xref: /kernel/linux/linux-5.10/block/blk-map.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Functions related to mapping data to requests
4 */
5#include <linux/kernel.h>
6#include <linux/sched/task_stack.h>
7#include <linux/module.h>
8#include <linux/bio.h>
9#include <linux/blkdev.h>
10#include <linux/uio.h>
11
12#include "blk.h"
13
14struct bio_map_data {
15	bool is_our_pages : 1;
16	bool is_null_mapped : 1;
17	struct iov_iter iter;
18	struct iovec iov[];
19};
20
21static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22					       gfp_t gfp_mask)
23{
24	struct bio_map_data *bmd;
25
26	if (data->nr_segs > UIO_MAXIOV)
27		return NULL;
28
29	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30	if (!bmd)
31		return NULL;
32	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
33	bmd->iter = *data;
34	bmd->iter.iov = bmd->iov;
35	return bmd;
36}
37
38/**
39 * bio_copy_from_iter - copy all pages from iov_iter to bio
40 * @bio: The &struct bio which describes the I/O as destination
41 * @iter: iov_iter as source
42 *
43 * Copy all pages from iov_iter to bio.
44 * Returns 0 on success, or error on failure.
45 */
46static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
47{
48	struct bio_vec *bvec;
49	struct bvec_iter_all iter_all;
50
51	bio_for_each_segment_all(bvec, bio, iter_all) {
52		ssize_t ret;
53
54		ret = copy_page_from_iter(bvec->bv_page,
55					  bvec->bv_offset,
56					  bvec->bv_len,
57					  iter);
58
59		if (!iov_iter_count(iter))
60			break;
61
62		if (ret < bvec->bv_len)
63			return -EFAULT;
64	}
65
66	return 0;
67}
68
69/**
70 * bio_copy_to_iter - copy all pages from bio to iov_iter
71 * @bio: The &struct bio which describes the I/O as source
72 * @iter: iov_iter as destination
73 *
74 * Copy all pages from bio to iov_iter.
75 * Returns 0 on success, or error on failure.
76 */
77static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
78{
79	struct bio_vec *bvec;
80	struct bvec_iter_all iter_all;
81
82	bio_for_each_segment_all(bvec, bio, iter_all) {
83		ssize_t ret;
84
85		ret = copy_page_to_iter(bvec->bv_page,
86					bvec->bv_offset,
87					bvec->bv_len,
88					&iter);
89
90		if (!iov_iter_count(&iter))
91			break;
92
93		if (ret < bvec->bv_len)
94			return -EFAULT;
95	}
96
97	return 0;
98}
99
100/**
101 *	bio_uncopy_user	-	finish previously mapped bio
102 *	@bio: bio being terminated
103 *
104 *	Free pages allocated from bio_copy_user_iov() and write back data
105 *	to user space in case of a read.
106 */
107static int bio_uncopy_user(struct bio *bio)
108{
109	struct bio_map_data *bmd = bio->bi_private;
110	int ret = 0;
111
112	if (!bmd->is_null_mapped) {
113		/*
114		 * if we're in a workqueue, the request is orphaned, so
115		 * don't copy into a random user address space, just free
116		 * and return -EINTR so user space doesn't expect any data.
117		 */
118		if (!current->mm)
119			ret = -EINTR;
120		else if (bio_data_dir(bio) == READ)
121			ret = bio_copy_to_iter(bio, bmd->iter);
122		if (bmd->is_our_pages)
123			bio_free_pages(bio);
124	}
125	kfree(bmd);
126	bio_put(bio);
127	return ret;
128}
129
130static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
131		struct iov_iter *iter, gfp_t gfp_mask)
132{
133	struct bio_map_data *bmd;
134	struct page *page;
135	struct bio *bio, *bounce_bio;
136	int i = 0, ret;
137	int nr_pages;
138	unsigned int len = iter->count;
139	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
140
141	bmd = bio_alloc_map_data(iter, gfp_mask);
142	if (!bmd)
143		return -ENOMEM;
144
145	/*
146	 * We need to do a deep copy of the iov_iter including the iovecs.
147	 * The caller provided iov might point to an on-stack or otherwise
148	 * shortlived one.
