xref: /kernel/linux/linux-5.10/block/blk-cgroup.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 *		      Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * 	              Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 *                    Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18#include <linux/ioprio.h>
19#include <linux/kdev_t.h>
20#include <linux/module.h>
21#include <linux/sched/signal.h>
22#include <linux/err.h>
23#include <linux/blkdev.h>
24#include <linux/backing-dev.h>
25#include <linux/slab.h>
26#include <linux/genhd.h>
27#include <linux/delay.h>
28#include <linux/atomic.h>
29#include <linux/ctype.h>
30#include <linux/blk-cgroup.h>
31#include <linux/tracehook.h>
32#include <linux/psi.h>
33#include "blk.h"
34
35#define MAX_KEY_LEN 100
36
37/*
38 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
39 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
40 * policy [un]register operations including cgroup file additions /
41 * removals.  Putting cgroup file registration outside blkcg_pol_mutex
42 * allows grabbing it from cgroup callbacks.
43 */
44static DEFINE_MUTEX(blkcg_pol_register_mutex);
45static DEFINE_MUTEX(blkcg_pol_mutex);
46
47struct blkcg blkcg_root;
48EXPORT_SYMBOL_GPL(blkcg_root);
49
50struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
51EXPORT_SYMBOL_GPL(blkcg_root_css);
52
53static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
54
55static LIST_HEAD(all_blkcgs);		/* protected by blkcg_pol_mutex */
56
57bool blkcg_debug_stats = false;
58static struct workqueue_struct *blkcg_punt_bio_wq;
59
60static bool blkcg_policy_enabled(struct request_queue *q,
61				 const struct blkcg_policy *pol)
62{
63	return pol && test_bit(pol->plid, q->blkcg_pols);
64}
65
66/**
67 * blkg_free - free a blkg
68 * @blkg: blkg to free
69 *
70 * Free @blkg which may be partially allocated.
71 */
72static void blkg_free(struct blkcg_gq *blkg)
73{
74	int i;
75
76	if (!blkg)
77		return;
78
79	for (i = 0; i < BLKCG_MAX_POLS; i++)
80		if (blkg->pd[i])
81			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
82
83	free_percpu(blkg->iostat_cpu);
84	percpu_ref_exit(&blkg->refcnt);
85	kfree(blkg);
86}
87
88static void __blkg_release(struct rcu_head *rcu)
89{
90	struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
91
92	WARN_ON(!bio_list_empty(&blkg->async_bios));
93
94	/* release the blkcg and parent blkg refs this blkg has been holding */
95	css_put(&blkg->blkcg->css);
96	if (blkg->parent)
97		blkg_put(blkg->parent);
98	blkg_free(blkg);
99}
100
101/*
102 * A group is RCU protected, but having an rcu lock does not mean that one
103 * can access all the fields of blkg and assume these are valid.  For
104 * example, don't try to follow throtl_data and request queue links.
105 *
106 * Having a reference to blkg under an rcu allows accesses to only values
107 * local to groups like group stats and group rate limits.
108 */
109static void blkg_release(struct percpu_ref *ref)
110{
111	struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
112
113	call_rcu(&blkg->rcu_head, __blkg_release);
114}
115
116static void blkg_async_bio_workfn(struct work_struct *work)
117{
118	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
119					     async_bio_work);
120	struct bio_list bios = BIO_EMPTY_LIST;
121	struct bio *bio;
122	struct blk_plug plug;
123	bool need_plug = false;
124
125	/* as long as there are pending bios, @blkg can't go away */
126	spin_lock_bh(&blkg->async_bio_lock);
127	bio_list_merge(&bios, &blkg->async_bios);
128	bio_list_init(&blkg->async_bios);
129	spin_unlock_bh(&blkg->async_bio_lock);
130
131	/* start plug only when bio_list contains at least 2 bios */
132	if (bios.head && bios.head->bi_next) {
133		need_plug = true;
134		blk_start_plug(&plug);
135	}
136	while ((bio = bio_list_pop(&bios)))
137		submit_bio(bio);
138	if (need_plug)
139		blk_finish_plug(&plug);
140}
141
142/**
143 * blkg_alloc - allocate a blkg
144 * @blkcg: block cgroup the new blkg is associated with
145 * @q: request_queue the new blkg is associated with
146 * @gfp_mask: allocation mask to use
147 *
148 * Allocate a new blkg assocating @blkcg and @q.
