1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 8 * - July2000 9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 10 */ 11 12/* 13 * This handles all read/write requests to block devices 14 */ 15#include <linux/kernel.h> 16#include <linux/module.h> 17#include <linux/backing-dev.h> 18#include <linux/bio.h> 19#include <linux/blkdev.h> 20#include <linux/blk-mq.h> 21#include <linux/blk-pm.h> 22#include <linux/highmem.h> 23#include <linux/mm.h> 24#include <linux/pagemap.h> 25#include <linux/kernel_stat.h> 26#include <linux/string.h> 27#include <linux/init.h> 28#include <linux/completion.h> 29#include <linux/slab.h> 30#include <linux/swap.h> 31#include <linux/writeback.h> 32#include <linux/task_io_accounting_ops.h> 33#include <linux/fault-inject.h> 34#include <linux/list_sort.h> 35#include <linux/delay.h> 36#include <linux/ratelimit.h> 37#include <linux/pm_runtime.h> 38#include <linux/blk-cgroup.h> 39#include <linux/t10-pi.h> 40#include <linux/debugfs.h> 41#include <linux/bpf.h> 42#include <linux/psi.h> 43#include <linux/sched/sysctl.h> 44#include <linux/blk-crypto.h> 45 46#define CREATE_TRACE_POINTS 47#include <trace/events/block.h> 48 49#include "blk.h" 50#include "blk-mq.h" 51#include "blk-mq-sched.h" 52#include "blk-pm.h" 53#include "blk-rq-qos.h" 54 55struct dentry *blk_debugfs_root; 56 57EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 58EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 59EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 60EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 61EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 62 63DEFINE_IDA(blk_queue_ida); 64 65/* 66 * For queue allocation 67 */ 68struct kmem_cache *blk_requestq_cachep; 69 70/* 71 * Controlling structure to kblockd 72 */ 73static struct workqueue_struct *kblockd_workqueue; 74 75/** 76 * blk_queue_flag_set - atomically set a queue flag 77 * @flag: flag to be set 78 * @q: request queue 79 */ 80void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 81{ 82 set_bit(flag, &q->queue_flags); 83} 84EXPORT_SYMBOL(blk_queue_flag_set); 85 86/** 87 * blk_queue_flag_clear - atomically clear a queue flag 88 * @flag: flag to be cleared 89 * @q: request queue 90 */ 91void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 92{ 93 clear_bit(flag, &q->queue_flags); 94} 95EXPORT_SYMBOL(blk_queue_flag_clear); 96 97/** 98 * blk_queue_flag_test_and_set - atomically test and set a queue flag 99 * @flag: flag to be set 100 * @q: request queue 101 * 102 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 103 * the flag was already set. 104 */ 105bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 106{ 107 return test_and_set_bit(flag, &q->queue_flags); 108} 109EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 110 111void blk_rq_init(struct request_queue *q, struct request *rq) 112{ 113 memset(rq, 0, sizeof(*rq)); 114 115 INIT_LIST_HEAD(&rq->queuelist); 116 rq->q = q; 117 rq->__sector = (sector_t) -1; 118 INIT_HLIST_NODE(&rq->hash); 119 RB_CLEAR_NODE(&rq->rb_node); 120 rq->tag = BLK_MQ_NO_TAG; 121 rq->internal_tag = BLK_MQ_NO_TAG; 122 rq->start_time_ns = ktime_get_ns(); 123 rq->part = NULL; 124 blk_crypto_rq_set_defaults(rq); 125} 126EXPORT_SYMBOL(blk_rq_init); 127 128#define REQ_OP_NAME(name) [REQ_OP_##name] = #name 129static const char *const blk_op_name[] = { 130 REQ_OP_NAME(READ), 131 REQ_OP_NAME(WRITE), 132 REQ_OP_NAME(FLUSH), 133 REQ_OP_NAME(DISCARD), 134 REQ_OP_NAME(SECURE_ERASE), 135 REQ_OP_NAME(ZONE_RESET), 136 REQ_OP_NAME(ZONE_RESET_ALL), 137 REQ_OP_NAME(ZONE_OPEN), 138 REQ_OP_NAME(ZONE_CLOSE), 139 REQ_OP_NAME(ZONE_FINISH), 140 REQ_OP_NAME(ZONE_APPEND), 141 REQ_OP_NAME(WRITE_SAME), 142 REQ_OP_NAME(WRITE_ZEROES), 143 REQ_OP_NAME(SCSI_IN), 144 REQ_OP_NAME(SCSI_OUT), 145 REQ_OP_NAME(DRV_IN), 146 REQ_OP_NAME(DRV_OUT), 147}; 148#undef REQ_OP_NAME 149 150/** 151 * blk_op_str - Return string XXX in the REQ_OP_XXX. 152 * @op: REQ_OP_XXX. 153 * 154 * Description: Centralize block layer function to convert REQ_OP_XXX into 155 * string format. Useful in the debugging and tracing bio or request. For 156 * invalid REQ_OP_XXX it returns string "UNKNOWN". 157 */ 158inline const char *blk_op_str(unsigned int op) 159{ 160 const char *op_str = "UNKNOWN"; 161 162 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op]) 163 op_str = blk_op_name[op]; 164 165 return op_str; 166} 167EXPORT_SYMBOL_GPL(blk_op_str); 168 169static const struct { 170 int errno; 171 const char *name; 172} blk_errors[] = { 173 [BLK_STS_OK] = { 0, "" }, 174 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 175 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 176 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 177 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 178 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 179 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 180 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 181 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 182 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 183 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 184 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 185 186 /* device mapper special case, should not leak out: */ 187 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 188 189 /* zone device specific errors */ 190 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" }, 191 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" }, 192 193 /* everything else not covered above: */ 194 [BLK_STS_IOERR] = { -EIO, "I/O" }, 195}; 196 197blk_status_t errno_to_blk_status(int errno) 198{ 199 int i; 200 201 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 202 if (blk_errors[i].errno == errno) 203 return (__force blk_status_t)i; 204 } 205 206 return BLK_STS_IOERR; 207} 208EXPORT_SYMBOL_GPL(errno_to_blk_status); 209 210int blk_status_to_errno(blk_status_t status) 211{ 212 int idx = (__force int)status; 213 214 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 215 return -EIO; 216 return blk_errors[idx].errno; 217} 218EXPORT_SYMBOL_GPL(blk_status_to_errno); 219 220static void print_req_error(struct request *req, blk_status_t status, 221 const char *caller) 222{ 223 int idx = (__force int)status; 224 225 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 226 return; 227 228 printk_ratelimited(KERN_ERR 229 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 230 "phys_seg %u prio class %u\n", 231 caller, blk_errors[idx].name, 232 req->rq_disk ? req->rq_disk->disk_name : "?", 233 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)), 234 req->cmd_flags & ~REQ_OP_MASK, 235 req->nr_phys_segments, 236 IOPRIO_PRIO_CLASS(req->ioprio)); 237} 238 239static void req_bio_endio(struct request *rq, struct bio *bio, 240 unsigned int nbytes, blk_status_t error) 241{ 242 if (error) 243 bio->bi_status = error; 244 245 if (unlikely(rq->rq_flags & RQF_QUIET)) 246 bio_set_flag(bio, BIO_QUIET); 247 248 bio_advance(bio, nbytes); 249 250 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) { 251 /* 252 * Partial zone append completions cannot be supported as the 253 * BIO fragments may end up not being written sequentially. 