149	 */
150	bmd->is_our_pages = !map_data;
151	bmd->is_null_mapped = (map_data && map_data->null_mapped);
152
153	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
154	if (nr_pages > BIO_MAX_PAGES)
155		nr_pages = BIO_MAX_PAGES;
156
157	ret = -ENOMEM;
158	bio = bio_kmalloc(gfp_mask, nr_pages);
159	if (!bio)
160		goto out_bmd;
161	bio->bi_opf |= req_op(rq);
162
163	if (map_data) {
164		nr_pages = 1 << map_data->page_order;
165		i = map_data->offset / PAGE_SIZE;
166	}
167	while (len) {
168		unsigned int bytes = PAGE_SIZE;
169
170		bytes -= offset;
171
172		if (bytes > len)
173			bytes = len;
174
175		if (map_data) {
176			if (i == map_data->nr_entries * nr_pages) {
177				ret = -ENOMEM;
178				goto cleanup;
179			}
180
181			page = map_data->pages[i / nr_pages];
182			page += (i % nr_pages);
183
184			i++;
185		} else {
186			page = alloc_page(rq->q->bounce_gfp | gfp_mask);
187			if (!page) {
188				ret = -ENOMEM;
189				goto cleanup;
190			}
191		}
192
193		if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
194			if (!map_data)
195				__free_page(page);
196			break;
197		}
198
199		len -= bytes;
200		offset = 0;
201	}
202
203	if (map_data)
204		map_data->offset += bio->bi_iter.bi_size;
205
206	/*
207	 * success
208	 */
209	if ((iov_iter_rw(iter) == WRITE &&
210	     (!map_data || !map_data->null_mapped)) ||
211	    (map_data && map_data->from_user)) {
212		ret = bio_copy_from_iter(bio, iter);
213		if (ret)
214			goto cleanup;
215	} else {
216		if (bmd->is_our_pages)
217			zero_fill_bio(bio);
218		iov_iter_advance(iter, bio->bi_iter.bi_size);
219	}
220
221	bio->bi_private = bmd;
222
223	bounce_bio = bio;
224	ret = blk_rq_append_bio(rq, &bounce_bio);
225	if (ret)
226		goto cleanup;
227
228	/*
229	 * We link the bounce buffer in and could have to traverse it later, so
230	 * we have to get a ref to prevent it from being freed
231	 */
232	bio_get(bounce_bio);
233	return 0;
234cleanup:
235	if (!map_data)
236		bio_free_pages(bio);
237	bio_put(bio);
238out_bmd:
239	kfree(bmd);
240	return ret;
241}
242
243static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
244		gfp_t gfp_mask)
245{
246	unsigned int max_sectors = queue_max_hw_sectors(rq->q);
247	struct bio *bio, *bounce_bio;
248	int ret;
249	int j;
250
251	if (!iov_iter_count(iter))
252		return -EINVAL;
253
254	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
255	if (!bio)
256		return -ENOMEM;
257	bio->bi_opf |= req_op(rq);
258
259	while (iov_iter_count(iter)) {
260		struct page **pages;
261		ssize_t bytes;
262		size_t offs, added = 0;
263		int npages;
264
265		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
266		if (unlikely(bytes <= 0)) {
267			ret = bytes ? bytes : -EFAULT;
268			goto out_unmap;
269		}
270
271		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
272
273		if (unlikely(offs & queue_dma_alignment(rq->q))) {
274			ret = -EINVAL;
275			j = 0;
276		} else {
277			for (j = 0; j < npages; j++) {
278				struct page *page = pages[j];
279				unsigned int n = PAGE_SIZE - offs;
280				bool same_page = false;
281
282				if (n > bytes)
283					n = bytes;
284
285				if (!bio_add_hw_page(rq->q, bio, page, n, offs,
286						     max_sectors, &same_page)) {
287					if (same_page)
288						put_page(page);
289					break;
290				}
291
292				added += n;
293				bytes -= n;
294				offs = 0;
295			}
296			iov_iter_advance(iter, added);
297		}
298		/*
299		 * release the pages we didn't map into the bio, if any
300		 */
301		while (j < npages)
302			put_page(pages[j++]);
303		kvfree(pages);
304		/* couldn't stuff something into bio? */
305		if (bytes)
306			break;
307	}
308
309	/*
310	 * Subtle: if we end up needing to bounce a bio, it would normally
311	 * disappear when its bi_end_io is run.  However, we need the original
312	 * bio for the unmap, so grab an extra reference to it
313	 */
314	bio_get(bio);
315
316	bounce_bio = bio;
317	ret = blk_rq_append_bio(rq, &bounce_bio);
318	if (ret)
319		goto out_put_orig;
320
321	/*
322	 * We link the bounce buffer in and could have to traverse it
323	 * later, so we have to get a ref to prevent it from being freed
324	 */
325	bio_get(bounce_bio);
326	return 0;
327
328 out_put_orig:
329	bio_put(bio);
330 out_unmap:
331	bio_release_pages(bio, false);
332	bio_put(bio);
333	return ret;
334}
335
336/**
337 *	bio_unmap_user	-	unmap a bio
338 *	@bio:		the bio being unmapped
339 *
340 *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
341 *	process context.
