1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright 2019 Google LLC 4 */ 5 6/* 7 * Refer to Documentation/block/inline-encryption.rst for detailed explanation. 8 */ 9 10#define pr_fmt(fmt) "blk-crypto: " fmt 11 12#include <linux/bio.h> 13#include <linux/blkdev.h> 14#include <linux/keyslot-manager.h> 15#include <linux/module.h> 16#include <linux/ratelimit.h> 17#include <linux/slab.h> 18 19#include "blk-crypto-internal.h" 20 21const struct blk_crypto_mode blk_crypto_modes[] = { 22 [BLK_ENCRYPTION_MODE_AES_256_XTS] = { 23 .cipher_str = "xts(aes)", 24 .keysize = 64, 25 .ivsize = 16, 26 }, 27 [BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = { 28 .cipher_str = "essiv(cbc(aes),sha256)", 29 .keysize = 16, 30 .ivsize = 16, 31 }, 32 [BLK_ENCRYPTION_MODE_ADIANTUM] = { 33 .cipher_str = "adiantum(xchacha12,aes)", 34 .keysize = 32, 35 .ivsize = 32, 36 }, 37}; 38 39/* 40 * This number needs to be at least (the number of threads doing IO 41 * concurrently) * (maximum recursive depth of a bio), so that we don't 42 * deadlock on crypt_ctx allocations. The default is chosen to be the same 43 * as the default number of post read contexts in both EXT4 and F2FS. 44 */ 45static int num_prealloc_crypt_ctxs = 128; 46 47module_param(num_prealloc_crypt_ctxs, int, 0444); 48MODULE_PARM_DESC(num_prealloc_crypt_ctxs, 49 "Number of bio crypto contexts to preallocate"); 50 51static struct kmem_cache *bio_crypt_ctx_cache; 52static mempool_t *bio_crypt_ctx_pool; 53 54static int __init bio_crypt_ctx_init(void) 55{ 56 size_t i; 57 58 bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0); 59 if (!bio_crypt_ctx_cache) 60 goto out_no_mem; 61 62 bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs, 63 bio_crypt_ctx_cache); 64 if (!bio_crypt_ctx_pool) 65 goto out_no_mem; 66 67 /* This is assumed in various places. */ 68 BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0); 69 70 /* Sanity check that no algorithm exceeds the defined limits. */ 71 for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) { 72 BUG_ON(blk_crypto_modes[i].keysize > BLK_CRYPTO_MAX_KEY_SIZE); 73 BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE); 74 } 75 76 return 0; 77out_no_mem: 78 panic("Failed to allocate mem for bio crypt ctxs\n"); 79} 80subsys_initcall(bio_crypt_ctx_init); 81 82void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key, 83 const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask) 84{ 85 struct bio_crypt_ctx *bc; 86 87 /* 88 * The caller must use a gfp_mask that contains __GFP_DIRECT_RECLAIM so 89 * that the mempool_alloc() can't fail. 90 */ 91 WARN_ON_ONCE(!(gfp_mask & __GFP_DIRECT_RECLAIM)); 92 93 bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); 94 95 bc->bc_key = key; 96 memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun)); 97 98 bio->bi_crypt_context = bc; 99} 100 101void __bio_crypt_free_ctx(struct bio *bio) 102{ 103 mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool); 104 bio->bi_crypt_context = NULL; 105} 106 107int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask) 108{ 109 dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); 110 if (!dst->bi_crypt_context) 111 return -ENOMEM; 112 *dst->bi_crypt_context = *src->bi_crypt_context; 113 return 0; 114} 115EXPORT_SYMBOL_GPL(__bio_crypt_clone); 116 117/* Increments @dun by @inc, treating @dun as a multi-limb integer. */ 118void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], 119 unsigned int inc) 120{ 121 int i; 122 123 for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) { 124 dun[i] += inc; 125 /* 126 * If the addition in this limb overflowed, then we need to 127 * carry 1 into the next limb. Else the carry is 0. 128 */ 129 if (dun[i] < inc) 130 inc = 1; 131 else 132 inc = 0; 133 } 134} 135 136void __bio_crypt_advance(struct bio *bio, unsigned int bytes) 137{ 138 struct bio_crypt_ctx *bc = bio->bi_crypt_context; 139 140 bio_crypt_dun_increment(bc->bc_dun, 141 bytes >> bc->bc_key->data_unit_size_bits); 142} 143 144/* 145 * Returns true if @bc->bc_dun plus @bytes converted to data units is equal to 146 * @next_dun, treating the DUNs as multi-limb integers. 147 */ 148bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc, 149 unsigned int bytes, 150 const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]) 151{ 152 int i; 153 unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits; 154 155 for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) { 156 if (bc->bc_dun[i] + carry != next_dun[i]) 157 return false; 158 /* 159 * If the addition in this limb overflowed, then we need to 160 * carry 1 into the next limb. Else the carry is 0. 