xref: /kernel/linux/linux-5.10/block/blk-iocost.c (revision 8c2ecf20)
1/* SPDX-License-Identifier: GPL-2.0
2 *
3 * IO cost model based controller.
4 *
5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6 * Copyright (C) 2019 Andy Newell <newella@fb.com>
7 * Copyright (C) 2019 Facebook
8 *
9 * One challenge of controlling IO resources is the lack of trivially
10 * observable cost metric.  This is distinguished from CPU and memory where
11 * wallclock time and the number of bytes can serve as accurate enough
12 * approximations.
13 *
14 * Bandwidth and iops are the most commonly used metrics for IO devices but
15 * depending on the type and specifics of the device, different IO patterns
16 * easily lead to multiple orders of magnitude variations rendering them
17 * useless for the purpose of IO capacity distribution.  While on-device
18 * time, with a lot of clutches, could serve as a useful approximation for
19 * non-queued rotational devices, this is no longer viable with modern
20 * devices, even the rotational ones.
21 *
22 * While there is no cost metric we can trivially observe, it isn't a
23 * complete mystery.  For example, on a rotational device, seek cost
24 * dominates while a contiguous transfer contributes a smaller amount
25 * proportional to the size.  If we can characterize at least the relative
26 * costs of these different types of IOs, it should be possible to
27 * implement a reasonable work-conserving proportional IO resource
28 * distribution.
29 *
30 * 1. IO Cost Model
31 *
32 * IO cost model estimates the cost of an IO given its basic parameters and
33 * history (e.g. the end sector of the last IO).  The cost is measured in
34 * device time.  If a given IO is estimated to cost 10ms, the device should
35 * be able to process ~100 of those IOs in a second.
36 *
37 * Currently, there's only one builtin cost model - linear.  Each IO is
38 * classified as sequential or random and given a base cost accordingly.
39 * On top of that, a size cost proportional to the length of the IO is
40 * added.  While simple, this model captures the operational
41 * characteristics of a wide varienty of devices well enough.  Default
42 * paramters for several different classes of devices are provided and the
43 * parameters can be configured from userspace via
44 * /sys/fs/cgroup/io.cost.model.
45 *
46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47 * device-specific coefficients.
48 *
49 * 2. Control Strategy
50 *
51 * The device virtual time (vtime) is used as the primary control metric.
52 * The control strategy is composed of the following three parts.
53 *
54 * 2-1. Vtime Distribution
55 *
56 * When a cgroup becomes active in terms of IOs, its hierarchical share is
57 * calculated.  Please consider the following hierarchy where the numbers
58 * inside parentheses denote the configured weights.
59 *
60 *           root
61 *         /       \
62 *      A (w:100)  B (w:300)
63 *      /       \
64 *  A0 (w:100)  A1 (w:100)
65 *
66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67 * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69 * 12.5% each.  The distribution mechanism only cares about these flattened
70 * shares.  They're called hweights (hierarchical weights) and always add
71 * upto 1 (WEIGHT_ONE).
72 *
73 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75 * against the device vtime - an IO which takes 10ms on the underlying
76 * device is considered to take 80ms on A0.
77 *
78 * This constitutes the basis of IO capacity distribution.  Each cgroup's
79 * vtime is running at a rate determined by its hweight.  A cgroup tracks
80 * the vtime consumed by past IOs and can issue a new IO iff doing so
81 * wouldn't outrun the current device vtime.  Otherwise, the IO is
82 * suspended until the vtime has progressed enough to cover it.
83 *
84 * 2-2. Vrate Adjustment
85 *
86 * It's unrealistic to expect the cost model to be perfect.  There are too
87 * many devices and even on the same device the overall performance
88 * fluctuates depending on numerous factors such as IO mixture and device
89 * internal garbage collection.  The controller needs to adapt dynamically.
90 *
91 * This is achieved by adjusting the overall IO rate according to how busy
92 * the device is.  If the device becomes overloaded, we're sending down too
93 * many IOs and should generally slow down.  If there are waiting issuers
94 * but the device isn't saturated, we're issuing too few and should
95 * generally speed up.
96 *
97 * To slow down, we lower the vrate - the rate at which the device vtime
98 * passes compared to the wall clock.  For example, if the vtime is running
99 * at the vrate of 75%, all cgroups added up would only be able to issue
100 * 750ms worth of IOs per second, and vice-versa for speeding up.
101 *
102 * Device business is determined using two criteria - rq wait and
103 * completion latencies.
104 *
105 * When a device gets saturated, the on-device and then the request queues
106 * fill up and a bio which is ready to be issued has to wait for a request
107 * to become available.  When this delay becomes noticeable, it's a clear
108 * indication that the device is saturated and we lower the vrate.  This
109 * saturation signal is fairly conservative as it only triggers when both
110 * hardware and software queues are filled up, and is used as the default
111 * busy signal.
112 *
113 * As devices can have deep queues and be unfair in how the queued commands
114 * are executed, soley depending on rq wait may not result in satisfactory
115 * control quality.  For a better control quality, completion latency QoS
116 * parameters can be configured so that the device is considered saturated
117 * if N'th percentile completion latency rises above the set point.
118 *
119 * The completion latency requirements are a function of both the
120 * underlying device characteristics and the desired IO latency quality of
121 * service.  There is an inherent trade-off - the tighter the latency QoS,
122 * the higher the bandwidth lossage.  Latency QoS is disabled by default
123 * and can be set through /sys/fs/cgroup/io.cost.qos.
124 *
125 * 2-3. Work Conservation
126 *
127 * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128 * periodically while B is sending out enough parallel IOs to saturate the
129 * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130 * cost per second, i.e., 10% of the device capacity.  The naive
131 * distribution of half and half would lead to 60% utilization of the
132 * device, a significant reduction in the total amount of work done
133 * compared to free-for-all competition.  This is too high a cost to pay
134 * for IO control.
135 *
136 * To conserve the total amount of work done, we keep track of how much
137 * each active cgroup is actually using and yield part of its weight if
138 * there are other cgroups which can make use of it.  In the above case,
139 * A's weight will be lowered so that it hovers above the actual usage and
140 * B would be able to use the rest.
141 *
142 * As we don't want to penalize a cgroup for donating its weight, the
143 * surplus weight adjustment factors in a margin and has an immediate
144 * snapback mechanism in case the cgroup needs more IO vtime for itself.
145 *
146 * Note that adjusting down surplus weights has the same effects as
147 * accelerating vtime for other cgroups and work conservation can also be
148 * implemented by adjusting vrate dynamically.  However, squaring who can
149 * donate and should take back how much requires hweight propagations
150 * anyway making it easier to implement and understand as a separate
151 * mechanism.
152 *
153 * 3. Monitoring
154 *
155 * Instead of debugfs or other clumsy monitoring mechanisms, this
156 * controller uses a drgn based monitoring script -
157 * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158 * https://github.com/osandov/drgn.  The ouput looks like the following.
159 *
160 *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161 *                 active      weight      hweight% inflt% dbt  delay usages%
162 *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163 *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164 *
165 * - per	: Timer period
166 * - cur_per	: Internal wall and device vtime clock
167 * - vrate	: Device virtual time rate against wall clock
168 * - weight	: Surplus-adjusted and configured weights
169 * - hweight	: Surplus-adjusted and configured hierarchical weights
170 * - inflt	: The percentage of in-flight IO cost at the end of last period
171 * - del_ms	: Deferred issuer delay induction level and duration
172 * - usages	: Usage history
173 */
174
175#include <linux/kernel.h>
176#include <linux/module.h>
177#include <linux/timer.h>
178#include <linux/time64.h>
179#include <linux/parser.h>
180#include <linux/sched/signal.h>
181#include <linux/blk-cgroup.h>
182#include <asm/local.h>
183#include <asm/local64.h>
184#include "blk-rq-qos.h"
185#include "blk-stat.h"
186#include "blk-wbt.h"
187
188#ifdef CONFIG_TRACEPOINTS
189
190/* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191#define TRACE_IOCG_PATH_LEN 1024
192static DEFINE_SPINLOCK(trace_iocg_path_lock);
193static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195#define TRACE_IOCG_PATH(type, iocg, ...)					\
196	do {									\
197		unsigned long flags;						\
198		if (trace_iocost_##type##_enabled()) {				\
199			spin_lock_irqsave(&trace_iocg_path_lock, flags);	\
200			cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,	\
201				    trace_iocg_path, TRACE_IOCG_PATH_LEN);	\
202			trace_iocost_##type(iocg, trace_iocg_path,		\
203					      ##__VA_ARGS__);			\
204			spin_unlock_irqrestore(&trace_iocg_path_lock, flags);	\
205		}								\
206	} while (0)
207
208#else	/* CONFIG_TRACE_POINTS */
209#define TRACE_IOCG_PATH(type, iocg, ...)	do { } while (0)
210#endif	/* CONFIG_TRACE_POINTS */
211
212enum {
213	MILLION			= 1000000,
214
215	/* timer period is calculated from latency requirements, bound it */
216	MIN_PERIOD		= USEC_PER_MSEC,
217	MAX_PERIOD		= USEC_PER_SEC,
218
219	/*
220	 * iocg->vtime is targeted at 50% behind the device vtime, which
221	 * serves as its IO credit buffer.  Surplus weight adjustment is
222	 * immediately canceled if the vtime margin runs below 10%.
223	 */
224	MARGIN_MIN_PCT		= 10,
225	MARGIN_LOW_PCT		= 20,
226	MARGIN_TARGET_PCT	= 50,
227
228	INUSE_ADJ_STEP_PCT	= 25,
229
230	/* Have some play in timer operations */
231	TIMER_SLACK_PCT		= 1,
232
233	/* 1/64k is granular enough and can easily be handled w/ u32 */
234	WEIGHT_ONE		= 1 << 16,
235};
236
237enum {
238	/*
239	 * As vtime is used to calculate the cost of each IO, it needs to
240	 * be fairly high precision.  For example, it should be able to
241	 * represent the cost of a single page worth of discard with
242	 * suffificient accuracy.  At the same time, it should be able to
243	 * represent reasonably long enough durations to be useful and
244	 * convenient during operation.
245	 *
246	 * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
247	 * granularity and days of wrap-around time even at extreme vrates.
248	 */
249	VTIME_PER_SEC_SHIFT	= 37,
250	VTIME_PER_SEC		= 1LLU << VTIME_PER_SEC_SHIFT,
251	VTIME_PER_USEC		= VTIME_PER_SEC / USEC_PER_SEC,
252	VTIME_PER_NSEC		= VTIME_PER_SEC / NSEC_PER_SEC,
253
254	/* bound vrate adjustments within two orders of magnitude */
255	VRATE_MIN_PPM		= 10000,	/* 1% */
256	VRATE_MAX_PPM		= 100000000,	/* 10000% */
257
258	VRATE_MIN		= VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
259	VRATE_CLAMP_ADJ_PCT	= 4,
260
261	/* switch iff the conditions are met for longer than this */
262	AUTOP_CYCLE_NSEC	= 10LLU * NSEC_PER_SEC,
263};
264
265enum {
266	/* if IOs end up waiting for requests, issue less */
267	RQ_WAIT_BUSY_PCT	= 5,
268
269	/* unbusy hysterisis */
270	UNBUSY_THR_PCT		= 75,
271
272	/*
273	 * The effect of delay is indirect and non-linear and a huge amount of
274	 * future debt can accumulate abruptly while unthrottled. Linearly scale
275	 * up delay as debt is going up and then let it decay exponentially.
276	 * This gives us quick ramp ups while delay is accumulating and long
277	 * tails which can help reducing the frequency of debt explosions on
278	 * unthrottle. The parameters are experimentally determined.
279	 *
280	 * The delay mechanism provides adequate protection and behavior in many
281	 * cases. However, this is far from ideal and falls shorts on both
282	 * fronts. The debtors are often throttled too harshly costing a
283	 * significant level of fairness and possibly total work while the
284	 * protection against their impacts on the system can be choppy and
285	 * unreliable.
286	 *
287	 * The shortcoming primarily stems from the fact that, unlike for page
288	 * cache, the kernel doesn't have well-defined back-pressure propagation
289	 * mechanism and policies for anonymous memory. Fully addressing this
290	 * issue will likely require substantial improvements in the area.
291	 */
292	MIN_DELAY_THR_PCT	= 500,
293	MAX_DELAY_THR_PCT	= 25000,
294	MIN_DELAY		= 250,
295	MAX_DELAY		= 250 * USEC_PER_MSEC,
296
297	/* halve debts if avg usage over 100ms is under 50% */
298	DFGV_USAGE_PCT		= 50,
299	DFGV_PERIOD		= 100 * USEC_PER_MSEC,
300
301	/* don't let cmds which take a very long time pin lagging for too long */
302	MAX_LAGGING_PERIODS	= 10,
303
304	/*
305	 * Count IO size in 4k pages.  The 12bit shift helps keeping
306	 * size-proportional components of cost calculation in closer
307	 * numbers of digits to per-IO cost components.