149 */
150static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q,
151				   gfp_t gfp_mask)
152{
153	struct blkcg_gq *blkg;
154	int i, cpu;
155
156	/* alloc and init base part */
157	blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node);
158	if (!blkg)
159		return NULL;
160
161	if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
162		goto err_free;
163
164	blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
165	if (!blkg->iostat_cpu)
166		goto err_free;
167
168	blkg->q = q;
169	INIT_LIST_HEAD(&blkg->q_node);
170	spin_lock_init(&blkg->async_bio_lock);
171	bio_list_init(&blkg->async_bios);
172	INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
173	blkg->blkcg = blkcg;
174
175	u64_stats_init(&blkg->iostat.sync);
176	for_each_possible_cpu(cpu)
177		u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
178
179	for (i = 0; i < BLKCG_MAX_POLS; i++) {
180		struct blkcg_policy *pol = blkcg_policy[i];
181		struct blkg_policy_data *pd;
182
183		if (!blkcg_policy_enabled(q, pol))
184			continue;
185
186		/* alloc per-policy data and attach it to blkg */
187		pd = pol->pd_alloc_fn(gfp_mask, q, blkcg);
188		if (!pd)
189			goto err_free;
190
191		blkg->pd[i] = pd;
192		pd->blkg = blkg;
193		pd->plid = i;
194	}
195
196	return blkg;
197
198err_free:
199	blkg_free(blkg);
200	return NULL;
201}
202
203struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg,
204				      struct request_queue *q, bool update_hint)
205{
206	struct blkcg_gq *blkg;
207
208	/*
209	 * Hint didn't match.  Look up from the radix tree.  Note that the
210	 * hint can only be updated under queue_lock as otherwise @blkg
211	 * could have already been removed from blkg_tree.  The caller is
212	 * responsible for grabbing queue_lock if @update_hint.
213	 */
214	blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id);
215	if (blkg && blkg->q == q) {
216		if (update_hint) {
217			lockdep_assert_held(&q->queue_lock);
218			rcu_assign_pointer(blkcg->blkg_hint, blkg);
219		}
220		return blkg;
221	}
222
223	return NULL;
224}
225EXPORT_SYMBOL_GPL(blkg_lookup_slowpath);
226
227/*
228 * If @new_blkg is %NULL, this function tries to allocate a new one as
229 * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
230 */
231static struct blkcg_gq *blkg_create(struct blkcg *blkcg,
232				    struct request_queue *q,
233				    struct blkcg_gq *new_blkg)
234{
235	struct blkcg_gq *blkg;
236	int i, ret;
237
238	WARN_ON_ONCE(!rcu_read_lock_held());
239	lockdep_assert_held(&q->queue_lock);
240
241	/* request_queue is dying, do not create/recreate a blkg */
242	if (blk_queue_dying(q)) {
243		ret = -ENODEV;
244		goto err_free_blkg;
245	}
246
247	/* blkg holds a reference to blkcg */
248	if (!css_tryget_online(&blkcg->css)) {
249		ret = -ENODEV;
250		goto err_free_blkg;
251	}
252
253	/* allocate */
254	if (!new_blkg) {
255		new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN);
256		if (unlikely(!new_blkg)) {
257			ret = -ENOMEM;
258			goto err_put_css;
259		}
260	}
261	blkg = new_blkg;
262
263	/* link parent */
264	if (blkcg_parent(blkcg)) {
265		blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false);
266		if (WARN_ON_ONCE(!blkg->parent)) {
267			ret = -ENODEV;
268			goto err_put_css;
269		}
270		blkg_get(blkg->parent);
271	}
272
273	/* invoke per-policy init */
274	for (i = 0; i < BLKCG_MAX_POLS; i++) {
275		struct blkcg_policy *pol = blkcg_policy[i];
276
277		if (blkg->pd[i] && pol->pd_init_fn)
278			pol->pd_init_fn(blkg->pd[i]);
279	}
280
281	/* insert */
282	spin_lock(&blkcg->lock);
283	ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg);
284	if (likely(!ret)) {
