGE_OK;
975}
976
977static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
978		struct request *req, struct bio *bio)
979{
980	unsigned short segments = blk_rq_nr_discard_segments(req);
981
982	if (segments >= queue_max_discard_segments(q))
983		goto no_merge;
984	if (blk_rq_sectors(req) + bio_sectors(bio) >
985	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
986		goto no_merge;
987
988	rq_qos_merge(q, req, bio);
989
990	req->biotail->bi_next = bio;
991	req->biotail = bio;
992	req->__data_len += bio->bi_iter.bi_size;
993	req->nr_phys_segments = segments + 1;
994
995	blk_account_io_merge_bio(req);
996	return BIO_MERGE_OK;
997no_merge:
998	req_set_nomerge(q, req);
999	return BIO_MERGE_FAILED;
1000}
1001
1002static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1003						   struct request *rq,
1004						   struct bio *bio,
1005						   unsigned int nr_segs,
1006						   bool sched_allow_merge)
1007{
1008	if (!blk_rq_merge_ok(rq, bio))
1009		return BIO_MERGE_NONE;
1010
1011	switch (blk_try_merge(rq, bio)) {
1012	case ELEVATOR_BACK_MERGE:
1013		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1014			return bio_attempt_back_merge(rq, bio, nr_segs);
1015		break;
1016	case ELEVATOR_FRONT_MERGE:
1017		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1018			return bio_attempt_front_merge(rq, bio, nr_segs);
1019		break;
1020	case ELEVATOR_DISCARD_MERGE:
1021		return bio_attempt_discard_merge(q, rq, bio);
1022	default:
1023		return BIO_MERGE_NONE;
1024	}
1025
1026	return BIO_MERGE_FAILED;
1027}
1028
1029/**
1030 * blk_attempt_plug_merge - try to merge with %current's plugged list
1031 * @q: request_queue new bio is being queued at
1032 * @bio: new bio being queued
1033 * @nr_segs: number of segments in @bio
1034 * @same_queue_rq: pointer to &struct request that gets filled in when
1035 * another request associated with @q is found on the plug list
1036 * (optional, may be %NULL)
1037 *
1038 * Determine whether @bio being queued on @q can be merged with a request
1039 * on %current's plugged list.  Returns %true if merge was successful,
1040 * otherwise %false.
1041 *
1042 * Plugging coalesces IOs from the same issuer for the same purpose without
1043 * going through @q->queue_lock.  As such it's more of an issuing mechanism
1044 * than scheduling, and the request, while may have elvpriv data, is not
1045 * added on the elevator at this point.  In addition, we don't have
1046 * reliable access to the elevator outside queue lock.  Only check basic
1047 * merging parameters without querying the elevator.
1048 *
1049 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1050 */
1051bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1052		unsigned int nr_segs, struct request **same_queue_rq)
1053{
1054	struct blk_plug *plug;
1055	struct request *rq;
1056	struct list_head *plug_list;
1057
1058	plug = blk_mq_plug(q, bio);
1059	if (!plug)
1060		return false;
1061
1062	plug_list = &plug->mq_list;
1063
1064	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1065		if (rq->q == q && same_queue_rq) {
1066			/*
1067			 * Only blk-mq multiple hardware queues case checks the
1068			 * rq in the same queue, there should be only one such
1069			 * rq in a queue
1070			 **/
1071			*same_queue_rq = rq;
1072		}
1073
1074		if (rq->q != q)
1075			continue;
1076
1077		if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1078		    BIO_MERGE_OK)
1079			return true;
1080	}
1081
1082	return false;
1083}
1084
1085/*
1086 * Iterate list of requests and see if we can merge this bio with any
1087 * of them.
1088 */
1089bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1090			struct bio *bio, unsigned int nr_segs)
1091{
1092	struct request *rq;
1093	int checked = 8;
1094
1095	list_for_each_entry_reverse(rq, list, queuelist) {
1096		if (!checked--)
1097			break;
1098
1099		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1100		case BIO_MERGE_NONE:
1101			continue;
1102		case BIO_MERGE_OK:
1103			return true;
1104		case BIO_MERGE_FAILED:
1105			return false;
1106		}
1107
1108	}
1109
1110	return false;
1111}
1112EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1113
1114bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1115		unsigned int nr_segs, struct request **merged_request)
1116{
1117	struct request *rq;
1118
1119	switch (elv_merge(q, &rq, bio)) {
1120	case ELEVATOR_BACK_MERGE:
1121		if (!blk_mq_sched_allow_merge(q, rq, bio))
1122			return false;
1123		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1124			return false;
1125		*merged_request = attempt_back_merge(q, rq);
1126		if (!*merged_request)
1127			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1128		return true;
1129	case ELEVATOR_FRONT_MERGE:
1130		if (!blk_mq_sched_allow_merge(q, rq, bio))
1131			return false;
1132		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1133			return false;
1134		*merged_request = attempt_front_merge(q, rq);
1135		if (!*merged_request)
1136			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1137		return true;
1138	case ELEVATOR_DISCARD_MERGE:
1139		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1140	default:
1141		return false;
1142	}
1143}
1144EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1145