308	 */
309	IOC_PAGE_SHIFT		= 12,
310	IOC_PAGE_SIZE		= 1 << IOC_PAGE_SHIFT,
311	IOC_SECT_TO_PAGE_SHIFT	= IOC_PAGE_SHIFT - SECTOR_SHIFT,
312
313	/* if apart further than 16M, consider randio for linear model */
314	LCOEF_RANDIO_PAGES	= 4096,
315};
316
317enum ioc_running {
318	IOC_IDLE,
319	IOC_RUNNING,
320	IOC_STOP,
321};
322
323/* io.cost.qos controls including per-dev enable of the whole controller */
324enum {
325	QOS_ENABLE,
326	QOS_CTRL,
327	NR_QOS_CTRL_PARAMS,
328};
329
330/* io.cost.qos params */
331enum {
332	QOS_RPPM,
333	QOS_RLAT,
334	QOS_WPPM,
335	QOS_WLAT,
336	QOS_MIN,
337	QOS_MAX,
338	NR_QOS_PARAMS,
339};
340
341/* io.cost.model controls */
342enum {
343	COST_CTRL,
344	COST_MODEL,
345	NR_COST_CTRL_PARAMS,
346};
347
348/* builtin linear cost model coefficients */
349enum {
350	I_LCOEF_RBPS,
351	I_LCOEF_RSEQIOPS,
352	I_LCOEF_RRANDIOPS,
353	I_LCOEF_WBPS,
354	I_LCOEF_WSEQIOPS,
355	I_LCOEF_WRANDIOPS,
356	NR_I_LCOEFS,
357};
358
359enum {
360	LCOEF_RPAGE,
361	LCOEF_RSEQIO,
362	LCOEF_RRANDIO,
363	LCOEF_WPAGE,
364	LCOEF_WSEQIO,
365	LCOEF_WRANDIO,
366	NR_LCOEFS,
367};
368
369enum {
370	AUTOP_INVALID,
371	AUTOP_HDD,
372	AUTOP_SSD_QD1,
373	AUTOP_SSD_DFL,
374	AUTOP_SSD_FAST,
375};
376
377struct ioc_gq;
378
379struct ioc_params {
380	u32				qos[NR_QOS_PARAMS];
381	u64				i_lcoefs[NR_I_LCOEFS];
382	u64				lcoefs[NR_LCOEFS];
383	u32				too_fast_vrate_pct;
384	u32				too_slow_vrate_pct;
385};
386
387struct ioc_margins {
388	s64				min;
389	s64				low;
390	s64				target;
391};
392
393struct ioc_missed {
394	local_t				nr_met;
395	local_t				nr_missed;
396	u32				last_met;
397	u32				last_missed;
398};
399
400struct ioc_pcpu_stat {
401	struct ioc_missed		missed[2];
402
403	local64_t			rq_wait_ns;
404	u64				last_rq_wait_ns;
405};
406
407/* per device */
408struct ioc {
409	struct rq_qos			rqos;
410
411	bool				enabled;
412
413	struct ioc_params		params;
414	struct ioc_margins		margins;
415	u32				period_us;
416	u32				timer_slack_ns;
417	u64				vrate_min;
418	u64				vrate_max;
419
420	spinlock_t			lock;
421	struct timer_list		timer;
422	struct list_head		active_iocgs;	/* active cgroups */
423	struct ioc_pcpu_stat __percpu	*pcpu_stat;
424
425	enum ioc_running		running;
426	atomic64_t			vtime_rate;
427	u64				vtime_base_rate;
428	s64				vtime_err;
429
430	seqcount_spinlock_t		period_seqcount;
431	u64				period_at;	/* wallclock starttime */
432	u64				period_at_vtime; /* vtime starttime */
433
434	atomic64_t			cur_period;	/* inc'd each period */
435	int				busy_level;	/* saturation history */
436
437	bool				weights_updated;
438	atomic_t			hweight_gen;	/* for lazy hweights */
439
440	/* debt forgivness */
441	u64				dfgv_period_at;
442	u64				dfgv_period_rem;
443	u64				dfgv_usage_us_sum;
444
445	u64				autop_too_fast_at;
446	u64				autop_too_slow_at;
447	int				autop_idx;
448	bool				user_qos_params:1;
449	bool				user_cost_model:1;
450};
451
452struct iocg_pcpu_stat {
453	local64_t			abs_vusage;
454};
455
456struct iocg_stat {
457	u64				usage_us;
458	u64				wait_us;
459	u64				indebt_us;
460	u64				indelay_us;
461};
462
463/* per device-cgroup pair */
464struct ioc_gq {
465	struct blkg_policy_data		pd;
466	struct ioc			*ioc;
467
468	/*
469	 * A iocg can get its weight from two sources - an explicit
470	 * per-device-cgroup configuration or the default weight of the
471	 * cgroup.  `cfg_weight` is the explicit per-device-cgroup
472	 * configuration.  `weight` is the effective considering both
473	 * sources.
474	 *
475	 * When an idle cgroup becomes active its `active` goes from 0 to
476	 * `weight`.  `inuse` is the surplus adjusted active weight.
477	 * `active` and `inuse` are used to calculate `hweight_active` and
478	 * `hweight_inuse`.
479	 *
480	 * `last_inuse` remembers `inuse` while an iocg is idle to persist
481	 * surplus adjustments.
482	 *
483	 * `inuse` may be adjusted dynamically during period. `saved_*` are used
484	 * to determine and track adjustments.
485	 */
486	u32				cfg_weight;
487	u32				weight;
488	u32				active;
489	u32				inuse;
490
491	u32				last_inuse;
492	s64				saved_margin;
493
494	sector_t			cursor;		/* to detect randio */
495
496	/*
497	 * `vtime` is this iocg's vtime cursor which progresses as IOs are
498	 * issued.  If lagging behind device vtime, the delta represents
499	 * the currently available IO budget.  If runnning ahead, the
500	 * overage.
501	 *
502	 * `vtime_done` is the same but progressed on completion rather
503	 * than issue.  The delta behind `vtime` represents the cost of
504	 * currently in-flight IOs.
505	 */
506	atomic64_t			vtime;
507	atomic64_t			done_vtime;
508	u64				abs_vdebt;
509
510	/* current delay in effect and when it started */
511	u64				delay;
512	u64				delay_at;
513
514	/*
515	 * The period this iocg was last active in.  Used for deactivation
516	 * and invalidating `vtime`.
517	 */
518	atomic64_t			active_period;
519	struct list_head		active_list;
520
521	/* see __propagate_weights() and current_hweight() for details */
522	u64				child_active_sum;
523	u64				child_inuse_sum;
524	u64				child_adjusted_sum;
525	int				hweight_gen;
526	u32				hweight_active;
527	u32				hweight_inuse;
528	u32				hweight_donating;
529	u32				hweight_after_donation;
530
531	struct list_head		walk_list;
532	struct list_head		surplus_list;
533
534	struct wait_queue_head		waitq;
535	struct hrtimer			waitq_timer;
536
537	/* timestamp at the latest activation */
538	u64				activated_at;
539
540	/* statistics */
541	struct iocg_pcpu_stat __percpu	*pcpu_stat;
542	struct iocg_stat		local_stat;
543	struct iocg_stat		desc_stat;
544	struct iocg_stat		last_stat;
545	u64				last_stat_abs_vusage;
546	u64				usage_delta_us;
547	u64				wait_since;
548	u64				indebt_since;
549	u64				indelay_since;
550
551	/* this iocg's depth in the hierarchy and ancestors including self */
552	int				level;
553	struct ioc_gq			*ancestors[];
554};
555
556/* per cgroup */
557struct ioc_cgrp {
558	struct blkcg_policy_data	cpd;
559	unsigned int			dfl_weight;
560};
561
562struct ioc_now {
563	u64				now_ns;
564	u64				now;
565	u64				vnow;
566	u64				vrate;
567};
568
569struct iocg_wait {
570	struct wait_queue_entry		wait;
571	struct bio			*bio;
572	u64				abs_cost;
573	bool				committed;
574};
575
576struct iocg_wake_ctx {
577	struct ioc_gq			*iocg;
578	u32				hw_inuse;
579	s64				vbudget;
580};
581
582static const struct ioc_params autop[] = {
583	[AUTOP_HDD] = {
584		.qos				= {
585			[QOS_RLAT]		=        250000, /* 250ms */
586			[QOS_WLAT]		=        250000,
587			[QOS_MIN]		= VRATE_MIN_PPM,
588			[QOS_MAX]		= VRATE_MAX_PPM,
589		},
590		.i_lcoefs			= {
591			[I_LCOEF_RBPS]		=     174019176,
592			[I_LCOEF_RSEQIOPS]	=         41708,
593			[I_LCOEF_RRANDIOPS]	=           370,
594			[I_LCOEF_WBPS]		=     178075866,
595			[I_LCOEF_WSEQIOPS]	=         42705,
596			[I_LCOEF_WRANDIOPS]	=           378,
597		},
598	},
599	[AUTOP_SSD_QD1] = {
600		.qos				= {
601			[QOS_RLAT]		=         25000, /* 25ms */
602			[QOS_WLAT]		=         25000,
603			[QOS_MIN]		= VRATE_MIN_PPM,
604			[QOS_MAX]		= VRATE_MAX_PPM,
605		},
606		.i_lcoefs			= {
607			[I_LCOEF_RBPS]		=     245855193,
608			[I_LCOEF_RSEQIOPS]	=         61575,
609			[I_LCOEF_RRANDIOPS]	=          6946,
610			[I_LCOEF_WBPS]		=     141365009,
611			[I_LCOEF_WSEQIOPS]	=         33716,
612			[I_LCOEF_WRANDIOPS]	=         26796,
613		},
614	},
615	[AUTOP_SSD_DFL] = {
616		.qos				= {
617			[QOS_RLAT]		=         25000, /* 25ms */
618			[QOS_WLAT]		=         25000,
619			[QOS_MIN]		= VRATE_MIN_PPM,
620			[QOS_MAX]		= VRATE_MAX_PPM,
621		},
622		.i_lcoefs			= {
623			[I_LCOEF_RBPS]		=     488636629,
624			[I_LCOEF_RSEQIOPS]	=          8932,
625			[I_LCOEF_RRANDIOPS]	=          8518,
626			[I_LCOEF_WBPS]		=     427891549,
627			[I_LCOEF_WSEQIOPS]	=         28755,
628			[I_LCOEF_WRANDIOPS]	=         21940,
629		},
630		.too_fast_vrate_pct		=           500,
631	},
632	[AUTOP_SSD_FAST] = {
633		.qos				= {
634			[QOS_RLAT]		=          5000, /* 5ms */
635			[QOS_WLAT]		=          5000,
636			[QOS_MIN]		= VRATE_MIN_PPM,
637			[QOS_MAX]		= VRATE_MAX_PPM,
638		},
639		.i_lcoefs			= {
640			[I_LCOEF_RBPS]		=    3102524156LLU,
641			[I_LCOEF_RSEQIOPS]	=        724816,
642			[I_LCOEF_RRANDIOPS]	=        778122,
643			[I_LCOEF_WBPS]		=    1742780862LLU,
644			[I_LCOEF_WSEQIOPS]	=        425702,
645			[I_LCOEF_WRANDIOPS]	=	 443193,
646		},
647		.too_slow_vrate_pct		=            10,
648	},
649};
650
651/*
652 * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
653 * vtime credit shortage and down on device saturation.
654 */
655static u32 vrate_adj_pct[] =
656	{ 0, 0, 0, 0,
657	  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
658	  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
659	  4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
660
661static struct blkcg_policy blkcg_policy_iocost;
662
663/* accessors and helpers */
664static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
665{
666	return container_of(rqos, struct ioc, rqos);
667}
668
669static struct ioc *q_to_ioc(struct request_queue *q)
670{
671	return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
672}
673
674static const char *q_name(struct request_queue *q)
675{
676	if (blk_queue_registered(q))
677		return kobject_name(q->kobj.parent);
678	else
679		return "<unknown>";
680}
681
682static const char __maybe_unused *ioc_name(struct ioc *ioc)
683{
684	return q_name(ioc->rqos.q);
685}
686
687static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
688{
689	return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
690}
691
692static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
693{
694	return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
695}
696
697static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
698{
699	return pd_to_blkg(&iocg->pd);
700}
701
702static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
703{
704	return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
705			    struct ioc_cgrp, cpd);
706}
707
708/*
709 * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
710 * weight, the more expensive each IO.  Must round up.
711 */
712static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
713{
714	return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
715}
716
717/*
718 * The inverse of abs_cost_to_cost().  Must round up.
719 */
720static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
721{
722	return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
723}
724
725static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
726			    u64 abs_cost, u64 cost)
727{
728	struct iocg_pcpu_stat *gcs;
729
730	bio->bi_iocost_cost = cost;
731	atomic64_add(cost, &iocg->vtime);
732
733	gcs = get_cpu_ptr(iocg->pcpu_stat);
734	local64_add(abs_cost, &gcs->abs_vusage);
735	put_cpu_ptr(gcs);
736}
737
738static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
739{
740	if (lock_ioc) {
741		spin_lock_irqsave(&iocg->ioc->lock, *flags);
742		spin_lock(&iocg->waitq.lock);
743	} else {
744		spin_lock_irqsave(&iocg->waitq.lock, *flags);
745	}
746}
747
748static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
749{
750	if (unlock_ioc) {
751		spin_unlock(&iocg->waitq.lock);
752		spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
753	} else {
754		spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
755	}
756}
757
758#define CREATE_TRACE_POINTS
759#include <trace/events/iocost.h>
760
761static void ioc_refresh_margins(struct ioc *ioc)
762{
763	struct ioc_margins *margins = &ioc->margins;
764	u32 period_us = ioc->period_us;
765	u64 vrate = ioc->vtime_base_rate;
766
767	margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
768	margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
769	margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
770}
771
772/* latency Qos params changed, update period_us and all the dependent params */
773static void ioc_refresh_period_us(struct ioc *ioc)
774{
775	u32 ppm, lat, multi, period_us;
776
777	lockdep_assert_held(&ioc->lock);
778
779	/* pick the higher latency target */
780	if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
781		ppm = ioc->params.qos[QOS_RPPM];
782		lat = ioc->params.qos[QOS_RLAT];
783	} else {
784		ppm = ioc->params.qos[QOS_WPPM];
785		lat = ioc->params.qos[QOS_WLAT];
786	}
787
788	/*
789	 * We want the period to be long enough to contain a healthy number
790	 * of IOs while short enough for granular control.  Define it as a
791	 * multiple of the latency target.  Ideally, the multiplier should
792	 * be scaled according to the percentile so that it would nominally
793	 * contain a certain number of requests.  Let's be simpler and
794	 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
795	 */
796	if (ppm)
797		multi = max_t(u32, (MILLION - ppm) / 50000, 2);
798	else
799		multi = 2;
800	period_us = multi * lat;
801	period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
802
803	/* calculate dependent params */
804	ioc->period_us = period_us;
805	ioc->timer_slack_ns = div64_u64(
806		(u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
807		100);
808	ioc_refresh_margins(ioc);
809}
810
811static int ioc_autop_idx(struct ioc *ioc)
812{
813	int idx = ioc->autop_idx;
814	const struct ioc_params *p = &autop[idx];
815	u32 vrate_pct;
816	u64 now_ns;
817
818	/* rotational? */
819	if (!blk_queue_nonrot(ioc->rqos.q))
820		return AUTOP_HDD;
821
822	/* handle SATA SSDs w/ broken NCQ */
823	if (blk_queue_depth(ioc->rqos.q) == 1)
824		return AUTOP_SSD_QD1;
825
826	/* use one of the normal ssd sets */
827	if (idx < AUTOP_SSD_DFL)
828		return AUTOP_SSD_DFL;
829
830	/* if user is overriding anything, maintain what was there */
831	if (ioc->user_qos_params || ioc->user_cost_model)
832		return idx;
833
834	/* step up/down based on the vrate */
835	vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
836	now_ns = ktime_get_ns();
837
838	if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
839		if (!ioc->autop_too_fast_at)
840			ioc->autop_too_fast_at = now_ns;
841		if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
842			return idx + 1;
843	} else {
844		ioc->autop_too_fast_at = 0;
845	}
846
847	if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
848		if (!ioc->autop_too_slow_at)
849			ioc->autop_too_slow_at = now_ns;
850		if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
851			return idx - 1;
852	} else {
853		ioc->autop_too_slow_at = 0;
854	}
855
856	return idx;
857}
858
859/*
860 * Take the followings as input
861 *
862 *  @bps	maximum sequential throughput
863 *  @seqiops	maximum sequential 4k iops
864 *  @randiops	maximum random 4k iops
865 *
866 * and calculate the linear model cost coefficients.