254 */ 255 if (bio->bi_iter.bi_size) 256 bio->bi_status = BLK_STS_IOERR; 257 else 258 bio->bi_iter.bi_sector = rq->__sector; 259 } 260 261 /* don't actually finish bio if it's part of flush sequence */ 262 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 263 bio_endio(bio); 264} 265 266void blk_dump_rq_flags(struct request *rq, char *msg) 267{ 268 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 269 rq->rq_disk ? rq->rq_disk->disk_name : "?", 270 (unsigned long long) rq->cmd_flags); 271 272 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 273 (unsigned long long)blk_rq_pos(rq), 274 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 275 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 276 rq->bio, rq->biotail, blk_rq_bytes(rq)); 277} 278EXPORT_SYMBOL(blk_dump_rq_flags); 279 280/** 281 * blk_sync_queue - cancel any pending callbacks on a queue 282 * @q: the queue 283 * 284 * Description: 285 * The block layer may perform asynchronous callback activity 286 * on a queue, such as calling the unplug function after a timeout. 287 * A block device may call blk_sync_queue to ensure that any 288 * such activity is cancelled, thus allowing it to release resources 289 * that the callbacks might use. The caller must already have made sure 290 * that its ->submit_bio will not re-add plugging prior to calling 291 * this function. 292 * 293 * This function does not cancel any asynchronous activity arising 294 * out of elevator or throttling code. That would require elevator_exit() 295 * and blkcg_exit_queue() to be called with queue lock initialized. 296 * 297 */ 298void blk_sync_queue(struct request_queue *q) 299{ 300 del_timer_sync(&q->timeout); 301 cancel_work_sync(&q->timeout_work); 302} 303EXPORT_SYMBOL(blk_sync_queue); 304 305/** 306 * blk_set_pm_only - increment pm_only counter 307 * @q: request queue pointer 308 */ 309void blk_set_pm_only(struct request_queue *q) 310{ 311 atomic_inc(&q->pm_only); 312} 313EXPORT_SYMBOL_GPL(blk_set_pm_only); 314 315void blk_clear_pm_only(struct request_queue *q) 316{ 317 int pm_only; 318 319 pm_only = atomic_dec_return(&q->pm_only); 320 WARN_ON_ONCE(pm_only < 0); 321 if (pm_only == 0) 322 wake_up_all(&q->mq_freeze_wq); 323} 324EXPORT_SYMBOL_GPL(blk_clear_pm_only); 325 326/** 327 * blk_put_queue - decrement the request_queue refcount 328 * @q: the request_queue structure to decrement the refcount for 329 * 330 * Decrements the refcount of the request_queue kobject. When this reaches 0 331 * we'll have blk_release_queue() called. 332 * 333 * Context: Any context, but the last reference must not be dropped from 334 * atomic context. 335 */ 336void blk_put_queue(struct request_queue *q) 337{ 338 kobject_put(&q->kobj); 339} 340EXPORT_SYMBOL(blk_put_queue); 341 342void blk_set_queue_dying(struct request_queue *q) 343{ 344 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 345 346 /* 347 * When queue DYING flag is set, we need to block new req 348 * entering queue, so we call blk_freeze_queue_start() to 349 * prevent I/O from crossing blk_queue_enter(). 350 */ 351 blk_freeze_queue_start(q); 352 353 if (queue_is_mq(q)) 354 blk_mq_wake_waiters(q); 355 356 /* Make blk_queue_enter() reexamine the DYING flag. */ 357 wake_up_all(&q->mq_freeze_wq); 358} 359EXPORT_SYMBOL_GPL(blk_set_queue_dying); 360 361/** 362 * blk_cleanup_queue - shutdown a request queue 363 * @q: request queue to shutdown 364 * 365 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 366 * put it. All future requests will be failed immediately with -ENODEV. 367 * 368 * Context: can sleep 369 */ 370void blk_cleanup_queue(struct request_queue *q) 371{ 372 /* cannot be called from atomic context */ 373 might_sleep(); 374 375 WARN_ON_ONCE(blk_queue_registered(q)); 376 377 /* mark @q DYING, no new request or merges will be allowed afterwards */ 378 blk_set_queue_dying(q); 379 380 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q); 381 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 382 383 /* 384 * Drain all requests queued before DYING marking. Set DEAD flag to 385 * prevent that blk_mq_run_hw_queues() accesses the hardware queues 386 * after draining finished. 387 */ 388 blk_freeze_queue(q); 389 390 rq_qos_exit(q); 391 392 blk_queue_flag_set(QUEUE_FLAG_DEAD, q); 393 394 /* for synchronous bio-based driver finish in-flight integrity i/o */ 395 blk_flush_integrity(); 396 397 /* @q won't process any more request, flush async actions */ 398 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 399 blk_sync_queue(q); 400 if (queue_is_mq(q)) { 401 blk_mq_cancel_work_sync(q); 402 blk_mq_exit_queue(q); 403 } 404 405 /* 406 * In theory, request pool of sched_tags belongs to request queue. 407 * However, the current implementation requires tag_set for freeing 408 * requests, so free the pool now. 409 * 410 * Queue has become frozen, there can't be any in-queue requests, so 411 * it is safe to free requests now. 412 */ 413 mutex_lock(&q->sysfs_lock); 414 if (q->elevator) 415 blk_mq_sched_free_requests(q); 416 mutex_unlock(&q->sysfs_lock); 417 418 /* @q is and will stay empty, shutdown and put */ 419 blk_put_queue(q); 420} 421EXPORT_SYMBOL(blk_cleanup_queue); 422 423/** 424 * blk_queue_enter() - try to increase q->q_usage_counter 425 * @q: request queue pointer 426 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM 427 */ 428int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 429{ 430 const bool pm = flags & BLK_MQ_REQ_PM; 431 432 while (true) { 433 bool success = false; 434 435 rcu_read_lock(); 436 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 437 /* 438 * The code that increments the pm_only counter is 439 * responsible for ensuring that that counter is 440 * globally visible before the queue is unfrozen. 441 */ 442 if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) || 443 !blk_queue_pm_only(q)) { 444 success = true; 445 } else { 446 percpu_ref_put(&q->q_usage_counter); 447 } 448 } 449 rcu_read_unlock(); 450 451 if (success) 452 return 0; 453 454 if (flags & BLK_MQ_REQ_NOWAIT) 455 return -EBUSY; 456 457 /* 458 * read pair of barrier in blk_freeze_queue_start(), 459 * we need to order reading __PERCPU_REF_DEAD flag of 460 * .q_usage_counter and reading .mq_freeze_depth or 461 * queue dying flag, otherwise the following wait may 462 * never return if the two reads are reordered. 