xref: /kernel/linux/linux-5.10/block/blk-core.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 *	-  July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/backing-dev.h>
18#include <linux/bio.h>
19#include <linux/blkdev.h>
20#include <linux/blk-mq.h>
21#include <linux/blk-pm.h>
22#include <linux/highmem.h>
23#include <linux/mm.h>
24#include <linux/pagemap.h>
25#include <linux/kernel_stat.h>
26#include <linux/string.h>
27#include <linux/init.h>
28#include <linux/completion.h>
29#include <linux/slab.h>
30#include <linux/swap.h>
31#include <linux/writeback.h>
32#include <linux/task_io_accounting_ops.h>
33#include <linux/fault-inject.h>
34#include <linux/list_sort.h>
35#include <linux/delay.h>
36#include <linux/ratelimit.h>
37#include <linux/pm_runtime.h>
38#include <linux/blk-cgroup.h>
39#include <linux/t10-pi.h>
40#include <linux/debugfs.h>
41#include <linux/bpf.h>
42#include <linux/psi.h>
43#include <linux/sched/sysctl.h>
44#include <linux/blk-crypto.h>
45
46#define CREATE_TRACE_POINTS
47#include <trace/events/block.h>
48
49#include "blk.h"
50#include "blk-mq.h"
51#include "blk-mq-sched.h"
52#include "blk-pm.h"
53#include "blk-rq-qos.h"
54
55struct dentry *blk_debugfs_root;
56
57EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
58EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
59EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
60EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
61EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
62
63DEFINE_IDA(blk_queue_ida);
64
65/*
66 * For queue allocation
67 */
68struct kmem_cache *blk_requestq_cachep;
69
70/*
71 * Controlling structure to kblockd
72 */
73static struct workqueue_struct *kblockd_workqueue;
74
75/**
76 * blk_queue_flag_set - atomically set a queue flag
77 * @flag: flag to be set
78 * @q: request queue
79 */
80void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81{
82	set_bit(flag, &q->queue_flags);
83}
84EXPORT_SYMBOL(blk_queue_flag_set);
85
86/**
87 * blk_queue_flag_clear - atomically clear a queue flag
88 * @flag: flag to be cleared
89 * @q: request queue
90 */
91void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92{
93	clear_bit(flag, &q->queue_flags);
94}
95EXPORT_SYMBOL(blk_queue_flag_clear);
96
97/**
98 * blk_queue_flag_test_and_set - atomically test and set a queue flag
99 * @flag: flag to be set
100 * @q: request queue
101 *
102 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
103 * the flag was already set.
104 */
105bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
106{
107	return test_and_set_bit(flag, &q->queue_flags);
108}
109EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
110
111void blk_rq_init(struct request_queue *q, struct request *rq)
112{
113	memset(rq, 0, sizeof(*rq));
114
115	INIT_LIST_HEAD(&rq->queuelist);
116	rq->q = q;
117	rq->__sector = (sector_t) -1;
118	INIT_HLIST_NODE(&rq->hash);
119	RB_CLEAR_NODE(&rq->rb_node);
120	rq->tag = BLK_MQ_NO_TAG;
121	rq->internal_tag = BLK_MQ_NO_TAG;
122	rq->start_time_ns = ktime_get_ns();
123	rq->part = NULL;
124	blk_crypto_rq_set_defaults(rq);
125}
126EXPORT_SYMBOL(blk_rq_init);
127
128#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
129static const char *const blk_op_name[] = {
130	REQ_OP_NAME(READ),
131	REQ_OP_NAME(WRITE),
132	REQ_OP_NAME(FLUSH),
133	REQ_OP_NAME(DISCARD),
134	REQ_OP_NAME(SECURE_ERASE),
135	REQ_OP_NAME(ZONE_RESET),
136	REQ_OP_NAME(ZONE_RESET_ALL),
137	REQ_OP_NAME(ZONE_OPEN),
138	REQ_OP_NAME(ZONE_CLOSE),
139	REQ_OP_NAME(ZONE_FINISH),
140	REQ_OP_NAME(ZONE_APPEND),
141	REQ_OP_NAME(WRITE_SAME),
142	REQ_OP_NAME(WRITE_ZEROES),
143	REQ_OP_NAME(SCSI_IN),
144	REQ_OP_NAME(SCSI_OUT),
145	REQ_OP_NAME(DRV_IN),
146	REQ_OP_NAME(DRV_OUT),
147};
148#undef REQ_OP_NAME
149
150/**
151 * blk_op_str - Return string XXX in the REQ_OP_XXX.
152 * @op: REQ_OP_XXX.
153 *
154 * Description: Centralize block layer function to convert REQ_OP_XXX into
155 * string format. Useful in the debugging and tracing bio or request. For
156 * invalid REQ_OP_XXX it returns string "UNKNOWN".
157 */
158inline const char *blk_op_str(unsigned int op)
159{
160	const char *op_str = "UNKNOWN";
161
162	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
163		op_str = blk_op_name[op];
164
165	return op_str;
166}
167EXPORT_SYMBOL_GPL(blk_op_str);
168
169static const struct {
170	int		errno;
171	const char	*name;
172} blk_errors[] = {
173	[BLK_STS_OK]		= { 0,		"" },
174	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
175	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
176	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
177	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
178	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
179	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
180	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
181	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
182	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
183	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
184	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
185
186	/* device mapper special case, should not leak out: */
187	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
188
189	/* zone device specific errors */
190	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
191	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
192
193	/* everything else not covered above: */
194	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
195};
196
197blk_status_t errno_to_blk_status(int errno)
198{
199	int i;
200
201	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
202		if (blk_errors[i].errno == errno)
203			return (__force blk_status_t)i;
204	}
205
206	return BLK_STS_IOERR;
207}
208EXPORT_SYMBOL_GPL(errno_to_blk_status);
209
210int blk_status_to_errno(blk_status_t status)
211{
212	int idx = (__force int)status;
213
214	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
215		return -EIO;
216	return blk_errors[idx].errno;
217}
218EXPORT_SYMBOL_GPL(blk_status_to_errno);
219
220static void print_req_error(struct request *req, blk_status_t status,
221		const char *caller)
222{
223	int idx = (__force int)status;
224
225	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
226		return;
227
228	printk_ratelimited(KERN_ERR
229		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
230		"phys_seg %u prio class %u\n",
231		caller, blk_errors[idx].name,
232		req->rq_disk ? req->rq_disk->disk_name : "?",
233		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
234		req->cmd_flags & ~REQ_OP_MASK,
235		req->nr_phys_segments,
236		IOPRIO_PRIO_CLASS(req->ioprio));
237}
238
239static void req_bio_endio(struct request *rq, struct bio *bio,
240			  unsigned int nbytes, blk_status_t error)
241{
242	if (error)
243		bio->bi_status = error;
244
245	if (unlikely(rq->rq_flags & RQF_QUIET))
246		bio_set_flag(bio, BIO_QUIET);
247
248	bio_advance(bio, nbytes);
249
250	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
251		/*
252		 * Partial zone append completions cannot be supported as the
253		 * BIO fragments may end up not being written sequentially.