867 *
868 *  *@page	per-page cost		1s / (@bps / 4096)
869 *  *@seqio	base cost of a seq IO	max((1s / @seqiops) - *@page, 0)
870 *  @randiops	base cost of a rand IO	max((1s / @randiops) - *@page, 0)
871 */
872static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
873			u64 *page, u64 *seqio, u64 *randio)
874{
875	u64 v;
876
877	*page = *seqio = *randio = 0;
878
879	if (bps) {
880		u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE);
881
882		if (bps_pages)
883			*page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages);
884		else
885			*page = 1;
886	}
887
888	if (seqiops) {
889		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
890		if (v > *page)
891			*seqio = v - *page;
892	}
893
894	if (randiops) {
895		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
896		if (v > *page)
897			*randio = v - *page;
898	}
899}
900
901static void ioc_refresh_lcoefs(struct ioc *ioc)
902{
903	u64 *u = ioc->params.i_lcoefs;
904	u64 *c = ioc->params.lcoefs;
905
906	calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
907		    &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
908	calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
909		    &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
910}
911
912static bool ioc_refresh_params(struct ioc *ioc, bool force)
913{
914	const struct ioc_params *p;
915	int idx;
916
917	lockdep_assert_held(&ioc->lock);
918
919	idx = ioc_autop_idx(ioc);
920	p = &autop[idx];
921
922	if (idx == ioc->autop_idx && !force)
923		return false;
924
925	if (idx != ioc->autop_idx)
926		atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
927
928	ioc->autop_idx = idx;
929	ioc->autop_too_fast_at = 0;
930	ioc->autop_too_slow_at = 0;
931
932	if (!ioc->user_qos_params)
933		memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
934	if (!ioc->user_cost_model)
935		memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
936
937	ioc_refresh_period_us(ioc);
938	ioc_refresh_lcoefs(ioc);
939
940	ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
941					    VTIME_PER_USEC, MILLION);
942	ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
943				   VTIME_PER_USEC, MILLION);
944
945	return true;
946}
947
948/*
949 * When an iocg accumulates too much vtime or gets deactivated, we throw away
950 * some vtime, which lowers the overall device utilization. As the exact amount
951 * which is being thrown away is known, we can compensate by accelerating the
952 * vrate accordingly so that the extra vtime generated in the current period
953 * matches what got lost.
954 */
955static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
956{
957	s64 pleft = ioc->period_at + ioc->period_us - now->now;
958	s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
959	s64 vcomp, vcomp_min, vcomp_max;
960
961	lockdep_assert_held(&ioc->lock);
962
963	/* we need some time left in this period */
964	if (pleft <= 0)
965		goto done;
966
967	/*
968	 * Calculate how much vrate should be adjusted to offset the error.
969	 * Limit the amount of adjustment and deduct the adjusted amount from
970	 * the error.
971	 */
972	vcomp = -div64_s64(ioc->vtime_err, pleft);
973	vcomp_min = -(ioc->vtime_base_rate >> 1);
974	vcomp_max = ioc->vtime_base_rate;
975	vcomp = clamp(vcomp, vcomp_min, vcomp_max);
976
977	ioc->vtime_err += vcomp * pleft;
978
979	atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
980done:
981	/* bound how much error can accumulate */
982	ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
983}
984
985/* take a snapshot of the current [v]time and vrate */
986static void ioc_now(struct ioc *ioc, struct ioc_now *now)
987{
988	unsigned seq;
989
990	now->now_ns = ktime_get();
991	now->now = ktime_to_us(now->now_ns);
992	now->vrate = atomic64_read(&ioc->vtime_rate);
993
994	/*
995	 * The current vtime is
996	 *
997	 *   vtime at period start + (wallclock time since the start) * vrate
998	 *
999	 * As a consistent snapshot of `period_at_vtime` and `period_at` is
1000	 * needed, they're seqcount protected.
1001	 */
1002	do {
1003		seq = read_seqcount_begin(&ioc->period_seqcount);
1004		now->vnow = ioc->period_at_vtime +
1005			(now->now - ioc->period_at) * now->vrate;
1006	} while (read_seqcount_retry(&ioc->period_seqcount, seq));
1007}
1008
1009static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1010{
1011	WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1012
1013	write_seqcount_begin(&ioc->period_seqcount);
1014	ioc->period_at = now->now;
1015	ioc->period_at_vtime = now->vnow;
1016	write_seqcount_end(&ioc->period_seqcount);
1017
1018	ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1019	add_timer(&ioc->timer);
1020}
1021
1022/*
1023 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1024 * weight sums and propagate upwards accordingly. If @save, the current margin
1025 * is saved to be used as reference for later inuse in-period adjustments.
1026 */
1027static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1028				bool save, struct ioc_now *now)
1029{
1030	struct ioc *ioc = iocg->ioc;
1031	int lvl;
1032
1033	lockdep_assert_held(&ioc->lock);
1034
1035	/*
1036	 * For an active leaf node, its inuse shouldn't be zero or exceed
1037	 * @active. An active internal node's inuse is solely determined by the
1038	 * inuse to active ratio of its children regardless of @inuse.
1039	 */
1040	if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1041		inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1042					   iocg->child_active_sum);
1043	} else {
1044		inuse = clamp_t(u32, inuse, 1, active);
1045	}
1046
1047	iocg->last_inuse = iocg->inuse;
1048	if (save)
1049		iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1050
1051	if (active == iocg->active && inuse == iocg->inuse)
1052		return;
1053
1054	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1055		struct ioc_gq *parent = iocg->ancestors[lvl];
1056		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1057		u32 parent_active = 0, parent_inuse = 0;
1058
1059		/* update the level sums */
1060		parent->child_active_sum += (s32)(active - child->active);
1061		parent->child_inuse_sum += (s32)(inuse - child->inuse);
1062		/* apply the updates */
1063		child->active = active;
1064		child->inuse = inuse;
1065
1066		/*
1067		 * The delta between inuse and active sums indicates that
1068		 * that much of weight is being given away.  Parent's inuse
1069		 * and active should reflect the ratio.
1070		 */
1071		if (parent->child_active_sum) {
1072			parent_active = parent->weight;
1073			parent_inuse = DIV64_U64_ROUND_UP(
1074				parent_active * parent->child_inuse_sum,
1075				parent->child_active_sum);
1076		}
1077
1078		/* do we need to keep walking up? */
1079		if (parent_active == parent->active &&
1080		    parent_inuse == parent->inuse)
1081			break;
1082
1083		active = parent_active;
1084		inuse = parent_inuse;
1085	}
1086
1087	ioc->weights_updated = true;
1088}
1089
1090static void commit_weights(struct ioc *ioc)
1091{
1092	lockdep_assert_held(&ioc->lock);
1093
1094	if (ioc->weights_updated) {
1095		/* paired with rmb in current_hweight(), see there */
1096		smp_wmb();
1097		atomic_inc(&ioc->hweight_gen);
1098		ioc->weights_updated = false;
1099	}
1100}
1101
1102static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1103			      bool save, struct ioc_now *now)
1104{
1105	__propagate_weights(iocg, active, inuse, save, now);
1106	commit_weights(iocg->ioc);
1107}
1108
1109static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1110{
1111	struct ioc *ioc = iocg->ioc;
1112	int lvl;
1113	u32 hwa, hwi;
1114	int ioc_gen;
1115
1116	/* hot path - if uptodate, use cached */
1117	ioc_gen = atomic_read(&ioc->hweight_gen);
1118	if (ioc_gen == iocg->hweight_gen)
1119		goto out;
1120
1121	/*
1122	 * Paired with wmb in commit_weights(). If we saw the updated
1123	 * hweight_gen, all the weight updates from __propagate_weights() are
1124	 * visible too.
1125	 *
1126	 * We can race with weight updates during calculation and get it
1127	 * wrong.  However, hweight_gen would have changed and a future
1128	 * reader will recalculate and we're guaranteed to discard the
1129	 * wrong result soon.
1130	 */
1131	smp_rmb();
1132
1133	hwa = hwi = WEIGHT_ONE;
1134	for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1135		struct ioc_gq *parent = iocg->ancestors[lvl];
1136		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1137		u64 active_sum = READ_ONCE(parent->child_active_sum);
1138		u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1139		u32 active = READ_ONCE(child->active);
1140		u32 inuse = READ_ONCE(child->inuse);
1141
1142		/* we can race with deactivations and either may read as zero */
1143		if (!active_sum || !inuse_sum)
1144			continue;
1145
1146		active_sum = max_t(u64, active, active_sum);
1147		hwa = div64_u64((u64)hwa * active, active_sum);
1148
1149		inuse_sum = max_t(u64, inuse, inuse_sum);
1150		hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1151	}
1152
1153	iocg->hweight_active = max_t(u32, hwa, 1);
1154	iocg->hweight_inuse = max_t(u32, hwi, 1);
1155	iocg->hweight_gen = ioc_gen;
1156out:
1157	if (hw_activep)
1158		*hw_activep = iocg->hweight_active;
1159	if (hw_inusep)
1160		*hw_inusep = iocg->hweight_inuse;
1161}
1162
1163/*
1164 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1165 * other weights stay unchanged.
1166 */
1167static u32 current_hweight_max(struct ioc_gq *iocg)
1168{
1169	u32 hwm = WEIGHT_ONE;
1170	u32 inuse = iocg->active;
1171	u64 child_inuse_sum;
1172	int lvl;
1173
1174	lockdep_assert_held(&iocg->ioc->lock);
1175
1176	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1177		struct ioc_gq *parent = iocg->ancestors[lvl];
1178		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1179
1180		child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1181		hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1182		inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1183					   parent->child_active_sum);
1184	}
1185
1186	return max_t(u32, hwm, 1);
1187}
1188
1189static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1190{
1191	struct ioc *ioc = iocg->ioc;
1192	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1193	struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1194	u32 weight;
1195
1196	lockdep_assert_held(&ioc->lock);
1197
1198	weight = iocg->cfg_weight ?: iocc->dfl_weight;
1199	if (weight != iocg->weight && iocg->active)
1200		propagate_weights(iocg, weight, iocg->inuse, true, now);
1201	iocg->weight = weight;
1202}
1203
1204static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1205{
1206	struct ioc *ioc = iocg->ioc;
1207	u64 last_period, cur_period;
1208	u64 vtime, vtarget;
1209	int i;
1210
1211	/*
1212	 * If seem to be already active, just update the stamp to tell the
1213	 * timer that we're still active.  We don't mind occassional races.
1214	 */
1215	if (!list_empty(&iocg->active_list)) {
1216		ioc_now(ioc, now);
1217		cur_period = atomic64_read(&ioc->cur_period);
1218		if (atomic64_read(&iocg->active_period) != cur_period)
1219			atomic64_set(&iocg->active_period, cur_period);
1220		return true;
1221	}
1222
1223	/* racy check on internal node IOs, treat as root level IOs */
1224	if (iocg->child_active_sum)
1225		return false;
1226
1227	spin_lock_irq(&ioc->lock);
1228
1229	ioc_now(ioc, now);
1230
1231	/* update period */
1232	cur_period = atomic64_read(&ioc->cur_period);
1233	last_period = atomic64_read(&iocg->active_period);
1234	atomic64_set(&iocg->active_period, cur_period);
1235
1236	/* already activated or breaking leaf-only constraint? */
1237	if (!list_empty(&iocg->active_list))
1238		goto succeed_unlock;
1239	for (i = iocg->level - 1; i > 0; i--)
1240		if (!list_empty(&iocg->ancestors[i]->active_list))
1241			goto fail_unlock;
1242
1243	if (iocg->child_active_sum)
1244		goto fail_unlock;
1245
1246	/*
1247	 * Always start with the target budget. On deactivation, we throw away
1248	 * anything above it.
1249	 */
1250	vtarget = now->vnow - ioc->margins.target;
1251	vtime = atomic64_read(&iocg->vtime);
1252
1253	atomic64_add(vtarget - vtime, &iocg->vtime);
1254	atomic64_add(vtarget - vtime, &iocg->done_vtime);
1255	vtime = vtarget;
1256
1257	/*
1258	 * Activate, propagate weight and start period timer if not
1259	 * running.  Reset hweight_gen to avoid accidental match from
1260	 * wrapping.
1261	 */
1262	iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1263	list_add(&iocg->active_list, &ioc->active_iocgs);
1264
1265	propagate_weights(iocg, iocg->weight,
1266			  iocg->last_inuse ?: iocg->weight, true, now);
1267
1268	TRACE_IOCG_PATH(iocg_activate, iocg, now,
1269			last_period, cur_period, vtime);
1270
1271	iocg->activated_at = now->now;
1272
1273	if (ioc->running == IOC_IDLE) {
1274		ioc->running = IOC_RUNNING;
1275		ioc->dfgv_period_at = now->now;
1276		ioc->dfgv_period_rem = 0;
1277		ioc_start_period(ioc, now);
1278	}
1279
1280succeed_unlock:
1281	spin_unlock_irq(&ioc->lock);
1282	return true;
1283
1284fail_unlock:
1285	spin_unlock_irq(&ioc->lock);
1286	return false;
1287}
1288
1289static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1290{
1291	struct ioc *ioc = iocg->ioc;
1292	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1293	u64 tdelta, delay, new_delay;
1294	s64 vover, vover_pct;
1295	u32 hwa;
1296
1297	lockdep_assert_held(&iocg->waitq.lock);
1298
1299	/*
1300	 * If the delay is set by another CPU, we may be in the past. No need to
1301	 * change anything if so. This avoids decay calculation underflow.