463 */ 464 smp_rmb(); 465 466 wait_event(q->mq_freeze_wq, 467 (!q->mq_freeze_depth && 468 blk_pm_resume_queue(pm, q)) || 469 blk_queue_dying(q)); 470 if (blk_queue_dying(q)) 471 return -ENODEV; 472 } 473} 474 475static inline int bio_queue_enter(struct bio *bio) 476{ 477 struct request_queue *q = bio->bi_disk->queue; 478 bool nowait = bio->bi_opf & REQ_NOWAIT; 479 int ret; 480 481 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0); 482 if (unlikely(ret)) { 483 if (nowait && !blk_queue_dying(q)) 484 bio_wouldblock_error(bio); 485 else 486 bio_io_error(bio); 487 } 488 489 return ret; 490} 491 492void blk_queue_exit(struct request_queue *q) 493{ 494 percpu_ref_put(&q->q_usage_counter); 495} 496 497static void blk_queue_usage_counter_release(struct percpu_ref *ref) 498{ 499 struct request_queue *q = 500 container_of(ref, struct request_queue, q_usage_counter); 501 502 wake_up_all(&q->mq_freeze_wq); 503} 504 505static void blk_rq_timed_out_timer(struct timer_list *t) 506{ 507 struct request_queue *q = from_timer(q, t, timeout); 508 509 kblockd_schedule_work(&q->timeout_work); 510} 511 512static void blk_timeout_work(struct work_struct *work) 513{ 514} 515 516struct request_queue *blk_alloc_queue(int node_id) 517{ 518 struct request_queue *q; 519 int ret; 520 521 q = kmem_cache_alloc_node(blk_requestq_cachep, 522 GFP_KERNEL | __GFP_ZERO, node_id); 523 if (!q) 524 return NULL; 525 526 q->last_merge = NULL; 527 528 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL); 529 if (q->id < 0) 530 goto fail_q; 531 532 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 533 if (ret) 534 goto fail_id; 535 536 q->backing_dev_info = bdi_alloc(node_id); 537 if (!q->backing_dev_info) 538 goto fail_split; 539 540 q->stats = blk_alloc_queue_stats(); 541 if (!q->stats) 542 goto fail_stats; 543 544 q->node = node_id; 545 546 atomic_set(&q->nr_active_requests_shared_sbitmap, 0); 547 548 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 549 laptop_mode_timer_fn, 0); 550 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 551 INIT_WORK(&q->timeout_work, blk_timeout_work); 552 INIT_LIST_HEAD(&q->icq_list); 553#ifdef CONFIG_BLK_CGROUP 554 INIT_LIST_HEAD(&q->blkg_list); 555#endif 556 557 kobject_init(&q->kobj, &blk_queue_ktype); 558 559 mutex_init(&q->debugfs_mutex); 560 mutex_init(&q->sysfs_lock); 561 mutex_init(&q->sysfs_dir_lock); 562 spin_lock_init(&q->queue_lock); 563 564 init_waitqueue_head(&q->mq_freeze_wq); 565 mutex_init(&q->mq_freeze_lock); 566 567 /* 568 * Init percpu_ref in atomic mode so that it's faster to shutdown. 569 * See blk_register_queue() for details. 570 */ 571 if (percpu_ref_init(&q->q_usage_counter, 572 blk_queue_usage_counter_release, 573 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 574 goto fail_bdi; 575 576 if (blkcg_init_queue(q)) 577 goto fail_ref; 578 579 blk_queue_dma_alignment(q, 511); 580 blk_set_default_limits(&q->limits); 581 q->nr_requests = BLKDEV_MAX_RQ; 582 583 return q; 584 585fail_ref: 586 percpu_ref_exit(&q->q_usage_counter); 587fail_bdi: 588 blk_free_queue_stats(q->stats); 589fail_stats: 590 bdi_put(q->backing_dev_info); 591fail_split: 592 bioset_exit(&q->bio_split); 593fail_id: 594 ida_simple_remove(&blk_queue_ida, q->id); 595fail_q: 596 kmem_cache_free(blk_requestq_cachep, q); 597 return NULL; 598} 599EXPORT_SYMBOL(blk_alloc_queue); 600 601/** 602 * blk_get_queue - increment the request_queue refcount 603 * @q: the request_queue structure to increment the refcount for 604 * 605 * Increment the refcount of the request_queue kobject. 606 * 607 * Context: Any context. 608 */ 609bool blk_get_queue(struct request_queue *q) 610{ 611 if (likely(!blk_queue_dying(q))) { 612 __blk_get_queue(q); 613 return true; 614 } 615 616 return false; 617} 618EXPORT_SYMBOL(blk_get_queue); 619 620/** 621 * blk_get_request - allocate a request 622 * @q: request queue to allocate a request for 623 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 624 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 625 */ 626struct request *blk_get_request(struct request_queue *q, unsigned int op, 627 blk_mq_req_flags_t flags) 628{ 629 struct request *req; 630 631 WARN_ON_ONCE(op & REQ_NOWAIT); 632 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM)); 633 634 req = blk_mq_alloc_request(q, op, flags); 635 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 636 q->mq_ops->initialize_rq_fn(req); 637 638 return req; 639} 640EXPORT_SYMBOL(blk_get_request); 641 642void blk_put_request(struct request *req) 643{ 644 blk_mq_free_request(req); 645} 646EXPORT_SYMBOL(blk_put_request); 647 648static void handle_bad_sector(struct bio *bio, sector_t maxsector) 649{ 650 char b[BDEVNAME_SIZE]; 651 652 pr_info_ratelimited("attempt to access beyond end of device\n" 653 "%s: rw=%d, want=%llu, limit=%llu\n", 654 bio_devname(bio, b), bio->bi_opf, 655 bio_end_sector(bio), maxsector); 656} 657 658#ifdef CONFIG_FAIL_MAKE_REQUEST 659 660static DECLARE_FAULT_ATTR(fail_make_request); 661 662static int __init setup_fail_make_request(char *str) 663{ 664 return setup_fault_attr(&fail_make_request, str); 665} 666__setup("fail_make_request=", setup_fail_make_request); 667 668static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 669{ 670 return part->make_it_fail && should_fail(&fail_make_request, bytes); 671} 672 673static int __init fail_make_request_debugfs(void) 674{ 675 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 676 NULL, &fail_make_request); 677 678 return PTR_ERR_OR_ZERO(dir); 679} 680 681late_initcall(fail_make_request_debugfs); 682 683#else /* CONFIG_FAIL_MAKE_REQUEST */ 684 685static inline bool should_fail_request(struct hd_struct *part, 686 unsigned int bytes) 687{ 688 return false; 689} 690 691#endif /* CONFIG_FAIL_MAKE_REQUEST */ 692 693static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) 694{ 695 const int op = bio_op(bio); 696 697 if (part->policy && op_is_write(op)) { 698 char b[BDEVNAME_SIZE]; 699 700 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 701 return false; 702 pr_warn("Trying to write to read-only block-device %s (partno %d)\n", 703 bio_devname(bio, b), part->partno); 704 /* Older lvm-tools actually trigger this */ 705 return false; 706 } 707 708 return false; 709} 710 711static noinline int should_fail_bio(struct bio *bio) 712{ 713 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 714 return -EIO; 715 return 0; 716} 717ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 718 719/* 720 * Check whether this bio extends beyond the end of the device or partition. 