1/* SPDX-License-Identifier: GPL-2.0 2 * 3 * IO cost model based controller. 4 * 5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org> 6 * Copyright (C) 2019 Andy Newell <newella@fb.com> 7 * Copyright (C) 2019 Facebook 8 * 9 * One challenge of controlling IO resources is the lack of trivially 10 * observable cost metric. This is distinguished from CPU and memory where 11 * wallclock time and the number of bytes can serve as accurate enough 12 * approximations. 13 * 14 * Bandwidth and iops are the most commonly used metrics for IO devices but 15 * depending on the type and specifics of the device, different IO patterns 16 * easily lead to multiple orders of magnitude variations rendering them 17 * useless for the purpose of IO capacity distribution. While on-device 18 * time, with a lot of clutches, could serve as a useful approximation for 19 * non-queued rotational devices, this is no longer viable with modern 20 * devices, even the rotational ones. 21 * 22 * While there is no cost metric we can trivially observe, it isn't a 23 * complete mystery. For example, on a rotational device, seek cost 24 * dominates while a contiguous transfer contributes a smaller amount 25 * proportional to the size. If we can characterize at least the relative 26 * costs of these different types of IOs, it should be possible to 27 * implement a reasonable work-conserving proportional IO resource 28 * distribution. 29 * 30 * 1. IO Cost Model 31 * 32 * IO cost model estimates the cost of an IO given its basic parameters and 33 * history (e.g. the end sector of the last IO). The cost is measured in 34 * device time. If a given IO is estimated to cost 10ms, the device should 35 * be able to process ~100 of those IOs in a second. 36 * 37 * Currently, there's only one builtin cost model - linear. Each IO is 38 * classified as sequential or random and given a base cost accordingly. 39 * On top of that, a size cost proportional to the length of the IO is 40 * added. While simple, this model captures the operational 41 * characteristics of a wide varienty of devices well enough. Default 42 * paramters for several different classes of devices are provided and the 43 * parameters can be configured from userspace via 44 * /sys/fs/cgroup/io.cost.model. 45 * 46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate 47 * device-specific coefficients. 48 * 49 * 2. Control Strategy 50 * 51 * The device virtual time (vtime) is used as the primary control metric. 52 * The control strategy is composed of the following three parts. 53 * 54 * 2-1. Vtime Distribution 55 * 56 * When a cgroup becomes active in terms of IOs, its hierarchical share is 57 * calculated. Please consider the following hierarchy where the numbers 58 * inside parentheses denote the configured weights. 59 * 60 * root 61 * / \ 62 * A (w:100) B (w:300) 63 * / \ 64 * A0 (w:100) A1 (w:100) 65 * 66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are 67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B 68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, 69 * 12.5% each. The distribution mechanism only cares about these flattened 70 * shares. They're called hweights (hierarchical weights) and always add 71 * upto 1 (WEIGHT_ONE). 72 * 73 * A given cgroup's vtime runs slower in inverse proportion to its hweight. 74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) 75 * against the device vtime - an IO which takes 10ms on the underlying 76 * device is considered to take 80ms on A0. 77 * 78 * This constitutes the basis of IO capacity distribution. Each cgroup's 79 * vtime is running at a rate determined by its hweight. A cgroup tracks 80 * the vtime consumed by past IOs and can issue a new IO iff doing so 81 * wouldn't outrun the current device vtime. Otherwise, the IO is 82 * suspended until the vtime has progressed enough to cover it. 83 * 84 * 2-2. Vrate Adjustment 85 * 86 * It's unrealistic to expect the cost model to be perfect. There are too 87 * many devices and even on the same device the overall performance 88 * fluctuates depending on numerous factors such as IO mixture and device 89 * internal garbage collection. The controller needs to adapt dynamically. 90 * 91 * This is achieved by adjusting the overall IO rate according to how busy 92 * the device is. If the device becomes overloaded, we're sending down too 93 * many IOs and should generally slow down. If there are waiting issuers 94 * but the device isn't saturated, we're issuing too few and should 95 * generally speed up. 96 * 97 * To slow down, we lower the vrate - the rate at which the device vtime 98 * passes compared to the wall clock. For example, if the vtime is running 99 * at the vrate of 75%, all cgroups added up would only be able to issue 100 * 750ms worth of IOs per second, and vice-versa for speeding up. 101 * 102 * Device business is determined using two criteria - rq wait and 103 * completion latencies. 104 * 105 * When a device gets saturated, the on-device and then the request queues 106 * fill up and a bio which is ready to be issued has to wait for a request 107 * to become available. When this delay becomes noticeable, it's a clear 108 * indication that the device is saturated and we lower the vrate. This 109 * saturation signal is fairly conservative as it only triggers when both 110 * hardware and software queues are filled up, and is used as the default 111 * busy signal. 112 * 113 * As devices can have deep queues and be unfair in how the queued commands 114 * are executed, soley depending on rq wait may not result in satisfactory 115 * control quality. For a better control quality, completion latency QoS 116 * parameters can be configured so that the device is considered saturated 117 * if N'th percentile completion latency rises above the set point. 118 * 119 * The completion latency requirements are a function of both the 120 * underlying device characteristics and the desired IO latency quality of 121 * service. There is an inherent trade-off - the tighter the latency QoS, 122 * the higher the bandwidth lossage. Latency QoS is disabled by default 123 * and can be set through /sys/fs/cgroup/io.cost.qos. 124 * 125 * 2-3. Work Conservation 126 * 127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO 128 * periodically while B is sending out enough parallel IOs to saturate the 129 * device on its own. Let's say A's usage amounts to 100ms worth of IO 130 * cost per second, i.e., 10% of the device capacity. The naive 131 * distribution of half and half would lead to 60% utilization of the 132 * device, a significant reduction in the total amount of work done 133 * compared to free-for-all competition. This is too high a cost to pay 134 * for IO control. 135 * 136 * To conserve the total amount of work done, we keep track of how much 137 * each active cgroup is actually using and yield part of its weight if 138 * there are other cgroups which can make use of it. In the above case, 139 * A's weight will be lowered so that it hovers above the actual usage and 140 * B would be able to use the rest. 141 * 142 * As we don't want to penalize a cgroup for donating its weight, the 143 * surplus weight adjustment factors in a margin and has an immediate 144 * snapback mechanism in case the cgroup needs more IO vtime for itself. 145 * 146 * Note that adjusting down surplus weights has the same effects as 147 * accelerating vtime for other cgroups and work conservation can also be 148 * implemented by adjusting vrate dynamically. However, squaring who can 149 * donate and should take back how much requires hweight propagations 150 * anyway making it easier to implement and understand as a separate 151 * mechanism. 152 * 153 * 3. Monitoring 154 * 155 * Instead of debugfs or other clumsy monitoring mechanisms, this 156 * controller uses a drgn based monitoring script - 157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see 158 * https://github.com/osandov/drgn. The ouput looks like the following. 159 * 160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12% 161 * active weight hweight% inflt% dbt delay usages% 162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033 163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077 164 * 165 * - per : Timer period 166 * - cur_per : Internal wall and device vtime clock 167 * - vrate : Device virtual time rate against wall clock 168 * - weight : Surplus-adjusted and configured weights 169 * - hweight : Surplus-adjusted and configured hierarchical weights 170 * - inflt : The percentage of in-flight IO cost at the end of last period 171 * - del_ms : Deferred issuer delay induction level and duration 172 * - usages : Usage history 173 */ 174 175#include <linux/kernel.h> 176#include <linux/module.h> 177#include <linux/timer.h> 178#include <linux/time64.h> 179#include <linux/parser.h> 180#include <linux/sched/signal.h> 181#include <linux/blk-cgroup.h> 182#include <asm/local.h> 183#include <asm/local64.h> 184#include "blk-rq-qos.h" 185#include "blk-stat.h" 186#include "blk-wbt.h" 187 188#ifdef CONFIG_TRACEPOINTS 189 190/* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ 191#define TRACE_IOCG_PATH_LEN 1024 192static DEFINE_SPINLOCK(trace_iocg_path_lock); 193static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; 194 195#define TRACE_IOCG_PATH(type, iocg, ...) \ 196 do { \ 197 unsigned long flags; \ 198 if (trace_iocost_##type##_enabled()) { \ 199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \ 200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \ 201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \ 202 trace_iocost_##type(iocg, trace_iocg_path, \ 203 ##__VA_ARGS__); \ 204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \ 205 } \ 206 } while (0) 207 208#else /* CONFIG_TRACE_POINTS */ 209#define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0) 210#endif /* CONFIG_TRACE_POINTS */ 211 212enum { 213 MILLION = 1000000, 214 215 /* timer period is calculated from latency requirements, bound it */ 216 MIN_PERIOD = USEC_PER_MSEC, 217 MAX_PERIOD = USEC_PER_SEC, 218 219 /* 220 * iocg->vtime is targeted at 50% behind the device vtime, which 221 * serves as its IO credit buffer. Surplus weight adjustment is 222 * immediately canceled if the vtime margin runs below 10%. 223 */ 224 MARGIN_MIN_PCT = 10, 225 MARGIN_LOW_PCT = 20, 226 MARGIN_TARGET_PCT = 50, 227 228 INUSE_ADJ_STEP_PCT = 25, 229 230 /* Have some play in timer operations */ 231 TIMER_SLACK_PCT = 1, 232 233 /* 1/64k is granular enough and can easily be handled w/ u32 */ 234 WEIGHT_ONE = 1 << 16, 235}; 236 237enum { 238 /* 239 * As vtime is used to calculate the cost of each IO, it needs to 240 * be fairly high precision. For example, it should be able to 241 * represent the cost of a single page worth of discard with 242 * suffificient accuracy. At the same time, it should be able to 243 * represent reasonably long enough durations to be useful and 244 * convenient during operation. 245 * 246 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond 247 * granularity and days of wrap-around time even at extreme vrates. 248 */ 249 VTIME_PER_SEC_SHIFT = 37, 250 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT, 251 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC, 252 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC, 253 254 /* bound vrate adjustments within two orders of magnitude */ 255 VRATE_MIN_PPM = 10000, /* 1% */ 256 VRATE_MAX_PPM = 100000000, /* 10000% */ 257 258 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, 259 VRATE_CLAMP_ADJ_PCT = 4, 260 261 /* switch iff the conditions are met for longer than this */ 262 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC, 263}; 264 265enum { 266 /* if IOs end up waiting for requests, issue less */ 267 RQ_WAIT_BUSY_PCT = 5, 268 269 /* unbusy hysterisis */ 270 UNBUSY_THR_PCT = 75, 271 272 /* 273 * The effect of delay is indirect and non-linear and a huge amount of 274 * future debt can accumulate abruptly while unthrottled. Linearly scale 275 * up delay as debt is going up and then let it decay exponentially. 276 * This gives us quick ramp ups while delay is accumulating and long 277 * tails which can help reducing the frequency of debt explosions on 278 * unthrottle. The parameters are experimentally determined. 279 * 280 * The delay mechanism provides adequate protection and behavior in many 281 * cases. However, this is far from ideal and falls shorts on both 282 * fronts. The debtors are often throttled too harshly costing a 283 * significant level of fairness and possibly total work while the 284 * protection against their impacts on the system can be choppy and 285 * unreliable. 286 * 287 * The shortcoming primarily stems from the fact that, unlike for page 288 * cache, the kernel doesn't have well-defined back-pressure propagation 289 * mechanism and policies for anonymous memory. Fully addressing this 290 * issue will likely require substantial improvements in the area. 291 */ 292 MIN_DELAY_THR_PCT = 500, 293 MAX_DELAY_THR_PCT = 25000, 294 MIN_DELAY = 250, 295 MAX_DELAY = 250 * USEC_PER_MSEC, 296 297 /* halve debts if avg usage over 100ms is under 50% */ 298 DFGV_USAGE_PCT = 50, 299 DFGV_PERIOD = 100 * USEC_PER_MSEC, 300 301 /* don't let cmds which take a very long time pin lagging for too long */ 302 MAX_LAGGING_PERIODS = 10, 303 304 /* 305 * Count IO size in 4k pages. The 12bit shift helps keeping 306 * size-proportional components of cost calculation in closer 307 * numbers of digits to per-IO cost components. 