1302	 */
1303	if (time_before64(now->now, iocg->delay_at))
1304		return false;
1305
1306	/* calculate the current delay in effect - 1/2 every second */
1307	tdelta = now->now - iocg->delay_at;
1308	if (iocg->delay)
1309		delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1310	else
1311		delay = 0;
1312
1313	/* calculate the new delay from the debt amount */
1314	current_hweight(iocg, &hwa, NULL);
1315	vover = atomic64_read(&iocg->vtime) +
1316		abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1317	vover_pct = div64_s64(100 * vover,
1318			      ioc->period_us * ioc->vtime_base_rate);
1319
1320	if (vover_pct <= MIN_DELAY_THR_PCT)
1321		new_delay = 0;
1322	else if (vover_pct >= MAX_DELAY_THR_PCT)
1323		new_delay = MAX_DELAY;
1324	else
1325		new_delay = MIN_DELAY +
1326			div_u64((MAX_DELAY - MIN_DELAY) *
1327				(vover_pct - MIN_DELAY_THR_PCT),
1328				MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1329
1330	/* pick the higher one and apply */
1331	if (new_delay > delay) {
1332		iocg->delay = new_delay;
1333		iocg->delay_at = now->now;
1334		delay = new_delay;
1335	}
1336
1337	if (delay >= MIN_DELAY) {
1338		if (!iocg->indelay_since)
1339			iocg->indelay_since = now->now;
1340		blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1341		return true;
1342	} else {
1343		if (iocg->indelay_since) {
1344			iocg->local_stat.indelay_us += now->now - iocg->indelay_since;
1345			iocg->indelay_since = 0;
1346		}
1347		iocg->delay = 0;
1348		blkcg_clear_delay(blkg);
1349		return false;
1350	}
1351}
1352
1353static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1354			    struct ioc_now *now)
1355{
1356	struct iocg_pcpu_stat *gcs;
1357
1358	lockdep_assert_held(&iocg->ioc->lock);
1359	lockdep_assert_held(&iocg->waitq.lock);
1360	WARN_ON_ONCE(list_empty(&iocg->active_list));
1361
1362	/*
1363	 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1364	 * inuse donating all of it share to others until its debt is paid off.
1365	 */
1366	if (!iocg->abs_vdebt && abs_cost) {
1367		iocg->indebt_since = now->now;
1368		propagate_weights(iocg, iocg->active, 0, false, now);
1369	}
1370
1371	iocg->abs_vdebt += abs_cost;
1372
1373	gcs = get_cpu_ptr(iocg->pcpu_stat);
1374	local64_add(abs_cost, &gcs->abs_vusage);
1375	put_cpu_ptr(gcs);
1376}
1377
1378static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1379			  struct ioc_now *now)
1380{
1381	lockdep_assert_held(&iocg->ioc->lock);
1382	lockdep_assert_held(&iocg->waitq.lock);
1383
1384	/* make sure that nobody messed with @iocg */
1385	WARN_ON_ONCE(list_empty(&iocg->active_list));
1386	WARN_ON_ONCE(iocg->inuse > 1);
1387
1388	iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1389
1390	/* if debt is paid in full, restore inuse */
1391	if (!iocg->abs_vdebt) {
1392		iocg->local_stat.indebt_us += now->now - iocg->indebt_since;
1393		iocg->indebt_since = 0;
1394
1395		propagate_weights(iocg, iocg->active, iocg->last_inuse,
1396				  false, now);
1397	}
1398}
1399
1400static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1401			int flags, void *key)
1402{
1403	struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1404	struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1405	u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1406
1407	ctx->vbudget -= cost;
1408
1409	if (ctx->vbudget < 0)
1410		return -1;
1411
1412	iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1413	wait->committed = true;
1414
1415	/*
1416	 * autoremove_wake_function() removes the wait entry only when it
1417	 * actually changed the task state. We want the wait always removed.
1418	 * Remove explicitly and use default_wake_function(). Note that the
1419	 * order of operations is important as finish_wait() tests whether
1420	 * @wq_entry is removed without grabbing the lock.
1421	 */
1422	default_wake_function(wq_entry, mode, flags, key);
1423	list_del_init_careful(&wq_entry->entry);
1424	return 0;
1425}
1426
1427/*
1428 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1429 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1430 * addition to iocg->waitq.lock.
1431 */
1432static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1433			    struct ioc_now *now)
1434{
1435	struct ioc *ioc = iocg->ioc;
1436	struct iocg_wake_ctx ctx = { .iocg = iocg };
1437	u64 vshortage, expires, oexpires;
1438	s64 vbudget;
1439	u32 hwa;
1440
1441	lockdep_assert_held(&iocg->waitq.lock);
1442
1443	current_hweight(iocg, &hwa, NULL);
1444	vbudget = now->vnow - atomic64_read(&iocg->vtime);
1445
1446	/* pay off debt */
1447	if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1448		u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1449		u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1450		u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1451
1452		lockdep_assert_held(&ioc->lock);
1453
1454		atomic64_add(vpay, &iocg->vtime);
1455		atomic64_add(vpay, &iocg->done_vtime);
1456		iocg_pay_debt(iocg, abs_vpay, now);
1457		vbudget -= vpay;
1458	}
1459
1460	if (iocg->abs_vdebt || iocg->delay)
1461		iocg_kick_delay(iocg, now);
1462
1463	/*
1464	 * Debt can still be outstanding if we haven't paid all yet or the
1465	 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1466	 * under debt. Make sure @vbudget reflects the outstanding amount and is
1467	 * not positive.
1468	 */
1469	if (iocg->abs_vdebt) {
1470		s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1471		vbudget = min_t(s64, 0, vbudget - vdebt);
1472	}
1473
1474	/*
1475	 * Wake up the ones which are due and see how much vtime we'll need for
1476	 * the next one. As paying off debt restores hw_inuse, it must be read
1477	 * after the above debt payment.
1478	 */
1479	ctx.vbudget = vbudget;
1480	current_hweight(iocg, NULL, &ctx.hw_inuse);
1481
1482	__wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1483
1484	if (!waitqueue_active(&iocg->waitq)) {
1485		if (iocg->wait_since) {
1486			iocg->local_stat.wait_us += now->now - iocg->wait_since;
1487			iocg->wait_since = 0;
1488		}
1489		return;
1490	}
1491
1492	if (!iocg->wait_since)
1493		iocg->wait_since = now->now;
1494
1495	if (WARN_ON_ONCE(ctx.vbudget >= 0))
1496		return;
1497
1498	/* determine next wakeup, add a timer margin to guarantee chunking */
1499	vshortage = -ctx.vbudget;
1500	expires = now->now_ns +
1501		DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1502		NSEC_PER_USEC;
1503	expires += ioc->timer_slack_ns;
1504
1505	/* if already active and close enough, don't bother */
1506	oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1507	if (hrtimer_is_queued(&iocg->waitq_timer) &&
1508	    abs(oexpires - expires) <= ioc->timer_slack_ns)
1509		return;
1510
1511	hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1512			       ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1513}
1514
1515static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1516{
1517	struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1518	bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1519	struct ioc_now now;
1520	unsigned long flags;
1521
1522	ioc_now(iocg->ioc, &now);
1523
1524	iocg_lock(iocg, pay_debt, &flags);
1525	iocg_kick_waitq(iocg, pay_debt, &now);
1526	iocg_unlock(iocg, pay_debt, &flags);
1527
1528	return HRTIMER_NORESTART;
1529}
1530
1531static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1532{
1533	u32 nr_met[2] = { };
1534	u32 nr_missed[2] = { };
1535	u64 rq_wait_ns = 0;
1536	int cpu, rw;
1537
1538	for_each_online_cpu(cpu) {
1539		struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1540		u64 this_rq_wait_ns;
1541
1542		for (rw = READ; rw <= WRITE; rw++) {
1543			u32 this_met = local_read(&stat->missed[rw].nr_met);
1544			u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1545
1546			nr_met[rw] += this_met - stat->missed[rw].last_met;
1547			nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1548			stat->missed[rw].last_met = this_met;
1549			stat->missed[rw].last_missed = this_missed;
1550		}
1551
1552		this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1553		rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1554		stat->last_rq_wait_ns = this_rq_wait_ns;
1555	}
1556
1557	for (rw = READ; rw <= WRITE; rw++) {
1558		if (nr_met[rw] + nr_missed[rw])
1559			missed_ppm_ar[rw] =
1560				DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1561						   nr_met[rw] + nr_missed[rw]);
1562		else
1563			missed_ppm_ar[rw] = 0;
1564	}
1565
1566	*rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1567				   ioc->period_us * NSEC_PER_USEC);
1568}
1569
1570/* was iocg idle this period? */
1571static bool iocg_is_idle(struct ioc_gq *iocg)
1572{
1573	struct ioc *ioc = iocg->ioc;
1574
1575	/* did something get issued this period? */
1576	if (atomic64_read(&iocg->active_period) ==
1577	    atomic64_read(&ioc->cur_period))
1578		return false;
1579
1580	/* is something in flight? */
1581	if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1582		return false;
1583
1584	return true;
1585}
1586
1587/*
1588 * Call this function on the target leaf @iocg's to build pre-order traversal
1589 * list of all the ancestors in @inner_walk. The inner nodes are linked through
1590 * ->walk_list and the caller is responsible for dissolving the list after use.
1591 */
1592static void iocg_build_inner_walk(struct ioc_gq *iocg,
1593				  struct list_head *inner_walk)
1594{
1595	int lvl;
1596
1597	WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1598
1599	/* find the first ancestor which hasn't been visited yet */
1600	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1601		if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1602			break;
1603	}
1604
1605	/* walk down and visit the inner nodes to get pre-order traversal */
1606	while (++lvl <= iocg->level - 1) {
1607		struct ioc_gq *inner = iocg->ancestors[lvl];
1608
1609		/* record traversal order */
1610		list_add_tail(&inner->walk_list, inner_walk);
1611	}
1612}
1613
1614/* collect per-cpu counters and propagate the deltas to the parent */
1615static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now)
1616{
1617	struct ioc *ioc = iocg->ioc;
1618	struct iocg_stat new_stat;
1619	u64 abs_vusage = 0;
1620	u64 vusage_delta;
1621	int cpu;
1622
1623	lockdep_assert_held(&iocg->ioc->lock);
1624
1625	/* collect per-cpu counters */
1626	for_each_possible_cpu(cpu) {
1627		abs_vusage += local64_read(
1628				per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1629	}
1630	vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1631	iocg->last_stat_abs_vusage = abs_vusage;
1632
1633	iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1634	iocg->local_stat.usage_us += iocg->usage_delta_us;
1635
1636	/* propagate upwards */
1637	new_stat.usage_us =
1638		iocg->local_stat.usage_us + iocg->desc_stat.usage_us;
1639	new_stat.wait_us =
1640		iocg->local_stat.wait_us + iocg->desc_stat.wait_us;
1641	new_stat.indebt_us =
1642		iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us;
1643	new_stat.indelay_us =
1644		iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us;
1645
1646	/* propagate the deltas to the parent */
1647	if (iocg->level > 0) {
1648		struct iocg_stat *parent_stat =
1649			&iocg->ancestors[iocg->level - 1]->desc_stat;
1650
1651		parent_stat->usage_us +=
1652			new_stat.usage_us - iocg->last_stat.usage_us;
1653		parent_stat->wait_us +=
1654			new_stat.wait_us - iocg->last_stat.wait_us;
1655		parent_stat->indebt_us +=
1656			new_stat.indebt_us - iocg->last_stat.indebt_us;
1657		parent_stat->indelay_us +=
1658			new_stat.indelay_us - iocg->last_stat.indelay_us;
1659	}
1660
1661	iocg->last_stat = new_stat;
1662}
1663
1664/* get stat counters ready for reading on all active iocgs */
1665static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1666{
1667	LIST_HEAD(inner_walk);
1668	struct ioc_gq *iocg, *tiocg;
1669
1670	/* flush leaves and build inner node walk list */
1671	list_for_each_entry(iocg, target_iocgs, active_list) {
1672		iocg_flush_stat_one(iocg, now);
1673		iocg_build_inner_walk(iocg, &inner_walk);
1674	}
1675
1676	/* keep flushing upwards by walking the inner list backwards */
1677	list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1678		iocg_flush_stat_one(iocg, now);
1679		list_del_init(&iocg->walk_list);
1680	}
1681}
1682
1683/*
1684 * Determine what @iocg's hweight_inuse should be after donating unused
1685 * capacity. @hwm is the upper bound and used to signal no donation. This
1686 * function also throws away @iocg's excess budget.
1687 */
1688static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1689				  u32 usage, struct ioc_now *now)
1690{
1691	struct ioc *ioc = iocg->ioc;
1692	u64 vtime = atomic64_read(&iocg->vtime);
1693	s64 excess, delta, target, new_hwi;
1694
1695	/* debt handling owns inuse for debtors */
1696	if (iocg->abs_vdebt)
1697		return 1;
1698
1699	/* see whether minimum margin requirement is met */
1700	if (waitqueue_active(&iocg->waitq) ||
1701	    time_after64(vtime, now->vnow - ioc->margins.min))
1702		return hwm;
1703
1704	/* throw away excess above target */
1705	excess = now->vnow - vtime - ioc->margins.target;
1706	if (excess > 0) {
1707		atomic64_add(excess, &iocg->vtime);
1708		atomic64_add(excess, &iocg->done_vtime);
1709		vtime += excess;
1710		ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1711	}
1712
1713	/*
1714	 * Let's say the distance between iocg's and device's vtimes as a
1715	 * fraction of period duration is delta. Assuming that the iocg will
1716	 * consume the usage determined above, we want to determine new_hwi so
1717	 * that delta equals MARGIN_TARGET at the end of the next period.
1718	 *
1719	 * We need to execute usage worth of IOs while spending the sum of the
1720	 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1721	 * (delta):
1722	 *
1723	 *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1724	 *
1725	 * Therefore, the new_hwi is:
1726	 *
1727	 *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1728	 */
1729	delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1730			  now->vnow - ioc->period_at_vtime);
1731	target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1732	new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1733
1734	return clamp_t(s64, new_hwi, 1, hwm);
1735}
1736
1737/*
1738 * For work-conservation, an iocg which isn't using all of its share should
1739 * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1740 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1741 *
1742 * #1 is mathematically simpler but has the drawback of requiring synchronous
1743 * global hweight_inuse updates when idle iocg's get activated or inuse weights
1744 * change due to donation snapbacks as it has the possibility of grossly
1745 * overshooting what's allowed by the model and vrate.