721 * This may well happen - the kernel calls bread() without checking the size of 722 * the device, e.g., when mounting a file system. 723 */ 724static inline int bio_check_eod(struct bio *bio, sector_t maxsector) 725{ 726 unsigned int nr_sectors = bio_sectors(bio); 727 728 if (nr_sectors && maxsector && 729 (nr_sectors > maxsector || 730 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 731 handle_bad_sector(bio, maxsector); 732 return -EIO; 733 } 734 return 0; 735} 736 737/* 738 * Remap block n of partition p to block n+start(p) of the disk. 739 */ 740static inline int blk_partition_remap(struct bio *bio) 741{ 742 struct hd_struct *p; 743 int ret = -EIO; 744 745 rcu_read_lock(); 746 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 747 if (unlikely(!p)) 748 goto out; 749 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 750 goto out; 751 if (unlikely(bio_check_ro(bio, p))) 752 goto out; 753 754 if (bio_sectors(bio)) { 755 if (bio_check_eod(bio, part_nr_sects_read(p))) 756 goto out; 757 bio->bi_iter.bi_sector += p->start_sect; 758 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 759 bio->bi_iter.bi_sector - p->start_sect); 760 } 761 bio->bi_partno = 0; 762 ret = 0; 763out: 764 rcu_read_unlock(); 765 return ret; 766} 767 768/* 769 * Check write append to a zoned block device. 770 */ 771static inline blk_status_t blk_check_zone_append(struct request_queue *q, 772 struct bio *bio) 773{ 774 sector_t pos = bio->bi_iter.bi_sector; 775 int nr_sectors = bio_sectors(bio); 776 777 /* Only applicable to zoned block devices */ 778 if (!blk_queue_is_zoned(q)) 779 return BLK_STS_NOTSUPP; 780 781 /* The bio sector must point to the start of a sequential zone */ 782 if (pos & (blk_queue_zone_sectors(q) - 1) || 783 !blk_queue_zone_is_seq(q, pos)) 784 return BLK_STS_IOERR; 785 786 /* 787 * Not allowed to cross zone boundaries. Otherwise, the BIO will be 788 * split and could result in non-contiguous sectors being written in 789 * different zones. 790 */ 791 if (nr_sectors > q->limits.chunk_sectors) 792 return BLK_STS_IOERR; 793 794 /* Make sure the BIO is small enough and will not get split */ 795 if (nr_sectors > q->limits.max_zone_append_sectors) 796 return BLK_STS_IOERR; 797 798 bio->bi_opf |= REQ_NOMERGE; 799 800 return BLK_STS_OK; 801} 802 803static noinline_for_stack bool submit_bio_checks(struct bio *bio) 804{ 805 struct request_queue *q = bio->bi_disk->queue; 806 blk_status_t status = BLK_STS_IOERR; 807 struct blk_plug *plug; 808 809 might_sleep(); 810 811 plug = blk_mq_plug(q, bio); 812 if (plug && plug->nowait) 813 bio->bi_opf |= REQ_NOWAIT; 814 815 /* 816 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 817 * if queue does not support NOWAIT. 818 */ 819 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q)) 820 goto not_supported; 821 822 if (should_fail_bio(bio)) 823 goto end_io; 824 825 if (bio->bi_partno) { 826 if (unlikely(blk_partition_remap(bio))) 827 goto end_io; 828 } else { 829 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) 830 goto end_io; 831 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk)))) 832 goto end_io; 833 } 834 835 /* 836 * Filter flush bio's early so that bio based drivers without flush 837 * support don't have to worry about them. 838 */ 839 if (op_is_flush(bio->bi_opf) && 840 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 841 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 842 if (!bio_sectors(bio)) { 843 status = BLK_STS_OK; 844 goto end_io; 845 } 846 } 847 848 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 849 bio->bi_opf &= ~REQ_HIPRI; 850 851 switch (bio_op(bio)) { 852 case REQ_OP_DISCARD: 853 if (!blk_queue_discard(q)) 854 goto not_supported; 855 break; 856 case REQ_OP_SECURE_ERASE: 857 if (!blk_queue_secure_erase(q)) 858 goto not_supported; 859 break; 860 case REQ_OP_WRITE_SAME: 861 if (!q->limits.max_write_same_sectors) 862 goto not_supported; 863 break; 864 case REQ_OP_ZONE_APPEND: 865 status = blk_check_zone_append(q, bio); 866 if (status != BLK_STS_OK) 867 goto end_io; 868 break; 869 case REQ_OP_ZONE_RESET: 870 case REQ_OP_ZONE_OPEN: 871 case REQ_OP_ZONE_CLOSE: 872 case REQ_OP_ZONE_FINISH: 873 if (!blk_queue_is_zoned(q)) 874 goto not_supported; 875 break; 876 case REQ_OP_ZONE_RESET_ALL: 877 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q)) 878 goto not_supported; 879 break; 880 case REQ_OP_WRITE_ZEROES: 881 if (!q->limits.max_write_zeroes_sectors) 882 goto not_supported; 883 break; 884 default: 885 break; 886 } 887 888 /* 889 * Various block parts want %current->io_context, so allocate it up 890 * front rather than dealing with lots of pain to allocate it only 891 * where needed. This may fail and the block layer knows how to live 892 * with it. 893 */ 894 if (unlikely(!current->io_context)) 895 create_task_io_context(current, GFP_ATOMIC, q->node); 896 897 if (blk_throtl_bio(bio)) 898 return false; 899 900 blk_cgroup_bio_start(bio); 901 blkcg_bio_issue_init(bio); 902 903 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 904 trace_block_bio_queue(q, bio); 905 /* Now that enqueuing has been traced, we need to trace 906 * completion as well. 907 */ 908 bio_set_flag(bio, BIO_TRACE_COMPLETION); 909 } 910 return true; 911 912not_supported: 913 status = BLK_STS_NOTSUPP; 914end_io: 915 bio->bi_status = status; 916 bio_endio(bio); 917 return false; 918} 919 920static blk_qc_t __submit_bio(struct bio *bio) 921{ 922 struct gendisk *disk = bio->bi_disk; 923 blk_qc_t ret = BLK_QC_T_NONE; 924 925 if (blk_crypto_bio_prep(&bio)) { 926 if (!disk->fops->submit_bio) 927 return blk_mq_submit_bio(bio); 928 ret = disk->fops->submit_bio(bio); 929 } 930 blk_queue_exit(disk->queue); 931 return ret; 932} 933 934/* 935 * The loop in this function may be a bit non-obvious, and so deserves some 936 * explanation: 937 * 938 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure 939 * that), so we have a list with a single bio. 940 * - We pretend that we have just taken it off a longer list, so we assign 941 * bio_list to a pointer to the bio_list_on_stack, thus initialising the 942 * bio_list of new bios to be added. ->submit_bio() may indeed add some more 943 * bios through a recursive call to submit_bio_noacct. If it did, we find a 944 * non-NULL value in bio_list and re-enter the loop from the top. 945 * - In this case we really did just take the bio of the top of the list (no 946 * pretending) and so remove it from bio_list, and call into ->submit_bio() 947 * again. 