308 */ 309 IOC_PAGE_SHIFT = 12, 310 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT, 311 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT, 312 313 /* if apart further than 16M, consider randio for linear model */ 314 LCOEF_RANDIO_PAGES = 4096, 315}; 316 317enum ioc_running { 318 IOC_IDLE, 319 IOC_RUNNING, 320 IOC_STOP, 321}; 322 323/* io.cost.qos controls including per-dev enable of the whole controller */ 324enum { 325 QOS_ENABLE, 326 QOS_CTRL, 327 NR_QOS_CTRL_PARAMS, 328}; 329 330/* io.cost.qos params */ 331enum { 332 QOS_RPPM, 333 QOS_RLAT, 334 QOS_WPPM, 335 QOS_WLAT, 336 QOS_MIN, 337 QOS_MAX, 338 NR_QOS_PARAMS, 339}; 340 341/* io.cost.model controls */ 342enum { 343 COST_CTRL, 344 COST_MODEL, 345 NR_COST_CTRL_PARAMS, 346}; 347 348/* builtin linear cost model coefficients */ 349enum { 350 I_LCOEF_RBPS, 351 I_LCOEF_RSEQIOPS, 352 I_LCOEF_RRANDIOPS, 353 I_LCOEF_WBPS, 354 I_LCOEF_WSEQIOPS, 355 I_LCOEF_WRANDIOPS, 356 NR_I_LCOEFS, 357}; 358 359enum { 360 LCOEF_RPAGE, 361 LCOEF_RSEQIO, 362 LCOEF_RRANDIO, 363 LCOEF_WPAGE, 364 LCOEF_WSEQIO, 365 LCOEF_WRANDIO, 366 NR_LCOEFS, 367}; 368 369enum { 370 AUTOP_INVALID, 371 AUTOP_HDD, 372 AUTOP_SSD_QD1, 373 AUTOP_SSD_DFL, 374 AUTOP_SSD_FAST, 375}; 376 377struct ioc_gq; 378 379struct ioc_params { 380 u32 qos[NR_QOS_PARAMS]; 381 u64 i_lcoefs[NR_I_LCOEFS]; 382 u64 lcoefs[NR_LCOEFS]; 383 u32 too_fast_vrate_pct; 384 u32 too_slow_vrate_pct; 385}; 386 387struct ioc_margins { 388 s64 min; 389 s64 low; 390 s64 target; 391}; 392 393struct ioc_missed { 394 local_t nr_met; 395 local_t nr_missed; 396 u32 last_met; 397 u32 last_missed; 398}; 399 400struct ioc_pcpu_stat { 401 struct ioc_missed missed[2]; 402 403 local64_t rq_wait_ns; 404 u64 last_rq_wait_ns; 405}; 406 407/* per device */ 408struct ioc { 409 struct rq_qos rqos; 410 411 bool enabled; 412 413 struct ioc_params params; 414 struct ioc_margins margins; 415 u32 period_us; 416 u32 timer_slack_ns; 417 u64 vrate_min; 418 u64 vrate_max; 419 420 spinlock_t lock; 421 struct timer_list timer; 422 struct list_head active_iocgs; /* active cgroups */ 423 struct ioc_pcpu_stat __percpu *pcpu_stat; 424 425 enum ioc_running running; 426 atomic64_t vtime_rate; 427 u64 vtime_base_rate; 428 s64 vtime_err; 429 430 seqcount_spinlock_t period_seqcount; 431 u64 period_at; /* wallclock starttime */ 432 u64 period_at_vtime; /* vtime starttime */ 433 434 atomic64_t cur_period; /* inc'd each period */ 435 int busy_level; /* saturation history */ 436 437 bool weights_updated; 438 atomic_t hweight_gen; /* for lazy hweights */ 439 440 /* debt forgivness */ 441 u64 dfgv_period_at; 442 u64 dfgv_period_rem; 443 u64 dfgv_usage_us_sum; 444 445 u64 autop_too_fast_at; 446 u64 autop_too_slow_at; 447 int autop_idx; 448 bool user_qos_params:1; 449 bool user_cost_model:1; 450}; 451 452struct iocg_pcpu_stat { 453 local64_t abs_vusage; 454}; 455 456struct iocg_stat { 457 u64 usage_us; 458 u64 wait_us; 459 u64 indebt_us; 460 u64 indelay_us; 461}; 462 463/* per device-cgroup pair */ 464struct ioc_gq { 465 struct blkg_policy_data pd; 466 struct ioc *ioc; 467 468 /* 469 * A iocg can get its weight from two sources - an explicit 470 * per-device-cgroup configuration or the default weight of the 471 * cgroup. `cfg_weight` is the explicit per-device-cgroup 472 * configuration. `weight` is the effective considering both 473 * sources. 474 * 475 * When an idle cgroup becomes active its `active` goes from 0 to 476 * `weight`. `inuse` is the surplus adjusted active weight. 477 * `active` and `inuse` are used to calculate `hweight_active` and 478 * `hweight_inuse`. 479 * 480 * `last_inuse` remembers `inuse` while an iocg is idle to persist 481 * surplus adjustments. 482 * 483 * `inuse` may be adjusted dynamically during period. `saved_*` are used 484 * to determine and track adjustments. 485 */ 486 u32 cfg_weight; 487 u32 weight; 488 u32 active; 489 u32 inuse; 490 491 u32 last_inuse; 492 s64 saved_margin; 493 494 sector_t cursor; /* to detect randio */ 495 496 /* 497 * `vtime` is this iocg's vtime cursor which progresses as IOs are 498 * issued. If lagging behind device vtime, the delta represents 499 * the currently available IO budget. If runnning ahead, the 500 * overage. 501 * 502 * `vtime_done` is the same but progressed on completion rather 503 * than issue. The delta behind `vtime` represents the cost of 504 * currently in-flight IOs. 505 */ 506 atomic64_t vtime; 507 atomic64_t done_vtime; 508 u64 abs_vdebt; 509 510 /* current delay in effect and when it started */ 511 u64 delay; 512 u64 delay_at; 513 514 /* 515 * The period this iocg was last active in. Used for deactivation 516 * and invalidating `vtime`. 517 */ 518 atomic64_t active_period; 519 struct list_head active_list; 520 521 /* see __propagate_weights() and current_hweight() for details */ 522 u64 child_active_sum; 523 u64 child_inuse_sum; 524 u64 child_adjusted_sum; 525 int hweight_gen; 526 u32 hweight_active; 527 u32 hweight_inuse; 528 u32 hweight_donating; 529 u32 hweight_after_donation; 530 531 struct list_head walk_list; 532 struct list_head surplus_list; 533 534 struct wait_queue_head waitq; 535 struct hrtimer waitq_timer; 536 537 /* timestamp at the latest activation */ 538 u64 activated_at; 539 540 /* statistics */ 541 struct iocg_pcpu_stat __percpu *pcpu_stat; 542 struct iocg_stat local_stat; 543 struct iocg_stat desc_stat; 544 struct iocg_stat last_stat; 545 u64 last_stat_abs_vusage; 546 u64 usage_delta_us; 547 u64 wait_since; 548 u64 indebt_since; 549 u64 indelay_since; 550 551 /* this iocg's depth in the hierarchy and ancestors including self */ 552 int level; 553 struct ioc_gq *ancestors[]; 554}; 555 556/* per cgroup */ 557struct ioc_cgrp { 558 struct blkcg_policy_data cpd; 559 unsigned int dfl_weight; 560}; 561 562struct ioc_now { 563 u64 now_ns; 564 u64 now; 565 u64 vnow; 566 u64 vrate; 567}; 568 569struct iocg_wait { 570 struct wait_queue_entry wait; 571 struct bio *bio; 572 u64 abs_cost; 573 bool committed; 574}; 575 576struct iocg_wake_ctx { 577 struct ioc_gq *iocg; 578 u32 hw_inuse; 579 s64 vbudget; 580}; 581 582static const struct ioc_params autop[] = { 583 [AUTOP_HDD] = { 584 .qos = { 585 [QOS_RLAT] = 250000, /* 250ms */ 586 [QOS_WLAT] = 250000, 587 [QOS_MIN] = VRATE_MIN_PPM, 588 [QOS_MAX] = VRATE_MAX_PPM, 589 }, 590 .i_lcoefs = { 591 [I_LCOEF_RBPS] = 174019176, 592 [I_LCOEF_RSEQIOPS] = 41708, 593 [I_LCOEF_RRANDIOPS] = 370, 594 [I_LCOEF_WBPS] = 178075866, 595 [I_LCOEF_WSEQIOPS] = 42705, 596 [I_LCOEF_WRANDIOPS] = 378, 597 }, 598 }, 599 [AUTOP_SSD_QD1] = { 600 .qos = { 601 [QOS_RLAT] = 25000, /* 25ms */ 602 [QOS_WLAT] = 25000, 603 [QOS_MIN] = VRATE_MIN_PPM, 604 [QOS_MAX] = VRATE_MAX_PPM, 605 }, 606 .i_lcoefs = { 607 [I_LCOEF_RBPS] = 245855193, 608 [I_LCOEF_RSEQIOPS] = 61575, 609 [I_LCOEF_RRANDIOPS] = 6946, 610 [I_LCOEF_WBPS] = 141365009, 611 [I_LCOEF_WSEQIOPS] = 33716, 612 [I_LCOEF_WRANDIOPS] = 26796, 613 }, 614 }, 615 [AUTOP_SSD_DFL] = { 616 .qos = { 617 [QOS_RLAT] = 25000, /* 25ms */ 618 [QOS_WLAT] = 25000, 619 [QOS_MIN] = VRATE_MIN_PPM, 620 [QOS_MAX] = VRATE_MAX_PPM, 621 }, 622 .i_lcoefs = { 623 [I_LCOEF_RBPS] = 488636629, 624 [I_LCOEF_RSEQIOPS] = 8932, 625 [I_LCOEF_RRANDIOPS] = 8518, 626 [I_LCOEF_WBPS] = 427891549, 627 [I_LCOEF_WSEQIOPS] = 28755, 628 [I_LCOEF_WRANDIOPS] = 21940, 629 }, 630 .too_fast_vrate_pct = 500, 631 }, 632 [AUTOP_SSD_FAST] = { 633 .qos = { 634 [QOS_RLAT] = 5000, /* 5ms */ 635 [QOS_WLAT] = 5000, 636 [QOS_MIN] = VRATE_MIN_PPM, 637 [QOS_MAX] = VRATE_MAX_PPM, 638 }, 639 .i_lcoefs = { 640 [I_LCOEF_RBPS] = 3102524156LLU, 641 [I_LCOEF_RSEQIOPS] = 724816, 642 [I_LCOEF_RRANDIOPS] = 778122, 643 [I_LCOEF_WBPS] = 1742780862LLU, 644 [I_LCOEF_WSEQIOPS] = 425702, 645 [I_LCOEF_WRANDIOPS] = 443193, 646 }, 647 .too_slow_vrate_pct = 10, 648 }, 649}; 650 651/* 652 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on 653 * vtime credit shortage and down on device saturation. 654 */ 655static u32 vrate_adj_pct[] = 656 { 0, 0, 0, 0, 657 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 658 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 659 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; 660 661static struct blkcg_policy blkcg_policy_iocost; 662 663/* accessors and helpers */ 664static struct ioc *rqos_to_ioc(struct rq_qos *rqos) 665{ 666 return container_of(rqos, struct ioc, rqos); 667} 668 669static struct ioc *q_to_ioc(struct request_queue *q) 670{ 671 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST)); 672} 673 674static const char *q_name(struct request_queue *q) 675{ 676 if (blk_queue_registered(q)) 677 return kobject_name(q->kobj.parent); 678 else 679 return "<unknown>"; 680} 681 682static const char __maybe_unused *ioc_name(struct ioc *ioc) 683{ 684 return q_name(ioc->rqos.q); 685} 686 687static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) 688{ 689 return pd ? container_of(pd, struct ioc_gq, pd) : NULL; 690} 691 692static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) 693{ 694 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost)); 695} 696 697static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) 698{ 699 return pd_to_blkg(&iocg->pd); 700} 701 702static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) 703{ 704 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), 705 struct ioc_cgrp, cpd); 706} 707 708/* 709 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical 710 * weight, the more expensive each IO. Must round up. 711 */ 712static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) 713{ 714 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse); 715} 716 717/* 718 * The inverse of abs_cost_to_cost(). Must round up. 719 */ 720static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse) 721{ 722 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE); 723} 724 725static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, 726 u64 abs_cost, u64 cost) 727{ 728 struct iocg_pcpu_stat *gcs; 729 730 bio->bi_iocost_cost = cost; 731 atomic64_add(cost, &iocg->vtime); 732 733 gcs = get_cpu_ptr(iocg->pcpu_stat); 734 local64_add(abs_cost, &gcs->abs_vusage); 735 put_cpu_ptr(gcs); 736} 737 738static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags) 739{ 740 if (lock_ioc) { 741 spin_lock_irqsave(&iocg->ioc->lock, *flags); 742 spin_lock(&iocg->waitq.lock); 743 } else { 744 spin_lock_irqsave(&iocg->waitq.lock, *flags); 745 } 746} 747 748static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags) 749{ 750 if (unlock_ioc) { 751 spin_unlock(&iocg->waitq.lock); 752 spin_unlock_irqrestore(&iocg->ioc->lock, *flags); 753 } else { 754 spin_unlock_irqrestore(&iocg->waitq.lock, *flags); 755 } 756} 757 758#define CREATE_TRACE_POINTS 759#include <trace/events/iocost.h> 760 761static void ioc_refresh_margins(struct ioc *ioc) 762{ 763 struct ioc_margins *margins = &ioc->margins; 764 u32 period_us = ioc->period_us; 765 u64 vrate = ioc->vtime_base_rate; 766 767 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate; 768 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate; 769 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate; 770} 771 772/* latency Qos params changed, update period_us and all the dependent params */ 773static void ioc_refresh_period_us(struct ioc *ioc) 774{ 775 u32 ppm, lat, multi, period_us; 776 777 lockdep_assert_held(&ioc->lock); 778 779 /* pick the higher latency target */ 780 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { 781 ppm = ioc->params.qos[QOS_RPPM]; 782 lat = ioc->params.qos[QOS_RLAT]; 783 } else { 784 ppm = ioc->params.qos[QOS_WPPM]; 785 lat = ioc->params.qos[QOS_WLAT]; 786 } 787 788 /* 789 * We want the period to be long enough to contain a healthy number 790 * of IOs while short enough for granular control. Define it as a 791 * multiple of the latency target. Ideally, the multiplier should 792 * be scaled according to the percentile so that it would nominally 793 * contain a certain number of requests. Let's be simpler and 794 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). 795 */ 796 if (ppm) 797 multi = max_t(u32, (MILLION - ppm) / 50000, 2); 798 else 799 multi = 2; 800 period_us = multi * lat; 801 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); 802 803 /* calculate dependent params */ 804 ioc->period_us = period_us; 805 ioc->timer_slack_ns = div64_u64( 806 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT, 807 100); 808 ioc_refresh_margins(ioc); 809} 810 811static int ioc_autop_idx(struct ioc *ioc) 812{ 813 int idx = ioc->autop_idx; 814 const struct ioc_params *p = &autop[idx]; 815 u32 vrate_pct; 816 u64 now_ns; 817 818 /* rotational? */ 819 if (!blk_queue_nonrot(ioc->rqos.q)) 820 return AUTOP_HDD; 821 822 /* handle SATA SSDs w/ broken NCQ */ 823 if (blk_queue_depth(ioc->rqos.q) == 1) 824 return AUTOP_SSD_QD1; 825 826 /* use one of the normal ssd sets */ 827 if (idx < AUTOP_SSD_DFL) 828 return AUTOP_SSD_DFL; 829 830 /* if user is overriding anything, maintain what was there */ 831 if (ioc->user_qos_params || ioc->user_cost_model) 832 return idx; 833 834 /* step up/down based on the vrate */ 835 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC); 836 now_ns = ktime_get_ns(); 837 838 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { 839 if (!ioc->autop_too_fast_at) 840 ioc->autop_too_fast_at = now_ns; 841 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) 842 return idx + 1; 843 } else { 844 ioc->autop_too_fast_at = 0; 845 } 846 847 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { 848 if (!ioc->autop_too_slow_at) 849 ioc->autop_too_slow_at = now_ns; 850 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) 851 return idx - 1; 852 } else { 853 ioc->autop_too_slow_at = 0; 854 } 855 856 return idx; 857} 858 859/* 860 * Take the followings as input 861 * 862 * @bps maximum sequential throughput 863 * @seqiops maximum sequential 4k iops 864 * @randiops maximum random 4k iops 865 * 866 * and calculate the linear model cost coefficients. 