1746 *
1747 * #2 is inherently safe with local operations. The donating iocg can easily
1748 * snap back to higher weights when needed without worrying about impacts on
1749 * other nodes as the impacts will be inherently correct. This also makes idle
1750 * iocg activations safe. The only effect activations have is decreasing
1751 * hweight_inuse of others, the right solution to which is for those iocgs to
1752 * snap back to higher weights.
1753 *
1754 * So, we go with #2. The challenge is calculating how each donating iocg's
1755 * inuse should be adjusted to achieve the target donation amounts. This is done
1756 * using Andy's method described in the following pdf.
1757 *
1758 *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1759 *
1760 * Given the weights and target after-donation hweight_inuse values, Andy's
1761 * method determines how the proportional distribution should look like at each
1762 * sibling level to maintain the relative relationship between all non-donating
1763 * pairs. To roughly summarize, it divides the tree into donating and
1764 * non-donating parts, calculates global donation rate which is used to
1765 * determine the target hweight_inuse for each node, and then derives per-level
1766 * proportions.
1767 *
1768 * The following pdf shows that global distribution calculated this way can be
1769 * achieved by scaling inuse weights of donating leaves and propagating the
1770 * adjustments upwards proportionally.
1771 *
1772 *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1773 *
1774 * Combining the above two, we can determine how each leaf iocg's inuse should
1775 * be adjusted to achieve the target donation.
1776 *
1777 *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1778 *
1779 * The inline comments use symbols from the last pdf.
1780 *
1781 *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1782 *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1783 *   t is the sum of the absolute budgets of donating nodes in the subtree.
1784 *   w is the weight of the node. w = w_f + w_t
1785 *   w_f is the non-donating portion of w. w_f = w * f / b
1786 *   w_b is the donating portion of w. w_t = w * t / b
1787 *   s is the sum of all sibling weights. s = Sum(w) for siblings
1788 *   s_f and s_t are the non-donating and donating portions of s.
1789 *
1790 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1791 * w_pt is the donating portion of the parent's weight and w'_pt the same value
1792 * after adjustments. Subscript r denotes the root node's values.
1793 */
1794static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1795{
1796	LIST_HEAD(over_hwa);
1797	LIST_HEAD(inner_walk);
1798	struct ioc_gq *iocg, *tiocg, *root_iocg;
1799	u32 after_sum, over_sum, over_target, gamma;
1800
1801	/*
1802	 * It's pretty unlikely but possible for the total sum of
1803	 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1804	 * confuse the following calculations. If such condition is detected,
1805	 * scale down everyone over its full share equally to keep the sum below
1806	 * WEIGHT_ONE.
1807	 */
1808	after_sum = 0;
1809	over_sum = 0;
1810	list_for_each_entry(iocg, surpluses, surplus_list) {
1811		u32 hwa;
1812
1813		current_hweight(iocg, &hwa, NULL);
1814		after_sum += iocg->hweight_after_donation;
1815
1816		if (iocg->hweight_after_donation > hwa) {
1817			over_sum += iocg->hweight_after_donation;
1818			list_add(&iocg->walk_list, &over_hwa);
1819		}
1820	}
1821
1822	if (after_sum >= WEIGHT_ONE) {
1823		/*
1824		 * The delta should be deducted from the over_sum, calculate
1825		 * target over_sum value.
1826		 */
1827		u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1828		WARN_ON_ONCE(over_sum <= over_delta);
1829		over_target = over_sum - over_delta;
1830	} else {
1831		over_target = 0;
1832	}
1833
1834	list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1835		if (over_target)
1836			iocg->hweight_after_donation =
1837				div_u64((u64)iocg->hweight_after_donation *
1838					over_target, over_sum);
1839		list_del_init(&iocg->walk_list);
1840	}
1841
1842	/*
1843	 * Build pre-order inner node walk list and prepare for donation
1844	 * adjustment calculations.
1845	 */
1846	list_for_each_entry(iocg, surpluses, surplus_list) {
1847		iocg_build_inner_walk(iocg, &inner_walk);
1848	}
1849
1850	root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1851	WARN_ON_ONCE(root_iocg->level > 0);
1852
1853	list_for_each_entry(iocg, &inner_walk, walk_list) {
1854		iocg->child_adjusted_sum = 0;
1855		iocg->hweight_donating = 0;
1856		iocg->hweight_after_donation = 0;
1857	}
1858
1859	/*
1860	 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1861	 * up the hierarchy.
1862	 */
1863	list_for_each_entry(iocg, surpluses, surplus_list) {
1864		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1865
1866		parent->hweight_donating += iocg->hweight_donating;
1867		parent->hweight_after_donation += iocg->hweight_after_donation;
1868	}
1869
1870	list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1871		if (iocg->level > 0) {
1872			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1873
1874			parent->hweight_donating += iocg->hweight_donating;
1875			parent->hweight_after_donation += iocg->hweight_after_donation;
1876		}
1877	}
1878
1879	/*
1880	 * Calculate inner hwa's (b) and make sure the donation values are
1881	 * within the accepted ranges as we're doing low res calculations with
1882	 * roundups.
1883	 */
1884	list_for_each_entry(iocg, &inner_walk, walk_list) {
1885		if (iocg->level) {
1886			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1887
1888			iocg->hweight_active = DIV64_U64_ROUND_UP(
1889				(u64)parent->hweight_active * iocg->active,
1890				parent->child_active_sum);
1891
1892		}
1893
1894		iocg->hweight_donating = min(iocg->hweight_donating,
1895					     iocg->hweight_active);
1896		iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1897						   iocg->hweight_donating - 1);
1898		if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1899				 iocg->hweight_donating <= 1 ||
1900				 iocg->hweight_after_donation == 0)) {
1901			pr_warn("iocg: invalid donation weights in ");
1902			pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1903			pr_cont(": active=%u donating=%u after=%u\n",
1904				iocg->hweight_active, iocg->hweight_donating,
1905				iocg->hweight_after_donation);
1906		}
1907	}
1908
1909	/*
1910	 * Calculate the global donation rate (gamma) - the rate to adjust
1911	 * non-donating budgets by.
1912	 *
1913	 * No need to use 64bit multiplication here as the first operand is
1914	 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1915	 *
1916	 * We know that there are beneficiary nodes and the sum of the donating
1917	 * hweights can't be whole; however, due to the round-ups during hweight
1918	 * calculations, root_iocg->hweight_donating might still end up equal to
1919	 * or greater than whole. Limit the range when calculating the divider.
1920	 *
1921	 * gamma = (1 - t_r') / (1 - t_r)
1922	 */
1923	gamma = DIV_ROUND_UP(
1924		(WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1925		WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1926
1927	/*
1928	 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1929	 * nodes.
1930	 */
1931	list_for_each_entry(iocg, &inner_walk, walk_list) {
1932		struct ioc_gq *parent;
1933		u32 inuse, wpt, wptp;
1934		u64 st, sf;
1935
1936		if (iocg->level == 0) {
1937			/* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1938			iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1939				iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1940				WEIGHT_ONE - iocg->hweight_after_donation);
1941			continue;
1942		}
1943
1944		parent = iocg->ancestors[iocg->level - 1];
1945
1946		/* b' = gamma * b_f + b_t' */
1947		iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1948			(u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1949			WEIGHT_ONE) + iocg->hweight_after_donation;
1950
1951		/* w' = s' * b' / b'_p */
1952		inuse = DIV64_U64_ROUND_UP(
1953			(u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1954			parent->hweight_inuse);
1955
1956		/* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1957		st = DIV64_U64_ROUND_UP(
1958			iocg->child_active_sum * iocg->hweight_donating,
1959			iocg->hweight_active);
1960		sf = iocg->child_active_sum - st;
1961		wpt = DIV64_U64_ROUND_UP(
1962			(u64)iocg->active * iocg->hweight_donating,
1963			iocg->hweight_active);
1964		wptp = DIV64_U64_ROUND_UP(
1965			(u64)inuse * iocg->hweight_after_donation,
1966			iocg->hweight_inuse);
1967
1968		iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1969	}
1970
1971	/*
1972	 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1973	 * we can finally determine leaf adjustments.
1974	 */
1975	list_for_each_entry(iocg, surpluses, surplus_list) {
1976		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1977		u32 inuse;
1978
1979		/*
1980		 * In-debt iocgs participated in the donation calculation with
1981		 * the minimum target hweight_inuse. Configuring inuse
1982		 * accordingly would work fine but debt handling expects
1983		 * @iocg->inuse stay at the minimum and we don't wanna
1984		 * interfere.
1985		 */
1986		if (iocg->abs_vdebt) {
1987			WARN_ON_ONCE(iocg->inuse > 1);
1988			continue;
1989		}
1990
1991		/* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
1992		inuse = DIV64_U64_ROUND_UP(
1993			parent->child_adjusted_sum * iocg->hweight_after_donation,
1994			parent->hweight_inuse);
1995
1996		TRACE_IOCG_PATH(inuse_transfer, iocg, now,
1997				iocg->inuse, inuse,
1998				iocg->hweight_inuse,
1999				iocg->hweight_after_donation);
2000
2001		__propagate_weights(iocg, iocg->active, inuse, true, now);
2002	}
2003
2004	/* walk list should be dissolved after use */
2005	list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2006		list_del_init(&iocg->walk_list);
2007}
2008
2009/*
2010 * A low weight iocg can amass a large amount of debt, for example, when
2011 * anonymous memory gets reclaimed aggressively. If the system has a lot of
2012 * memory paired with a slow IO device, the debt can span multiple seconds or
2013 * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2014 * up blocked paying its debt while the IO device is idle.
2015 *
2016 * The following protects against such cases. If the device has been
2017 * sufficiently idle for a while, the debts are halved and delays are
2018 * recalculated.
2019 */
2020static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2021			      struct ioc_now *now)
2022{
2023	struct ioc_gq *iocg;
2024	u64 dur, usage_pct, nr_cycles;
2025
2026	/* if no debtor, reset the cycle */
2027	if (!nr_debtors) {
2028		ioc->dfgv_period_at = now->now;
2029		ioc->dfgv_period_rem = 0;
2030		ioc->dfgv_usage_us_sum = 0;
2031		return;
2032	}
2033
2034	/*
2035	 * Debtors can pass through a lot of writes choking the device and we
2036	 * don't want to be forgiving debts while the device is struggling from
2037	 * write bursts. If we're missing latency targets, consider the device
2038	 * fully utilized.
2039	 */
2040	if (ioc->busy_level > 0)
2041		usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2042
2043	ioc->dfgv_usage_us_sum += usage_us_sum;
2044	if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2045		return;
2046
2047	/*
2048	 * At least DFGV_PERIOD has passed since the last period. Calculate the
2049	 * average usage and reset the period counters.
2050	 */
2051	dur = now->now - ioc->dfgv_period_at;
2052	usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2053
2054	ioc->dfgv_period_at = now->now;
2055	ioc->dfgv_usage_us_sum = 0;
2056
2057	/* if was too busy, reset everything */
2058	if (usage_pct > DFGV_USAGE_PCT) {
2059		ioc->dfgv_period_rem = 0;
2060		return;
2061	}
2062
2063	/*
2064	 * Usage is lower than threshold. Let's forgive some debts. Debt
2065	 * forgiveness runs off of the usual ioc timer but its period usually
2066	 * doesn't match ioc's. Compensate the difference by performing the
2067	 * reduction as many times as would fit in the duration since the last
2068	 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2069	 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2070	 * reductions is doubled.
2071	 */
2072	nr_cycles = dur + ioc->dfgv_period_rem;
2073	ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2074
2075	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2076		u64 __maybe_unused old_debt, __maybe_unused old_delay;
2077
2078		if (!iocg->abs_vdebt && !iocg->delay)
2079			continue;
2080
2081		spin_lock(&iocg->waitq.lock);
2082
2083		old_debt = iocg->abs_vdebt;
2084		old_delay = iocg->delay;
2085
2086		if (iocg->abs_vdebt)
2087			iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2088		if (iocg->delay)
2089			iocg->delay = iocg->delay >> nr_cycles ?: 1;
2090
2091		iocg_kick_waitq(iocg, true, now);
2092
2093		TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2094				old_debt, iocg->abs_vdebt,
2095				old_delay, iocg->delay);
2096
2097		spin_unlock(&iocg->waitq.lock);
2098	}
2099}
2100
2101static void ioc_timer_fn(struct timer_list *timer)
2102{
2103	struct ioc *ioc = container_of(timer, struct ioc, timer);
2104	struct ioc_gq *iocg, *tiocg;
2105	struct ioc_now now;
2106	LIST_HEAD(surpluses);
2107	int nr_debtors = 0, nr_shortages = 0, nr_lagging = 0;
2108	u64 usage_us_sum = 0;
2109	u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2110	u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2111	u32 missed_ppm[2], rq_wait_pct;
2112	u64 period_vtime;
2113	int prev_busy_level;
2114
2115	/* how were the latencies during the period? */
2116	ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2117
2118	/* take care of active iocgs */
2119	spin_lock_irq(&ioc->lock);
2120
2121	ioc_now(ioc, &now);
2122
2123	period_vtime = now.vnow - ioc->period_at_vtime;
2124	if (WARN_ON_ONCE(!period_vtime)) {
2125		spin_unlock_irq(&ioc->lock);
2126		return;
2127	}
2128
2129	/*
2130	 * Waiters determine the sleep durations based on the vrate they
2131	 * saw at the time of sleep.  If vrate has increased, some waiters
2132	 * could be sleeping for too long.  Wake up tardy waiters which
2133	 * should have woken up in the last period and expire idle iocgs.