948 * 949 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio. 950 * bio_list_on_stack[1] contains bios that were submitted before the current 951 * ->submit_bio_bio, but that haven't been processed yet. 952 */ 953static blk_qc_t __submit_bio_noacct(struct bio *bio) 954{ 955 struct bio_list bio_list_on_stack[2]; 956 blk_qc_t ret = BLK_QC_T_NONE; 957 958 BUG_ON(bio->bi_next); 959 960 bio_list_init(&bio_list_on_stack[0]); 961 current->bio_list = bio_list_on_stack; 962 963 do { 964 struct request_queue *q = bio->bi_disk->queue; 965 struct bio_list lower, same; 966 967 if (unlikely(bio_queue_enter(bio) != 0)) 968 continue; 969 970 /* 971 * Create a fresh bio_list for all subordinate requests. 972 */ 973 bio_list_on_stack[1] = bio_list_on_stack[0]; 974 bio_list_init(&bio_list_on_stack[0]); 975 976 ret = __submit_bio(bio); 977 978 /* 979 * Sort new bios into those for a lower level and those for the 980 * same level. 981 */ 982 bio_list_init(&lower); 983 bio_list_init(&same); 984 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 985 if (q == bio->bi_disk->queue) 986 bio_list_add(&same, bio); 987 else 988 bio_list_add(&lower, bio); 989 990 /* 991 * Now assemble so we handle the lowest level first. 992 */ 993 bio_list_merge(&bio_list_on_stack[0], &lower); 994 bio_list_merge(&bio_list_on_stack[0], &same); 995 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 996 } while ((bio = bio_list_pop(&bio_list_on_stack[0]))); 997 998 current->bio_list = NULL; 999 return ret; 1000} 1001 1002static blk_qc_t __submit_bio_noacct_mq(struct bio *bio) 1003{ 1004 struct bio_list bio_list[2] = { }; 1005 blk_qc_t ret = BLK_QC_T_NONE; 1006 1007 current->bio_list = bio_list; 1008 1009 do { 1010 struct gendisk *disk = bio->bi_disk; 1011 1012 if (unlikely(bio_queue_enter(bio) != 0)) 1013 continue; 1014 1015 if (!blk_crypto_bio_prep(&bio)) { 1016 blk_queue_exit(disk->queue); 1017 ret = BLK_QC_T_NONE; 1018 continue; 1019 } 1020 1021 ret = blk_mq_submit_bio(bio); 1022 } while ((bio = bio_list_pop(&bio_list[0]))); 1023 1024 current->bio_list = NULL; 1025 return ret; 1026} 1027 1028/** 1029 * submit_bio_noacct - re-submit a bio to the block device layer for I/O 1030 * @bio: The bio describing the location in memory and on the device. 1031 * 1032 * This is a version of submit_bio() that shall only be used for I/O that is 1033 * resubmitted to lower level drivers by stacking block drivers. All file 1034 * systems and other upper level users of the block layer should use 1035 * submit_bio() instead. 1036 */ 1037blk_qc_t submit_bio_noacct(struct bio *bio) 1038{ 1039 if (!submit_bio_checks(bio)) 1040 return BLK_QC_T_NONE; 1041 1042 /* 1043 * We only want one ->submit_bio to be active at a time, else stack 1044 * usage with stacked devices could be a problem. Use current->bio_list 1045 * to collect a list of requests submited by a ->submit_bio method while 1046 * it is active, and then process them after it returned. 1047 */ 1048 if (current->bio_list) { 1049 bio_list_add(¤t->bio_list[0], bio); 1050 return BLK_QC_T_NONE; 1051 } 1052 1053 if (!bio->bi_disk->fops->submit_bio) 1054 return __submit_bio_noacct_mq(bio); 1055 return __submit_bio_noacct(bio); 1056} 1057EXPORT_SYMBOL(submit_bio_noacct); 1058 1059/** 1060 * submit_bio - submit a bio to the block device layer for I/O 1061 * @bio: The &struct bio which describes the I/O 1062 * 1063 * submit_bio() is used to submit I/O requests to block devices. It is passed a 1064 * fully set up &struct bio that describes the I/O that needs to be done. The 1065 * bio will be send to the device described by the bi_disk and bi_partno fields. 1066 * 1067 * The success/failure status of the request, along with notification of 1068 * completion, is delivered asynchronously through the ->bi_end_io() callback 1069 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has 1070 * been called. 1071 */ 1072blk_qc_t submit_bio(struct bio *bio) 1073{ 1074 if (blkcg_punt_bio_submit(bio)) 1075 return BLK_QC_T_NONE; 1076 1077 /* 1078 * If it's a regular read/write or a barrier with data attached, 1079 * go through the normal accounting stuff before submission. 1080 */ 1081 if (bio_has_data(bio)) { 1082 unsigned int count; 1083 1084 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1085 count = queue_logical_block_size(bio->bi_disk->queue) >> 9; 1086 else 1087 count = bio_sectors(bio); 1088 1089 if (op_is_write(bio_op(bio))) { 1090 count_vm_events(PGPGOUT, count); 1091 } else { 1092 task_io_account_read(bio->bi_iter.bi_size); 1093 count_vm_events(PGPGIN, count); 1094 } 1095 } 1096 1097 /* 1098 * If we're reading data that is part of the userspace workingset, count 1099 * submission time as memory stall. When the device is congested, or 1100 * the submitting cgroup IO-throttled, submission can be a significant 1101 * part of overall IO time. 1102 */ 1103 if (unlikely(bio_op(bio) == REQ_OP_READ && 1104 bio_flagged(bio, BIO_WORKINGSET))) { 1105 unsigned long pflags; 1106 blk_qc_t ret; 1107 1108 psi_memstall_enter(&pflags); 1109 ret = submit_bio_noacct(bio); 1110 psi_memstall_leave(&pflags); 1111 1112 return ret; 1113 } 1114 1115 return submit_bio_noacct(bio); 1116} 1117EXPORT_SYMBOL(submit_bio); 1118 1119/** 1120 * blk_cloned_rq_check_limits - Helper function to check a cloned request 1121 * for the new queue limits 1122 * @q: the queue 1123 * @rq: the request being checked 1124 * 1125 * Description: 1126 * @rq may have been made based on weaker limitations of upper-level queues 1127 * in request stacking drivers, and it may violate the limitation of @q. 1128 * Since the block layer and the underlying device driver trust @rq 1129 * after it is inserted to @q, it should be checked against @q before 1130 * the insertion using this generic function. 1131 * 1132 * Request stacking drivers like request-based dm may change the queue 1133 * limits when retrying requests on other queues. Those requests need 1134 * to be checked against the new queue limits again during dispatch. 1135 */ 1136static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q, 1137 struct request *rq) 1138{ 1139 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 1140 1141 if (blk_rq_sectors(rq) > max_sectors) { 1142 /* 1143 * SCSI device does not have a good way to return if 1144 * Write Same/Zero is actually supported. If a device rejects 1145 * a non-read/write command (discard, write same,etc.) the 1146 * low-level device driver will set the relevant queue limit to 1147 * 0 to prevent blk-lib from issuing more of the offending 1148 * operations. Commands queued prior to the queue limit being 1149 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 1150 * errors being propagated to upper layers. 