342 *
343 *	bio_unmap_user() may sleep.
344 */
345static void bio_unmap_user(struct bio *bio)
346{
347	bio_release_pages(bio, bio_data_dir(bio) == READ);
348	bio_put(bio);
349	bio_put(bio);
350}
351
352static void bio_invalidate_vmalloc_pages(struct bio *bio)
353{
354#ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
355	if (bio->bi_private && !op_is_write(bio_op(bio))) {
356		unsigned long i, len = 0;
357
358		for (i = 0; i < bio->bi_vcnt; i++)
359			len += bio->bi_io_vec[i].bv_len;
360		invalidate_kernel_vmap_range(bio->bi_private, len);
361	}
362#endif
363}
364
365static void bio_map_kern_endio(struct bio *bio)
366{
367	bio_invalidate_vmalloc_pages(bio);
368	bio_put(bio);
369}
370
371/**
372 *	bio_map_kern	-	map kernel address into bio
373 *	@q: the struct request_queue for the bio
374 *	@data: pointer to buffer to map
375 *	@len: length in bytes
376 *	@gfp_mask: allocation flags for bio allocation
377 *
378 *	Map the kernel address into a bio suitable for io to a block
379 *	device. Returns an error pointer in case of error.
380 */
381static struct bio *bio_map_kern(struct request_queue *q, void *data,
382		unsigned int len, gfp_t gfp_mask)
383{
384	unsigned long kaddr = (unsigned long)data;
385	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
386	unsigned long start = kaddr >> PAGE_SHIFT;
387	const int nr_pages = end - start;
388	bool is_vmalloc = is_vmalloc_addr(data);
389	struct page *page;
390	int offset, i;
391	struct bio *bio;
392
393	bio = bio_kmalloc(gfp_mask, nr_pages);
394	if (!bio)
395		return ERR_PTR(-ENOMEM);
396
397	if (is_vmalloc) {
398		flush_kernel_vmap_range(data, len);
399		bio->bi_private = data;
400	}
401
402	offset = offset_in_page(kaddr);
403	for (i = 0; i < nr_pages; i++) {
404		unsigned int bytes = PAGE_SIZE - offset;
405
406		if (len <= 0)
407			break;
408
409		if (bytes > len)
410			bytes = len;
411
412		if (!is_vmalloc)
413			page = virt_to_page(data);
414		else
415			page = vmalloc_to_page(data);
416		if (bio_add_pc_page(q, bio, page, bytes,
417				    offset) < bytes) {
418			/* we don't support partial mappings */
419			bio_put(bio);
420			return ERR_PTR(-EINVAL);
421		}
422
423		data += bytes;
424		len -= bytes;
425		offset = 0;
426	}
427
428	bio->bi_end_io = bio_map_kern_endio;
429	return bio;
430}
431
432static void bio_copy_kern_endio(struct bio *bio)
433{
434	bio_free_pages(bio);
435	bio_put(bio);
436}
437
438static void bio_copy_kern_endio_read(struct bio *bio)
439{
440	char *p = bio->bi_private;
441	struct bio_vec *bvec;
442	struct bvec_iter_all iter_all;
443
444	bio_for_each_segment_all(bvec, bio, iter_all) {
445		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
446		p += bvec->bv_len;
447	}
448
449	bio_copy_kern_endio(bio);
450}
451
452/**
453 *	bio_copy_kern	-	copy kernel address into bio
454 *	@q: the struct request_queue for the bio
455 *	@data: pointer to buffer to copy
456 *	@len: length in bytes
457 *	@gfp_mask: allocation flags for bio and page allocation
458 *	@reading: data direction is READ
459 *
460 *	copy the kernel address into a bio suitable for io to a block
461 *	device. Returns an error pointer in case of error.