161 */ 162 if ((bc->bc_dun[i] + carry) < carry) 163 carry = 1; 164 else 165 carry = 0; 166 } 167 168 /* If the DUN wrapped through 0, don't treat it as contiguous. */ 169 return carry == 0; 170} 171 172/* 173 * Checks that two bio crypt contexts are compatible - i.e. that 174 * they are mergeable except for data_unit_num continuity. 175 */ 176static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1, 177 struct bio_crypt_ctx *bc2) 178{ 179 if (!bc1) 180 return !bc2; 181 182 return bc2 && bc1->bc_key == bc2->bc_key; 183} 184 185bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio) 186{ 187 return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context); 188} 189 190/* 191 * Checks that two bio crypt contexts are compatible, and also 192 * that their data_unit_nums are continuous (and can hence be merged) 193 * in the order @bc1 followed by @bc2. 194 */ 195bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes, 196 struct bio_crypt_ctx *bc2) 197{ 198 if (!bio_crypt_ctx_compatible(bc1, bc2)) 199 return false; 200 201 return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun); 202} 203 204/* Check that all I/O segments are data unit aligned. */ 205static bool bio_crypt_check_alignment(struct bio *bio) 206{ 207 const unsigned int data_unit_size = 208 bio->bi_crypt_context->bc_key->crypto_cfg.data_unit_size; 209 struct bvec_iter iter; 210 struct bio_vec bv; 211 212 bio_for_each_segment(bv, bio, iter) { 213 if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size)) 214 return false; 215 } 216 217 return true; 218} 219 220blk_status_t __blk_crypto_rq_get_keyslot(struct request *rq) 221{ 222 return blk_ksm_get_slot_for_key(rq->q->ksm, rq->crypt_ctx->bc_key, 223 &rq->crypt_keyslot); 224} 225 226void __blk_crypto_rq_put_keyslot(struct request *rq) 227{ 228 blk_ksm_put_slot(rq->crypt_keyslot); 229 rq->crypt_keyslot = NULL; 230} 231 232void __blk_crypto_free_request(struct request *rq) 233{ 234 /* The keyslot, if one was needed, should have been released earlier. */ 235 if (WARN_ON_ONCE(rq->crypt_keyslot)) 236 __blk_crypto_rq_put_keyslot(rq); 237 238 mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool); 239 rq->crypt_ctx = NULL; 240} 241 242/** 243 * __blk_crypto_bio_prep - Prepare bio for inline encryption 244 * 245 * @bio_ptr: pointer to original bio pointer 246 * 247 * If the bio crypt context provided for the bio is supported by the underlying 248 * device's inline encryption hardware, do nothing. 249 * 250 * Otherwise, try to perform en/decryption for this bio by falling back to the 251 * kernel crypto API. When the crypto API fallback is used for encryption, 252 * blk-crypto may choose to split the bio into 2 - the first one that will 253 * continue to be processed and the second one that will be resubmitted via 254 * submit_bio_noacct. A bounce bio will be allocated to encrypt the contents 255 * of the aforementioned "first one", and *bio_ptr will be updated to this 256 * bounce bio. 257 * 258 * Caller must ensure bio has bio_crypt_ctx. 259 * 260 * Return: true on success; false on error (and bio->bi_status will be set 261 * appropriately, and bio_endio() will have been called so bio 262 * submission should abort). 263 */ 264bool __blk_crypto_bio_prep(struct bio **bio_ptr) 265{ 266 struct bio *bio = *bio_ptr; 267 const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key; 268 269 /* Error if bio has no data. */ 270 if (WARN_ON_ONCE(!bio_has_data(bio))) { 271 bio->bi_status = BLK_STS_IOERR; 272 goto fail; 273 } 274 275 if (!bio_crypt_check_alignment(bio)) { 276 bio->bi_status = BLK_STS_IOERR; 277 goto fail; 278 } 279 280 /* 281 * Success if device supports the encryption context, or if we succeeded 282 * in falling back to the crypto API. 283 */ 284 if (blk_ksm_crypto_cfg_supported(bio->bi_disk->queue->ksm, 285 &bc_key->crypto_cfg)) 286 return true; 287 288 if (blk_crypto_fallback_bio_prep(bio_ptr)) 289 return true; 290fail: 291 bio_endio(*bio_ptr); 292 return false; 293} 294 295int __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio, 296 gfp_t gfp_mask) 297{ 298 if (!rq->crypt_ctx) { 299 rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); 300 if (!rq->crypt_ctx) 301 return -ENOMEM; 302 } 303 *rq->crypt_ctx = *bio->bi_crypt_context; 304 return 0; 305} 306 307/** 308 * blk_crypto_init_key() - Prepare a key for use with blk-crypto 309 * @blk_key: Pointer to the blk_crypto_key to initialize. 