1151 */ 1152 if (max_sectors == 0) 1153 return BLK_STS_NOTSUPP; 1154 1155 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 1156 __func__, blk_rq_sectors(rq), max_sectors); 1157 return BLK_STS_IOERR; 1158 } 1159 1160 /* 1161 * queue's settings related to segment counting like q->bounce_pfn 1162 * may differ from that of other stacking queues. 1163 * Recalculate it to check the request correctly on this queue's 1164 * limitation. 1165 */ 1166 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 1167 if (rq->nr_phys_segments > queue_max_segments(q)) { 1168 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 1169 __func__, rq->nr_phys_segments, queue_max_segments(q)); 1170 return BLK_STS_IOERR; 1171 } 1172 1173 return BLK_STS_OK; 1174} 1175 1176/** 1177 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1178 * @q: the queue to submit the request 1179 * @rq: the request being queued 1180 */ 1181blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1182{ 1183 blk_status_t ret; 1184 1185 ret = blk_cloned_rq_check_limits(q, rq); 1186 if (ret != BLK_STS_OK) 1187 return ret; 1188 1189 if (rq->rq_disk && 1190 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1191 return BLK_STS_IOERR; 1192 1193 if (blk_crypto_insert_cloned_request(rq)) 1194 return BLK_STS_IOERR; 1195 1196 if (blk_queue_io_stat(q)) 1197 blk_account_io_start(rq); 1198 1199 /* 1200 * Since we have a scheduler attached on the top device, 1201 * bypass a potential scheduler on the bottom device for 1202 * insert. 1203 */ 1204 return blk_mq_request_issue_directly(rq, true); 1205} 1206EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1207 1208/** 1209 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1210 * @rq: request to examine 1211 * 1212 * Description: 1213 * A request could be merge of IOs which require different failure 1214 * handling. This function determines the number of bytes which 1215 * can be failed from the beginning of the request without 1216 * crossing into area which need to be retried further. 1217 * 1218 * Return: 1219 * The number of bytes to fail. 1220 */ 1221unsigned int blk_rq_err_bytes(const struct request *rq) 1222{ 1223 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1224 unsigned int bytes = 0; 1225 struct bio *bio; 1226 1227 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 1228 return blk_rq_bytes(rq); 1229 1230 /* 1231 * Currently the only 'mixing' which can happen is between 1232 * different fastfail types. We can safely fail portions 1233 * which have all the failfast bits that the first one has - 1234 * the ones which are at least as eager to fail as the first 1235 * one. 1236 */ 1237 for (bio = rq->bio; bio; bio = bio->bi_next) { 1238 if ((bio->bi_opf & ff) != ff) 1239 break; 1240 bytes += bio->bi_iter.bi_size; 1241 } 1242 1243 /* this could lead to infinite loop */ 1244 BUG_ON(blk_rq_bytes(rq) && !bytes); 1245 return bytes; 1246} 1247EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1248 1249static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end) 1250{ 1251 unsigned long stamp; 1252again: 1253 stamp = READ_ONCE(part->stamp); 1254 if (unlikely(stamp != now)) { 1255 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) 1256 __part_stat_add(part, io_ticks, end ? now - stamp : 1); 1257 } 1258 if (part->partno) { 1259 part = &part_to_disk(part)->part0; 1260 goto again; 1261 } 1262} 1263 1264static void blk_account_io_completion(struct request *req, unsigned int bytes) 1265{ 1266 if (req->part && blk_do_io_stat(req)) { 1267 const int sgrp = op_stat_group(req_op(req)); 1268 struct hd_struct *part; 1269 1270 part_stat_lock(); 1271 part = req->part; 1272 part_stat_add(part, sectors[sgrp], bytes >> 9); 1273 part_stat_unlock(); 1274 } 1275} 1276 1277void blk_account_io_done(struct request *req, u64 now) 1278{ 1279 /* 1280 * Account IO completion. flush_rq isn't accounted as a 1281 * normal IO on queueing nor completion. Accounting the 1282 * containing request is enough. 1283 */ 1284 if (req->part && blk_do_io_stat(req) && 1285 !(req->rq_flags & RQF_FLUSH_SEQ)) { 1286 const int sgrp = op_stat_group(req_op(req)); 1287 struct hd_struct *part; 1288 1289 part_stat_lock(); 1290 part = req->part; 1291 1292 update_io_ticks(part, jiffies, true); 1293 part_stat_inc(part, ios[sgrp]); 1294 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns); 1295 part_stat_unlock(); 1296 1297 hd_struct_put(part); 1298 } 1299} 1300 1301void blk_account_io_start(struct request *rq) 1302{ 1303 if (!blk_do_io_stat(rq)) 1304 return; 1305 1306 rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 1307 1308 part_stat_lock(); 1309 update_io_ticks(rq->part, jiffies, false); 1310 part_stat_unlock(); 1311} 1312 1313static unsigned long __part_start_io_acct(struct hd_struct *part, 1314 unsigned int sectors, unsigned int op) 1315{ 1316 const int sgrp = op_stat_group(op); 1317 unsigned long now = READ_ONCE(jiffies); 1318 1319 part_stat_lock(); 1320 update_io_ticks(part, now, false); 1321 part_stat_inc(part, ios[sgrp]); 1322 part_stat_add(part, sectors[sgrp], sectors); 1323 part_stat_local_inc(part, in_flight[op_is_write(op)]); 1324 part_stat_unlock(); 1325 1326 return now; 1327} 1328 1329unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part, 1330 struct bio *bio) 1331{ 1332 *part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector); 1333 1334 return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio)); 1335} 1336EXPORT_SYMBOL_GPL(part_start_io_acct); 1337 1338unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1339 unsigned int op) 1340{ 1341 return __part_start_io_acct(&disk->part0, sectors, op); 1342} 1343EXPORT_SYMBOL(disk_start_io_acct); 1344 1345static void __part_end_io_acct(struct hd_struct *part, unsigned int op, 1346 unsigned long start_time) 1347{ 1348 const int sgrp = op_stat_group(op); 1349 unsigned long now = READ_ONCE(jiffies); 1350 unsigned long duration = now - start_time; 1351 1352 part_stat_lock(); 1353 update_io_ticks(part, now, true); 1354 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration)); 1355 part_stat_local_dec(part, in_flight[op_is_write(op)]); 1356 part_stat_unlock(); 1357} 1358 1359void part_end_io_acct(struct hd_struct *part, struct bio *bio, 1360 unsigned long start_time) 1361{ 1362 __part_end_io_acct(part, bio_op(bio), start_time); 1363 hd_struct_put(part); 1364} 1365EXPORT_SYMBOL_GPL(part_end_io_acct); 1366 1367void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1368 unsigned long start_time) 1369{ 1370 __part_end_io_acct(&disk->part0, op, start_time); 1371} 1372EXPORT_SYMBOL(disk_end_io_acct); 1373 1374/* 1375 * Steal bios from a request and add them to a bio list. 1376 * The request must not have been partially completed before. 