285		hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
286		list_add(&blkg->q_node, &q->blkg_list);
287
288		for (i = 0; i < BLKCG_MAX_POLS; i++) {
289			struct blkcg_policy *pol = blkcg_policy[i];
290
291			if (blkg->pd[i] && pol->pd_online_fn)
292				pol->pd_online_fn(blkg->pd[i]);
293		}
294	}
295	blkg->online = true;
296	spin_unlock(&blkcg->lock);
297
298	if (!ret)
299		return blkg;
300
301	/* @blkg failed fully initialized, use the usual release path */
302	blkg_put(blkg);
303	return ERR_PTR(ret);
304
305err_put_css:
306	css_put(&blkcg->css);
307err_free_blkg:
308	blkg_free(new_blkg);
309	return ERR_PTR(ret);
310}
311
312/**
313 * blkg_lookup_create - lookup blkg, try to create one if not there
314 * @blkcg: blkcg of interest
315 * @q: request_queue of interest
316 *
317 * Lookup blkg for the @blkcg - @q pair.  If it doesn't exist, try to
318 * create one.  blkg creation is performed recursively from blkcg_root such
319 * that all non-root blkg's have access to the parent blkg.  This function
320 * should be called under RCU read lock and takes @q->queue_lock.
321 *
322 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
323 * down from root.
324 */
325static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
326		struct request_queue *q)
327{
328	struct blkcg_gq *blkg;
329	unsigned long flags;
330
331	WARN_ON_ONCE(!rcu_read_lock_held());
332
333	blkg = blkg_lookup(blkcg, q);
334	if (blkg)
335		return blkg;
336
337	spin_lock_irqsave(&q->queue_lock, flags);
338	blkg = __blkg_lookup(blkcg, q, true);
339	if (blkg)
340		goto found;
341
342	/*
343	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
344	 * non-root blkgs have access to their parents.  Returns the closest
345	 * blkg to the intended blkg should blkg_create() fail.
346	 */
347	while (true) {
348		struct blkcg *pos = blkcg;
349		struct blkcg *parent = blkcg_parent(blkcg);
350		struct blkcg_gq *ret_blkg = q->root_blkg;
351
352		while (parent) {
353			blkg = __blkg_lookup(parent, q, false);
354			if (blkg) {
355				/* remember closest blkg */
356				ret_blkg = blkg;
357				break;
358			}
359			pos = parent;
360			parent = blkcg_parent(parent);
361		}
362
363		blkg = blkg_create(pos, q, NULL);
364		if (IS_ERR(blkg)) {
365			blkg = ret_blkg;
366			break;
367		}
368		if (pos == blkcg)
369			break;
370	}
371
372found:
373	spin_unlock_irqrestore(&q->queue_lock, flags);
374	return blkg;
375}
376
377static void blkg_destroy(struct blkcg_gq *blkg)
378{
379	struct blkcg *blkcg = blkg->blkcg;
380	int i;
381
382	lockdep_assert_held(&blkg->q->queue_lock);
383	lockdep_assert_held(&blkcg->lock);
384
385	/* Something wrong if we are trying to remove same group twice */
386	WARN_ON_ONCE(list_empty(&blkg->q_node));
387	WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
388
389	for (i = 0; i < BLKCG_MAX_POLS; i++) {
390		struct blkcg_policy *pol = blkcg_policy[i];
391
392		if (blkg->pd[i] && pol->pd_offline_fn)
393			pol->pd_offline_fn(blkg->pd[i]);
394	}
395
396	blkg->online = false;
397
398	radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
399	list_del_init(&blkg->q_node);
400	hlist_del_init_rcu(&blkg->blkcg_node);
401
402	/*
403	 * Both setting lookup hint to and clearing it from @blkg are done
404	 * under queue_lock.  If it's not pointing to @blkg now, it never
405	 * will.  Hint assignment itself can race safely.
406	 */
407	if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
408		rcu_assign_pointer(blkcg->blkg_hint, NULL);
409
410	/*
411	 * Put the reference taken at the time of creation so that when all
412	 * queues are gone, group can be destroyed.