254		 */
255		if (bio->bi_iter.bi_size)
256			bio->bi_status = BLK_STS_IOERR;
257		else
258			bio->bi_iter.bi_sector = rq->__sector;
259	}
260
261	/* don't actually finish bio if it's part of flush sequence */
262	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
263		bio_endio(bio);
264}
265
266void blk_dump_rq_flags(struct request *rq, char *msg)
267{
268	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
269		rq->rq_disk ? rq->rq_disk->disk_name : "?",
270		(unsigned long long) rq->cmd_flags);
271
272	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
273	       (unsigned long long)blk_rq_pos(rq),
274	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
275	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
276	       rq->bio, rq->biotail, blk_rq_bytes(rq));
277}
278EXPORT_SYMBOL(blk_dump_rq_flags);
279
280/**
281 * blk_sync_queue - cancel any pending callbacks on a queue
282 * @q: the queue
283 *
284 * Description:
285 *     The block layer may perform asynchronous callback activity
286 *     on a queue, such as calling the unplug function after a timeout.
287 *     A block device may call blk_sync_queue to ensure that any
288 *     such activity is cancelled, thus allowing it to release resources
289 *     that the callbacks might use. The caller must already have made sure
290 *     that its ->submit_bio will not re-add plugging prior to calling
291 *     this function.
292 *
293 *     This function does not cancel any asynchronous activity arising
294 *     out of elevator or throttling code. That would require elevator_exit()
295 *     and blkcg_exit_queue() to be called with queue lock initialized.
296 *
297 */
298void blk_sync_queue(struct request_queue *q)
299{
300	del_timer_sync(&q->timeout);
301	cancel_work_sync(&q->timeout_work);
302}
303EXPORT_SYMBOL(blk_sync_queue);
304
305/**
306 * blk_set_pm_only - increment pm_only counter
307 * @q: request queue pointer
308 */
309void blk_set_pm_only(struct request_queue *q)
310{
311	atomic_inc(&q->pm_only);
312}
313EXPORT_SYMBOL_GPL(blk_set_pm_only);
314
315void blk_clear_pm_only(struct request_queue *q)
316{
317	int pm_only;
318
319	pm_only = atomic_dec_return(&q->pm_only);
320	WARN_ON_ONCE(pm_only < 0);
321	if (pm_only == 0)
322		wake_up_all(&q->mq_freeze_wq);
323}
324EXPORT_SYMBOL_GPL(blk_clear_pm_only);
325
326/**
327 * blk_put_queue - decrement the request_queue refcount
328 * @q: the request_queue structure to decrement the refcount for
329 *
330 * Decrements the refcount of the request_queue kobject. When this reaches 0
331 * we'll have blk_release_queue() called.
332 *
333 * Context: Any context, but the last reference must not be dropped from
334 *          atomic context.
335 */
336void blk_put_queue(struct request_queue *q)
337{
338	kobject_put(&q->kobj);
339}
340EXPORT_SYMBOL(blk_put_queue);
341
342void blk_set_queue_dying(struct request_queue *q)
343{
344	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
345
346	/*
347	 * When queue DYING flag is set, we need to block new req
348	 * entering queue, so we call blk_freeze_queue_start() to
349	 * prevent I/O from crossing blk_queue_enter().
350	 */
351	blk_freeze_queue_start(q);
352
353	if (queue_is_mq(q))
354		blk_mq_wake_waiters(q);
355
356	/* Make blk_queue_enter() reexamine the DYING flag. */
357	wake_up_all(&q->mq_freeze_wq);
358}
359EXPORT_SYMBOL_GPL(blk_set_queue_dying);
360
361/**
362 * blk_cleanup_queue - shutdown a request queue
363 * @q: request queue to shutdown
364 *
365 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
366 * put it.  All future requests will be failed immediately with -ENODEV.
367 *
368 * Context: can sleep
369 */
370void blk_cleanup_queue(struct request_queue *q)
371{
372	/* cannot be called from atomic context */
373	might_sleep();
374
375	WARN_ON_ONCE(blk_queue_registered(q));
376
377	/* mark @q DYING, no new request or merges will be allowed afterwards */
378	blk_set_queue_dying(q);
379
380	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
381	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
382
383	/*
384	 * Drain all requests queued before DYING marking. Set DEAD flag to
385	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
386	 * after draining finished.
387	 */
388	blk_freeze_queue(q);
389
390	rq_qos_exit(q);
391
392	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
393
394	/* for synchronous bio-based driver finish in-flight integrity i/o */
395	blk_flush_integrity();
396
397	/* @q won't process any more request, flush async actions */
398	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
399	blk_sync_queue(q);
400	if (queue_is_mq(q)) {
401		blk_mq_cancel_work_sync(q);
402		blk_mq_exit_queue(q);
403	}
404
405	/*
406	 * In theory, request pool of sched_tags belongs to request queue.
407	 * However, the current implementation requires tag_set for freeing
408	 * requests, so free the pool now.
409	 *
410	 * Queue has become frozen, there can't be any in-queue requests, so
411	 * it is safe to free requests now.
412	 */
413	mutex_lock(&q->sysfs_lock);
414	if (q->elevator)
415		blk_mq_sched_free_requests(q);
416	mutex_unlock(&q->sysfs_lock);
417
418	/* @q is and will stay empty, shutdown and put */
419	blk_put_queue(q);
420}
421EXPORT_SYMBOL(blk_cleanup_queue);
422
423/**
424 * blk_queue_enter() - try to increase q->q_usage_counter
425 * @q: request queue pointer
426 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
427 */
428int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
429{
430	const bool pm = flags & BLK_MQ_REQ_PM;
431
432	while (true) {
433		bool success = false;
434
435		rcu_read_lock();
436		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
437			/*
438			 * The code that increments the pm_only counter is
439			 * responsible for ensuring that that counter is
440			 * globally visible before the queue is unfrozen.
441			 */
442			if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
443			    !blk_queue_pm_only(q)) {
444				success = true;
445			} else {
446				percpu_ref_put(&q->q_usage_counter);
447			}
448		}
449		rcu_read_unlock();
450
451		if (success)
452			return 0;
453
454		if (flags & BLK_MQ_REQ_NOWAIT)
455			return -EBUSY;
456
457		/*
458		 * read pair of barrier in blk_freeze_queue_start(),
459		 * we need to order reading __PERCPU_REF_DEAD flag of
460		 * .q_usage_counter and reading .mq_freeze_depth or
461		 * queue dying flag, otherwise the following wait may
462		 * never return if the two reads are reordered.