867 * 868 * *@page per-page cost 1s / (@bps / 4096) 869 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0) 870 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0) 871 */ 872static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, 873 u64 *page, u64 *seqio, u64 *randio) 874{ 875 u64 v; 876 877 *page = *seqio = *randio = 0; 878 879 if (bps) { 880 u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE); 881 882 if (bps_pages) 883 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages); 884 else 885 *page = 1; 886 } 887 888 if (seqiops) { 889 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); 890 if (v > *page) 891 *seqio = v - *page; 892 } 893 894 if (randiops) { 895 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); 896 if (v > *page) 897 *randio = v - *page; 898 } 899} 900 901static void ioc_refresh_lcoefs(struct ioc *ioc) 902{ 903 u64 *u = ioc->params.i_lcoefs; 904 u64 *c = ioc->params.lcoefs; 905 906 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 907 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]); 908 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS], 909 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]); 910} 911 912static bool ioc_refresh_params(struct ioc *ioc, bool force) 913{ 914 const struct ioc_params *p; 915 int idx; 916 917 lockdep_assert_held(&ioc->lock); 918 919 idx = ioc_autop_idx(ioc); 920 p = &autop[idx]; 921 922 if (idx == ioc->autop_idx && !force) 923 return false; 924 925 if (idx != ioc->autop_idx) 926 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 927 928 ioc->autop_idx = idx; 929 ioc->autop_too_fast_at = 0; 930 ioc->autop_too_slow_at = 0; 931 932 if (!ioc->user_qos_params) 933 memcpy(ioc->params.qos, p->qos, sizeof(p->qos)); 934 if (!ioc->user_cost_model) 935 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs)); 936 937 ioc_refresh_period_us(ioc); 938 ioc_refresh_lcoefs(ioc); 939 940 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * 941 VTIME_PER_USEC, MILLION); 942 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] * 943 VTIME_PER_USEC, MILLION); 944 945 return true; 946} 947 948/* 949 * When an iocg accumulates too much vtime or gets deactivated, we throw away 950 * some vtime, which lowers the overall device utilization. As the exact amount 951 * which is being thrown away is known, we can compensate by accelerating the 952 * vrate accordingly so that the extra vtime generated in the current period 953 * matches what got lost. 954 */ 955static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now) 956{ 957 s64 pleft = ioc->period_at + ioc->period_us - now->now; 958 s64 vperiod = ioc->period_us * ioc->vtime_base_rate; 959 s64 vcomp, vcomp_min, vcomp_max; 960 961 lockdep_assert_held(&ioc->lock); 962 963 /* we need some time left in this period */ 964 if (pleft <= 0) 965 goto done; 966 967 /* 968 * Calculate how much vrate should be adjusted to offset the error. 969 * Limit the amount of adjustment and deduct the adjusted amount from 970 * the error. 971 */ 972 vcomp = -div64_s64(ioc->vtime_err, pleft); 973 vcomp_min = -(ioc->vtime_base_rate >> 1); 974 vcomp_max = ioc->vtime_base_rate; 975 vcomp = clamp(vcomp, vcomp_min, vcomp_max); 976 977 ioc->vtime_err += vcomp * pleft; 978 979 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp); 980done: 981 /* bound how much error can accumulate */ 982 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod); 983} 984 985/* take a snapshot of the current [v]time and vrate */ 986static void ioc_now(struct ioc *ioc, struct ioc_now *now) 987{ 988 unsigned seq; 989 990 now->now_ns = ktime_get(); 991 now->now = ktime_to_us(now->now_ns); 992 now->vrate = atomic64_read(&ioc->vtime_rate); 993 994 /* 995 * The current vtime is 996 * 997 * vtime at period start + (wallclock time since the start) * vrate 998 * 999 * As a consistent snapshot of `period_at_vtime` and `period_at` is 1000 * needed, they're seqcount protected. 1001 */ 1002 do { 1003 seq = read_seqcount_begin(&ioc->period_seqcount); 1004 now->vnow = ioc->period_at_vtime + 1005 (now->now - ioc->period_at) * now->vrate; 1006 } while (read_seqcount_retry(&ioc->period_seqcount, seq)); 1007} 1008 1009static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) 1010{ 1011 WARN_ON_ONCE(ioc->running != IOC_RUNNING); 1012 1013 write_seqcount_begin(&ioc->period_seqcount); 1014 ioc->period_at = now->now; 1015 ioc->period_at_vtime = now->vnow; 1016 write_seqcount_end(&ioc->period_seqcount); 1017 1018 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us); 1019 add_timer(&ioc->timer); 1020} 1021 1022/* 1023 * Update @iocg's `active` and `inuse` to @active and @inuse, update level 1024 * weight sums and propagate upwards accordingly. If @save, the current margin 1025 * is saved to be used as reference for later inuse in-period adjustments. 1026 */ 1027static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1028 bool save, struct ioc_now *now) 1029{ 1030 struct ioc *ioc = iocg->ioc; 1031 int lvl; 1032 1033 lockdep_assert_held(&ioc->lock); 1034 1035 /* 1036 * For an active leaf node, its inuse shouldn't be zero or exceed 1037 * @active. An active internal node's inuse is solely determined by the 1038 * inuse to active ratio of its children regardless of @inuse. 1039 */ 1040 if (list_empty(&iocg->active_list) && iocg->child_active_sum) { 1041 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum, 1042 iocg->child_active_sum); 1043 } else { 1044 inuse = clamp_t(u32, inuse, 1, active); 1045 } 1046 1047 iocg->last_inuse = iocg->inuse; 1048 if (save) 1049 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime); 1050 1051 if (active == iocg->active && inuse == iocg->inuse) 1052 return; 1053 1054 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1055 struct ioc_gq *parent = iocg->ancestors[lvl]; 1056 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1057 u32 parent_active = 0, parent_inuse = 0; 1058 1059 /* update the level sums */ 1060 parent->child_active_sum += (s32)(active - child->active); 1061 parent->child_inuse_sum += (s32)(inuse - child->inuse); 1062 /* apply the updates */ 1063 child->active = active; 1064 child->inuse = inuse; 1065 1066 /* 1067 * The delta between inuse and active sums indicates that 1068 * that much of weight is being given away. Parent's inuse 1069 * and active should reflect the ratio. 1070 */ 1071 if (parent->child_active_sum) { 1072 parent_active = parent->weight; 1073 parent_inuse = DIV64_U64_ROUND_UP( 1074 parent_active * parent->child_inuse_sum, 1075 parent->child_active_sum); 1076 } 1077 1078 /* do we need to keep walking up? */ 1079 if (parent_active == parent->active && 1080 parent_inuse == parent->inuse) 1081 break; 1082 1083 active = parent_active; 1084 inuse = parent_inuse; 1085 } 1086 1087 ioc->weights_updated = true; 1088} 1089 1090static void commit_weights(struct ioc *ioc) 1091{ 1092 lockdep_assert_held(&ioc->lock); 1093 1094 if (ioc->weights_updated) { 1095 /* paired with rmb in current_hweight(), see there */ 1096 smp_wmb(); 1097 atomic_inc(&ioc->hweight_gen); 1098 ioc->weights_updated = false; 1099 } 1100} 1101 1102static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1103 bool save, struct ioc_now *now) 1104{ 1105 __propagate_weights(iocg, active, inuse, save, now); 1106 commit_weights(iocg->ioc); 1107} 1108 1109static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) 1110{ 1111 struct ioc *ioc = iocg->ioc; 1112 int lvl; 1113 u32 hwa, hwi; 1114 int ioc_gen; 1115 1116 /* hot path - if uptodate, use cached */ 1117 ioc_gen = atomic_read(&ioc->hweight_gen); 1118 if (ioc_gen == iocg->hweight_gen) 1119 goto out; 1120 1121 /* 1122 * Paired with wmb in commit_weights(). If we saw the updated 1123 * hweight_gen, all the weight updates from __propagate_weights() are 1124 * visible too. 1125 * 1126 * We can race with weight updates during calculation and get it 1127 * wrong. However, hweight_gen would have changed and a future 1128 * reader will recalculate and we're guaranteed to discard the 1129 * wrong result soon. 1130 */ 1131 smp_rmb(); 1132 1133 hwa = hwi = WEIGHT_ONE; 1134 for (lvl = 0; lvl <= iocg->level - 1; lvl++) { 1135 struct ioc_gq *parent = iocg->ancestors[lvl]; 1136 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1137 u64 active_sum = READ_ONCE(parent->child_active_sum); 1138 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum); 1139 u32 active = READ_ONCE(child->active); 1140 u32 inuse = READ_ONCE(child->inuse); 1141 1142 /* we can race with deactivations and either may read as zero */ 1143 if (!active_sum || !inuse_sum) 1144 continue; 1145 1146 active_sum = max_t(u64, active, active_sum); 1147 hwa = div64_u64((u64)hwa * active, active_sum); 1148 1149 inuse_sum = max_t(u64, inuse, inuse_sum); 1150 hwi = div64_u64((u64)hwi * inuse, inuse_sum); 1151 } 1152 1153 iocg->hweight_active = max_t(u32, hwa, 1); 1154 iocg->hweight_inuse = max_t(u32, hwi, 1); 1155 iocg->hweight_gen = ioc_gen; 1156out: 1157 if (hw_activep) 1158 *hw_activep = iocg->hweight_active; 1159 if (hw_inusep) 1160 *hw_inusep = iocg->hweight_inuse; 1161} 1162 1163/* 1164 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the 1165 * other weights stay unchanged. 1166 */ 1167static u32 current_hweight_max(struct ioc_gq *iocg) 1168{ 1169 u32 hwm = WEIGHT_ONE; 1170 u32 inuse = iocg->active; 1171 u64 child_inuse_sum; 1172 int lvl; 1173 1174 lockdep_assert_held(&iocg->ioc->lock); 1175 1176 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1177 struct ioc_gq *parent = iocg->ancestors[lvl]; 1178 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1179 1180 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse; 1181 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum); 1182 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum, 1183 parent->child_active_sum); 1184 } 1185 1186 return max_t(u32, hwm, 1); 1187} 1188 1189static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now) 1190{ 1191 struct ioc *ioc = iocg->ioc; 1192 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1193 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg); 1194 u32 weight; 1195 1196 lockdep_assert_held(&ioc->lock); 1197 1198 weight = iocg->cfg_weight ?: iocc->dfl_weight; 1199 if (weight != iocg->weight && iocg->active) 1200 propagate_weights(iocg, weight, iocg->inuse, true, now); 1201 iocg->weight = weight; 1202} 1203 1204static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) 1205{ 1206 struct ioc *ioc = iocg->ioc; 1207 u64 last_period, cur_period; 1208 u64 vtime, vtarget; 1209 int i; 1210 1211 /* 1212 * If seem to be already active, just update the stamp to tell the 1213 * timer that we're still active. We don't mind occassional races. 1214 */ 1215 if (!list_empty(&iocg->active_list)) { 1216 ioc_now(ioc, now); 1217 cur_period = atomic64_read(&ioc->cur_period); 1218 if (atomic64_read(&iocg->active_period) != cur_period) 1219 atomic64_set(&iocg->active_period, cur_period); 1220 return true; 1221 } 1222 1223 /* racy check on internal node IOs, treat as root level IOs */ 1224 if (iocg->child_active_sum) 1225 return false; 1226 1227 spin_lock_irq(&ioc->lock); 1228 1229 ioc_now(ioc, now); 1230 1231 /* update period */ 1232 cur_period = atomic64_read(&ioc->cur_period); 1233 last_period = atomic64_read(&iocg->active_period); 1234 atomic64_set(&iocg->active_period, cur_period); 1235 1236 /* already activated or breaking leaf-only constraint? */ 1237 if (!list_empty(&iocg->active_list)) 1238 goto succeed_unlock; 1239 for (i = iocg->level - 1; i > 0; i--) 1240 if (!list_empty(&iocg->ancestors[i]->active_list)) 1241 goto fail_unlock; 1242 1243 if (iocg->child_active_sum) 1244 goto fail_unlock; 1245 1246 /* 1247 * Always start with the target budget. On deactivation, we throw away 1248 * anything above it. 1249 */ 1250 vtarget = now->vnow - ioc->margins.target; 1251 vtime = atomic64_read(&iocg->vtime); 1252 1253 atomic64_add(vtarget - vtime, &iocg->vtime); 1254 atomic64_add(vtarget - vtime, &iocg->done_vtime); 1255 vtime = vtarget; 1256 1257 /* 1258 * Activate, propagate weight and start period timer if not 1259 * running. Reset hweight_gen to avoid accidental match from 1260 * wrapping. 1261 */ 1262 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1; 1263 list_add(&iocg->active_list, &ioc->active_iocgs); 1264 1265 propagate_weights(iocg, iocg->weight, 1266 iocg->last_inuse ?: iocg->weight, true, now); 1267 1268 TRACE_IOCG_PATH(iocg_activate, iocg, now, 1269 last_period, cur_period, vtime); 1270 1271 iocg->activated_at = now->now; 1272 1273 if (ioc->running == IOC_IDLE) { 1274 ioc->running = IOC_RUNNING; 1275 ioc->dfgv_period_at = now->now; 1276 ioc->dfgv_period_rem = 0; 1277 ioc_start_period(ioc, now); 1278 } 1279 1280succeed_unlock: 1281 spin_unlock_irq(&ioc->lock); 1282 return true; 1283 1284fail_unlock: 1285 spin_unlock_irq(&ioc->lock); 1286 return false; 1287} 1288 1289static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now) 1290{ 1291 struct ioc *ioc = iocg->ioc; 1292 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1293 u64 tdelta, delay, new_delay; 1294 s64 vover, vover_pct; 1295 u32 hwa; 1296 1297 lockdep_assert_held(&iocg->waitq.lock); 1298 1299 /* 1300 * If the delay is set by another CPU, we may be in the past. No need to 1301 * change anything if so. This avoids decay calculation underflow. 