1377 */ 1378void blk_steal_bios(struct bio_list *list, struct request *rq) 1379{ 1380 if (rq->bio) { 1381 if (list->tail) 1382 list->tail->bi_next = rq->bio; 1383 else 1384 list->head = rq->bio; 1385 list->tail = rq->biotail; 1386 1387 rq->bio = NULL; 1388 rq->biotail = NULL; 1389 } 1390 1391 rq->__data_len = 0; 1392} 1393EXPORT_SYMBOL_GPL(blk_steal_bios); 1394 1395/** 1396 * blk_update_request - Special helper function for request stacking drivers 1397 * @req: the request being processed 1398 * @error: block status code 1399 * @nr_bytes: number of bytes to complete @req 1400 * 1401 * Description: 1402 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1403 * the request structure even if @req doesn't have leftover. 1404 * If @req has leftover, sets it up for the next range of segments. 1405 * 1406 * This special helper function is only for request stacking drivers 1407 * (e.g. request-based dm) so that they can handle partial completion. 1408 * Actual device drivers should use blk_mq_end_request instead. 1409 * 1410 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1411 * %false return from this function. 1412 * 1413 * Note: 1414 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both 1415 * blk_rq_bytes() and in blk_update_request(). 1416 * 1417 * Return: 1418 * %false - this request doesn't have any more data 1419 * %true - this request has more data 1420 **/ 1421bool blk_update_request(struct request *req, blk_status_t error, 1422 unsigned int nr_bytes) 1423{ 1424 int total_bytes; 1425 1426 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 1427 1428 if (!req->bio) 1429 return false; 1430 1431#ifdef CONFIG_BLK_DEV_INTEGRITY 1432 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 1433 error == BLK_STS_OK) 1434 req->q->integrity.profile->complete_fn(req, nr_bytes); 1435#endif 1436 1437 /* 1438 * Upper layers may call blk_crypto_evict_key() anytime after the last 1439 * bio_endio(). Therefore, the keyslot must be released before that. 1440 */ 1441 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 1442 __blk_crypto_rq_put_keyslot(req); 1443 1444 if (unlikely(error && !blk_rq_is_passthrough(req) && 1445 !(req->rq_flags & RQF_QUIET))) 1446 print_req_error(req, error, __func__); 1447 1448 blk_account_io_completion(req, nr_bytes); 1449 1450 total_bytes = 0; 1451 while (req->bio) { 1452 struct bio *bio = req->bio; 1453 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 1454 1455 if (bio_bytes == bio->bi_iter.bi_size) 1456 req->bio = bio->bi_next; 1457 1458 /* Completion has already been traced */ 1459 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1460 req_bio_endio(req, bio, bio_bytes, error); 1461 1462 total_bytes += bio_bytes; 1463 nr_bytes -= bio_bytes; 1464 1465 if (!nr_bytes) 1466 break; 1467 } 1468 1469 /* 1470 * completely done 1471 */ 1472 if (!req->bio) { 1473 /* 1474 * Reset counters so that the request stacking driver 1475 * can find how many bytes remain in the request 1476 * later. 1477 */ 1478 req->__data_len = 0; 1479 return false; 1480 } 1481 1482 req->__data_len -= total_bytes; 1483 1484 /* update sector only for requests with clear definition of sector */ 1485 if (!blk_rq_is_passthrough(req)) 1486 req->__sector += total_bytes >> 9; 1487 1488 /* mixed attributes always follow the first bio */ 1489 if (req->rq_flags & RQF_MIXED_MERGE) { 1490 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1491 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1492 } 1493 1494 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1495 /* 1496 * If total number of sectors is less than the first segment 1497 * size, something has gone terribly wrong. 1498 */ 1499 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1500 blk_dump_rq_flags(req, "request botched"); 1501 req->__data_len = blk_rq_cur_bytes(req); 1502 } 1503 1504 /* recalculate the number of segments */ 1505 req->nr_phys_segments = blk_recalc_rq_segments(req); 1506 } 1507 1508 return true; 1509} 1510EXPORT_SYMBOL_GPL(blk_update_request); 1511 1512#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1513/** 1514 * rq_flush_dcache_pages - Helper function to flush all pages in a request 1515 * @rq: the request to be flushed 1516 * 1517 * Description: 1518 * Flush all pages in @rq. 1519 */ 1520void rq_flush_dcache_pages(struct request *rq) 1521{ 1522 struct req_iterator iter; 1523 struct bio_vec bvec; 1524 1525 rq_for_each_segment(bvec, rq, iter) 1526 flush_dcache_page(bvec.bv_page); 1527} 1528EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 1529#endif 1530 1531/** 1532 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 1533 * @q : the queue of the device being checked 1534 * 1535 * Description: 1536 * Check if underlying low-level drivers of a device are busy. 1537 * If the drivers want to export their busy state, they must set own 1538 * exporting function using blk_queue_lld_busy() first. 1539 * 1540 * Basically, this function is used only by request stacking drivers 1541 * to stop dispatching requests to underlying devices when underlying 1542 * devices are busy. This behavior helps more I/O merging on the queue 1543 * of the request stacking driver and prevents I/O throughput regression 1544 * on burst I/O load. 1545 * 1546 * Return: 1547 * 0 - Not busy (The request stacking driver should dispatch request) 1548 * 1 - Busy (The request stacking driver should stop dispatching request) 1549 */ 1550int blk_lld_busy(struct request_queue *q) 1551{ 1552 if (queue_is_mq(q) && q->mq_ops->busy) 1553 return q->mq_ops->busy(q); 1554 1555 return 0; 1556} 1557EXPORT_SYMBOL_GPL(blk_lld_busy); 1558 1559/** 1560 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 1561 * @rq: the clone request to be cleaned up 1562 * 1563 * Description: 1564 * Free all bios in @rq for a cloned request. 1565 */ 1566void blk_rq_unprep_clone(struct request *rq) 1567{ 1568 struct bio *bio; 1569 1570 while ((bio = rq->bio) != NULL) { 1571 rq->bio = bio->bi_next; 1572 1573 bio_put(bio); 1574 } 1575} 1576EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 1577 1578/** 1579 * blk_rq_prep_clone - Helper function to setup clone request 1580 * @rq: the request to be setup 1581 * @rq_src: original request to be cloned 1582 * @bs: bio_set that bios for clone are allocated from 1583 * @gfp_mask: memory allocation mask for bio 1584 * @bio_ctr: setup function to be called for each clone bio. 1585 * Returns %0 for success, non %0 for failure. 1586 * @data: private data to be passed to @bio_ctr 1587 * 1588 * Description: 1589 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 1590 * Also, pages which the original bios are pointing to are not copied 1591 * and the cloned bios just point same pages. 