463		 */
464		smp_rmb();
465
466		wait_event(q->mq_freeze_wq,
467			   (!q->mq_freeze_depth &&
468			    blk_pm_resume_queue(pm, q)) ||
469			   blk_queue_dying(q));
470		if (blk_queue_dying(q))
471			return -ENODEV;
472	}
473}
474
475static inline int bio_queue_enter(struct bio *bio)
476{
477	struct request_queue *q = bio->bi_disk->queue;
478	bool nowait = bio->bi_opf & REQ_NOWAIT;
479	int ret;
480
481	ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
482	if (unlikely(ret)) {
483		if (nowait && !blk_queue_dying(q))
484			bio_wouldblock_error(bio);
485		else
486			bio_io_error(bio);
487	}
488
489	return ret;
490}
491
492void blk_queue_exit(struct request_queue *q)
493{
494	percpu_ref_put(&q->q_usage_counter);
495}
496
497static void blk_queue_usage_counter_release(struct percpu_ref *ref)
498{
499	struct request_queue *q =
500		container_of(ref, struct request_queue, q_usage_counter);
501
502	wake_up_all(&q->mq_freeze_wq);
503}
504
505static void blk_rq_timed_out_timer(struct timer_list *t)
506{
507	struct request_queue *q = from_timer(q, t, timeout);
508
509	kblockd_schedule_work(&q->timeout_work);
510}
511
512static void blk_timeout_work(struct work_struct *work)
513{
514}
515
516struct request_queue *blk_alloc_queue(int node_id)
517{
518	struct request_queue *q;
519	int ret;
520
521	q = kmem_cache_alloc_node(blk_requestq_cachep,
522				GFP_KERNEL | __GFP_ZERO, node_id);
523	if (!q)
524		return NULL;
525
526	q->last_merge = NULL;
527
528	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
529	if (q->id < 0)
530		goto fail_q;
531
532	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
533	if (ret)
534		goto fail_id;
535
536	q->backing_dev_info = bdi_alloc(node_id);
537	if (!q->backing_dev_info)
538		goto fail_split;
539
540	q->stats = blk_alloc_queue_stats();
541	if (!q->stats)
542		goto fail_stats;
543
544	q->node = node_id;
545
546	atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
547
548	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
549		    laptop_mode_timer_fn, 0);
550	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
551	INIT_WORK(&q->timeout_work, blk_timeout_work);
552	INIT_LIST_HEAD(&q->icq_list);
553#ifdef CONFIG_BLK_CGROUP
554	INIT_LIST_HEAD(&q->blkg_list);
555#endif
556
557	kobject_init(&q->kobj, &blk_queue_ktype);
558
559	mutex_init(&q->debugfs_mutex);
560	mutex_init(&q->sysfs_lock);
561	mutex_init(&q->sysfs_dir_lock);
562	spin_lock_init(&q->queue_lock);
563
564	init_waitqueue_head(&q->mq_freeze_wq);
565	mutex_init(&q->mq_freeze_lock);
566
567	/*
568	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
569	 * See blk_register_queue() for details.
570	 */
571	if (percpu_ref_init(&q->q_usage_counter,
572				blk_queue_usage_counter_release,
573				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
574		goto fail_bdi;
575
576	if (blkcg_init_queue(q))
577		goto fail_ref;
578
579	blk_queue_dma_alignment(q, 511);
580	blk_set_default_limits(&q->limits);
581	q->nr_requests = BLKDEV_MAX_RQ;
582
583	return q;
584
585fail_ref:
586	percpu_ref_exit(&q->q_usage_counter);
587fail_bdi:
588	blk_free_queue_stats(q->stats);
589fail_stats:
590	bdi_put(q->backing_dev_info);
591fail_split:
592	bioset_exit(&q->bio_split);
593fail_id:
594	ida_simple_remove(&blk_queue_ida, q->id);
595fail_q:
596	kmem_cache_free(blk_requestq_cachep, q);
597	return NULL;
598}
599EXPORT_SYMBOL(blk_alloc_queue);
600
601/**
602 * blk_get_queue - increment the request_queue refcount
603 * @q: the request_queue structure to increment the refcount for
604 *
605 * Increment the refcount of the request_queue kobject.
606 *
607 * Context: Any context.
608 */
609bool blk_get_queue(struct request_queue *q)
610{
611	if (likely(!blk_queue_dying(q))) {
612		__blk_get_queue(q);
613		return true;
614	}
615
616	return false;
617}
618EXPORT_SYMBOL(blk_get_queue);
619
620/**
621 * blk_get_request - allocate a request
622 * @q: request queue to allocate a request for
623 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
624 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
625 */
626struct request *blk_get_request(struct request_queue *q, unsigned int op,
627				blk_mq_req_flags_t flags)
628{
629	struct request *req;
630
631	WARN_ON_ONCE(op & REQ_NOWAIT);
632	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
633
634	req = blk_mq_alloc_request(q, op, flags);
635	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
636		q->mq_ops->initialize_rq_fn(req);
637
638	return req;
639}
640EXPORT_SYMBOL(blk_get_request);
641
642void blk_put_request(struct request *req)
643{
644	blk_mq_free_request(req);
645}
646EXPORT_SYMBOL(blk_put_request);
647
648static void handle_bad_sector(struct bio *bio, sector_t maxsector)
649{
650	char b[BDEVNAME_SIZE];
651
652	pr_info_ratelimited("attempt to access beyond end of device\n"
653			    "%s: rw=%d, want=%llu, limit=%llu\n",
654			    bio_devname(bio, b), bio->bi_opf,
655			    bio_end_sector(bio), maxsector);
656}
657
658#ifdef CONFIG_FAIL_MAKE_REQUEST
659
660static DECLARE_FAULT_ATTR(fail_make_request);
661
662static int __init setup_fail_make_request(char *str)
663{
664	return setup_fault_attr(&fail_make_request, str);
665}
666__setup("fail_make_request=", setup_fail_make_request);
667
668static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
669{
670	return part->make_it_fail && should_fail(&fail_make_request, bytes);
671}
672
673static int __init fail_make_request_debugfs(void)
674{
675	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
676						NULL, &fail_make_request);
677
678	return PTR_ERR_OR_ZERO(dir);
679}
680
681late_initcall(fail_make_request_debugfs);
682
683#else /* CONFIG_FAIL_MAKE_REQUEST */
684
685static inline bool should_fail_request(struct hd_struct *part,
686					unsigned int bytes)
687{
688	return false;
689}
690
691#endif /* CONFIG_FAIL_MAKE_REQUEST */
692
693static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
694{
695	const int op = bio_op(bio);
696
697	if (part->policy && op_is_write(op)) {
698		char b[BDEVNAME_SIZE];
699
700		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
701			return false;
702		pr_warn("Trying to write to read-only block-device %s (partno %d)\n",
703			bio_devname(bio, b), part->partno);
704		/* Older lvm-tools actually trigger this */
705		return false;
706	}
707
708	return false;
709}
710
711static noinline int should_fail_bio(struct bio *bio)
712{
713	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
714		return -EIO;
715	return 0;
716}
717ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
718
719/*
720 * Check whether this bio extends beyond the end of the device or partition.