1302 */ 1303 if (time_before64(now->now, iocg->delay_at)) 1304 return false; 1305 1306 /* calculate the current delay in effect - 1/2 every second */ 1307 tdelta = now->now - iocg->delay_at; 1308 if (iocg->delay) 1309 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC); 1310 else 1311 delay = 0; 1312 1313 /* calculate the new delay from the debt amount */ 1314 current_hweight(iocg, &hwa, NULL); 1315 vover = atomic64_read(&iocg->vtime) + 1316 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow; 1317 vover_pct = div64_s64(100 * vover, 1318 ioc->period_us * ioc->vtime_base_rate); 1319 1320 if (vover_pct <= MIN_DELAY_THR_PCT) 1321 new_delay = 0; 1322 else if (vover_pct >= MAX_DELAY_THR_PCT) 1323 new_delay = MAX_DELAY; 1324 else 1325 new_delay = MIN_DELAY + 1326 div_u64((MAX_DELAY - MIN_DELAY) * 1327 (vover_pct - MIN_DELAY_THR_PCT), 1328 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT); 1329 1330 /* pick the higher one and apply */ 1331 if (new_delay > delay) { 1332 iocg->delay = new_delay; 1333 iocg->delay_at = now->now; 1334 delay = new_delay; 1335 } 1336 1337 if (delay >= MIN_DELAY) { 1338 if (!iocg->indelay_since) 1339 iocg->indelay_since = now->now; 1340 blkcg_set_delay(blkg, delay * NSEC_PER_USEC); 1341 return true; 1342 } else { 1343 if (iocg->indelay_since) { 1344 iocg->local_stat.indelay_us += now->now - iocg->indelay_since; 1345 iocg->indelay_since = 0; 1346 } 1347 iocg->delay = 0; 1348 blkcg_clear_delay(blkg); 1349 return false; 1350 } 1351} 1352 1353static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost, 1354 struct ioc_now *now) 1355{ 1356 struct iocg_pcpu_stat *gcs; 1357 1358 lockdep_assert_held(&iocg->ioc->lock); 1359 lockdep_assert_held(&iocg->waitq.lock); 1360 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1361 1362 /* 1363 * Once in debt, debt handling owns inuse. @iocg stays at the minimum 1364 * inuse donating all of it share to others until its debt is paid off. 1365 */ 1366 if (!iocg->abs_vdebt && abs_cost) { 1367 iocg->indebt_since = now->now; 1368 propagate_weights(iocg, iocg->active, 0, false, now); 1369 } 1370 1371 iocg->abs_vdebt += abs_cost; 1372 1373 gcs = get_cpu_ptr(iocg->pcpu_stat); 1374 local64_add(abs_cost, &gcs->abs_vusage); 1375 put_cpu_ptr(gcs); 1376} 1377 1378static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay, 1379 struct ioc_now *now) 1380{ 1381 lockdep_assert_held(&iocg->ioc->lock); 1382 lockdep_assert_held(&iocg->waitq.lock); 1383 1384 /* make sure that nobody messed with @iocg */ 1385 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1386 WARN_ON_ONCE(iocg->inuse > 1); 1387 1388 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt); 1389 1390 /* if debt is paid in full, restore inuse */ 1391 if (!iocg->abs_vdebt) { 1392 iocg->local_stat.indebt_us += now->now - iocg->indebt_since; 1393 iocg->indebt_since = 0; 1394 1395 propagate_weights(iocg, iocg->active, iocg->last_inuse, 1396 false, now); 1397 } 1398} 1399 1400static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, 1401 int flags, void *key) 1402{ 1403 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); 1404 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key; 1405 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse); 1406 1407 ctx->vbudget -= cost; 1408 1409 if (ctx->vbudget < 0) 1410 return -1; 1411 1412 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost); 1413 wait->committed = true; 1414 1415 /* 1416 * autoremove_wake_function() removes the wait entry only when it 1417 * actually changed the task state. We want the wait always removed. 1418 * Remove explicitly and use default_wake_function(). Note that the 1419 * order of operations is important as finish_wait() tests whether 1420 * @wq_entry is removed without grabbing the lock. 1421 */ 1422 default_wake_function(wq_entry, mode, flags, key); 1423 list_del_init_careful(&wq_entry->entry); 1424 return 0; 1425} 1426 1427/* 1428 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters 1429 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in 1430 * addition to iocg->waitq.lock. 1431 */ 1432static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt, 1433 struct ioc_now *now) 1434{ 1435 struct ioc *ioc = iocg->ioc; 1436 struct iocg_wake_ctx ctx = { .iocg = iocg }; 1437 u64 vshortage, expires, oexpires; 1438 s64 vbudget; 1439 u32 hwa; 1440 1441 lockdep_assert_held(&iocg->waitq.lock); 1442 1443 current_hweight(iocg, &hwa, NULL); 1444 vbudget = now->vnow - atomic64_read(&iocg->vtime); 1445 1446 /* pay off debt */ 1447 if (pay_debt && iocg->abs_vdebt && vbudget > 0) { 1448 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa); 1449 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt); 1450 u64 vpay = abs_cost_to_cost(abs_vpay, hwa); 1451 1452 lockdep_assert_held(&ioc->lock); 1453 1454 atomic64_add(vpay, &iocg->vtime); 1455 atomic64_add(vpay, &iocg->done_vtime); 1456 iocg_pay_debt(iocg, abs_vpay, now); 1457 vbudget -= vpay; 1458 } 1459 1460 if (iocg->abs_vdebt || iocg->delay) 1461 iocg_kick_delay(iocg, now); 1462 1463 /* 1464 * Debt can still be outstanding if we haven't paid all yet or the 1465 * caller raced and called without @pay_debt. Shouldn't wake up waiters 1466 * under debt. Make sure @vbudget reflects the outstanding amount and is 1467 * not positive. 1468 */ 1469 if (iocg->abs_vdebt) { 1470 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa); 1471 vbudget = min_t(s64, 0, vbudget - vdebt); 1472 } 1473 1474 /* 1475 * Wake up the ones which are due and see how much vtime we'll need for 1476 * the next one. As paying off debt restores hw_inuse, it must be read 1477 * after the above debt payment. 1478 */ 1479 ctx.vbudget = vbudget; 1480 current_hweight(iocg, NULL, &ctx.hw_inuse); 1481 1482 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx); 1483 1484 if (!waitqueue_active(&iocg->waitq)) { 1485 if (iocg->wait_since) { 1486 iocg->local_stat.wait_us += now->now - iocg->wait_since; 1487 iocg->wait_since = 0; 1488 } 1489 return; 1490 } 1491 1492 if (!iocg->wait_since) 1493 iocg->wait_since = now->now; 1494 1495 if (WARN_ON_ONCE(ctx.vbudget >= 0)) 1496 return; 1497 1498 /* determine next wakeup, add a timer margin to guarantee chunking */ 1499 vshortage = -ctx.vbudget; 1500 expires = now->now_ns + 1501 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) * 1502 NSEC_PER_USEC; 1503 expires += ioc->timer_slack_ns; 1504 1505 /* if already active and close enough, don't bother */ 1506 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer)); 1507 if (hrtimer_is_queued(&iocg->waitq_timer) && 1508 abs(oexpires - expires) <= ioc->timer_slack_ns) 1509 return; 1510 1511 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires), 1512 ioc->timer_slack_ns, HRTIMER_MODE_ABS); 1513} 1514 1515static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) 1516{ 1517 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); 1518 bool pay_debt = READ_ONCE(iocg->abs_vdebt); 1519 struct ioc_now now; 1520 unsigned long flags; 1521 1522 ioc_now(iocg->ioc, &now); 1523 1524 iocg_lock(iocg, pay_debt, &flags); 1525 iocg_kick_waitq(iocg, pay_debt, &now); 1526 iocg_unlock(iocg, pay_debt, &flags); 1527 1528 return HRTIMER_NORESTART; 1529} 1530 1531static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) 1532{ 1533 u32 nr_met[2] = { }; 1534 u32 nr_missed[2] = { }; 1535 u64 rq_wait_ns = 0; 1536 int cpu, rw; 1537 1538 for_each_online_cpu(cpu) { 1539 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); 1540 u64 this_rq_wait_ns; 1541 1542 for (rw = READ; rw <= WRITE; rw++) { 1543 u32 this_met = local_read(&stat->missed[rw].nr_met); 1544 u32 this_missed = local_read(&stat->missed[rw].nr_missed); 1545 1546 nr_met[rw] += this_met - stat->missed[rw].last_met; 1547 nr_missed[rw] += this_missed - stat->missed[rw].last_missed; 1548 stat->missed[rw].last_met = this_met; 1549 stat->missed[rw].last_missed = this_missed; 1550 } 1551 1552 this_rq_wait_ns = local64_read(&stat->rq_wait_ns); 1553 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; 1554 stat->last_rq_wait_ns = this_rq_wait_ns; 1555 } 1556 1557 for (rw = READ; rw <= WRITE; rw++) { 1558 if (nr_met[rw] + nr_missed[rw]) 1559 missed_ppm_ar[rw] = 1560 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, 1561 nr_met[rw] + nr_missed[rw]); 1562 else 1563 missed_ppm_ar[rw] = 0; 1564 } 1565 1566 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100, 1567 ioc->period_us * NSEC_PER_USEC); 1568} 1569 1570/* was iocg idle this period? */ 1571static bool iocg_is_idle(struct ioc_gq *iocg) 1572{ 1573 struct ioc *ioc = iocg->ioc; 1574 1575 /* did something get issued this period? */ 1576 if (atomic64_read(&iocg->active_period) == 1577 atomic64_read(&ioc->cur_period)) 1578 return false; 1579 1580 /* is something in flight? */ 1581 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime)) 1582 return false; 1583 1584 return true; 1585} 1586 1587/* 1588 * Call this function on the target leaf @iocg's to build pre-order traversal 1589 * list of all the ancestors in @inner_walk. The inner nodes are linked through 1590 * ->walk_list and the caller is responsible for dissolving the list after use. 1591 */ 1592static void iocg_build_inner_walk(struct ioc_gq *iocg, 1593 struct list_head *inner_walk) 1594{ 1595 int lvl; 1596 1597 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 1598 1599 /* find the first ancestor which hasn't been visited yet */ 1600 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1601 if (!list_empty(&iocg->ancestors[lvl]->walk_list)) 1602 break; 1603 } 1604 1605 /* walk down and visit the inner nodes to get pre-order traversal */ 1606 while (++lvl <= iocg->level - 1) { 1607 struct ioc_gq *inner = iocg->ancestors[lvl]; 1608 1609 /* record traversal order */ 1610 list_add_tail(&inner->walk_list, inner_walk); 1611 } 1612} 1613 1614/* collect per-cpu counters and propagate the deltas to the parent */ 1615static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now) 1616{ 1617 struct ioc *ioc = iocg->ioc; 1618 struct iocg_stat new_stat; 1619 u64 abs_vusage = 0; 1620 u64 vusage_delta; 1621 int cpu; 1622 1623 lockdep_assert_held(&iocg->ioc->lock); 1624 1625 /* collect per-cpu counters */ 1626 for_each_possible_cpu(cpu) { 1627 abs_vusage += local64_read( 1628 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu)); 1629 } 1630 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage; 1631 iocg->last_stat_abs_vusage = abs_vusage; 1632 1633 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate); 1634 iocg->local_stat.usage_us += iocg->usage_delta_us; 1635 1636 /* propagate upwards */ 1637 new_stat.usage_us = 1638 iocg->local_stat.usage_us + iocg->desc_stat.usage_us; 1639 new_stat.wait_us = 1640 iocg->local_stat.wait_us + iocg->desc_stat.wait_us; 1641 new_stat.indebt_us = 1642 iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us; 1643 new_stat.indelay_us = 1644 iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us; 1645 1646 /* propagate the deltas to the parent */ 1647 if (iocg->level > 0) { 1648 struct iocg_stat *parent_stat = 1649 &iocg->ancestors[iocg->level - 1]->desc_stat; 1650 1651 parent_stat->usage_us += 1652 new_stat.usage_us - iocg->last_stat.usage_us; 1653 parent_stat->wait_us += 1654 new_stat.wait_us - iocg->last_stat.wait_us; 1655 parent_stat->indebt_us += 1656 new_stat.indebt_us - iocg->last_stat.indebt_us; 1657 parent_stat->indelay_us += 1658 new_stat.indelay_us - iocg->last_stat.indelay_us; 1659 } 1660 1661 iocg->last_stat = new_stat; 1662} 1663 1664/* get stat counters ready for reading on all active iocgs */ 1665static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now) 1666{ 1667 LIST_HEAD(inner_walk); 1668 struct ioc_gq *iocg, *tiocg; 1669 1670 /* flush leaves and build inner node walk list */ 1671 list_for_each_entry(iocg, target_iocgs, active_list) { 1672 iocg_flush_stat_one(iocg, now); 1673 iocg_build_inner_walk(iocg, &inner_walk); 1674 } 1675 1676 /* keep flushing upwards by walking the inner list backwards */ 1677 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) { 1678 iocg_flush_stat_one(iocg, now); 1679 list_del_init(&iocg->walk_list); 1680 } 1681} 1682 1683/* 1684 * Determine what @iocg's hweight_inuse should be after donating unused 1685 * capacity. @hwm is the upper bound and used to signal no donation. This 1686 * function also throws away @iocg's excess budget. 1687 */ 1688static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm, 1689 u32 usage, struct ioc_now *now) 1690{ 1691 struct ioc *ioc = iocg->ioc; 1692 u64 vtime = atomic64_read(&iocg->vtime); 1693 s64 excess, delta, target, new_hwi; 1694 1695 /* debt handling owns inuse for debtors */ 1696 if (iocg->abs_vdebt) 1697 return 1; 1698 1699 /* see whether minimum margin requirement is met */ 1700 if (waitqueue_active(&iocg->waitq) || 1701 time_after64(vtime, now->vnow - ioc->margins.min)) 1702 return hwm; 1703 1704 /* throw away excess above target */ 1705 excess = now->vnow - vtime - ioc->margins.target; 1706 if (excess > 0) { 1707 atomic64_add(excess, &iocg->vtime); 1708 atomic64_add(excess, &iocg->done_vtime); 1709 vtime += excess; 1710 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE); 1711 } 1712 1713 /* 1714 * Let's say the distance between iocg's and device's vtimes as a 1715 * fraction of period duration is delta. Assuming that the iocg will 1716 * consume the usage determined above, we want to determine new_hwi so 1717 * that delta equals MARGIN_TARGET at the end of the next period. 