310 * @raw_key: Pointer to the raw key. Must be the correct length for the chosen 311 * @crypto_mode; see blk_crypto_modes[]. 312 * @crypto_mode: identifier for the encryption algorithm to use 313 * @dun_bytes: number of bytes that will be used to specify the DUN when this 314 * key is used 315 * @data_unit_size: the data unit size to use for en/decryption 316 * 317 * Return: 0 on success, -errno on failure. The caller is responsible for 318 * zeroizing both blk_key and raw_key when done with them. 319 */ 320int blk_crypto_init_key(struct blk_crypto_key *blk_key, const u8 *raw_key, 321 enum blk_crypto_mode_num crypto_mode, 322 unsigned int dun_bytes, 323 unsigned int data_unit_size) 324{ 325 const struct blk_crypto_mode *mode; 326 327 memset(blk_key, 0, sizeof(*blk_key)); 328 329 if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes)) 330 return -EINVAL; 331 332 mode = &blk_crypto_modes[crypto_mode]; 333 if (mode->keysize == 0) 334 return -EINVAL; 335 336 if (dun_bytes == 0 || dun_bytes > mode->ivsize) 337 return -EINVAL; 338 339 if (!is_power_of_2(data_unit_size)) 340 return -EINVAL; 341 342 blk_key->crypto_cfg.crypto_mode = crypto_mode; 343 blk_key->crypto_cfg.dun_bytes = dun_bytes; 344 blk_key->crypto_cfg.data_unit_size = data_unit_size; 345 blk_key->data_unit_size_bits = ilog2(data_unit_size); 346 blk_key->size = mode->keysize; 347 memcpy(blk_key->raw, raw_key, mode->keysize); 348 349 return 0; 350} 351 352/* 353 * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the 354 * request queue it's submitted to supports inline crypto, or the 355 * blk-crypto-fallback is enabled and supports the cfg). 356 */ 357bool blk_crypto_config_supported(struct request_queue *q, 358 const struct blk_crypto_config *cfg) 359{ 360 return IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) || 361 blk_ksm_crypto_cfg_supported(q->ksm, cfg); 362} 363 364/** 365 * blk_crypto_start_using_key() - Start using a blk_crypto_key on a device 366 * @key: A key to use on the device 367 * @q: the request queue for the device 368 * 369 * Upper layers must call this function to ensure that either the hardware 370 * supports the key's crypto settings, or the crypto API fallback has transforms 371 * for the needed mode allocated and ready to go. This function may allocate 372 * an skcipher, and *should not* be called from the data path, since that might 373 * cause a deadlock 374 * 375 * Return: 0 on success; -ENOPKG if the hardware doesn't support the key and 376 * blk-crypto-fallback is either disabled or the needed algorithm 377 * is disabled in the crypto API; or another -errno code. 378 */ 379int blk_crypto_start_using_key(const struct blk_crypto_key *key, 380 struct request_queue *q) 381{ 382 if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg)) 383 return 0; 384 return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode); 385} 386 387/** 388 * blk_crypto_evict_key() - Evict a blk_crypto_key from a request_queue 389 * @q: a request_queue on which I/O using the key may have been done 390 * @key: the key to evict 391 * 392 * For a given request_queue, this function removes the given blk_crypto_key 393 * from the keyslot management structures and evicts it from any underlying 394 * hardware keyslot(s) or blk-crypto-fallback keyslot it may have been 395 * programmed into. 396 * 397 * Upper layers must call this before freeing the blk_crypto_key. It must be 398 * called for every request_queue the key may have been used on. The key must 399 * no longer be in use by any I/O when this function is called. 400 * 401 * Context: May sleep. 402 */ 403void blk_crypto_evict_key(struct request_queue *q, 404 const struct blk_crypto_key *key) 405{ 406 int err; 407 408 if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg)) 409 err = blk_ksm_evict_key(q->ksm, key); 410 else 411 err = blk_crypto_fallback_evict_key(key); 412 /* 413 * An error can only occur here if the key failed to be evicted from a 414 * keyslot (due to a hardware or driver issue) or is allegedly still in 415 * use by I/O (due to a kernel bug). Even in these cases, the key is 416 * still unlinked from the keyslot management structures, and the caller 417 * is allowed and expected to free it right away. There's nothing 418 * callers can do to handle errors, so just log them and return void. 419 */ 420 if (err) 421 pr_warn_ratelimited("error %d evicting key\n", err); 422} 423