721 * This may well happen - the kernel calls bread() without checking the size of
722 * the device, e.g., when mounting a file system.
723 */
724static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
725{
726	unsigned int nr_sectors = bio_sectors(bio);
727
728	if (nr_sectors && maxsector &&
729	    (nr_sectors > maxsector ||
730	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
731		handle_bad_sector(bio, maxsector);
732		return -EIO;
733	}
734	return 0;
735}
736
737/*
738 * Remap block n of partition p to block n+start(p) of the disk.
739 */
740static inline int blk_partition_remap(struct bio *bio)
741{
742	struct hd_struct *p;
743	int ret = -EIO;
744
745	rcu_read_lock();
746	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
747	if (unlikely(!p))
748		goto out;
749	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
750		goto out;
751	if (unlikely(bio_check_ro(bio, p)))
752		goto out;
753
754	if (bio_sectors(bio)) {
755		if (bio_check_eod(bio, part_nr_sects_read(p)))
756			goto out;
757		bio->bi_iter.bi_sector += p->start_sect;
758		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
759				      bio->bi_iter.bi_sector - p->start_sect);
760	}
761	bio->bi_partno = 0;
762	ret = 0;
763out:
764	rcu_read_unlock();
765	return ret;
766}
767
768/*
769 * Check write append to a zoned block device.
770 */
771static inline blk_status_t blk_check_zone_append(struct request_queue *q,
772						 struct bio *bio)
773{
774	sector_t pos = bio->bi_iter.bi_sector;
775	int nr_sectors = bio_sectors(bio);
776
777	/* Only applicable to zoned block devices */
778	if (!blk_queue_is_zoned(q))
779		return BLK_STS_NOTSUPP;
780
781	/* The bio sector must point to the start of a sequential zone */
782	if (pos & (blk_queue_zone_sectors(q) - 1) ||
783	    !blk_queue_zone_is_seq(q, pos))
784		return BLK_STS_IOERR;
785
786	/*
787	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
788	 * split and could result in non-contiguous sectors being written in
789	 * different zones.
790	 */
791	if (nr_sectors > q->limits.chunk_sectors)
792		return BLK_STS_IOERR;
793
794	/* Make sure the BIO is small enough and will not get split */
795	if (nr_sectors > q->limits.max_zone_append_sectors)
796		return BLK_STS_IOERR;
797
798	bio->bi_opf |= REQ_NOMERGE;
799
800	return BLK_STS_OK;
801}
802
803static noinline_for_stack bool submit_bio_checks(struct bio *bio)
804{
805	struct request_queue *q = bio->bi_disk->queue;
806	blk_status_t status = BLK_STS_IOERR;
807	struct blk_plug *plug;
808
809	might_sleep();
810
811	plug = blk_mq_plug(q, bio);
812	if (plug && plug->nowait)
813		bio->bi_opf |= REQ_NOWAIT;
814
815	/*
816	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
817	 * if queue does not support NOWAIT.
818	 */
819	if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
820		goto not_supported;
821
822	if (should_fail_bio(bio))
823		goto end_io;
824
825	if (bio->bi_partno) {
826		if (unlikely(blk_partition_remap(bio)))
827			goto end_io;
828	} else {
829		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
830			goto end_io;
831		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
832			goto end_io;
833	}
834
835	/*
836	 * Filter flush bio's early so that bio based drivers without flush
837	 * support don't have to worry about them.
838	 */
839	if (op_is_flush(bio->bi_opf) &&
840	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
841		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
842		if (!bio_sectors(bio)) {
843			status = BLK_STS_OK;
844			goto end_io;
845		}
846	}
847
848	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
849		bio->bi_opf &= ~REQ_HIPRI;
850
851	switch (bio_op(bio)) {
852	case REQ_OP_DISCARD:
853		if (!blk_queue_discard(q))
854			goto not_supported;
855		break;
856	case REQ_OP_SECURE_ERASE:
857		if (!blk_queue_secure_erase(q))
858			goto not_supported;
859		break;
860	case REQ_OP_WRITE_SAME:
861		if (!q->limits.max_write_same_sectors)
862			goto not_supported;
863		break;
864	case REQ_OP_ZONE_APPEND:
865		status = blk_check_zone_append(q, bio);
866		if (status != BLK_STS_OK)
867			goto end_io;
868		break;
869	case REQ_OP_ZONE_RESET:
870	case REQ_OP_ZONE_OPEN:
871	case REQ_OP_ZONE_CLOSE:
872	case REQ_OP_ZONE_FINISH:
873		if (!blk_queue_is_zoned(q))
874			goto not_supported;
875		break;
876	case REQ_OP_ZONE_RESET_ALL:
877		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
878			goto not_supported;
879		break;
880	case REQ_OP_WRITE_ZEROES:
881		if (!q->limits.max_write_zeroes_sectors)
882			goto not_supported;
883		break;
884	default:
885		break;
886	}
887
888	/*
889	 * Various block parts want %current->io_context, so allocate it up
890	 * front rather than dealing with lots of pain to allocate it only
891	 * where needed. This may fail and the block layer knows how to live
892	 * with it.
893	 */
894	if (unlikely(!current->io_context))
895		create_task_io_context(current, GFP_ATOMIC, q->node);
896
897	if (blk_throtl_bio(bio))
898		return false;
899
900	blk_cgroup_bio_start(bio);
901	blkcg_bio_issue_init(bio);
902
903	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
904		trace_block_bio_queue(q, bio);
905		/* Now that enqueuing has been traced, we need to trace
906		 * completion as well.
907		 */
908		bio_set_flag(bio, BIO_TRACE_COMPLETION);
909	}
910	return true;
911
912not_supported:
913	status = BLK_STS_NOTSUPP;
914end_io:
915	bio->bi_status = status;
916	bio_endio(bio);
917	return false;
918}
919
920static blk_qc_t __submit_bio(struct bio *bio)
921{
922	struct gendisk *disk = bio->bi_disk;
923	blk_qc_t ret = BLK_QC_T_NONE;
924
925	if (blk_crypto_bio_prep(&bio)) {
926		if (!disk->fops->submit_bio)
927			return blk_mq_submit_bio(bio);
928		ret = disk->fops->submit_bio(bio);
929	}
930	blk_queue_exit(disk->queue);
931	return ret;
932}
933
934/*
935 * The loop in this function may be a bit non-obvious, and so deserves some
936 * explanation:
937 *
938 *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
939 *    that), so we have a list with a single bio.