1718 * 1719 * We need to execute usage worth of IOs while spending the sum of the 1720 * new budget (1 - MARGIN_TARGET) and the leftover from the last period 1721 * (delta): 1722 * 1723 * usage = (1 - MARGIN_TARGET + delta) * new_hwi 1724 * 1725 * Therefore, the new_hwi is: 1726 * 1727 * new_hwi = usage / (1 - MARGIN_TARGET + delta) 1728 */ 1729 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime), 1730 now->vnow - ioc->period_at_vtime); 1731 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100; 1732 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta); 1733 1734 return clamp_t(s64, new_hwi, 1, hwm); 1735} 1736 1737/* 1738 * For work-conservation, an iocg which isn't using all of its share should 1739 * donate the leftover to other iocgs. There are two ways to achieve this - 1. 1740 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight. 1741 * 1742 * #1 is mathematically simpler but has the drawback of requiring synchronous 1743 * global hweight_inuse updates when idle iocg's get activated or inuse weights 1744 * change due to donation snapbacks as it has the possibility of grossly 1745 * overshooting what's allowed by the model and vrate. 1746 * 1747 * #2 is inherently safe with local operations. The donating iocg can easily 1748 * snap back to higher weights when needed without worrying about impacts on 1749 * other nodes as the impacts will be inherently correct. This also makes idle 1750 * iocg activations safe. The only effect activations have is decreasing 1751 * hweight_inuse of others, the right solution to which is for those iocgs to 1752 * snap back to higher weights. 1753 * 1754 * So, we go with #2. The challenge is calculating how each donating iocg's 1755 * inuse should be adjusted to achieve the target donation amounts. This is done 1756 * using Andy's method described in the following pdf. 1757 * 1758 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo 1759 * 1760 * Given the weights and target after-donation hweight_inuse values, Andy's 1761 * method determines how the proportional distribution should look like at each 1762 * sibling level to maintain the relative relationship between all non-donating 1763 * pairs. To roughly summarize, it divides the tree into donating and 1764 * non-donating parts, calculates global donation rate which is used to 1765 * determine the target hweight_inuse for each node, and then derives per-level 1766 * proportions. 1767 * 1768 * The following pdf shows that global distribution calculated this way can be 1769 * achieved by scaling inuse weights of donating leaves and propagating the 1770 * adjustments upwards proportionally. 1771 * 1772 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE 1773 * 1774 * Combining the above two, we can determine how each leaf iocg's inuse should 1775 * be adjusted to achieve the target donation. 1776 * 1777 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN 1778 * 1779 * The inline comments use symbols from the last pdf. 1780 * 1781 * b is the sum of the absolute budgets in the subtree. 1 for the root node. 1782 * f is the sum of the absolute budgets of non-donating nodes in the subtree. 1783 * t is the sum of the absolute budgets of donating nodes in the subtree. 1784 * w is the weight of the node. w = w_f + w_t 1785 * w_f is the non-donating portion of w. w_f = w * f / b 1786 * w_b is the donating portion of w. w_t = w * t / b 1787 * s is the sum of all sibling weights. s = Sum(w) for siblings 1788 * s_f and s_t are the non-donating and donating portions of s. 1789 * 1790 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g. 1791 * w_pt is the donating portion of the parent's weight and w'_pt the same value 1792 * after adjustments. Subscript r denotes the root node's values. 1793 */ 1794static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now) 1795{ 1796 LIST_HEAD(over_hwa); 1797 LIST_HEAD(inner_walk); 1798 struct ioc_gq *iocg, *tiocg, *root_iocg; 1799 u32 after_sum, over_sum, over_target, gamma; 1800 1801 /* 1802 * It's pretty unlikely but possible for the total sum of 1803 * hweight_after_donation's to be higher than WEIGHT_ONE, which will 1804 * confuse the following calculations. If such condition is detected, 1805 * scale down everyone over its full share equally to keep the sum below 1806 * WEIGHT_ONE. 1807 */ 1808 after_sum = 0; 1809 over_sum = 0; 1810 list_for_each_entry(iocg, surpluses, surplus_list) { 1811 u32 hwa; 1812 1813 current_hweight(iocg, &hwa, NULL); 1814 after_sum += iocg->hweight_after_donation; 1815 1816 if (iocg->hweight_after_donation > hwa) { 1817 over_sum += iocg->hweight_after_donation; 1818 list_add(&iocg->walk_list, &over_hwa); 1819 } 1820 } 1821 1822 if (after_sum >= WEIGHT_ONE) { 1823 /* 1824 * The delta should be deducted from the over_sum, calculate 1825 * target over_sum value. 1826 */ 1827 u32 over_delta = after_sum - (WEIGHT_ONE - 1); 1828 WARN_ON_ONCE(over_sum <= over_delta); 1829 over_target = over_sum - over_delta; 1830 } else { 1831 over_target = 0; 1832 } 1833 1834 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) { 1835 if (over_target) 1836 iocg->hweight_after_donation = 1837 div_u64((u64)iocg->hweight_after_donation * 1838 over_target, over_sum); 1839 list_del_init(&iocg->walk_list); 1840 } 1841 1842 /* 1843 * Build pre-order inner node walk list and prepare for donation 1844 * adjustment calculations. 1845 */ 1846 list_for_each_entry(iocg, surpluses, surplus_list) { 1847 iocg_build_inner_walk(iocg, &inner_walk); 1848 } 1849 1850 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list); 1851 WARN_ON_ONCE(root_iocg->level > 0); 1852 1853 list_for_each_entry(iocg, &inner_walk, walk_list) { 1854 iocg->child_adjusted_sum = 0; 1855 iocg->hweight_donating = 0; 1856 iocg->hweight_after_donation = 0; 1857 } 1858 1859 /* 1860 * Propagate the donating budget (b_t) and after donation budget (b'_t) 1861 * up the hierarchy. 1862 */ 1863 list_for_each_entry(iocg, surpluses, surplus_list) { 1864 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1865 1866 parent->hweight_donating += iocg->hweight_donating; 1867 parent->hweight_after_donation += iocg->hweight_after_donation; 1868 } 1869 1870 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) { 1871 if (iocg->level > 0) { 1872 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1873 1874 parent->hweight_donating += iocg->hweight_donating; 1875 parent->hweight_after_donation += iocg->hweight_after_donation; 1876 } 1877 } 1878 1879 /* 1880 * Calculate inner hwa's (b) and make sure the donation values are 1881 * within the accepted ranges as we're doing low res calculations with 1882 * roundups. 1883 */ 1884 list_for_each_entry(iocg, &inner_walk, walk_list) { 1885 if (iocg->level) { 1886 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1887 1888 iocg->hweight_active = DIV64_U64_ROUND_UP( 1889 (u64)parent->hweight_active * iocg->active, 1890 parent->child_active_sum); 1891 1892 } 1893 1894 iocg->hweight_donating = min(iocg->hweight_donating, 1895 iocg->hweight_active); 1896 iocg->hweight_after_donation = min(iocg->hweight_after_donation, 1897 iocg->hweight_donating - 1); 1898 if (WARN_ON_ONCE(iocg->hweight_active <= 1 || 1899 iocg->hweight_donating <= 1 || 1900 iocg->hweight_after_donation == 0)) { 1901 pr_warn("iocg: invalid donation weights in "); 1902 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup); 1903 pr_cont(": active=%u donating=%u after=%u\n", 1904 iocg->hweight_active, iocg->hweight_donating, 1905 iocg->hweight_after_donation); 1906 } 1907 } 1908 1909 /* 1910 * Calculate the global donation rate (gamma) - the rate to adjust 1911 * non-donating budgets by. 1912 * 1913 * No need to use 64bit multiplication here as the first operand is 1914 * guaranteed to be smaller than WEIGHT_ONE (1<<16). 1915 * 1916 * We know that there are beneficiary nodes and the sum of the donating 1917 * hweights can't be whole; however, due to the round-ups during hweight 1918 * calculations, root_iocg->hweight_donating might still end up equal to 1919 * or greater than whole. Limit the range when calculating the divider. 1920 * 1921 * gamma = (1 - t_r') / (1 - t_r) 1922 */ 1923 gamma = DIV_ROUND_UP( 1924 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE, 1925 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1)); 1926 1927 /* 1928 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner 1929 * nodes. 1930 */ 1931 list_for_each_entry(iocg, &inner_walk, walk_list) { 1932 struct ioc_gq *parent; 1933 u32 inuse, wpt, wptp; 1934 u64 st, sf; 1935 1936 if (iocg->level == 0) { 1937 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */ 1938 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP( 1939 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating), 1940 WEIGHT_ONE - iocg->hweight_after_donation); 1941 continue; 1942 } 1943 1944 parent = iocg->ancestors[iocg->level - 1]; 1945 1946 /* b' = gamma * b_f + b_t' */ 1947 iocg->hweight_inuse = DIV64_U64_ROUND_UP( 1948 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating), 1949 WEIGHT_ONE) + iocg->hweight_after_donation; 1950 1951 /* w' = s' * b' / b'_p */ 1952 inuse = DIV64_U64_ROUND_UP( 1953 (u64)parent->child_adjusted_sum * iocg->hweight_inuse, 1954 parent->hweight_inuse); 1955 1956 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */ 1957 st = DIV64_U64_ROUND_UP( 1958 iocg->child_active_sum * iocg->hweight_donating, 1959 iocg->hweight_active); 1960 sf = iocg->child_active_sum - st; 1961 wpt = DIV64_U64_ROUND_UP( 1962 (u64)iocg->active * iocg->hweight_donating, 1963 iocg->hweight_active); 1964 wptp = DIV64_U64_ROUND_UP( 1965 (u64)inuse * iocg->hweight_after_donation, 1966 iocg->hweight_inuse); 1967 1968 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt); 1969 } 1970 1971 /* 1972 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and 1973 * we can finally determine leaf adjustments. 1974 */ 1975 list_for_each_entry(iocg, surpluses, surplus_list) { 1976 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1977 u32 inuse; 1978 1979 /* 1980 * In-debt iocgs participated in the donation calculation with 1981 * the minimum target hweight_inuse. Configuring inuse 1982 * accordingly would work fine but debt handling expects 1983 * @iocg->inuse stay at the minimum and we don't wanna 1984 * interfere. 1985 */ 1986 if (iocg->abs_vdebt) { 1987 WARN_ON_ONCE(iocg->inuse > 1); 1988 continue; 1989 } 1990 1991 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */ 1992 inuse = DIV64_U64_ROUND_UP( 1993 parent->child_adjusted_sum * iocg->hweight_after_donation, 1994 parent->hweight_inuse); 1995 1996 TRACE_IOCG_PATH(inuse_transfer, iocg, now, 1997 iocg->inuse, inuse, 1998 iocg->hweight_inuse, 1999 iocg->hweight_after_donation); 2000 2001 __propagate_weights(iocg, iocg->active, inuse, true, now); 2002 } 2003 2004 /* walk list should be dissolved after use */ 2005 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list) 2006 list_del_init(&iocg->walk_list); 2007} 2008 2009/* 2010 * A low weight iocg can amass a large amount of debt, for example, when 2011 * anonymous memory gets reclaimed aggressively. If the system has a lot of 2012 * memory paired with a slow IO device, the debt can span multiple seconds or 2013 * more. If there are no other subsequent IO issuers, the in-debt iocg may end 2014 * up blocked paying its debt while the IO device is idle. 2015 * 2016 * The following protects against such cases. If the device has been 2017 * sufficiently idle for a while, the debts are halved and delays are 2018 * recalculated. 2019 */ 2020static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors, 2021 struct ioc_now *now) 2022{ 2023 struct ioc_gq *iocg; 2024 u64 dur, usage_pct, nr_cycles; 2025 2026 /* if no debtor, reset the cycle */ 2027 if (!nr_debtors) { 2028 ioc->dfgv_period_at = now->now; 2029 ioc->dfgv_period_rem = 0; 2030 ioc->dfgv_usage_us_sum = 0; 2031 return; 2032 } 2033 2034 /* 2035 * Debtors can pass through a lot of writes choking the device and we 2036 * don't want to be forgiving debts while the device is struggling from 2037 * write bursts. If we're missing latency targets, consider the device 2038 * fully utilized. 2039 */ 2040 if (ioc->busy_level > 0) 2041 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us); 2042 2043 ioc->dfgv_usage_us_sum += usage_us_sum; 2044 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD)) 2045 return; 2046 2047 /* 2048 * At least DFGV_PERIOD has passed since the last period. Calculate the 2049 * average usage and reset the period counters. 2050 */ 2051 dur = now->now - ioc->dfgv_period_at; 2052 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur); 2053 2054 ioc->dfgv_period_at = now->now; 2055 ioc->dfgv_usage_us_sum = 0; 2056 2057 /* if was too busy, reset everything */ 2058 if (usage_pct > DFGV_USAGE_PCT) { 2059 ioc->dfgv_period_rem = 0; 2060 return; 2061 } 2062 2063 /* 2064 * Usage is lower than threshold. Let's forgive some debts. Debt 2065 * forgiveness runs off of the usual ioc timer but its period usually 2066 * doesn't match ioc's. Compensate the difference by performing the 2067 * reduction as many times as would fit in the duration since the last 2068 * run and carrying over the left-over duration in @ioc->dfgv_period_rem 2069 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive 2070 * reductions is doubled. 