413	 */
414	percpu_ref_kill(&blkg->refcnt);
415}
416
417/**
418 * blkg_destroy_all - destroy all blkgs associated with a request_queue
419 * @q: request_queue of interest
420 *
421 * Destroy all blkgs associated with @q.
422 */
423static void blkg_destroy_all(struct request_queue *q)
424{
425	struct blkcg_gq *blkg, *n;
426
427	spin_lock_irq(&q->queue_lock);
428	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
429		struct blkcg *blkcg = blkg->blkcg;
430
431		spin_lock(&blkcg->lock);
432		blkg_destroy(blkg);
433		spin_unlock(&blkcg->lock);
434	}
435
436	q->root_blkg = NULL;
437	spin_unlock_irq(&q->queue_lock);
438}
439
440static int blkcg_reset_stats(struct cgroup_subsys_state *css,
441			     struct cftype *cftype, u64 val)
442{
443	struct blkcg *blkcg = css_to_blkcg(css);
444	struct blkcg_gq *blkg;
445	int i, cpu;
446
447	mutex_lock(&blkcg_pol_mutex);
448	spin_lock_irq(&blkcg->lock);
449
450	/*
451	 * Note that stat reset is racy - it doesn't synchronize against
452	 * stat updates.  This is a debug feature which shouldn't exist
453	 * anyway.  If you get hit by a race, retry.
454	 */
455	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
456		for_each_possible_cpu(cpu) {
457			struct blkg_iostat_set *bis =
458				per_cpu_ptr(blkg->iostat_cpu, cpu);
459			memset(bis, 0, sizeof(*bis));
460		}
461		memset(&blkg->iostat, 0, sizeof(blkg->iostat));
462
463		for (i = 0; i < BLKCG_MAX_POLS; i++) {
464			struct blkcg_policy *pol = blkcg_policy[i];
465
466			if (blkg->pd[i] && pol->pd_reset_stats_fn)
467				pol->pd_reset_stats_fn(blkg->pd[i]);
468		}
469	}
470
471	spin_unlock_irq(&blkcg->lock);
472	mutex_unlock(&blkcg_pol_mutex);
473	return 0;
474}
475
476const char *blkg_dev_name(struct blkcg_gq *blkg)
477{
478	/* some drivers (floppy) instantiate a queue w/o disk registered */
479	if (blkg->q->backing_dev_info->dev)
480		return bdi_dev_name(blkg->q->backing_dev_info);
481	return NULL;
482}
483
484/**
485 * blkcg_print_blkgs - helper for printing per-blkg data
486 * @sf: seq_file to print to
487 * @blkcg: blkcg of interest
488 * @prfill: fill function to print out a blkg
489 * @pol: policy in question
490 * @data: data to be passed to @prfill
491 * @show_total: to print out sum of prfill return values or not
492 *
493 * This function invokes @prfill on each blkg of @blkcg if pd for the
494 * policy specified by @pol exists.  @prfill is invoked with @sf, the
495 * policy data and @data and the matching queue lock held.  If @show_total
496 * is %true, the sum of the return values from @prfill is printed with
497 * "Total" label at the end.
498 *
499 * This is to be used to construct print functions for
500 * cftype->read_seq_string method.
501 */
502void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
503		       u64 (*prfill)(struct seq_file *,
504				     struct blkg_policy_data *, int),
505		       const struct blkcg_policy *pol, int data,
506		       bool show_total)
507{
508	struct blkcg_gq *blkg;
509	u64 total = 0;
510
511	rcu_read_lock();
512	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
513		spin_lock_irq(&blkg->q->queue_lock);
514		if (blkcg_policy_enabled(blkg->q, pol))
515			total += prfill(sf, blkg->pd[pol->plid], data);
516		spin_unlock_irq(&blkg->q->queue_lock);
517	}
518	rcu_read_unlock();
519
520	if (show_total)
521		seq_printf(sf, "Total %llu\n", (unsigned long long)total);
522}
523EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
524
525/**
526 * __blkg_prfill_u64 - prfill helper for a single u64 value
527 * @sf: seq_file to print to
528 * @pd: policy private data of interest
529 * @v: value to print
530 *
531 * Print @v to @sf for the device assocaited with @pd.