940 *  - We pretend that we have just taken it off a longer list, so we assign
941 *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
942 *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
943 *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
944 *    non-NULL value in bio_list and re-enter the loop from the top.
945 *  - In this case we really did just take the bio of the top of the list (no
946 *    pretending) and so remove it from bio_list, and call into ->submit_bio()
947 *    again.
948 *
949 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
950 * bio_list_on_stack[1] contains bios that were submitted before the current
951 *	->submit_bio_bio, but that haven't been processed yet.
952 */
953static blk_qc_t __submit_bio_noacct(struct bio *bio)
954{
955	struct bio_list bio_list_on_stack[2];
956	blk_qc_t ret = BLK_QC_T_NONE;
957
958	BUG_ON(bio->bi_next);
959
960	bio_list_init(&bio_list_on_stack[0]);
961	current->bio_list = bio_list_on_stack;
962
963	do {
964		struct request_queue *q = bio->bi_disk->queue;
965		struct bio_list lower, same;
966
967		if (unlikely(bio_queue_enter(bio) != 0))
968			continue;
969
970		/*
971		 * Create a fresh bio_list for all subordinate requests.
972		 */
973		bio_list_on_stack[1] = bio_list_on_stack[0];
974		bio_list_init(&bio_list_on_stack[0]);
975
976		ret = __submit_bio(bio);
977
978		/*
979		 * Sort new bios into those for a lower level and those for the
980		 * same level.
981		 */
982		bio_list_init(&lower);
983		bio_list_init(&same);
984		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
985			if (q == bio->bi_disk->queue)
986				bio_list_add(&same, bio);
987			else
988				bio_list_add(&lower, bio);
989
990		/*
991		 * Now assemble so we handle the lowest level first.
992		 */
993		bio_list_merge(&bio_list_on_stack[0], &lower);
994		bio_list_merge(&bio_list_on_stack[0], &same);
995		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
996	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
997
998	current->bio_list = NULL;
999	return ret;
1000}
1001
1002static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1003{
1004	struct bio_list bio_list[2] = { };
1005	blk_qc_t ret = BLK_QC_T_NONE;
1006
1007	current->bio_list = bio_list;
1008
1009	do {
1010		struct gendisk *disk = bio->bi_disk;
1011
1012		if (unlikely(bio_queue_enter(bio) != 0))
1013			continue;
1014
1015		if (!blk_crypto_bio_prep(&bio)) {
1016			blk_queue_exit(disk->queue);
1017			ret = BLK_QC_T_NONE;
1018			continue;
1019		}
1020
1021		ret = blk_mq_submit_bio(bio);
1022	} while ((bio = bio_list_pop(&bio_list[0])));
1023
1024	current->bio_list = NULL;
1025	return ret;
1026}
1027
1028/**
1029 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1030 * @bio:  The bio describing the location in memory and on the device.
1031 *
1032 * This is a version of submit_bio() that shall only be used for I/O that is
1033 * resubmitted to lower level drivers by stacking block drivers.  All file
1034 * systems and other upper level users of the block layer should use
1035 * submit_bio() instead.
1036 */
1037blk_qc_t submit_bio_noacct(struct bio *bio)
1038{
1039	if (!submit_bio_checks(bio))
1040		return BLK_QC_T_NONE;
1041
1042	/*
1043	 * We only want one ->submit_bio to be active at a time, else stack
1044	 * usage with stacked devices could be a problem.  Use current->bio_list
1045	 * to collect a list of requests submited by a ->submit_bio method while
1046	 * it is active, and then process them after it returned.
1047	 */
1048	if (current->bio_list) {
1049		bio_list_add(&current->bio_list[0], bio);
1050		return BLK_QC_T_NONE;
1051	}
1052
1053	if (!bio->bi_disk->fops->submit_bio)
1054		return __submit_bio_noacct_mq(bio);
1055	return __submit_bio_noacct(bio);
1056}
1057EXPORT_SYMBOL(submit_bio_noacct);
1058
1059/**
1060 * submit_bio - submit a bio to the block device layer for I/O
1061 * @bio: The &struct bio which describes the I/O
1062 *
1063 * submit_bio() is used to submit I/O requests to block devices.  It is passed a
1064 * fully set up &struct bio that describes the I/O that needs to be done.  The
1065 * bio will be send to the device described by the bi_disk and bi_partno fields.
1066 *
1067 * The success/failure status of the request, along with notification of
1068 * completion, is delivered asynchronously through the ->bi_end_io() callback
1069 * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
1070 * been called.
1071 */
1072blk_qc_t submit_bio(struct bio *bio)
1073{
1074	if (blkcg_punt_bio_submit(bio))
1075		return BLK_QC_T_NONE;
1076
1077	/*
1078	 * If it's a regular read/write or a barrier with data attached,
1079	 * go through the normal accounting stuff before submission.
1080	 */
1081	if (bio_has_data(bio)) {
1082		unsigned int count;
1083
1084		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1085			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1086		else
1087			count = bio_sectors(bio);
1088
1089		if (op_is_write(bio_op(bio))) {
1090			count_vm_events(PGPGOUT, count);
1091		} else {
1092			task_io_account_read(bio->bi_iter.bi_size);
1093			count_vm_events(PGPGIN, count);
1094		}
1095	}
1096
1097	/*
1098	 * If we're reading data that is part of the userspace workingset, count
1099	 * submission time as memory stall.  When the device is congested, or
1100	 * the submitting cgroup IO-throttled, submission can be a significant
1101	 * part of overall IO time.
1102	 */
1103	if (unlikely(bio_op(bio) == REQ_OP_READ &&
1104	    bio_flagged(bio, BIO_WORKINGSET))) {
1105		unsigned long pflags;
1106		blk_qc_t ret;
1107
1108		psi_memstall_enter(&pflags);
1109		ret = submit_bio_noacct(bio);
1110		psi_memstall_leave(&pflags);
1111
1112		return ret;
1113	}
1114
1115	return submit_bio_noacct(bio);
1116}
1117EXPORT_SYMBOL(submit_bio);
1118
1119/**
1120 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1121 *                              for the new queue limits
1122 * @q:  the queue
1123 * @rq: the request being checked
1124 *
1125 * Description:
1126 *    @rq may have been made based on weaker limitations of upper-level queues
1127 *    in request stacking drivers, and it may violate the limitation of @q.
1128 *    Since the block layer and the underlying device driver trust @rq
1129 *    after it is inserted to @q, it should be checked against @q before
1130 *    the insertion using this generic function.
1131 *
1132 *    Request stacking drivers like request-based dm may change the queue
1133 *    limits when retrying requests on other queues. Those requests need
1134 *    to be checked against the new queue limits again during dispatch.