2071 */ 2072 nr_cycles = dur + ioc->dfgv_period_rem; 2073 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD); 2074 2075 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2076 u64 __maybe_unused old_debt, __maybe_unused old_delay; 2077 2078 if (!iocg->abs_vdebt && !iocg->delay) 2079 continue; 2080 2081 spin_lock(&iocg->waitq.lock); 2082 2083 old_debt = iocg->abs_vdebt; 2084 old_delay = iocg->delay; 2085 2086 if (iocg->abs_vdebt) 2087 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1; 2088 if (iocg->delay) 2089 iocg->delay = iocg->delay >> nr_cycles ?: 1; 2090 2091 iocg_kick_waitq(iocg, true, now); 2092 2093 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct, 2094 old_debt, iocg->abs_vdebt, 2095 old_delay, iocg->delay); 2096 2097 spin_unlock(&iocg->waitq.lock); 2098 } 2099} 2100 2101static void ioc_timer_fn(struct timer_list *timer) 2102{ 2103 struct ioc *ioc = container_of(timer, struct ioc, timer); 2104 struct ioc_gq *iocg, *tiocg; 2105 struct ioc_now now; 2106 LIST_HEAD(surpluses); 2107 int nr_debtors = 0, nr_shortages = 0, nr_lagging = 0; 2108 u64 usage_us_sum = 0; 2109 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; 2110 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; 2111 u32 missed_ppm[2], rq_wait_pct; 2112 u64 period_vtime; 2113 int prev_busy_level; 2114 2115 /* how were the latencies during the period? */ 2116 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct); 2117 2118 /* take care of active iocgs */ 2119 spin_lock_irq(&ioc->lock); 2120 2121 ioc_now(ioc, &now); 2122 2123 period_vtime = now.vnow - ioc->period_at_vtime; 2124 if (WARN_ON_ONCE(!period_vtime)) { 2125 spin_unlock_irq(&ioc->lock); 2126 return; 2127 } 2128 2129 /* 2130 * Waiters determine the sleep durations based on the vrate they 2131 * saw at the time of sleep. If vrate has increased, some waiters 2132 * could be sleeping for too long. Wake up tardy waiters which 2133 * should have woken up in the last period and expire idle iocgs. 2134 */ 2135 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { 2136 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2137 !iocg->delay && !iocg_is_idle(iocg)) 2138 continue; 2139 2140 spin_lock(&iocg->waitq.lock); 2141 2142 /* flush wait and indebt stat deltas */ 2143 if (iocg->wait_since) { 2144 iocg->local_stat.wait_us += now.now - iocg->wait_since; 2145 iocg->wait_since = now.now; 2146 } 2147 if (iocg->indebt_since) { 2148 iocg->local_stat.indebt_us += 2149 now.now - iocg->indebt_since; 2150 iocg->indebt_since = now.now; 2151 } 2152 if (iocg->indelay_since) { 2153 iocg->local_stat.indelay_us += 2154 now.now - iocg->indelay_since; 2155 iocg->indelay_since = now.now; 2156 } 2157 2158 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt || 2159 iocg->delay) { 2160 /* might be oversleeping vtime / hweight changes, kick */ 2161 iocg_kick_waitq(iocg, true, &now); 2162 if (iocg->abs_vdebt || iocg->delay) 2163 nr_debtors++; 2164 } else if (iocg_is_idle(iocg)) { 2165 /* no waiter and idle, deactivate */ 2166 u64 vtime = atomic64_read(&iocg->vtime); 2167 s64 excess; 2168 2169 /* 2170 * @iocg has been inactive for a full duration and will 2171 * have a high budget. Account anything above target as 2172 * error and throw away. On reactivation, it'll start 2173 * with the target budget. 2174 */ 2175 excess = now.vnow - vtime - ioc->margins.target; 2176 if (excess > 0) { 2177 u32 old_hwi; 2178 2179 current_hweight(iocg, NULL, &old_hwi); 2180 ioc->vtime_err -= div64_u64(excess * old_hwi, 2181 WEIGHT_ONE); 2182 } 2183 2184 __propagate_weights(iocg, 0, 0, false, &now); 2185 list_del_init(&iocg->active_list); 2186 } 2187 2188 spin_unlock(&iocg->waitq.lock); 2189 } 2190 commit_weights(ioc); 2191 2192 /* 2193 * Wait and indebt stat are flushed above and the donation calculation 2194 * below needs updated usage stat. Let's bring stat up-to-date. 2195 */ 2196 iocg_flush_stat(&ioc->active_iocgs, &now); 2197 2198 /* calc usage and see whether some weights need to be moved around */ 2199 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2200 u64 vdone, vtime, usage_us, usage_dur; 2201 u32 usage, hw_active, hw_inuse; 2202 2203 /* 2204 * Collect unused and wind vtime closer to vnow to prevent 2205 * iocgs from accumulating a large amount of budget. 2206 */ 2207 vdone = atomic64_read(&iocg->done_vtime); 2208 vtime = atomic64_read(&iocg->vtime); 2209 current_hweight(iocg, &hw_active, &hw_inuse); 2210 2211 /* 2212 * Latency QoS detection doesn't account for IOs which are 2213 * in-flight for longer than a period. Detect them by 2214 * comparing vdone against period start. If lagging behind 2215 * IOs from past periods, don't increase vrate. 2216 */ 2217 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) && 2218 !atomic_read(&iocg_to_blkg(iocg)->use_delay) && 2219 time_after64(vtime, vdone) && 2220 time_after64(vtime, now.vnow - 2221 MAX_LAGGING_PERIODS * period_vtime) && 2222 time_before64(vdone, now.vnow - period_vtime)) 2223 nr_lagging++; 2224 2225 /* 2226 * Determine absolute usage factoring in in-flight IOs to avoid 2227 * high-latency completions appearing as idle. 2228 */ 2229 usage_us = iocg->usage_delta_us; 2230 usage_us_sum += usage_us; 2231 2232 if (vdone != vtime) { 2233 u64 inflight_us = DIV64_U64_ROUND_UP( 2234 cost_to_abs_cost(vtime - vdone, hw_inuse), 2235 ioc->vtime_base_rate); 2236 usage_us = max(usage_us, inflight_us); 2237 } 2238 2239 /* convert to hweight based usage ratio */ 2240 if (time_after64(iocg->activated_at, ioc->period_at)) 2241 usage_dur = max_t(u64, now.now - iocg->activated_at, 1); 2242 else 2243 usage_dur = max_t(u64, now.now - ioc->period_at, 1); 2244 2245 usage = clamp_t(u32, 2246 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE, 2247 usage_dur), 2248 1, WEIGHT_ONE); 2249 2250 /* see whether there's surplus vtime */ 2251 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2252 if (hw_inuse < hw_active || 2253 (!waitqueue_active(&iocg->waitq) && 2254 time_before64(vtime, now.vnow - ioc->margins.low))) { 2255 u32 hwa, old_hwi, hwm, new_hwi; 2256 2257 /* 2258 * Already donating or accumulated enough to start. 2259 * Determine the donation amount. 2260 */ 2261 current_hweight(iocg, &hwa, &old_hwi); 2262 hwm = current_hweight_max(iocg); 2263 new_hwi = hweight_after_donation(iocg, old_hwi, hwm, 2264 usage, &now); 2265 /* 2266 * Donation calculation assumes hweight_after_donation 2267 * to be positive, a condition that a donor w/ hwa < 2 2268 * can't meet. Don't bother with donation if hwa is 2269 * below 2. It's not gonna make a meaningful difference 2270 * anyway. 2271 */ 2272 if (new_hwi < hwm && hwa >= 2) { 2273 iocg->hweight_donating = hwa; 2274 iocg->hweight_after_donation = new_hwi; 2275 list_add(&iocg->surplus_list, &surpluses); 2276 } else if (!iocg->abs_vdebt) { 2277 /* 2278 * @iocg doesn't have enough to donate. Reset 2279 * its inuse to active. 2280 * 2281 * Don't reset debtors as their inuse's are 2282 * owned by debt handling. This shouldn't affect 2283 * donation calculuation in any meaningful way 2284 * as @iocg doesn't have a meaningful amount of 2285 * share anyway. 2286 */ 2287 TRACE_IOCG_PATH(inuse_shortage, iocg, &now, 2288 iocg->inuse, iocg->active, 2289 iocg->hweight_inuse, new_hwi); 2290 2291 __propagate_weights(iocg, iocg->active, 2292 iocg->active, true, &now); 2293 nr_shortages++; 2294 } 2295 } else { 2296 /* genuinely short on vtime */ 2297 nr_shortages++; 2298 } 2299 } 2300 2301 if (!list_empty(&surpluses) && nr_shortages) 2302 transfer_surpluses(&surpluses, &now); 2303 2304 commit_weights(ioc); 2305 2306 /* surplus list should be dissolved after use */ 2307 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list) 2308 list_del_init(&iocg->surplus_list); 2309 2310 /* 2311 * If q is getting clogged or we're missing too much, we're issuing 2312 * too much IO and should lower vtime rate. If we're not missing 2313 * and experiencing shortages but not surpluses, we're too stingy 2314 * and should increase vtime rate. 2315 */ 2316 prev_busy_level = ioc->busy_level; 2317 if (rq_wait_pct > RQ_WAIT_BUSY_PCT || 2318 missed_ppm[READ] > ppm_rthr || 2319 missed_ppm[WRITE] > ppm_wthr) { 2320 /* clearly missing QoS targets, slow down vrate */ 2321 ioc->busy_level = max(ioc->busy_level, 0); 2322 ioc->busy_level++; 2323 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && 2324 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && 2325 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { 2326 /* QoS targets are being met with >25% margin */ 2327 if (nr_shortages) { 2328 /* 2329 * We're throttling while the device has spare 2330 * capacity. If vrate was being slowed down, stop. 2331 */ 2332 ioc->busy_level = min(ioc->busy_level, 0); 2333 2334 /* 2335 * If there are IOs spanning multiple periods, wait 2336 * them out before pushing the device harder. 2337 */ 2338 if (!nr_lagging) 2339 ioc->busy_level--; 2340 } else { 2341 /* 2342 * Nobody is being throttled and the users aren't 2343 * issuing enough IOs to saturate the device. We 2344 * simply don't know how close the device is to 2345 * saturation. Coast. 2346 */ 2347 ioc->busy_level = 0; 2348 } 2349 } else { 2350 /* inside the hysterisis margin, we're good */ 2351 ioc->busy_level = 0; 2352 } 2353 2354 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); 2355 2356 if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) { 2357 u64 vrate = ioc->vtime_base_rate; 2358 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; 2359 2360 /* rq_wait signal is always reliable, ignore user vrate_min */ 2361 if (rq_wait_pct > RQ_WAIT_BUSY_PCT) 2362 vrate_min = VRATE_MIN; 2363 2364 /* 2365 * If vrate is out of bounds, apply clamp gradually as the 2366 * bounds can change abruptly. Otherwise, apply busy_level 2367 * based adjustment. 2368 */ 2369 if (vrate < vrate_min) { 2370 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 2371 100); 2372 vrate = min(vrate, vrate_min); 2373 } else if (vrate > vrate_max) { 2374 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 2375 100); 2376 vrate = max(vrate, vrate_max); 2377 } else { 2378 int idx = min_t(int, abs(ioc->busy_level), 2379 ARRAY_SIZE(vrate_adj_pct) - 1); 2380 u32 adj_pct = vrate_adj_pct[idx]; 2381 2382 if (ioc->busy_level > 0) 2383 adj_pct = 100 - adj_pct; 2384 else 2385 adj_pct = 100 + adj_pct; 2386 2387 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), 2388 vrate_min, vrate_max); 2389 } 2390 2391 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct, 2392 nr_lagging, nr_shortages); 2393 2394 ioc->vtime_base_rate = vrate; 2395 ioc_refresh_margins(ioc); 2396 } else if (ioc->busy_level != prev_busy_level || nr_lagging) { 2397 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate), 2398 missed_ppm, rq_wait_pct, nr_lagging, 2399 nr_shortages); 2400 } 2401 2402 ioc_refresh_params(ioc, false); 2403 2404 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now); 2405 2406 /* 2407 * This period is done. Move onto the next one. If nothing's 2408 * going on with the device, stop the timer. 2409 */ 2410 atomic64_inc(&ioc->cur_period); 2411 2412 if (ioc->running != IOC_STOP) { 2413 if (!list_empty(&ioc->active_iocgs)) { 2414 ioc_start_period(ioc, &now); 2415 } else { 2416 ioc->busy_level = 0; 2417 ioc->vtime_err = 0; 2418 ioc->running = IOC_IDLE; 2419 } 2420 2421 ioc_refresh_vrate(ioc, &now); 2422 } 2423 2424 spin_unlock_irq(&ioc->lock); 2425} 2426 2427static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime, 2428 u64 abs_cost, struct ioc_now *now) 2429{ 2430 struct ioc *ioc = iocg->ioc; 2431 struct ioc_margins *margins = &ioc->margins; 2432 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi; 2433 u32 hwi, adj_step; 2434 s64 margin; 2435 u64 cost, new_inuse; 2436 unsigned long flags; 2437 2438 current_hweight(iocg, NULL, &hwi); 2439 old_hwi = hwi; 2440 cost = abs_cost_to_cost(abs_cost, hwi); 2441 margin = now->vnow - vtime - cost; 2442 2443 /* debt handling owns inuse for debtors */ 2444 if (iocg->abs_vdebt) 2445 return cost; 2446 2447 /* 2448 * We only increase inuse during period and do so iff the margin has 2449 * deteriorated since the previous adjustment. 2450 */ 2451 if (margin >= iocg->saved_margin || margin >= margins->low || 2452 iocg->inuse == iocg->active) 2453 return cost; 2454 2455 spin_lock_irqsave(&ioc->lock, flags); 2456 2457 /* we own inuse only when @iocg is in the normal active state */ 2458 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) { 2459 spin_unlock_irqrestore(&ioc->lock, flags); 2460 return cost; 2461 } 2462 2463 /* 2464 * Bump up inuse till @abs_cost fits in the existing budget. 