462 */
463static struct bio *bio_copy_kern(struct request_queue *q, void *data,
464		unsigned int len, gfp_t gfp_mask, int reading)
465{
466	unsigned long kaddr = (unsigned long)data;
467	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
468	unsigned long start = kaddr >> PAGE_SHIFT;
469	struct bio *bio;
470	void *p = data;
471	int nr_pages = 0;
472
473	/*
474	 * Overflow, abort
475	 */
476	if (end < start)
477		return ERR_PTR(-EINVAL);
478
479	nr_pages = end - start;
480	bio = bio_kmalloc(gfp_mask, nr_pages);
481	if (!bio)
482		return ERR_PTR(-ENOMEM);
483
484	while (len) {
485		struct page *page;
486		unsigned int bytes = PAGE_SIZE;
487
488		if (bytes > len)
489			bytes = len;
490
491		page = alloc_page(q->bounce_gfp | __GFP_ZERO | gfp_mask);
492		if (!page)
493			goto cleanup;
494
495		if (!reading)
496			memcpy(page_address(page), p, bytes);
497
498		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
499			break;
500
501		len -= bytes;
502		p += bytes;
503	}
504
505	if (reading) {
506		bio->bi_end_io = bio_copy_kern_endio_read;
507		bio->bi_private = data;
508	} else {
509		bio->bi_end_io = bio_copy_kern_endio;
510	}
511
512	return bio;
513
514cleanup:
515	bio_free_pages(bio);
516	bio_put(bio);
517	return ERR_PTR(-ENOMEM);
518}
519
520/*
521 * Append a bio to a passthrough request.  Only works if the bio can be merged
522 * into the request based on the driver constraints.
523 */
524int blk_rq_append_bio(struct request *rq, struct bio **bio)
525{
526	struct bio *orig_bio = *bio;
527	struct bvec_iter iter;
528	struct bio_vec bv;
529	unsigned int nr_segs = 0;
530
531	blk_queue_bounce(rq->q, bio);
532
533	bio_for_each_bvec(bv, *bio, iter)
534		nr_segs++;
535
536	if (!rq->bio) {
537		blk_rq_bio_prep(rq, *bio, nr_segs);
538	} else {
539		if (!ll_back_merge_fn(rq, *bio, nr_segs)) {
540			if (orig_bio != *bio) {
541				bio_put(*bio);
542				*bio = orig_bio;
543			}
544			return -EINVAL;
545		}
546
547		rq->biotail->bi_next = *bio;
548		rq->biotail = *bio;
549		rq->__data_len += (*bio)->bi_iter.bi_size;
550		bio_crypt_free_ctx(*bio);
551	}
552
553	return 0;
554}
555EXPORT_SYMBOL(blk_rq_append_bio);
556
557/**
558 * blk_rq_map_user_iov - map user data to a request, for passthrough requests
559 * @q:		request queue where request should be inserted
560 * @rq:		request to map data to
561 * @map_data:   pointer to the rq_map_data holding pages (if necessary)
562 * @iter:	iovec iterator
563 * @gfp_mask:	memory allocation flags
564 *
565 * Description:
566 *    Data will be mapped directly for zero copy I/O, if possible. Otherwise
567 *    a kernel bounce buffer is used.
568 *
569 *    A matching blk_rq_unmap_user() must be issued at the end of I/O, while
570 *    still in process context.
571 *
572 *    Note: The mapped bio may need to be bounced through blk_queue_bounce()
573 *    before being submitted to the device, as pages mapped may be out of
574 *    reach. It's the callers responsibility to make sure this happens. The
575 *    original bio must be passed back in to blk_rq_unmap_user() for proper
576 *    unmapping.