1135 */
1136static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1137				      struct request *rq)
1138{
1139	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1140
1141	if (blk_rq_sectors(rq) > max_sectors) {
1142		/*
1143		 * SCSI device does not have a good way to return if
1144		 * Write Same/Zero is actually supported. If a device rejects
1145		 * a non-read/write command (discard, write same,etc.) the
1146		 * low-level device driver will set the relevant queue limit to
1147		 * 0 to prevent blk-lib from issuing more of the offending
1148		 * operations. Commands queued prior to the queue limit being
1149		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1150		 * errors being propagated to upper layers.
1151		 */
1152		if (max_sectors == 0)
1153			return BLK_STS_NOTSUPP;
1154
1155		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1156			__func__, blk_rq_sectors(rq), max_sectors);
1157		return BLK_STS_IOERR;
1158	}
1159
1160	/*
1161	 * queue's settings related to segment counting like q->bounce_pfn
1162	 * may differ from that of other stacking queues.
1163	 * Recalculate it to check the request correctly on this queue's
1164	 * limitation.
1165	 */
1166	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1167	if (rq->nr_phys_segments > queue_max_segments(q)) {
1168		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1169			__func__, rq->nr_phys_segments, queue_max_segments(q));
1170		return BLK_STS_IOERR;
1171	}
1172
1173	return BLK_STS_OK;
1174}
1175
1176/**
1177 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1178 * @q:  the queue to submit the request
1179 * @rq: the request being queued
1180 */
1181blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1182{
1183	blk_status_t ret;
1184
1185	ret = blk_cloned_rq_check_limits(q, rq);
1186	if (ret != BLK_STS_OK)
1187		return ret;
1188
1189	if (rq->rq_disk &&
1190	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1191		return BLK_STS_IOERR;
1192
1193	if (blk_crypto_insert_cloned_request(rq))
1194		return BLK_STS_IOERR;
1195
1196	if (blk_queue_io_stat(q))
1197		blk_account_io_start(rq);
1198
1199	/*
1200	 * Since we have a scheduler attached on the top device,
1201	 * bypass a potential scheduler on the bottom device for
1202	 * insert.
1203	 */
1204	return blk_mq_request_issue_directly(rq, true);
1205}
1206EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1207
1208/**
1209 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1210 * @rq: request to examine
1211 *
1212 * Description:
1213 *     A request could be merge of IOs which require different failure
1214 *     handling.  This function determines the number of bytes which
1215 *     can be failed from the beginning of the request without
1216 *     crossing into area which need to be retried further.
1217 *
1218 * Return:
1219 *     The number of bytes to fail.
1220 */
1221unsigned int blk_rq_err_bytes(const struct request *rq)
1222{
1223	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1224	unsigned int bytes = 0;
1225	struct bio *bio;
1226
1227	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1228		return blk_rq_bytes(rq);
1229
1230	/*
1231	 * Currently the only 'mixing' which can happen is between
1232	 * different fastfail types.  We can safely fail portions
1233	 * which have all the failfast bits that the first one has -
1234	 * the ones which are at least as eager to fail as the first
1235	 * one.
1236	 */
1237	for (bio = rq->bio; bio; bio = bio->bi_next) {
1238		if ((bio->bi_opf & ff) != ff)
1239			break;
1240		bytes += bio->bi_iter.bi_size;
1241	}
1242
1243	/* this could lead to infinite loop */
1244	BUG_ON(blk_rq_bytes(rq) && !bytes);
1245	return bytes;
1246}
1247EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1248
1249static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1250{
1251	unsigned long stamp;
1252again:
1253	stamp = READ_ONCE(part->stamp);
1254	if (unlikely(stamp != now)) {
1255		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp))
1256			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1257	}
1258	if (part->partno) {
1259		part = &part_to_disk(part)->part0;
1260		goto again;
1261	}
1262}
1263
1264static void blk_account_io_completion(struct request *req, unsigned int bytes)
1265{
1266	if (req->part && blk_do_io_stat(req)) {
1267		const int sgrp = op_stat_group(req_op(req));
1268		struct hd_struct *part;
1269
1270		part_stat_lock();
1271		part = req->part;
1272		part_stat_add(part, sectors[sgrp], bytes >> 9);
1273		part_stat_unlock();
1274	}
1275}
1276
1277void blk_account_io_done(struct request *req, u64 now)
1278{
1279	/*
1280	 * Account IO completion.  flush_rq isn't accounted as a
1281	 * normal IO on queueing nor completion.  Accounting the
1282	 * containing request is enough.
1283	 */
1284	if (req->part && blk_do_io_stat(req) &&
1285	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1286		const int sgrp = op_stat_group(req_op(req));
1287		struct hd_struct *part;
1288
1289		part_stat_lock();
1290		part = req->part;
1291
1292		update_io_ticks(part, jiffies, true);
1293		part_stat_inc(part, ios[sgrp]);
1294		part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1295		part_stat_unlock();
1296
1297		hd_struct_put(part);
1298	}
1299}
1300
1301void blk_account_io_start(struct request *rq)
1302{
1303	if (!blk_do_io_stat(rq))
1304		return;
1305
1306	rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1307
1308	part_stat_lock();
1309	update_io_ticks(rq->part, jiffies, false);
1310	part_stat_unlock();
1311}
1312
1313static unsigned long __part_start_io_acct(struct hd_struct *part,
1314					  unsigned int sectors, unsigned int op)
1315{
1316	const int sgrp = op_stat_group(op);
1317	unsigned long now = READ_ONCE(jiffies);
1318
1319	part_stat_lock();
1320	update_io_ticks(part, now, false);
1321	part_stat_inc(part, ios[sgrp]);
1322	part_stat_add(part, sectors[sgrp], sectors);
1323	part_stat_local_inc(part, in_flight[op_is_write(op)]);
1324	part_stat_unlock();
1325
1326	return now;
1327}
1328
1329unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part,
1330				 struct bio *bio)
1331{
1332	*part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector);
1333
1334	return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio));
1335}
1336EXPORT_SYMBOL_GPL(part_start_io_acct);
1337
1338unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1339				 unsigned int op)
1340{
1341	return __part_start_io_acct(&disk->part0, sectors, op);
1342}
1343EXPORT_SYMBOL(disk_start_io_acct);
1344
1345static void __part_end_io_acct(struct hd_struct *part, unsigned int op,
1346			       unsigned long start_time)
1347{
1348	const int sgrp = op_stat_group(op);
1349	unsigned long now = READ_ONCE(jiffies);
1350	unsigned long duration = now - start_time;
1351
1352	part_stat_lock();
1353	update_io_ticks(part, now, true);
1354	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1355	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1356	part_stat_unlock();
1357}
1358
1359void part_end_io_acct(struct hd_struct *part, struct bio *bio,
1360		      unsigned long start_time)
1361{
1362	__part_end_io_acct(part, bio_op(bio), start_time);
1363	hd_struct_put(part);
1364}
1365EXPORT_SYMBOL_GPL(part_end_io_acct);
1366
1367void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1368		      unsigned long start_time)
1369{
1370	__part_end_io_acct(&disk->part0, op, start_time);
1371}
1372EXPORT_SYMBOL(disk_end_io_acct);
1373
1374/*
1375 * Steal bios from a request and add them to a bio list.