2465 * adj_step must be determined after acquiring ioc->lock - we might 2466 * have raced and lost to another thread for activation and could 2467 * be reading 0 iocg->active before ioc->lock which will lead to 2468 * infinite loop. 2469 */ 2470 new_inuse = iocg->inuse; 2471 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100); 2472 do { 2473 new_inuse = new_inuse + adj_step; 2474 propagate_weights(iocg, iocg->active, new_inuse, true, now); 2475 current_hweight(iocg, NULL, &hwi); 2476 cost = abs_cost_to_cost(abs_cost, hwi); 2477 } while (time_after64(vtime + cost, now->vnow) && 2478 iocg->inuse != iocg->active); 2479 2480 spin_unlock_irqrestore(&ioc->lock, flags); 2481 2482 TRACE_IOCG_PATH(inuse_adjust, iocg, now, 2483 old_inuse, iocg->inuse, old_hwi, hwi); 2484 2485 return cost; 2486} 2487 2488static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, 2489 bool is_merge, u64 *costp) 2490{ 2491 struct ioc *ioc = iocg->ioc; 2492 u64 coef_seqio, coef_randio, coef_page; 2493 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); 2494 u64 seek_pages = 0; 2495 u64 cost = 0; 2496 2497 switch (bio_op(bio)) { 2498 case REQ_OP_READ: 2499 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO]; 2500 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO]; 2501 coef_page = ioc->params.lcoefs[LCOEF_RPAGE]; 2502 break; 2503 case REQ_OP_WRITE: 2504 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO]; 2505 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO]; 2506 coef_page = ioc->params.lcoefs[LCOEF_WPAGE]; 2507 break; 2508 default: 2509 goto out; 2510 } 2511 2512 if (iocg->cursor) { 2513 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); 2514 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; 2515 } 2516 2517 if (!is_merge) { 2518 if (seek_pages > LCOEF_RANDIO_PAGES) { 2519 cost += coef_randio; 2520 } else { 2521 cost += coef_seqio; 2522 } 2523 } 2524 cost += pages * coef_page; 2525out: 2526 *costp = cost; 2527} 2528 2529static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) 2530{ 2531 u64 cost; 2532 2533 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost); 2534 return cost; 2535} 2536 2537static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc, 2538 u64 *costp) 2539{ 2540 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT; 2541 2542 switch (req_op(rq)) { 2543 case REQ_OP_READ: 2544 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE]; 2545 break; 2546 case REQ_OP_WRITE: 2547 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE]; 2548 break; 2549 default: 2550 *costp = 0; 2551 } 2552} 2553 2554static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc) 2555{ 2556 u64 cost; 2557 2558 calc_size_vtime_cost_builtin(rq, ioc, &cost); 2559 return cost; 2560} 2561 2562static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio) 2563{ 2564 struct blkcg_gq *blkg = bio->bi_blkg; 2565 struct ioc *ioc = rqos_to_ioc(rqos); 2566 struct ioc_gq *iocg = blkg_to_iocg(blkg); 2567 struct ioc_now now; 2568 struct iocg_wait wait; 2569 u64 abs_cost, cost, vtime; 2570 bool use_debt, ioc_locked; 2571 unsigned long flags; 2572 2573 /* bypass IOs if disabled, still initializing, or for root cgroup */ 2574 if (!ioc->enabled || !iocg || !iocg->level) 2575 return; 2576 2577 /* calculate the absolute vtime cost */ 2578 abs_cost = calc_vtime_cost(bio, iocg, false); 2579 if (!abs_cost) 2580 return; 2581 2582 if (!iocg_activate(iocg, &now)) 2583 return; 2584 2585 iocg->cursor = bio_end_sector(bio); 2586 vtime = atomic64_read(&iocg->vtime); 2587 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2588 2589 /* 2590 * If no one's waiting and within budget, issue right away. The 2591 * tests are racy but the races aren't systemic - we only miss once 2592 * in a while which is fine. 2593 */ 2594 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2595 time_before_eq64(vtime + cost, now.vnow)) { 2596 iocg_commit_bio(iocg, bio, abs_cost, cost); 2597 return; 2598 } 2599 2600 /* 2601 * We're over budget. This can be handled in two ways. IOs which may 2602 * cause priority inversions are punted to @ioc->aux_iocg and charged as 2603 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling 2604 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine 2605 * whether debt handling is needed and acquire locks accordingly. 2606 */ 2607 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current); 2608 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt); 2609retry_lock: 2610 iocg_lock(iocg, ioc_locked, &flags); 2611 2612 /* 2613 * @iocg must stay activated for debt and waitq handling. Deactivation 2614 * is synchronized against both ioc->lock and waitq.lock and we won't 2615 * get deactivated as long as we're waiting or has debt, so we're good 2616 * if we're activated here. In the unlikely cases that we aren't, just 2617 * issue the IO. 2618 */ 2619 if (unlikely(list_empty(&iocg->active_list))) { 2620 iocg_unlock(iocg, ioc_locked, &flags); 2621 iocg_commit_bio(iocg, bio, abs_cost, cost); 2622 return; 2623 } 2624 2625 /* 2626 * We're over budget. If @bio has to be issued regardless, remember 2627 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay 2628 * off the debt before waking more IOs. 2629 * 2630 * This way, the debt is continuously paid off each period with the 2631 * actual budget available to the cgroup. If we just wound vtime, we 2632 * would incorrectly use the current hw_inuse for the entire amount 2633 * which, for example, can lead to the cgroup staying blocked for a 2634 * long time even with substantially raised hw_inuse. 2635 * 2636 * An iocg with vdebt should stay online so that the timer can keep 2637 * deducting its vdebt and [de]activate use_delay mechanism 2638 * accordingly. We don't want to race against the timer trying to 2639 * clear them and leave @iocg inactive w/ dangling use_delay heavily 2640 * penalizing the cgroup and its descendants. 2641 */ 2642 if (use_debt) { 2643 iocg_incur_debt(iocg, abs_cost, &now); 2644 if (iocg_kick_delay(iocg, &now)) 2645 blkcg_schedule_throttle(rqos->q, 2646 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2647 iocg_unlock(iocg, ioc_locked, &flags); 2648 return; 2649 } 2650 2651 /* guarantee that iocgs w/ waiters have maximum inuse */ 2652 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) { 2653 if (!ioc_locked) { 2654 iocg_unlock(iocg, false, &flags); 2655 ioc_locked = true; 2656 goto retry_lock; 2657 } 2658 propagate_weights(iocg, iocg->active, iocg->active, true, 2659 &now); 2660 } 2661 2662 /* 2663 * Append self to the waitq and schedule the wakeup timer if we're 2664 * the first waiter. The timer duration is calculated based on the 2665 * current vrate. vtime and hweight changes can make it too short 2666 * or too long. Each wait entry records the absolute cost it's 2667 * waiting for to allow re-evaluation using a custom wait entry. 2668 * 2669 * If too short, the timer simply reschedules itself. If too long, 2670 * the period timer will notice and trigger wakeups. 2671 * 2672 * All waiters are on iocg->waitq and the wait states are 2673 * synchronized using waitq.lock. 2674 */ 2675 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn); 2676 wait.wait.private = current; 2677 wait.bio = bio; 2678 wait.abs_cost = abs_cost; 2679 wait.committed = false; /* will be set true by waker */ 2680 2681 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait); 2682 iocg_kick_waitq(iocg, ioc_locked, &now); 2683 2684 iocg_unlock(iocg, ioc_locked, &flags); 2685 2686 while (true) { 2687 set_current_state(TASK_UNINTERRUPTIBLE); 2688 if (wait.committed) 2689 break; 2690 io_schedule(); 2691 } 2692 2693 /* waker already committed us, proceed */ 2694 finish_wait(&iocg->waitq, &wait.wait); 2695} 2696 2697static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, 2698 struct bio *bio) 2699{ 2700 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2701 struct ioc *ioc = rqos_to_ioc(rqos); 2702 sector_t bio_end = bio_end_sector(bio); 2703 struct ioc_now now; 2704 u64 vtime, abs_cost, cost; 2705 unsigned long flags; 2706 2707 /* bypass if disabled, still initializing, or for root cgroup */ 2708 if (!ioc->enabled || !iocg || !iocg->level) 2709 return; 2710 2711 abs_cost = calc_vtime_cost(bio, iocg, true); 2712 if (!abs_cost) 2713 return; 2714 2715 ioc_now(ioc, &now); 2716 2717 vtime = atomic64_read(&iocg->vtime); 2718 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2719 2720 /* update cursor if backmerging into the request at the cursor */ 2721 if (blk_rq_pos(rq) < bio_end && 2722 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) 2723 iocg->cursor = bio_end; 2724 2725 /* 2726 * Charge if there's enough vtime budget and the existing request has 2727 * cost assigned. 2728 */ 2729 if (rq->bio && rq->bio->bi_iocost_cost && 2730 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) { 2731 iocg_commit_bio(iocg, bio, abs_cost, cost); 2732 return; 2733 } 2734 2735 /* 2736 * Otherwise, account it as debt if @iocg is online, which it should 2737 * be for the vast majority of cases. See debt handling in 2738 * ioc_rqos_throttle() for details. 2739 */ 2740 spin_lock_irqsave(&ioc->lock, flags); 2741 spin_lock(&iocg->waitq.lock); 2742 2743 if (likely(!list_empty(&iocg->active_list))) { 2744 iocg_incur_debt(iocg, abs_cost, &now); 2745 if (iocg_kick_delay(iocg, &now)) 2746 blkcg_schedule_throttle(rqos->q, 2747 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2748 } else { 2749 iocg_commit_bio(iocg, bio, abs_cost, cost); 2750 } 2751 2752 spin_unlock(&iocg->waitq.lock); 2753 spin_unlock_irqrestore(&ioc->lock, flags); 2754} 2755 2756static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) 2757{ 2758 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2759 2760 if (iocg && bio->bi_iocost_cost) 2761 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime); 2762} 2763 2764static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) 2765{ 2766 struct ioc *ioc = rqos_to_ioc(rqos); 2767 struct ioc_pcpu_stat *ccs; 2768 u64 on_q_ns, rq_wait_ns, size_nsec; 2769 int pidx, rw; 2770 2771 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) 2772 return; 2773 2774 switch (req_op(rq) & REQ_OP_MASK) { 2775 case REQ_OP_READ: 2776 pidx = QOS_RLAT; 2777 rw = READ; 2778 break; 2779 case REQ_OP_WRITE: 2780 pidx = QOS_WLAT; 2781 rw = WRITE; 2782 break; 2783 default: 2784 return; 2785 } 2786 2787 on_q_ns = ktime_get_ns() - rq->alloc_time_ns; 2788 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; 2789 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC); 2790 2791 ccs = get_cpu_ptr(ioc->pcpu_stat); 2792 2793 if (on_q_ns <= size_nsec || 2794 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC) 2795 local_inc(&ccs->missed[rw].nr_met); 2796 else 2797 local_inc(&ccs->missed[rw].nr_missed); 2798 2799 local64_add(rq_wait_ns, &ccs->rq_wait_ns); 2800 2801 put_cpu_ptr(ccs); 2802} 2803 2804static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) 2805{ 2806 struct ioc *ioc = rqos_to_ioc(rqos); 2807 2808 spin_lock_irq(&ioc->lock); 2809 ioc_refresh_params(ioc, false); 2810 spin_unlock_irq(&ioc->lock); 2811} 2812 2813static void ioc_rqos_exit(struct rq_qos *rqos) 2814{ 2815 struct ioc *ioc = rqos_to_ioc(rqos); 2816 2817 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost); 2818 2819 spin_lock_irq(&ioc->lock); 2820 ioc->running = IOC_STOP; 2821 spin_unlock_irq(&ioc->lock); 2822 2823 del_timer_sync(&ioc->timer); 2824 free_percpu(ioc->pcpu_stat); 2825 kfree(ioc); 2826} 2827 2828static struct rq_qos_ops ioc_rqos_ops = { 2829 .throttle = ioc_rqos_throttle, 2830 .merge = ioc_rqos_merge, 2831 .done_bio = ioc_rqos_done_bio, 2832 .done = ioc_rqos_done, 2833 .queue_depth_changed = ioc_rqos_queue_depth_changed, 2834 .exit = ioc_rqos_exit, 2835}; 2836 2837static int blk_iocost_init(struct request_queue *q) 2838{ 2839 struct ioc *ioc; 2840 struct rq_qos *rqos; 2841 int i, cpu, ret; 2842 2843 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); 2844 if (!ioc) 2845 return -ENOMEM; 2846 2847 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); 2848 if (!ioc->pcpu_stat) { 2849 kfree(ioc); 2850 return -ENOMEM; 2851 } 2852 2853 for_each_possible_cpu(cpu) { 2854 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu); 2855 2856 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) { 2857 local_set(&ccs->missed[i].nr_met, 0); 2858 local_set(&ccs->missed[i].nr_missed, 0); 2859 } 2860 local64_set(&ccs->rq_wait_ns, 0); 2861 } 2862 2863 rqos = &ioc->rqos; 2864 rqos->id = RQ_QOS_COST; 2865 rqos->ops = &ioc_rqos_ops; 2866 rqos->q = q; 2867 2868 spin_lock_init(&ioc->lock); 2869 timer_setup(&ioc->timer, ioc_timer_fn, 0); 2870 INIT_LIST_HEAD(&ioc->active_iocgs); 2871 2872 ioc->running = IOC_IDLE; 2873 ioc->vtime_base_rate = VTIME_PER_USEC; 2874 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 2875 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock); 2876 ioc->period_at = ktime_to_us(ktime_get()); 2877 atomic64_set(&ioc->cur_period, 0); 2878 atomic_set(&ioc->hweight_gen, 0); 2879 2880 spin_lock_irq(&ioc->lock); 2881 ioc->autop_idx = AUTOP_INVALID; 2882 ioc_refresh_params(ioc, true); 2883 spin_unlock_irq(&ioc->lock); 2884 2885 /* 2886 * rqos must be added before activation to allow iocg_pd_init() to 2887 * lookup the ioc from q. This means that the rqos methods may get 2888 * called before policy activation completion, can't assume that the 2889 * target bio has an iocg associated and need to test for NULL iocg. 2890 */ 2891 rq_qos_add(q, rqos); 2892 ret = blkcg_activate_policy(q, &blkcg_policy_iocost); 2893 if (ret) { 2894 rq_qos_del(q, rqos); 2895 free_percpu(ioc->pcpu_stat); 2896 kfree(ioc); 2897 return ret; 2898 } 2899 return 0; 2900} 2901 2902static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) 2903{ 2904 struct ioc_cgrp *iocc; 2905 2906 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); 2907 if (!iocc) 2908 return NULL; 2909 2910 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE; 2911 return &iocc->cpd; 2912} 2913 2914static void ioc_cpd_free(struct blkcg_policy_data *cpd) 2915{ 2916 kfree(container_of(cpd, struct ioc_cgrp, cpd)); 2917} 2918 2919static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q, 2920 struct blkcg *blkcg) 2921{ 2922 int levels = blkcg->css.cgroup->level + 1; 2923 struct ioc_gq *iocg; 2924 2925 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node); 2926 if (!iocg) 2927 return NULL; 2928 2929 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp); 2930 if (!iocg->pcpu_stat) { 2931 kfree(iocg); 2932 return NULL; 2933 } 2934 2935 return &iocg->pd; 2936} 2937 2938static void ioc_pd_init(struct blkg_policy_data *pd) 2939{ 2940 struct ioc_gq *iocg = pd_to_iocg(pd); 2941 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd); 2942 struct ioc *ioc = q_to_ioc(blkg->q); 2943 struct