2134	 */
2135	list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2136		if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2137		    !iocg->delay && !iocg_is_idle(iocg))
2138			continue;
2139
2140		spin_lock(&iocg->waitq.lock);
2141
2142		/* flush wait and indebt stat deltas */
2143		if (iocg->wait_since) {
2144			iocg->local_stat.wait_us += now.now - iocg->wait_since;
2145			iocg->wait_since = now.now;
2146		}
2147		if (iocg->indebt_since) {
2148			iocg->local_stat.indebt_us +=
2149				now.now - iocg->indebt_since;
2150			iocg->indebt_since = now.now;
2151		}
2152		if (iocg->indelay_since) {
2153			iocg->local_stat.indelay_us +=
2154				now.now - iocg->indelay_since;
2155			iocg->indelay_since = now.now;
2156		}
2157
2158		if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2159		    iocg->delay) {
2160			/* might be oversleeping vtime / hweight changes, kick */
2161			iocg_kick_waitq(iocg, true, &now);
2162			if (iocg->abs_vdebt || iocg->delay)
2163				nr_debtors++;
2164		} else if (iocg_is_idle(iocg)) {
2165			/* no waiter and idle, deactivate */
2166			u64 vtime = atomic64_read(&iocg->vtime);
2167			s64 excess;
2168
2169			/*
2170			 * @iocg has been inactive for a full duration and will
2171			 * have a high budget. Account anything above target as
2172			 * error and throw away. On reactivation, it'll start
2173			 * with the target budget.
2174			 */
2175			excess = now.vnow - vtime - ioc->margins.target;
2176			if (excess > 0) {
2177				u32 old_hwi;
2178
2179				current_hweight(iocg, NULL, &old_hwi);
2180				ioc->vtime_err -= div64_u64(excess * old_hwi,
2181							    WEIGHT_ONE);
2182			}
2183
2184			__propagate_weights(iocg, 0, 0, false, &now);
2185			list_del_init(&iocg->active_list);
2186		}
2187
2188		spin_unlock(&iocg->waitq.lock);
2189	}
2190	commit_weights(ioc);
2191
2192	/*
2193	 * Wait and indebt stat are flushed above and the donation calculation
2194	 * below needs updated usage stat. Let's bring stat up-to-date.
2195	 */
2196	iocg_flush_stat(&ioc->active_iocgs, &now);
2197
2198	/* calc usage and see whether some weights need to be moved around */
2199	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2200		u64 vdone, vtime, usage_us, usage_dur;
2201		u32 usage, hw_active, hw_inuse;
2202
2203		/*
2204		 * Collect unused and wind vtime closer to vnow to prevent
2205		 * iocgs from accumulating a large amount of budget.
2206		 */
2207		vdone = atomic64_read(&iocg->done_vtime);
2208		vtime = atomic64_read(&iocg->vtime);
2209		current_hweight(iocg, &hw_active, &hw_inuse);
2210
2211		/*
2212		 * Latency QoS detection doesn't account for IOs which are
2213		 * in-flight for longer than a period.  Detect them by
2214		 * comparing vdone against period start.  If lagging behind
2215		 * IOs from past periods, don't increase vrate.
2216		 */
2217		if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2218		    !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2219		    time_after64(vtime, vdone) &&
2220		    time_after64(vtime, now.vnow -
2221				 MAX_LAGGING_PERIODS * period_vtime) &&
2222		    time_before64(vdone, now.vnow - period_vtime))
2223			nr_lagging++;
2224
2225		/*
2226		 * Determine absolute usage factoring in in-flight IOs to avoid
2227		 * high-latency completions appearing as idle.
2228		 */
2229		usage_us = iocg->usage_delta_us;
2230		usage_us_sum += usage_us;
2231
2232		if (vdone != vtime) {
2233			u64 inflight_us = DIV64_U64_ROUND_UP(
2234				cost_to_abs_cost(vtime - vdone, hw_inuse),
2235				ioc->vtime_base_rate);
2236			usage_us = max(usage_us, inflight_us);
2237		}
2238
2239		/* convert to hweight based usage ratio */
2240		if (time_after64(iocg->activated_at, ioc->period_at))
2241			usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2242		else
2243			usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2244
2245		usage = clamp_t(u32,
2246				DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2247						   usage_dur),
2248				1, WEIGHT_ONE);
2249
2250		/* see whether there's surplus vtime */
2251		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2252		if (hw_inuse < hw_active ||
2253		    (!waitqueue_active(&iocg->waitq) &&
2254		     time_before64(vtime, now.vnow - ioc->margins.low))) {
2255			u32 hwa, old_hwi, hwm, new_hwi;
2256
2257			/*
2258			 * Already donating or accumulated enough to start.
2259			 * Determine the donation amount.
2260			 */
2261			current_hweight(iocg, &hwa, &old_hwi);
2262			hwm = current_hweight_max(iocg);
2263			new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2264							 usage, &now);
2265			/*
2266			 * Donation calculation assumes hweight_after_donation
2267			 * to be positive, a condition that a donor w/ hwa < 2
2268			 * can't meet. Don't bother with donation if hwa is
2269			 * below 2. It's not gonna make a meaningful difference
2270			 * anyway.
2271			 */
2272			if (new_hwi < hwm && hwa >= 2) {
2273				iocg->hweight_donating = hwa;
2274				iocg->hweight_after_donation = new_hwi;
2275				list_add(&iocg->surplus_list, &surpluses);
2276			} else if (!iocg->abs_vdebt) {
2277				/*
2278				 * @iocg doesn't have enough to donate. Reset
2279				 * its inuse to active.
2280				 *
2281				 * Don't reset debtors as their inuse's are
2282				 * owned by debt handling. This shouldn't affect
2283				 * donation calculuation in any meaningful way
2284				 * as @iocg doesn't have a meaningful amount of
2285				 * share anyway.
2286				 */
2287				TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2288						iocg->inuse, iocg->active,
2289						iocg->hweight_inuse, new_hwi);
2290
2291				__propagate_weights(iocg, iocg->active,
2292						    iocg->active, true, &now);
2293				nr_shortages++;
2294			}
2295		} else {
2296			/* genuinely short on vtime */
2297			nr_shortages++;
2298		}
2299	}
2300
2301	if (!list_empty(&surpluses) && nr_shortages)
2302		transfer_surpluses(&surpluses, &now);
2303
2304	commit_weights(ioc);
2305
2306	/* surplus list should be dissolved after use */
2307	list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2308		list_del_init(&iocg->surplus_list);
2309
2310	/*
2311	 * If q is getting clogged or we're missing too much, we're issuing
2312	 * too much IO and should lower vtime rate.  If we're not missing
2313	 * and experiencing shortages but not surpluses, we're too stingy
2314	 * and should increase vtime rate.
2315	 */
2316	prev_busy_level = ioc->busy_level;
2317	if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2318	    missed_ppm[READ] > ppm_rthr ||
2319	    missed_ppm[WRITE] > ppm_wthr) {
2320		/* clearly missing QoS targets, slow down vrate */
2321		ioc->busy_level = max(ioc->busy_level, 0);
2322		ioc->busy_level++;
2323	} else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2324		   missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2325		   missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2326		/* QoS targets are being met with >25% margin */
2327		if (nr_shortages) {
2328			/*
2329			 * We're throttling while the device has spare
2330			 * capacity.  If vrate was being slowed down, stop.
2331			 */
2332			ioc->busy_level = min(ioc->busy_level, 0);
2333
2334			/*
2335			 * If there are IOs spanning multiple periods, wait
2336			 * them out before pushing the device harder.
2337			 */
2338			if (!nr_lagging)
2339				ioc->busy_level--;
2340		} else {
2341			/*
2342			 * Nobody is being throttled and the users aren't
2343			 * issuing enough IOs to saturate the device.  We
2344			 * simply don't know how close the device is to
2345			 * saturation.  Coast.
2346			 */
2347			ioc->busy_level = 0;
2348		}
2349	} else {
2350		/* inside the hysterisis margin, we're good */
2351		ioc->busy_level = 0;
2352	}
2353
2354	ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2355
2356	if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
2357		u64 vrate = ioc->vtime_base_rate;
2358		u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
2359
2360		/* rq_wait signal is always reliable, ignore user vrate_min */
2361		if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
2362			vrate_min = VRATE_MIN;
2363
2364		/*
2365		 * If vrate is out of bounds, apply clamp gradually as the
2366		 * bounds can change abruptly.  Otherwise, apply busy_level
2367		 * based adjustment.
2368		 */
2369		if (vrate < vrate_min) {
2370			vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
2371					  100);
2372			vrate = min(vrate, vrate_min);
2373		} else if (vrate > vrate_max) {
2374			vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
2375					  100);
2376			vrate = max(vrate, vrate_max);
2377		} else {
2378			int idx = min_t(int, abs(ioc->busy_level),
2379					ARRAY_SIZE(vrate_adj_pct) - 1);
2380			u32 adj_pct = vrate_adj_pct[idx];
2381
2382			if (ioc->busy_level > 0)
2383				adj_pct = 100 - adj_pct;
2384			else
2385				adj_pct = 100 + adj_pct;
2386
2387			vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
2388				      vrate_min, vrate_max);
2389		}
2390
2391		trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
2392					   nr_lagging, nr_shortages);
2393
2394		ioc->vtime_base_rate = vrate;
2395		ioc_refresh_margins(ioc);
2396	} else if (ioc->busy_level != prev_busy_level || nr_lagging) {
2397		trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
2398					   missed_ppm, rq_wait_pct, nr_lagging,
2399					   nr_shortages);
2400	}
2401
2402	ioc_refresh_params(ioc, false);
2403
2404	ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2405
2406	/*
2407	 * This period is done.  Move onto the next one.  If nothing's
2408	 * going on with the device, stop the timer.
2409	 */
2410	atomic64_inc(&ioc->cur_period);
2411
2412	if (ioc->running != IOC_STOP) {
2413		if (!list_empty(&ioc->active_iocgs)) {
2414			ioc_start_period(ioc, &now);
2415		} else {
2416			ioc->busy_level = 0;
2417			ioc->vtime_err = 0;
2418			ioc->running = IOC_IDLE;
2419		}
2420
2421		ioc_refresh_vrate(ioc, &now);
2422	}
2423
2424	spin_unlock_irq(&ioc->lock);
2425}
2426
2427static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2428				      u64 abs_cost, struct ioc_now *now)
2429{
2430	struct ioc *ioc = iocg->ioc;
2431	struct ioc_margins *margins = &ioc->margins;
2432	u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2433	u32 hwi, adj_step;
2434	s64 margin;
2435	u64 cost, new_inuse;
2436	unsigned long flags;
2437
2438	current_hweight(iocg, NULL, &hwi);
2439	old_hwi = hwi;
2440	cost = abs_cost_to_cost(abs_cost, hwi);
2441	margin = now->vnow - vtime - cost;
2442
2443	/* debt handling owns inuse for debtors */
2444	if (iocg->abs_vdebt)
2445		return cost;
2446
2447	/*
2448	 * We only increase inuse during period and do so iff the margin has
2449	 * deteriorated since the previous adjustment.
2450	 */
2451	if (margin >= iocg->saved_margin || margin >= margins->low ||
2452	    iocg->inuse == iocg->active)
2453		return cost;
2454
2455	spin_lock_irqsave(&ioc->lock, flags);
2456
2457	/* we own inuse only when @iocg is in the normal active state */
2458	if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2459		spin_unlock_irqrestore(&ioc->lock, flags);
2460		return cost;
2461	}
2462
2463	/*
2464	 * Bump up inuse till @abs_cost fits in the existing budget.
2465	 * adj_step must be determined after acquiring ioc->lock - we might
2466	 * have raced and lost to another thread for activation and could
2467	 * be reading 0 iocg->active before ioc->lock which will lead to
2468	 * infinite loop.
2469	 */
2470	new_inuse = iocg->inuse;
2471	adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2472	do {
2473		new_inuse = new_inuse + adj_step;
2474		propagate_weights(iocg, iocg->active, new_inuse, true, now);
2475		current_hweight(iocg, NULL, &hwi);
2476		cost = abs_cost_to_cost(abs_cost, hwi);
2477	} while (time_after64(vtime + cost, now->vnow) &&
2478		 iocg->inuse != iocg->active);
2479
2480	spin_unlock_irqrestore(&ioc->lock, flags);
2481
2482	TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2483			old_inuse, iocg->inuse, old_hwi, hwi);
2484
2485	return cost;
2486}
2487
2488static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2489				    bool is_merge, u64 *costp)
2490{
2491	struct ioc *ioc = iocg->ioc;
2492	u64 coef_seqio, coef_randio, coef_page;
2493	u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2494	u64 seek_pages = 0;
2495	u64 cost = 0;
2496
2497	switch (bio_op(bio)) {
2498	case REQ_OP_READ:
2499		coef_seqio	= ioc->params.lcoefs[LCOEF_RSEQIO];
2500		coef_randio	= ioc->params.lcoefs[LCOEF_RRANDIO];
2501		coef_page	= ioc->params.lcoefs[LCOEF_RPAGE];
2502		break;
2503	case REQ_OP_WRITE:
2504		coef_seqio	= ioc->params.lcoefs[LCOEF_WSEQIO];
2505		coef_randio	= ioc->params.lcoefs[LCOEF_WRANDIO];
2506		coef_page	= ioc->params.lcoefs[LCOEF_WPAGE];
2507		break;
2508	default:
2509		goto out;
2510	}
2511
2512	if (iocg->cursor) {
2513		seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2514		seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2515	}
2516
2517	if (!is_merge) {
2518		if (seek_pages > LCOEF_RANDIO_PAGES) {
2519			cost += coef_randio;
2520		} else {
2521			cost += coef_seqio;
2522		}
2523	}
2524	cost += pages * coef_page;
2525out:
2526	*costp = cost;
2527}
2528
2529static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2530{
2531	u64 cost;
2532
2533	calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2534	return cost;
2535}
2536
2537static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2538					 u64 *costp)
2539{
2540	unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2541
2542	switch (req_op(rq)) {
2543	case REQ_OP_READ:
2544		*costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2545		break;
2546	case REQ_OP_WRITE:
2547		*costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2548		break;
2549	default:
2550		*costp = 0;
2551	}
2552}
2553
2554static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2555{
2556	u64 cost;
2557
2558	calc_size_vtime_cost_builtin(rq, ioc, &cost);
2559	return cost;
2560}
2561
2562static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2563{
2564	struct blkcg_gq *blkg = bio->bi_blkg;
2565	struct ioc *ioc = rqos_to_ioc(rqos);
2566	struct ioc_gq *iocg = blkg_to_iocg(blkg);
2567	struct ioc_now now;
2568	struct iocg_wait wait;
2569	u64 abs_cost, cost, vtime;
2570	bool use_debt, ioc_locked;
2571	unsigned long flags;
2572
2573	/* bypass IOs if disabled, still initializing, or for root cgroup */
2574	if (!ioc->enabled || !iocg || !iocg->level)
2575		return;
2576
2577	/* calculate the absolute vtime cost */
2578	abs_cost = calc_vtime_cost(bio, iocg, false);
2579	if (!abs_cost)
2580		return;
2581
2582	if (!iocg_activate(iocg, &now))
2583		return;
2584
2585	iocg->cursor = bio_end_sector(bio);
2586	vtime = atomic64_read(&iocg->vtime);
2587	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2588
2589	/*
2590	 * If no one's waiting and within budget, issue right away.  The
2591	 * tests are racy but the races aren't systemic - we only miss once
2592	 * in a while which is fine.