1592 * So cloned bios must be completed before original bios, which means 1593 * the caller must complete @rq before @rq_src. 1594 */ 1595int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 1596 struct bio_set *bs, gfp_t gfp_mask, 1597 int (*bio_ctr)(struct bio *, struct bio *, void *), 1598 void *data) 1599{ 1600 struct bio *bio, *bio_src; 1601 1602 if (!bs) 1603 bs = &fs_bio_set; 1604 1605 __rq_for_each_bio(bio_src, rq_src) { 1606 bio = bio_clone_fast(bio_src, gfp_mask, bs); 1607 if (!bio) 1608 goto free_and_out; 1609 1610 if (bio_ctr && bio_ctr(bio, bio_src, data)) 1611 goto free_and_out; 1612 1613 if (rq->bio) { 1614 rq->biotail->bi_next = bio; 1615 rq->biotail = bio; 1616 } else { 1617 rq->bio = rq->biotail = bio; 1618 } 1619 bio = NULL; 1620 } 1621 1622 /* Copy attributes of the original request to the clone request. */ 1623 rq->__sector = blk_rq_pos(rq_src); 1624 rq->__data_len = blk_rq_bytes(rq_src); 1625 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 1626 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 1627 rq->special_vec = rq_src->special_vec; 1628 } 1629 rq->nr_phys_segments = rq_src->nr_phys_segments; 1630 rq->ioprio = rq_src->ioprio; 1631 1632 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 1633 goto free_and_out; 1634 1635 return 0; 1636 1637free_and_out: 1638 if (bio) 1639 bio_put(bio); 1640 blk_rq_unprep_clone(rq); 1641 1642 return -ENOMEM; 1643} 1644EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 1645 1646int kblockd_schedule_work(struct work_struct *work) 1647{ 1648 return queue_work(kblockd_workqueue, work); 1649} 1650EXPORT_SYMBOL(kblockd_schedule_work); 1651 1652int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1653 unsigned long delay) 1654{ 1655 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1656} 1657EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1658 1659/** 1660 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1661 * @plug: The &struct blk_plug that needs to be initialized 1662 * 1663 * Description: 1664 * blk_start_plug() indicates to the block layer an intent by the caller 1665 * to submit multiple I/O requests in a batch. The block layer may use 1666 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1667 * is called. However, the block layer may choose to submit requests 1668 * before a call to blk_finish_plug() if the number of queued I/Os 1669 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1670 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1671 * the task schedules (see below). 1672 * 1673 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1674 * pending I/O should the task end up blocking between blk_start_plug() and 1675 * blk_finish_plug(). This is important from a performance perspective, but 1676 * also ensures that we don't deadlock. For instance, if the task is blocking 1677 * for a memory allocation, memory reclaim could end up wanting to free a 1678 * page belonging to that request that is currently residing in our private 1679 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1680 * this kind of deadlock. 1681 */ 1682void blk_start_plug(struct blk_plug *plug) 1683{ 1684 struct task_struct *tsk = current; 1685 1686 /* 1687 * If this is a nested plug, don't actually assign it. 1688 */ 1689 if (tsk->plug) 1690 return; 1691 1692 INIT_LIST_HEAD(&plug->mq_list); 1693 INIT_LIST_HEAD(&plug->cb_list); 1694 plug->rq_count = 0; 1695 plug->multiple_queues = false; 1696 plug->nowait = false; 1697 1698 /* 1699 * Store ordering should not be needed here, since a potential 1700 * preempt will imply a full memory barrier 1701 */ 1702 tsk->plug = plug; 1703} 1704EXPORT_SYMBOL(blk_start_plug); 1705 1706static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1707{ 1708 LIST_HEAD(callbacks); 1709 1710 while (!list_empty(&plug->cb_list)) { 1711 list_splice_init(&plug->cb_list, &callbacks); 1712 1713 while (!list_empty(&callbacks)) { 1714 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1715 struct blk_plug_cb, 1716 list); 1717 list_del(&cb->list); 1718 cb->callback(cb, from_schedule); 1719 } 1720 } 1721} 1722 1723struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1724 int size) 1725{ 1726 struct blk_plug *plug = current->plug; 1727 struct blk_plug_cb *cb; 1728 1729 if (!plug) 1730 return NULL; 1731 1732 list_for_each_entry(cb, &plug->cb_list, list) 1733 if (cb->callback == unplug && cb->data == data) 1734 return cb; 1735 1736 /* Not currently on the callback list */ 1737 BUG_ON(size < sizeof(*cb)); 1738 cb = kzalloc(size, GFP_ATOMIC); 1739 if (cb) { 1740 cb->data = data; 1741 cb->callback = unplug; 1742 list_add(&cb->list, &plug->cb_list); 1743 } 1744 return cb; 1745} 1746EXPORT_SYMBOL(blk_check_plugged); 1747 1748void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1749{ 1750 flush_plug_callbacks(plug, from_schedule); 1751 1752 if (!list_empty(&plug->mq_list)) 1753 blk_mq_flush_plug_list(plug, from_schedule); 1754} 1755 1756/** 1757 * blk_finish_plug - mark the end of a batch of submitted I/O 1758 * @plug: The &struct blk_plug passed to blk_start_plug() 1759 * 1760 * Description: 1761 * Indicate that a batch of I/O submissions is complete. This function 1762 * must be paired with an initial call to blk_start_plug(). The intent 1763 * is to allow the block layer to optimize I/O submission. See the 1764 * documentation for blk_start_plug() for more information. 1765 */ 1766void blk_finish_plug(struct blk_plug *plug) 1767{ 1768 if (plug != current->plug) 1769 return; 1770 blk_flush_plug_list(plug, false); 1771 1772 current->plug = NULL; 1773} 1774EXPORT_SYMBOL(blk_finish_plug); 1775 1776void blk_io_schedule(void) 1777{ 1778 /* Prevent hang_check timer from firing at us during very long I/O */ 1779 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; 1780 1781 if (timeout) 1782 io_schedule_timeout(timeout); 1783 else 1784 io_schedule(); 1785} 1786EXPORT_SYMBOL_GPL(blk_io_schedule); 1787 1788int __init blk_dev_init(void) 1789{ 1790 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1791 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1792 sizeof_field(struct request, cmd_flags)); 1793 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1794 sizeof_field(struct bio, bi_opf)); 1795 1796 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1797 kblockd_workqueue = alloc_workqueue("kblockd", 1798 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1799 if (!kblockd_workqueue) 1800 panic("Failed to create kblockd\n"); 1801 1802 blk_requestq_cachep = kmem_cache_create("request_queue", 1803 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1804 1805 blk_debugfs_root = debugfs_create_dir("block", NULL); 1806 1807 return 0; 1808} 1809