1376 * The request must not have been partially completed before.
1377 */
1378void blk_steal_bios(struct bio_list *list, struct request *rq)
1379{
1380	if (rq->bio) {
1381		if (list->tail)
1382			list->tail->bi_next = rq->bio;
1383		else
1384			list->head = rq->bio;
1385		list->tail = rq->biotail;
1386
1387		rq->bio = NULL;
1388		rq->biotail = NULL;
1389	}
1390
1391	rq->__data_len = 0;
1392}
1393EXPORT_SYMBOL_GPL(blk_steal_bios);
1394
1395/**
1396 * blk_update_request - Special helper function for request stacking drivers
1397 * @req:      the request being processed
1398 * @error:    block status code
1399 * @nr_bytes: number of bytes to complete @req
1400 *
1401 * Description:
1402 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1403 *     the request structure even if @req doesn't have leftover.
1404 *     If @req has leftover, sets it up for the next range of segments.
1405 *
1406 *     This special helper function is only for request stacking drivers
1407 *     (e.g. request-based dm) so that they can handle partial completion.
1408 *     Actual device drivers should use blk_mq_end_request instead.
1409 *
1410 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1411 *     %false return from this function.
1412 *
1413 * Note:
1414 *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1415 *	blk_rq_bytes() and in blk_update_request().
1416 *
1417 * Return:
1418 *     %false - this request doesn't have any more data
1419 *     %true  - this request has more data
1420 **/
1421bool blk_update_request(struct request *req, blk_status_t error,
1422		unsigned int nr_bytes)
1423{
1424	int total_bytes;
1425
1426	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1427
1428	if (!req->bio)
1429		return false;
1430
1431#ifdef CONFIG_BLK_DEV_INTEGRITY
1432	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1433	    error == BLK_STS_OK)
1434		req->q->integrity.profile->complete_fn(req, nr_bytes);
1435#endif
1436
1437	/*
1438	 * Upper layers may call blk_crypto_evict_key() anytime after the last
1439	 * bio_endio().  Therefore, the keyslot must be released before that.
1440	 */
1441	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
1442		__blk_crypto_rq_put_keyslot(req);
1443
1444	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1445		     !(req->rq_flags & RQF_QUIET)))
1446		print_req_error(req, error, __func__);
1447
1448	blk_account_io_completion(req, nr_bytes);
1449
1450	total_bytes = 0;
1451	while (req->bio) {
1452		struct bio *bio = req->bio;
1453		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1454
1455		if (bio_bytes == bio->bi_iter.bi_size)
1456			req->bio = bio->bi_next;
1457
1458		/* Completion has already been traced */
1459		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1460		req_bio_endio(req, bio, bio_bytes, error);
1461
1462		total_bytes += bio_bytes;
1463		nr_bytes -= bio_bytes;
1464
1465		if (!nr_bytes)
1466			break;
1467	}
1468
1469	/*
1470	 * completely done
1471	 */
1472	if (!req->bio) {
1473		/*
1474		 * Reset counters so that the request stacking driver
1475		 * can find how many bytes remain in the request
1476		 * later.
1477		 */
1478		req->__data_len = 0;
1479		return false;
1480	}
1481
1482	req->__data_len -= total_bytes;
1483
1484	/* update sector only for requests with clear definition of sector */
1485	if (!blk_rq_is_passthrough(req))
1486		req->__sector += total_bytes >> 9;
1487
1488	/* mixed attributes always follow the first bio */
1489	if (req->rq_flags & RQF_MIXED_MERGE) {
1490		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1491		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1492	}
1493
1494	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1495		/*
1496		 * If total number of sectors is less than the first segment
1497		 * size, something has gone terribly wrong.
1498		 */
1499		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1500			blk_dump_rq_flags(req, "request botched");
1501			req->__data_len = blk_rq_cur_bytes(req);
1502		}
1503
1504		/* recalculate the number of segments */
1505		req->nr_phys_segments = blk_recalc_rq_segments(req);
1506	}
1507
1508	return true;
1509}
1510EXPORT_SYMBOL_GPL(blk_update_request);
1511
1512#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1513/**
1514 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1515 * @rq: the request to be flushed
1516 *
1517 * Description:
1518 *     Flush all pages in @rq.
1519 */
1520void rq_flush_dcache_pages(struct request *rq)
1521{
1522	struct req_iterator iter;
1523	struct bio_vec bvec;
1524
1525	rq_for_each_segment(bvec, rq, iter)
1526		flush_dcache_page(bvec.bv_page);
1527}
1528EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1529#endif
1530
1531/**
1532 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1533 * @q : the queue of the device being checked
1534 *
1535 * Description:
1536 *    Check if underlying low-level drivers of a device are busy.
1537 *    If the drivers want to export their busy state, they must set own
1538 *    exporting function using blk_queue_lld_busy() first.
1539 *
1540 *    Basically, this function is used only by request stacking drivers
1541 *    to stop dispatching requests to underlying devices when underlying
1542 *    devices are busy.  This behavior helps more I/O merging on the queue
1543 *    of the request stacking driver and prevents I/O throughput regression
1544 *    on burst I/O load.
1545 *
1546 * Return:
1547 *    0 - Not busy (The request stacking driver should dispatch request)
1548 *    1 - Busy (The request stacking driver should stop dispatching request)
1549 */
1550int blk_lld_busy(struct request_queue *q)
1551{
1552	if (queue_is_mq(q) && q->mq_ops->busy)
1553		return q->mq_ops->busy(q);
1554
1555	return 0;
1556}
1557EXPORT_SYMBOL_GPL(blk_lld_busy);
1558
1559/**
1560 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1561 * @rq: the clone request to be cleaned up
1562 *
1563 * Description:
1564 *     Free all bios in @rq for a cloned request.
1565 */
1566void blk_rq_unprep_clone(struct request *rq)
1567{
1568	struct bio *bio;
1569
1570	while ((bio = rq->bio) != NULL) {
1571		rq->bio = bio->bi_next;
1572
1573		bio_put(bio);
1574	}
1575}
1576EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1577
1578/**
1579 * blk_rq_prep_clone - Helper function to setup clone request
1580 * @rq: the request to be setup
1581 * @rq_src: original request to be cloned
1582 * @bs: bio_set that bios for clone are allocated from
1583 * @gfp_mask: memory allocation mask for bio
1584 * @bio_ctr: setup function to be called for each clone bio.
1585 *           Returns %0 for success, non %0 for failure.