2593	 */
2594	if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2595	    time_before_eq64(vtime + cost, now.vnow)) {
2596		iocg_commit_bio(iocg, bio, abs_cost, cost);
2597		return;
2598	}
2599
2600	/*
2601	 * We're over budget. This can be handled in two ways. IOs which may
2602	 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2603	 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2604	 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2605	 * whether debt handling is needed and acquire locks accordingly.
2606	 */
2607	use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2608	ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2609retry_lock:
2610	iocg_lock(iocg, ioc_locked, &flags);
2611
2612	/*
2613	 * @iocg must stay activated for debt and waitq handling. Deactivation
2614	 * is synchronized against both ioc->lock and waitq.lock and we won't
2615	 * get deactivated as long as we're waiting or has debt, so we're good
2616	 * if we're activated here. In the unlikely cases that we aren't, just
2617	 * issue the IO.
2618	 */
2619	if (unlikely(list_empty(&iocg->active_list))) {
2620		iocg_unlock(iocg, ioc_locked, &flags);
2621		iocg_commit_bio(iocg, bio, abs_cost, cost);
2622		return;
2623	}
2624
2625	/*
2626	 * We're over budget. If @bio has to be issued regardless, remember
2627	 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2628	 * off the debt before waking more IOs.
2629	 *
2630	 * This way, the debt is continuously paid off each period with the
2631	 * actual budget available to the cgroup. If we just wound vtime, we
2632	 * would incorrectly use the current hw_inuse for the entire amount
2633	 * which, for example, can lead to the cgroup staying blocked for a
2634	 * long time even with substantially raised hw_inuse.
2635	 *
2636	 * An iocg with vdebt should stay online so that the timer can keep
2637	 * deducting its vdebt and [de]activate use_delay mechanism
2638	 * accordingly. We don't want to race against the timer trying to
2639	 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2640	 * penalizing the cgroup and its descendants.
2641	 */
2642	if (use_debt) {
2643		iocg_incur_debt(iocg, abs_cost, &now);
2644		if (iocg_kick_delay(iocg, &now))
2645			blkcg_schedule_throttle(rqos->q,
2646					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2647		iocg_unlock(iocg, ioc_locked, &flags);
2648		return;
2649	}
2650
2651	/* guarantee that iocgs w/ waiters have maximum inuse */
2652	if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2653		if (!ioc_locked) {
2654			iocg_unlock(iocg, false, &flags);
2655			ioc_locked = true;
2656			goto retry_lock;
2657		}
2658		propagate_weights(iocg, iocg->active, iocg->active, true,
2659				  &now);
2660	}
2661
2662	/*
2663	 * Append self to the waitq and schedule the wakeup timer if we're
2664	 * the first waiter.  The timer duration is calculated based on the
2665	 * current vrate.  vtime and hweight changes can make it too short
2666	 * or too long.  Each wait entry records the absolute cost it's
2667	 * waiting for to allow re-evaluation using a custom wait entry.
2668	 *
2669	 * If too short, the timer simply reschedules itself.  If too long,
2670	 * the period timer will notice and trigger wakeups.
2671	 *
2672	 * All waiters are on iocg->waitq and the wait states are
2673	 * synchronized using waitq.lock.
2674	 */
2675	init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2676	wait.wait.private = current;
2677	wait.bio = bio;
2678	wait.abs_cost = abs_cost;
2679	wait.committed = false;	/* will be set true by waker */
2680
2681	__add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2682	iocg_kick_waitq(iocg, ioc_locked, &now);
2683
2684	iocg_unlock(iocg, ioc_locked, &flags);
2685
2686	while (true) {
2687		set_current_state(TASK_UNINTERRUPTIBLE);
2688		if (wait.committed)
2689			break;
2690		io_schedule();
2691	}
2692
2693	/* waker already committed us, proceed */
2694	finish_wait(&iocg->waitq, &wait.wait);
2695}
2696
2697static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2698			   struct bio *bio)
2699{
2700	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2701	struct ioc *ioc = rqos_to_ioc(rqos);
2702	sector_t bio_end = bio_end_sector(bio);
2703	struct ioc_now now;
2704	u64 vtime, abs_cost, cost;
2705	unsigned long flags;
2706
2707	/* bypass if disabled, still initializing, or for root cgroup */
2708	if (!ioc->enabled || !iocg || !iocg->level)
2709		return;
2710
2711	abs_cost = calc_vtime_cost(bio, iocg, true);
2712	if (!abs_cost)
2713		return;
2714
2715	ioc_now(ioc, &now);
2716
2717	vtime = atomic64_read(&iocg->vtime);
2718	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2719
2720	/* update cursor if backmerging into the request at the cursor */
2721	if (blk_rq_pos(rq) < bio_end &&
2722	    blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2723		iocg->cursor = bio_end;
2724
2725	/*
2726	 * Charge if there's enough vtime budget and the existing request has
2727	 * cost assigned.
2728	 */
2729	if (rq->bio && rq->bio->bi_iocost_cost &&
2730	    time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2731		iocg_commit_bio(iocg, bio, abs_cost, cost);
2732		return;
2733	}
2734
2735	/*
2736	 * Otherwise, account it as debt if @iocg is online, which it should
2737	 * be for the vast majority of cases. See debt handling in
2738	 * ioc_rqos_throttle() for details.
2739	 */
2740	spin_lock_irqsave(&ioc->lock, flags);
2741	spin_lock(&iocg->waitq.lock);
2742
2743	if (likely(!list_empty(&iocg->active_list))) {
2744		iocg_incur_debt(iocg, abs_cost, &now);
2745		if (iocg_kick_delay(iocg, &now))
2746			blkcg_schedule_throttle(rqos->q,
2747					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2748	} else {
2749		iocg_commit_bio(iocg, bio, abs_cost, cost);
2750	}
2751
2752	spin_unlock(&iocg->waitq.lock);
2753	spin_unlock_irqrestore(&ioc->lock, flags);
2754}
2755
2756static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2757{
2758	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2759
2760	if (iocg && bio->bi_iocost_cost)
2761		atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2762}
2763
2764static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2765{
2766	struct ioc *ioc = rqos_to_ioc(rqos);
2767	struct ioc_pcpu_stat *ccs;
2768	u64 on_q_ns, rq_wait_ns, size_nsec;
2769	int pidx, rw;
2770
2771	if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2772		return;
2773
2774	switch (req_op(rq) & REQ_OP_MASK) {
2775	case REQ_OP_READ:
2776		pidx = QOS_RLAT;
2777		rw = READ;
2778		break;
2779	case REQ_OP_WRITE:
2780		pidx = QOS_WLAT;
2781		rw = WRITE;
2782		break;
2783	default:
2784		return;
2785	}
2786
2787	on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2788	rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2789	size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2790
2791	ccs = get_cpu_ptr(ioc->pcpu_stat);
2792
2793	if (on_q_ns <= size_nsec ||
2794	    on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2795		local_inc(&ccs->missed[rw].nr_met);
2796	else
2797		local_inc(&ccs->missed[rw].nr_missed);
2798
2799	local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2800
2801	put_cpu_ptr(ccs);
2802}
2803
2804static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2805{
2806	struct ioc *ioc = rqos_to_ioc(rqos);
2807
2808	spin_lock_irq(&ioc->lock);
2809	ioc_refresh_params(ioc, false);
2810	spin_unlock_irq(&ioc->lock);
2811}
2812
2813static void ioc_rqos_exit(struct rq_qos *rqos)
2814{
2815	struct ioc *ioc = rqos_to_ioc(rqos);
2816
2817	blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2818
2819	spin_lock_irq(&ioc->lock);
2820	ioc->running = IOC_STOP;
2821	spin_unlock_irq(&ioc->lock);
2822
2823	del_timer_sync(&ioc->timer);
2824	free_percpu(ioc->pcpu_stat);
2825	kfree(ioc);
2826}
2827
2828static struct rq_qos_ops ioc_rqos_ops = {
2829	.throttle = ioc_rqos_throttle,
2830	.merge = ioc_rqos_merge,
2831	.done_bio = ioc_rqos_done_bio,
2832	.done = ioc_rqos_done,
2833	.queue_depth_changed = ioc_rqos_queue_depth_changed,
2834	.exit = ioc_rqos_exit,
2835};
2836
2837static int blk_iocost_init(struct request_queue *q)
2838{
2839	struct ioc *ioc;
2840	struct rq_qos *rqos;
2841	int i, cpu, ret;
2842
2843	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2844	if (!ioc)
2845		return -ENOMEM;
2846
2847	ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2848	if (!ioc->pcpu_stat) {
2849		kfree(ioc);
2850		return -ENOMEM;
2851	}
2852
2853	for_each_possible_cpu(cpu) {
2854		struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2855
2856		for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2857			local_set(&ccs->missed[i].nr_met, 0);
2858			local_set(&ccs->missed[i].nr_missed, 0);
2859		}
2860		local64_set(&ccs->rq_wait_ns, 0);
2861	}
2862
2863	rqos = &ioc->rqos;
2864	rqos->id = RQ_QOS_COST;
2865	rqos->ops = &ioc_rqos_ops;
2866	rqos->q = q;
2867
2868	spin_lock_init(&ioc->lock);
2869	timer_setup(&ioc->timer, ioc_timer_fn, 0);
2870	INIT_LIST_HEAD(&ioc->active_iocgs);
2871
2872	ioc->running = IOC_IDLE;
2873	ioc->vtime_base_rate = VTIME_PER_USEC;
2874	atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2875	seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2876	ioc->period_at = ktime_to_us(ktime_get());
2877	atomic64_set(&ioc->cur_period, 0);
2878	atomic_set(&ioc->hweight_gen, 0);
2879
2880	spin_lock_irq(&ioc->lock);
2881	ioc->autop_idx = AUTOP_INVALID;
2882	ioc_refresh_params(ioc, true);
2883	spin_unlock_irq(&ioc->lock);
2884
2885	/*
2886	 * rqos must be added before activation to allow iocg_pd_init() to
2887	 * lookup the ioc from q. This means that the rqos methods may get
2888	 * called before policy activation completion, can't assume that the
2889	 * target bio has an iocg associated and need to test for NULL iocg.