ioc_now now; 2944 struct blkcg_gq *tblkg; 2945 unsigned long flags; 2946 2947 ioc_now(ioc, &now); 2948 2949 iocg->ioc = ioc; 2950 atomic64_set(&iocg->vtime, now.vnow); 2951 atomic64_set(&iocg->done_vtime, now.vnow); 2952 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period)); 2953 INIT_LIST_HEAD(&iocg->active_list); 2954 INIT_LIST_HEAD(&iocg->walk_list); 2955 INIT_LIST_HEAD(&iocg->surplus_list); 2956 iocg->hweight_active = WEIGHT_ONE; 2957 iocg->hweight_inuse = WEIGHT_ONE; 2958 2959 init_waitqueue_head(&iocg->waitq); 2960 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2961 iocg->waitq_timer.function = iocg_waitq_timer_fn; 2962 2963 iocg->level = blkg->blkcg->css.cgroup->level; 2964 2965 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { 2966 struct ioc_gq *tiocg = blkg_to_iocg(tblkg); 2967 iocg->ancestors[tiocg->level] = tiocg; 2968 } 2969 2970 spin_lock_irqsave(&ioc->lock, flags); 2971 weight_updated(iocg, &now); 2972 spin_unlock_irqrestore(&ioc->lock, flags); 2973} 2974 2975static void ioc_pd_free(struct blkg_policy_data *pd) 2976{ 2977 struct ioc_gq *iocg = pd_to_iocg(pd); 2978 struct ioc *ioc = iocg->ioc; 2979 unsigned long flags; 2980 2981 if (ioc) { 2982 spin_lock_irqsave(&ioc->lock, flags); 2983 2984 if (!list_empty(&iocg->active_list)) { 2985 struct ioc_now now; 2986 2987 ioc_now(ioc, &now); 2988 propagate_weights(iocg, 0, 0, false, &now); 2989 list_del_init(&iocg->active_list); 2990 } 2991 2992 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 2993 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2994 2995 spin_unlock_irqrestore(&ioc->lock, flags); 2996 2997 hrtimer_cancel(&iocg->waitq_timer); 2998 } 2999 free_percpu(iocg->pcpu_stat); 3000 kfree(iocg); 3001} 3002 3003static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size) 3004{ 3005 struct ioc_gq *iocg = pd_to_iocg(pd); 3006 struct ioc *ioc = iocg->ioc; 3007 size_t pos = 0; 3008 3009 if (!ioc->enabled) 3010 return 0; 3011 3012 if (iocg->level == 0) { 3013 unsigned vp10k = DIV64_U64_ROUND_CLOSEST( 3014 ioc->vtime_base_rate * 10000, 3015 VTIME_PER_USEC); 3016 pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u", 3017 vp10k / 100, vp10k % 100); 3018 } 3019 3020 pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu", 3021 iocg->last_stat.usage_us); 3022 3023 if (blkcg_debug_stats) 3024 pos += scnprintf(buf + pos, size - pos, 3025 " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu", 3026 iocg->last_stat.wait_us, 3027 iocg->last_stat.indebt_us, 3028 iocg->last_stat.indelay_us); 3029 3030 return pos; 3031} 3032 3033static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3034 int off) 3035{ 3036 const char *dname = blkg_dev_name(pd->blkg); 3037 struct ioc_gq *iocg = pd_to_iocg(pd); 3038 3039 if (dname && iocg->cfg_weight) 3040 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE); 3041 return 0; 3042} 3043 3044 3045static int ioc_weight_show(struct seq_file *sf, void *v) 3046{ 3047 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3048 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3049 3050 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE); 3051 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill, 3052 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3053 return 0; 3054} 3055 3056static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, 3057 size_t nbytes, loff_t off) 3058{ 3059 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 3060 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3061 struct blkg_conf_ctx ctx; 3062 struct ioc_now now; 3063 struct ioc_gq *iocg; 3064 u32 v; 3065 int ret; 3066 3067 if (!strchr(buf, ':')) { 3068 struct blkcg_gq *blkg; 3069 3070 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v)) 3071 return -EINVAL; 3072 3073 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3074 return -EINVAL; 3075 3076 spin_lock_irq(&blkcg->lock); 3077 iocc->dfl_weight = v * WEIGHT_ONE; 3078 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 3079 struct ioc_gq *iocg = blkg_to_iocg(blkg); 3080 3081 if (iocg) { 3082 spin_lock(&iocg->ioc->lock); 3083 ioc_now(iocg->ioc, &now); 3084 weight_updated(iocg, &now); 3085 spin_unlock(&iocg->ioc->lock); 3086 } 3087 } 3088 spin_unlock_irq(&blkcg->lock); 3089 3090 return nbytes; 3091 } 3092 3093 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx); 3094 if (ret) 3095 return ret; 3096 3097 iocg = blkg_to_iocg(ctx.blkg); 3098 3099 if (!strncmp(ctx.body, "default", 7)) { 3100 v = 0; 3101 } else { 3102 if (!sscanf(ctx.body, "%u", &v)) 3103 goto einval; 3104 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3105 goto einval; 3106 } 3107 3108 spin_lock(&iocg->ioc->lock); 3109 iocg->cfg_weight = v * WEIGHT_ONE; 3110 ioc_now(iocg->ioc, &now); 3111 weight_updated(iocg, &now); 3112 spin_unlock(&iocg->ioc->lock); 3113 3114 blkg_conf_finish(&ctx); 3115 return nbytes; 3116 3117einval: 3118 blkg_conf_finish(&ctx); 3119 return -EINVAL; 3120} 3121 3122static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3123 int off) 3124{ 3125 const char *dname = blkg_dev_name(pd->blkg); 3126 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3127 3128 if (!dname) 3129 return 0; 3130 3131 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n", 3132 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto", 3133 ioc->params.qos[QOS_RPPM] / 10000, 3134 ioc->params.qos[QOS_RPPM] % 10000 / 100, 3135 ioc->params.qos[QOS_RLAT], 3136 ioc->params.qos[QOS_WPPM] / 10000, 3137 ioc->params.qos[QOS_WPPM] % 10000 / 100, 3138 ioc->params.qos[QOS_WLAT], 3139 ioc->params.qos[QOS_MIN] / 10000, 3140 ioc->params.qos[QOS_MIN] % 10000 / 100, 3141 ioc->params.qos[QOS_MAX] / 10000, 3142 ioc->params.qos[QOS_MAX] % 10000 / 100); 3143 return 0; 3144} 3145 3146static int ioc_qos_show(struct seq_file *sf, void *v) 3147{ 3148 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3149 3150 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill, 3151 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3152 return 0; 3153} 3154 3155static const match_table_t qos_ctrl_tokens = { 3156 { QOS_ENABLE, "enable=%u" }, 3157 { QOS_CTRL, "ctrl=%s" }, 3158 { NR_QOS_CTRL_PARAMS, NULL }, 3159}; 3160 3161static const match_table_t qos_tokens = { 3162 { QOS_RPPM, "rpct=%s" }, 3163 { QOS_RLAT, "rlat=%u" }, 3164 { QOS_WPPM, "wpct=%s" }, 3165 { QOS_WLAT, "wlat=%u" }, 3166 { QOS_MIN, "min=%s" }, 3167 { QOS_MAX, "max=%s" }, 3168 { NR_QOS_PARAMS, NULL }, 3169}; 3170 3171static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, 3172 size_t nbytes, loff_t off) 3173{ 3174 struct gendisk *disk; 3175 struct ioc *ioc; 3176 u32 qos[NR_QOS_PARAMS]; 3177 bool enable, user; 3178 char *p; 3179 int ret; 3180 3181 disk = blkcg_conf_get_disk(&input); 3182 if (IS_ERR(disk)) 3183 return PTR_ERR(disk); 3184 3185 ioc = q_to_ioc(disk->queue); 3186 if (!ioc) { 3187 ret = blk_iocost_init(disk->queue); 3188 if (ret) 3189 goto err; 3190 ioc = q_to_ioc(disk->queue); 3191 } 3192 3193 spin_lock_irq(&ioc->lock); 3194 memcpy(qos, ioc->params.qos, sizeof(qos)); 3195 enable = ioc->enabled; 3196 user = ioc->user_qos_params; 3197 spin_unlock_irq(&ioc->lock); 3198 3199 while ((p = strsep(&input, " \t\n"))) { 3200 substring_t args[MAX_OPT_ARGS]; 3201 char buf[32]; 3202 int tok; 3203 s64 v; 3204 3205 if (!*p) 3206 continue; 3207 3208 switch (match_token(p, qos_ctrl_tokens, args)) { 3209 case QOS_ENABLE: 3210 match_u64(&args[0], &v); 3211 enable = v; 3212 continue; 3213 case QOS_CTRL: 3214 match_strlcpy(buf, &args[0], sizeof(buf)); 3215 if (!strcmp(buf, "auto")) 3216 user = false; 3217 else if (!strcmp(buf, "user")) 3218 user = true; 3219 else 3220 goto einval; 3221 continue; 3222 } 3223 3224 tok = match_token(p, qos_tokens, args); 3225 switch (tok) { 3226 case QOS_RPPM: 3227 case QOS_WPPM: 3228 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3229 sizeof(buf)) 3230 goto einval; 3231 if (cgroup_parse_float(buf, 2, &v)) 3232 goto einval; 3233 if (v < 0 || v > 10000) 3234 goto einval; 3235 qos[tok] = v * 100; 3236 break; 3237 case QOS_RLAT: 3238 case QOS_WLAT: 3239 if (match_u64(&args[0], &v)) 3240 goto einval; 3241 qos[tok] = v; 3242 break; 3243 case QOS_MIN: 3244 case QOS_MAX: 3245 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3246 sizeof(buf)) 3247 goto einval; 3248 if (cgroup_parse_float(buf, 2, &v)) 3249 goto einval; 3250 if (v < 0) 3251 goto einval; 3252 qos[tok] = clamp_t(s64, v * 100, 3253 VRATE_MIN_PPM, VRATE_MAX_PPM); 3254 break; 3255 default: 3256 goto einval; 3257 } 3258 user = true; 3259 } 3260 3261 if (qos[QOS_MIN] > qos[QOS_MAX]) 3262 goto einval; 3263 3264 spin_lock_irq(&ioc->lock); 3265 3266 if (enable) { 3267 blk_stat_enable_accounting(ioc->rqos.q); 3268 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); 3269 ioc->enabled = true; 3270 } else { 3271 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); 3272 ioc->enabled = false; 3273 } 3274 3275 if (user) { 3276 memcpy(ioc->params.qos, qos, sizeof(qos)); 3277 ioc->user_qos_params = true; 3278 } else { 3279 ioc->user_qos_params = false; 3280 } 3281 3282 ioc_refresh_params(ioc, true); 3283 spin_unlock_irq(&ioc->lock); 3284 3285 put_disk_and_module(disk); 3286 return nbytes; 3287einval: 3288 ret = -EINVAL; 3289err: 3290 put_disk_and_module(disk); 3291 return ret; 3292} 3293 3294static u64 ioc_cost_model_prfill(struct seq_file *sf, 3295 struct blkg_policy_data *pd, int off) 3296{ 3297 const char *dname = blkg_dev_name(pd->blkg); 3298 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3299 u64 *u = ioc->params.i_lcoefs; 3300 3301 if (!dname) 3302 return 0; 3303 3304 seq_printf(sf, "%s ctrl=%s model=linear " 3305 "rbps=%llu rseqiops=%llu rrandiops=%llu " 3306 "wbps=%llu wseqiops=%llu wrandiops=%llu\n", 3307 dname, ioc->user_cost_model ? "user" : "auto", 3308 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 3309 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); 3310 return 0; 3311} 3312 3313static int ioc_cost_model_show(struct seq_file *sf, void *v) 3314{ 3315 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3316 3317 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill, 3318 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3319 return 0; 3320} 3321 3322static const match_table_t cost_ctrl_tokens = { 3323 { COST_CTRL, "ctrl=%s" }, 3324 { COST_MODEL, "model=%s" }, 3325 { NR_COST_CTRL_PARAMS, NULL }, 3326}; 3327 3328static const match_table_t i_lcoef_tokens = { 3329 { I_LCOEF_RBPS, "rbps=%u" }, 3330 { I_LCOEF_RSEQIOPS, "rseqiops=%u" }, 3331 { I_LCOEF_RRANDIOPS, "rrandiops=%u" }, 3332 { I_LCOEF_WBPS, "wbps=%u" }, 3333 { I_LCOEF_WSEQIOPS, "wseqiops=%u" }, 3334 { I_LCOEF_WRANDIOPS, "wrandiops=%u" }, 3335 { NR_I_LCOEFS, NULL }, 3336}; 3337 3338static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, 3339 size_t nbytes, loff_t off) 3340{ 3341 struct gendisk *disk; 3342 struct ioc *ioc; 3343 u64 u[NR_I_LCOEFS]; 3344 bool user; 3345 char *p; 3346 int ret; 3347 3348 disk = blkcg_conf_get_disk(&input); 3349 if (IS_ERR(disk)) 3350 return PTR_ERR(disk); 3351 3352 ioc = q_to_ioc(disk->queue); 3353 if (!ioc) { 3354 ret = blk_iocost_init(disk->queue); 3355 if (ret) 3356 goto err; 3357 ioc = q_to_ioc(disk->queue); 3358 } 3359 3360 spin_lock_irq(&ioc->lock); 3361 memcpy(u, ioc->params.i_lcoefs, sizeof(u)); 3362 user = ioc->user_cost_model; 3363 spin_unlock_irq(&ioc->lock); 3364 3365 while ((p = strsep(&input, " \t\n"))) { 3366 substring_t args[MAX_OPT_ARGS]; 3367 char buf[32]; 3368 int tok; 3369 u64 v; 3370 3371 if (!*p) 3372 continue; 3373 3374 switch (match_token(p, cost_ctrl_tokens, args)) { 3375 case COST_CTRL: 3376 match_strlcpy(buf, &args[0], sizeof(buf)); 3377 if (!strcmp(buf, "auto")) 3378 user = false; 3379 else if (!strcmp(buf, "user")) 3380 user = true; 3381 else 3382 goto einval; 3383 continue; 3384 case COST_MODEL: 3385 match_strlcpy(buf, &args[0], sizeof(buf)); 3386 if (strcmp(buf, "linear")) 3387 goto einval; 3388 continue; 3389 } 3390 3391 tok = match_token(p, i_lcoef_tokens, args); 3392 if (tok == NR_I_LCOEFS) 3393 goto einval; 3394 if (match_u64(&args[0], &v)) 3395 goto einval; 3396 u[tok] = v; 3397 user = true; 3398 } 3399 3400 spin_lock_irq(&ioc->lock); 3401 if (user) { 3402 memcpy(ioc->params.i_lcoefs, u, sizeof(u)); 3403 ioc->user_cost_model = true; 3404 } else { 3405 ioc->user_cost_model = false; 3406 } 3407 ioc_refresh_params(ioc, true); 3408 spin_unlock_irq(&ioc->lock); 3409 3410 put_disk_and_module(disk); 3411 return nbytes; 3412 3413einval: 3414 ret = -EINVAL; 3415err: 3416 put_disk_and_module(disk); 3417 return ret; 3418} 3419 3420static struct cftype ioc_files[] = { 3421 { 3422 .name = "weight", 3423 .flags = CFTYPE_NOT_ON_ROOT, 3424 .seq_show = ioc_weight_show, 3425 .write = ioc_weight_write, 3426 }, 3427 { 3428 .name = "cost.qos", 3429 .flags = CFTYPE_ONLY_ON_ROOT, 3430 .seq_show = ioc_qos_show, 3431 .write = ioc_qos_write, 3432 }, 3433 { 3434 .name = "cost.model", 3435 .flags = CFTYPE_ONLY_ON_ROOT, 3436 .seq_show = ioc_cost_model_show, 3437 .write = ioc_cost_model_write, 3438 }, 3439 {} 3440}; 3441 3442static struct blkcg_policy blkcg_policy_iocost = { 3443 .dfl_cftypes = ioc_files, 3444 .cpd_alloc_fn = ioc_cpd_alloc, 3445 .cpd_free_fn = ioc_cpd_free, 3446 .pd_alloc_fn = ioc_pd_alloc, 3447 .pd_init_fn = ioc_pd_init, 3448 .pd_free_fn = ioc_pd_free, 3449 .pd_stat_fn = ioc_pd_stat, 3450}; 3451 3452static int __init ioc_init(void) 3453{ 3454 return blkcg_policy_register(&blkcg_policy_iocost); 3455} 3456 3457static void __exit ioc_exit(void) 3458{ 3459 blkcg_policy_unregister(&blkcg_policy_iocost); 3460} 3461 3462module_init(ioc_init); 3463module_exit(ioc_exit); 3464