1586 * @data: private data to be passed to @bio_ctr
1587 *
1588 * Description:
1589 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1590 *     Also, pages which the original bios are pointing to are not copied
1591 *     and the cloned bios just point same pages.
1592 *     So cloned bios must be completed before original bios, which means
1593 *     the caller must complete @rq before @rq_src.
1594 */
1595int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1596		      struct bio_set *bs, gfp_t gfp_mask,
1597		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1598		      void *data)
1599{
1600	struct bio *bio, *bio_src;
1601
1602	if (!bs)
1603		bs = &fs_bio_set;
1604
1605	__rq_for_each_bio(bio_src, rq_src) {
1606		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1607		if (!bio)
1608			goto free_and_out;
1609
1610		if (bio_ctr && bio_ctr(bio, bio_src, data))
1611			goto free_and_out;
1612
1613		if (rq->bio) {
1614			rq->biotail->bi_next = bio;
1615			rq->biotail = bio;
1616		} else {
1617			rq->bio = rq->biotail = bio;
1618		}
1619		bio = NULL;
1620	}
1621
1622	/* Copy attributes of the original request to the clone request. */
1623	rq->__sector = blk_rq_pos(rq_src);
1624	rq->__data_len = blk_rq_bytes(rq_src);
1625	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1626		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1627		rq->special_vec = rq_src->special_vec;
1628	}
1629	rq->nr_phys_segments = rq_src->nr_phys_segments;
1630	rq->ioprio = rq_src->ioprio;
1631
1632	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1633		goto free_and_out;
1634
1635	return 0;
1636
1637free_and_out:
1638	if (bio)
1639		bio_put(bio);
1640	blk_rq_unprep_clone(rq);
1641
1642	return -ENOMEM;
1643}
1644EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1645
1646int kblockd_schedule_work(struct work_struct *work)
1647{
1648	return queue_work(kblockd_workqueue, work);
1649}
1650EXPORT_SYMBOL(kblockd_schedule_work);
1651
1652int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1653				unsigned long delay)
1654{
1655	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1656}
1657EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1658
1659/**
1660 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1661 * @plug:	The &struct blk_plug that needs to be initialized
1662 *
1663 * Description:
1664 *   blk_start_plug() indicates to the block layer an intent by the caller
1665 *   to submit multiple I/O requests in a batch.  The block layer may use
1666 *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1667 *   is called.  However, the block layer may choose to submit requests
1668 *   before a call to blk_finish_plug() if the number of queued I/Os
1669 *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1670 *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1671 *   the task schedules (see below).
1672 *
1673 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1674 *   pending I/O should the task end up blocking between blk_start_plug() and
1675 *   blk_finish_plug(). This is important from a performance perspective, but
1676 *   also ensures that we don't deadlock. For instance, if the task is blocking
1677 *   for a memory allocation, memory reclaim could end up wanting to free a
1678 *   page belonging to that request that is currently residing in our private
1679 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1680 *   this kind of deadlock.
1681 */
1682void blk_start_plug(struct blk_plug *plug)
1683{
1684	struct task_struct *tsk = current;
1685
1686	/*
1687	 * If this is a nested plug, don't actually assign it.
1688	 */
1689	if (tsk->plug)
1690		return;
1691
1692	INIT_LIST_HEAD(&plug->mq_list);
1693	INIT_LIST_HEAD(&plug->cb_list);
1694	plug->rq_count = 0;
1695	plug->multiple_queues = false;
1696	plug->nowait = false;
1697
1698	/*
1699	 * Store ordering should not be needed here, since a potential
1700	 * preempt will imply a full memory barrier
1701	 */
1702	tsk->plug = plug;
1703}
1704EXPORT_SYMBOL(blk_start_plug);
1705
1706static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1707{
1708	LIST_HEAD(callbacks);
1709
1710	while (!list_empty(&plug->cb_list)) {
1711		list_splice_init(&plug->cb_list, &callbacks);
1712
1713		while (!list_empty(&callbacks)) {
1714			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1715							  struct blk_plug_cb,
1716							  list);
1717			list_del(&cb->list);
1718			cb->callback(cb, from_schedule);
1719		}
1720	}
1721}
1722
1723struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1724				      int size)
1725{
1726	struct blk_plug *plug = current->plug;
1727	struct blk_plug_cb *cb;
1728
1729	if (!plug)
1730		return NULL;
1731
1732	list_for_each_entry(cb, &plug->cb_list, list)
1733		if (cb->callback == unplug && cb->data == data)
1734			return cb;
1735
1736	/* Not currently on the callback list */
1737	BUG_ON(size < sizeof(*cb));
1738	cb = kzalloc(size, GFP_ATOMIC);
1739	if (cb) {
1740		cb->data = data;
1741		cb->callback = unplug;
1742		list_add(&cb->list, &plug->cb_list);
1743	}
1744	return cb;
1745}
1746EXPORT_SYMBOL(blk_check_plugged);
1747
1748void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1749{
1750	flush_plug_callbacks(plug, from_schedule);
1751
1752	if (!list_empty(&plug->mq_list))
1753		blk_mq_flush_plug_list(plug, from_schedule);
1754}
1755
1756/**
1757 * blk_finish_plug - mark the end of a batch of submitted I/O
1758 * @plug:	The &struct blk_plug passed to blk_start_plug()
1759 *
1760 * Description:
1761 * Indicate that a batch of I/O submissions is complete.  This function
1762 * must be paired with an initial call to blk_start_plug().  The intent
1763 * is to allow the block layer to optimize I/O submission.  See the
1764 * documentation for blk_start_plug() for more information.
1765 */
1766void blk_finish_plug(struct blk_plug *plug)
1767{
1768	if (plug != current->plug)
1769		return;
1770	blk_flush_plug_list(plug, false);
1771
1772	current->plug = NULL;
1773}
1774EXPORT_SYMBOL(blk_finish_plug);
1775
1776void blk_io_schedule(void)
1777{
1778	/* Prevent hang_check timer from firing at us during very long I/O */
1779	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1780
1781	if (timeout)
1782		io_schedule_timeout(timeout);
1783	else
1784		io_schedule();
1785}
1786EXPORT_SYMBOL_GPL(blk_io_schedule);
1787
1788int __init blk_dev_init(void)
1789{
1790	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1791	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1792			sizeof_field(struct request, cmd_flags));
1793	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1794			sizeof_field(struct bio, bi_opf));
1795
1796	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1797	kblockd_workqueue = alloc_workqueue("kblockd",
1798					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1799	if (!kblockd_workqueue)
1800		panic("Failed to create kblockd\n");
1801
1802	blk_requestq_cachep = kmem_cache_create("request_queue",
1803			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1804
1805	blk_debugfs_root = debugfs_create_dir("block", NULL);
1806
1807	return 0;
1808}
1809