2890	 */
2891	rq_qos_add(q, rqos);
2892	ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2893	if (ret) {
2894		rq_qos_del(q, rqos);
2895		free_percpu(ioc->pcpu_stat);
2896		kfree(ioc);
2897		return ret;
2898	}
2899	return 0;
2900}
2901
2902static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2903{
2904	struct ioc_cgrp *iocc;
2905
2906	iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2907	if (!iocc)
2908		return NULL;
2909
2910	iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2911	return &iocc->cpd;
2912}
2913
2914static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2915{
2916	kfree(container_of(cpd, struct ioc_cgrp, cpd));
2917}
2918
2919static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2920					     struct blkcg *blkcg)
2921{
2922	int levels = blkcg->css.cgroup->level + 1;
2923	struct ioc_gq *iocg;
2924
2925	iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2926	if (!iocg)
2927		return NULL;
2928
2929	iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2930	if (!iocg->pcpu_stat) {
2931		kfree(iocg);
2932		return NULL;
2933	}
2934
2935	return &iocg->pd;
2936}
2937
2938static void ioc_pd_init(struct blkg_policy_data *pd)
2939{
2940	struct ioc_gq *iocg = pd_to_iocg(pd);
2941	struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2942	struct ioc *ioc = q_to_ioc(blkg->q);
2943	struct ioc_now now;
2944	struct blkcg_gq *tblkg;
2945	unsigned long flags;
2946
2947	ioc_now(ioc, &now);
2948
2949	iocg->ioc = ioc;
2950	atomic64_set(&iocg->vtime, now.vnow);
2951	atomic64_set(&iocg->done_vtime, now.vnow);
2952	atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2953	INIT_LIST_HEAD(&iocg->active_list);
2954	INIT_LIST_HEAD(&iocg->walk_list);
2955	INIT_LIST_HEAD(&iocg->surplus_list);
2956	iocg->hweight_active = WEIGHT_ONE;
2957	iocg->hweight_inuse = WEIGHT_ONE;
2958
2959	init_waitqueue_head(&iocg->waitq);
2960	hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2961	iocg->waitq_timer.function = iocg_waitq_timer_fn;
2962
2963	iocg->level = blkg->blkcg->css.cgroup->level;
2964
2965	for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2966		struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2967		iocg->ancestors[tiocg->level] = tiocg;
2968	}
2969
2970	spin_lock_irqsave(&ioc->lock, flags);
2971	weight_updated(iocg, &now);
2972	spin_unlock_irqrestore(&ioc->lock, flags);
2973}
2974
2975static void ioc_pd_free(struct blkg_policy_data *pd)
2976{
2977	struct ioc_gq *iocg = pd_to_iocg(pd);
2978	struct ioc *ioc = iocg->ioc;
2979	unsigned long flags;
2980
2981	if (ioc) {
2982		spin_lock_irqsave(&ioc->lock, flags);
2983
2984		if (!list_empty(&iocg->active_list)) {
2985			struct ioc_now now;
2986
2987			ioc_now(ioc, &now);
2988			propagate_weights(iocg, 0, 0, false, &now);
2989			list_del_init(&iocg->active_list);
2990		}
2991
2992		WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2993		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2994
2995		spin_unlock_irqrestore(&ioc->lock, flags);
2996
2997		hrtimer_cancel(&iocg->waitq_timer);
2998	}
2999	free_percpu(iocg->pcpu_stat);
3000	kfree(iocg);
3001}
3002
3003static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size)
3004{
3005	struct ioc_gq *iocg = pd_to_iocg(pd);
3006	struct ioc *ioc = iocg->ioc;
3007	size_t pos = 0;
3008
3009	if (!ioc->enabled)
3010		return 0;
3011
3012	if (iocg->level == 0) {
3013		unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3014			ioc->vtime_base_rate * 10000,
3015			VTIME_PER_USEC);
3016		pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u",
3017				  vp10k / 100, vp10k % 100);
3018	}
3019
3020	pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu",
3021			 iocg->last_stat.usage_us);
3022
3023	if (blkcg_debug_stats)
3024		pos += scnprintf(buf + pos, size - pos,
3025				 " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3026				 iocg->last_stat.wait_us,
3027				 iocg->last_stat.indebt_us,
3028				 iocg->last_stat.indelay_us);
3029
3030	return pos;
3031}
3032
3033static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3034			     int off)
3035{
3036	const char *dname = blkg_dev_name(pd->blkg);
3037	struct ioc_gq *iocg = pd_to_iocg(pd);
3038
3039	if (dname && iocg->cfg_weight)
3040		seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3041	return 0;
3042}
3043
3044
3045static int ioc_weight_show(struct seq_file *sf, void *v)
3046{
3047	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3048	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3049
3050	seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3051	blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3052			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3053	return 0;
3054}
3055
3056static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3057				size_t nbytes, loff_t off)
3058{
3059	struct blkcg *blkcg = css_to_blkcg(of_css(of));
3060	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3061	struct blkg_conf_ctx ctx;
3062	struct ioc_now now;
3063	struct ioc_gq *iocg;
3064	u32 v;
3065	int ret;
3066
3067	if (!strchr(buf, ':')) {
3068		struct blkcg_gq *blkg;
3069
3070		if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3071			return -EINVAL;
3072
3073		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3074			return -EINVAL;
3075
3076		spin_lock_irq(&blkcg->lock);
3077		iocc->dfl_weight = v * WEIGHT_ONE;
3078		hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3079			struct ioc_gq *iocg = blkg_to_iocg(blkg);
3080
3081			if (iocg) {
3082				spin_lock(&iocg->ioc->lock);
3083				ioc_now(iocg->ioc, &now);
3084				weight_updated(iocg, &now);
3085				spin_unlock(&iocg->ioc->lock);
3086			}
3087		}
3088		spin_unlock_irq(&blkcg->lock);
3089
3090		return nbytes;
3091	}
3092
3093	ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3094	if (ret)
3095		return ret;
3096
3097	iocg = blkg_to_iocg(ctx.blkg);
3098
3099	if (!strncmp(ctx.body, "default", 7)) {
3100		v = 0;
3101	} else {
3102		if (!sscanf(ctx.body, "%u", &v))
3103			goto einval;
3104		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3105			goto einval;
3106	}
3107
3108	spin_lock(&iocg->ioc->lock);
3109	iocg->cfg_weight = v * WEIGHT_ONE;
3110	ioc_now(iocg->ioc, &now);
3111	weight_updated(iocg, &now);
3112	spin_unlock(&iocg->ioc->lock);
3113
3114	blkg_conf_finish(&ctx);
3115	return nbytes;
3116
3117einval:
3118	blkg_conf_finish(&ctx);
3119	return -EINVAL;
3120}
3121
3122static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3123			  int off)
3124{
3125	const char *dname = blkg_dev_name(pd->blkg);
3126	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3127
3128	if (!dname)
3129		return 0;
3130
3131	seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3132		   dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3133		   ioc->params.qos[QOS_RPPM] / 10000,
3134		   ioc->params.qos[QOS_RPPM] % 10000 / 100,
3135		   ioc->params.qos[QOS_RLAT],
3136		   ioc->params.qos[QOS_WPPM] / 10000,
3137		   ioc->params.qos[QOS_WPPM] % 10000 / 100,
3138		   ioc->params.qos[QOS_WLAT],
3139		   ioc->params.qos[QOS_MIN] / 10000,
3140		   ioc->params.qos[QOS_MIN] % 10000 / 100,
3141		   ioc->params.qos[QOS_MAX] / 10000,
3142		   ioc->params.qos[QOS_MAX] % 10000 / 100);
3143	return 0;
3144}
3145
3146static int ioc_qos_show(struct seq_file *sf, void *v)
3147{
3148	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3149
3150	blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3151			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3152	return 0;
3153}
3154
3155static const match_table_t qos_ctrl_tokens = {
3156	{ QOS_ENABLE,		"enable=%u"	},
3157	{ QOS_CTRL,		"ctrl=%s"	},
3158	{ NR_QOS_CTRL_PARAMS,	NULL		},
3159};
3160
3161static const match_table_t qos_tokens = {
3162	{ QOS_RPPM,		"rpct=%s"	},
3163	{ QOS_RLAT,		"rlat=%u"	},
3164	{ QOS_WPPM,		"wpct=%s"	},
3165	{ QOS_WLAT,		"wlat=%u"	},
3166	{ QOS_MIN,		"min=%s"	},
3167	{ QOS_MAX,		"max=%s"	},
3168	{ NR_QOS_PARAMS,	NULL		},
3169};
3170
3171static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3172			     size_t nbytes, loff_t off)
3173{
3174	struct gendisk *disk;
3175	struct ioc *ioc;
3176	u32 qos[NR_QOS_PARAMS];
3177	bool enable, user;
3178	char *p;
3179	int ret;
3180
3181	disk = blkcg_conf_get_disk(&input);
3182	if (IS_ERR(disk))
3183		return PTR_ERR(disk);
3184
3185	ioc = q_to_ioc(disk->queue);
3186	if (!ioc) {
3187		ret = blk_iocost_init(disk->queue);
3188		if (ret)
3189			goto err;
3190		ioc = q_to_ioc(disk->queue);
3191	}
3192
3193	spin_lock_irq(&ioc->lock);
3194	memcpy(qos, ioc->params.qos, sizeof(qos));
3195	enable = ioc->enabled;
3196	user = ioc->user_qos_params;
3197	spin_unlock_irq(&ioc->lock);
3198
3199	while ((p = strsep(&input, " \t\n"))) {
3200		substring_t args[MAX_OPT_ARGS];
3201		char buf[32];
3202		int tok;
3203		s64 v;
3204
3205		if (!*p)
3206			continue;
3207
3208		switch (match_token(p, qos_ctrl_tokens, args)) {
3209		case QOS_ENABLE:
3210			match_u64(&args[0], &v);
3211			enable = v;
3212			continue;
3213		case QOS_CTRL:
3214			match_strlcpy(buf, &args[0], sizeof(buf));
3215			if (!strcmp(buf, "auto"))
3216				user = false;
3217			else if (!strcmp(buf, "user"))
3218				user = true;
3219			else
3220				goto einval;
3221			continue;
3222		}
3223
3224		tok = match_token(p, qos_tokens, args);
3225		switch (tok) {
3226		case QOS_RPPM:
3227		case QOS_WPPM:
3228			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3229			    sizeof(buf))
3230				goto einval;
3231			if (cgroup_parse_float(buf, 2, &v))
3232				goto einval;
3233			if (v < 0 || v > 10000)
3234				goto einval;
3235			qos[tok] = v * 100;
3236			break;
3237		case QOS_RLAT:
3238		case QOS_WLAT:
3239			if (match_u64(&args[0], &v))
3240				goto einval;
3241			qos[tok] = v;
3242			break;
3243		case QOS_MIN:
3244		case QOS_MAX:
3245			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3246			    sizeof(buf))
3247				goto einval;
3248			if (cgroup_parse_float(buf, 2, &v))
3249				goto einval;
3250			if (v < 0)
3251				goto einval;
3252			qos[tok] = clamp_t(s64, v * 100,
3253					   VRATE_MIN_PPM, VRATE_MAX_PPM);
3254			break;
3255		default:
3256			goto einval;
3257		}
3258		user = true;
3259	}
3260
3261	if (qos[QOS_MIN] > qos[QOS_MAX])
3262		goto einval;
3263
3264	spin_lock_irq(&ioc->lock);
3265
3266	if (enable) {
3267		blk_stat_enable_accounting(ioc->rqos.q);
3268		blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3269		ioc->enabled = true;
3270	} else {
3271		blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3272		ioc->enabled = false;
3273	}
3274
3275	if (user) {
3276		memcpy(ioc->params.qos, qos, sizeof(qos));
3277		ioc->user_qos_params = true;
3278	} else {
3279		ioc->user_qos_params = false;
3280	}
3281
3282	ioc_refresh_params(ioc, true);
3283	spin_unlock_irq(&ioc->lock);
3284
3285	put_disk_and_module(disk);
3286	return nbytes;
3287einval:
3288	ret = -EINVAL;
3289err:
3290	put_disk_and_module(disk);
3291	return ret;
3292}
3293
3294static u64 ioc_cost_model_prfill(struct seq_file *sf,
3295				 struct blkg_policy_data *pd, int off)
3296{
3297	const char *dname = blkg_dev_name(pd->blkg);
3298	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3299	u64 *u = ioc->params.i_lcoefs;
3300
3301	if (!dname)
3302		return 0;
3303
3304	seq_printf(sf, "%s ctrl=%s model=linear "
3305		   "rbps=%llu rseqiops=%llu rrandiops=%llu "
3306		   "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3307		   dname, ioc->user_cost_model ? "user" : "auto",
3308		   u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3309		   u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3310	return 0;
3311}
3312
3313static int ioc_cost_model_show(struct seq_file *sf, void *v)
3314{
3315	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3316
3317	blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3318			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3319	return 0;
3320}
3321
3322static const match_table_t cost_ctrl_tokens = {
3323	{ COST_CTRL,		"ctrl=%s"	},
3324	{ COST_MODEL,		"model=%s"	},
3325	{ NR_COST_CTRL_PARAMS,	NULL		},
3326};
3327
3328static const match_table_t i_lcoef_tokens = {
3329	{ I_LCOEF_RBPS,		"rbps=%u"	},
3330	{ I_LCOEF_RSEQIOPS,	"rseqiops=%u"	},
3331	{ I_LCOEF_RRANDIOPS,	"rrandiops=%u"	},
3332	{ I_LCOEF_WBPS,		"wbps=%u"	},
3333	{ I_LCOEF_WSEQIOPS,	"wseqiops=%u"	},
3334	{ I_LCOEF_WRANDIOPS,	"wrandiops=%u"	},
3335	{ NR_I_LCOEFS,		NULL		},
3336};
3337
3338static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3339				    size_t nbytes, loff_t off)
3340{
3341	struct gendisk *disk;
3342	struct ioc *ioc;
3343	u64 u[NR_I_LCOEFS];
3344	bool user;
3345	char *p;
3346	int ret;
3347
3348	disk = blkcg_conf_get_disk(&input);
3349	if (IS_ERR(disk))
3350		return PTR_ERR(disk);
3351
3352	ioc = q_to_ioc(disk->queue);
3353	if (!ioc) {
3354		ret = blk_iocost_init(disk->queue);
3355		if (ret)
3356			goto err;
3357		ioc = q_to_ioc(disk->queue);
3358	}
3359
3360	spin_lock_irq(&ioc->lock);
3361	memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3362	user = ioc->user_cost_model;
3363	spin_unlock_irq(&ioc->lock);
3364
3365	while ((p = strsep(&input, " \t\n"))) {
3366		substring_t args[MAX_OPT_ARGS];
3367		char buf[32];
3368		int tok;
3369		u64 v;
3370
3371		if (!*p)
3372			continue;
3373
3374		switch (match_token(p, cost_ctrl_tokens, args)) {
3375		case COST_CTRL:
3376			match_strlcpy(buf, &args[0], sizeof(buf));
3377			if (!strcmp(buf, "auto"))
3378				user = false;
3379			else if (!strcmp(buf, "user"))
3380				user = true;
3381			else
3382				goto einval;
3383			continue;
3384		case COST_MODEL:
3385			match_strlcpy(buf, &args[0], sizeof(buf));
3386			if (strcmp(buf, "linear"))
3387				goto einval;
3388			continue;
3389		}
3390
3391		tok = match_token(p, i_lcoef_tokens, args);
3392		if (tok == NR_I_LCOEFS)
3393			goto einval;
3394		if (match_u64(&args[0], &v))
3395			goto einval;
3396		u[tok] = v;
3397		user = true;
3398	}
3399
3400	spin_lock_irq(&ioc->lock);
3401	if (user) {
3402		memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3403		ioc->user_cost_model = true;
3404	} else {
3405		ioc->user_cost_model = false;
3406	}
3407	ioc_refresh_params(ioc, true);
3408	spin_unlock_irq(&ioc->lock);
3409
3410	put_disk_and_module(disk);
3411	return nbytes;
3412
3413einval:
3414	ret = -EINVAL;
3415err:
3416	put_disk_and_module(disk);
3417	return ret;
3418}
3419
3420static struct cftype ioc_files[] = {
3421	{
3422		.name = "weight",
3423		.flags = CFTYPE_NOT_ON_ROOT,
3424		.seq_show = ioc_weight_show,
3425		.write = ioc_weight_write,
3426	},
3427	{
3428		.name = "cost.qos",
3429		.flags = CFTYPE_ONLY_ON_ROOT,
3430		.seq_show = ioc_qos_show,
3431		.write = ioc_qos_write,
3432	},
3433	{
3434		.name = "cost.model",
3435		.flags = CFTYPE_ONLY_ON_ROOT,
3436		.seq_show = ioc_cost_model_show,
3437		.write = ioc_cost_model_write,
3438	},
3439	{}
3440};
3441
3442static struct blkcg_policy blkcg_policy_iocost = {
3443	.dfl_cftypes	= ioc_files,
3444	.cpd_alloc_fn	= ioc_cpd_alloc,
3445	.cpd_free_fn	= ioc_cpd_free,
3446	.pd_alloc_fn	= ioc_pd_alloc,
3447	.pd_init_fn	= ioc_pd_init,
3448	.pd_free_fn	= ioc_pd_free,
3449	.pd_stat_fn	= ioc_pd_stat,
3450};
3451
3452static int __init ioc_init(void)
3453{
3454	return blkcg_policy_register(&blkcg_policy_iocost);
3455}
3456
3457static void __exit ioc_exit(void)
3458{
3459	blkcg_policy_unregister(&blkcg_policy_iocost);
3460}
3461
3462module_init(ioc_init);
3463module_exit(ioc_exit);
3464