577 */
578int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
579			struct rq_map_data *map_data,
580			const struct iov_iter *iter, gfp_t gfp_mask)
581{
582	bool copy = false;
583	unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
584	struct bio *bio = NULL;
585	struct iov_iter i;
586	int ret = -EINVAL;
587
588	if (!iter_is_iovec(iter))
589		goto fail;
590
591	if (map_data)
592		copy = true;
593	else if (iov_iter_alignment(iter) & align)
594		copy = true;
595	else if (queue_virt_boundary(q))
596		copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
597
598	i = *iter;
599	do {
600		if (copy)
601			ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
602		else
603			ret = bio_map_user_iov(rq, &i, gfp_mask);
604		if (ret)
605			goto unmap_rq;
606		if (!bio)
607			bio = rq->bio;
608	} while (iov_iter_count(&i));
609
610	return 0;
611
612unmap_rq:
613	blk_rq_unmap_user(bio);
614fail:
615	rq->bio = NULL;
616	return ret;
617}
618EXPORT_SYMBOL(blk_rq_map_user_iov);
619
620int blk_rq_map_user(struct request_queue *q, struct request *rq,
621		    struct rq_map_data *map_data, void __user *ubuf,
622		    unsigned long len, gfp_t gfp_mask)
623{
624	struct iovec iov;
625	struct iov_iter i;
626	int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i);
627
628	if (unlikely(ret < 0))
629		return ret;
630
631	return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
632}
633EXPORT_SYMBOL(blk_rq_map_user);
634
635/**
636 * blk_rq_unmap_user - unmap a request with user data
637 * @bio:	       start of bio list
638 *
639 * Description:
640 *    Unmap a rq previously mapped by blk_rq_map_user(). The caller must
641 *    supply the original rq->bio from the blk_rq_map_user() return, since
642 *    the I/O completion may have changed rq->bio.
643 */
644int blk_rq_unmap_user(struct bio *bio)
645{
646	struct bio *mapped_bio;
647	int ret = 0, ret2;
648
649	while (bio) {
650		mapped_bio = bio;
651		if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
652			mapped_bio = bio->bi_private;
653
654		if (bio->bi_private) {
655			ret2 = bio_uncopy_user(mapped_bio);
656			if (ret2 && !ret)
657				ret = ret2;
658		} else {
659			bio_unmap_user(mapped_bio);
660		}
661
662		mapped_bio = bio;
663		bio = bio->bi_next;
664		bio_put(mapped_bio);
665	}
666
667	return ret;
668}
669EXPORT_SYMBOL(blk_rq_unmap_user);
670
671/**
672 * blk_rq_map_kern - map kernel data to a request, for passthrough requests
673 * @q:		request queue where request should be inserted
674 * @rq:		request to fill
675 * @kbuf:	the kernel buffer
676 * @len:	length of user data
677 * @gfp_mask:	memory allocation flags
678 *
679 * Description:
680 *    Data will be mapped directly if possible. Otherwise a bounce
681 *    buffer is used. Can be called multiple times to append multiple
682 *    buffers.
683 */
684int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
685		    unsigned int len, gfp_t gfp_mask)
686{
687	int reading = rq_data_dir(rq) == READ;
688	unsigned long addr = (unsigned long) kbuf;
689	struct bio *bio, *orig_bio;
690	int ret;
691
692	if (len > (queue_max_hw_sectors(q) << 9))
693		return -EINVAL;
694	if (!len || !kbuf)
695		return -EINVAL;
696
697	if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf))
698		bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
699	else
700		bio = bio_map_kern(q, kbuf, len, gfp_mask);
701
702	if (IS_ERR(bio))
703		return PTR_ERR(bio);
704
705	bio->bi_opf &= ~REQ_OP_MASK;
706	bio->bi_opf |= req_op(rq);
707
708	orig_bio = bio;
709	ret = blk_rq_append_bio(rq, &bio);
710	if (unlikely(ret)) {
711		/* request is too big */
712		bio_put(orig_bio);
713		return ret;
714	}
715
716	return 0;
717}
718EXPORT_SYMBOL(blk_rq_map_kern);
719