532 */
533u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
534{
535	const char *dname = blkg_dev_name(pd->blkg);
536
537	if (!dname)
538		return 0;
539
540	seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
541	return v;
542}
543EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
544
545/* Performs queue bypass and policy enabled checks then looks up blkg. */
546static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg,
547					  const struct blkcg_policy *pol,
548					  struct request_queue *q)
549{
550	WARN_ON_ONCE(!rcu_read_lock_held());
551	lockdep_assert_held(&q->queue_lock);
552
553	if (!blkcg_policy_enabled(q, pol))
554		return ERR_PTR(-EOPNOTSUPP);
555	return __blkg_lookup(blkcg, q, true /* update_hint */);
556}
557
558/**
559 * blkg_conf_prep - parse and prepare for per-blkg config update
560 * @inputp: input string pointer
561 *
562 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
563 * from @input and get and return the matching gendisk.  *@inputp is
564 * updated to point past the device node prefix.  Returns an ERR_PTR()
565 * value on error.
566 *
567 * Use this function iff blkg_conf_prep() can't be used for some reason.
568 */
569struct gendisk *blkcg_conf_get_disk(char **inputp)
570{
571	char *input = *inputp;
572	unsigned int major, minor;
573	struct gendisk *disk;
574	int key_len, part;
575
576	if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
577		return ERR_PTR(-EINVAL);
578
579	input += key_len;
580	if (!isspace(*input))
581		return ERR_PTR(-EINVAL);
582	input = skip_spaces(input);
583
584	disk = get_gendisk(MKDEV(major, minor), &part);
585	if (!disk)
586		return ERR_PTR(-ENODEV);
587	if (part) {
588		put_disk_and_module(disk);
589		return ERR_PTR(-ENODEV);
590	}
591
592	*inputp = input;
593	return disk;
594}
595
596/**
597 * blkg_conf_prep - parse and prepare for per-blkg config update
598 * @blkcg: target block cgroup
599 * @pol: target policy
600 * @input: input string
601 * @ctx: blkg_conf_ctx to be filled
602 *
603 * Parse per-blkg config update from @input and initialize @ctx with the
604 * result.  @ctx->blkg points to the blkg to be updated and @ctx->body the
605 * part of @input following MAJ:MIN.  This function returns with RCU read
606 * lock and queue lock held and must be paired with blkg_conf_finish().
607 */
608int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
609		   char *input, struct blkg_conf_ctx *ctx)
610	__acquires(rcu) __acquires(&disk->queue->queue_lock)
611{
612	struct gendisk *disk;
613	struct request_queue *q;
614	struct blkcg_gq *blkg;
615	int ret;
616
617	disk = blkcg_conf_get_disk(&input);
618	if (IS_ERR(disk))
619		return PTR_ERR(disk);
620
621	q = disk->queue;
622
623	/*
624	 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
625	 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
626	 */
627	ret = blk_queue_enter(q, 0);
628	if (ret)
629		goto fail;
630
631	rcu_read_lock();
632	spin_lock_irq(&q->queue_lock);
633
634	blkg = blkg_lookup_check(blkcg, pol, q);
635	if (IS_ERR(blkg)) {
636		ret = PTR_ERR(blkg);
637		goto fail_unlock;
638	}
639
640	if (blkg)
641		goto success;
642
643	/*
644	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
645	 * non-root blkgs have access to their parents.
646	 */
647	while (true) {
648		struct blkcg *pos = blkcg;
649		struct blkcg *parent;
650		struct blkcg_gq *new_blkg;
651
652		parent = blkcg_parent(blkcg);
653		while (parent && !__blkg_lookup(parent, q, false)) {
654			pos = parent;
655			parent = blkcg_parent(parent);
656		}
657
658		/* Drop locks to do new blkg allocation with GFP_KERNEL. */
659		spin_unlock_irq(&q->queue_lock);
660		rcu_read_unlock();
661
662		new_blkg = blkg_alloc(pos, q, GFP_KERNEL);
663		if (unlikely(!new_blkg)) {
664			ret = -ENOMEM;
665			goto fail_exit_queue;
666		}
667
668		if (radix_tree_preload(GFP_KERNEL)) {
669			blkg_free(new_blkg);
670			ret = -ENOMEM;
671			goto fail_exit_queue;
672		}
673
674		rcu_read_lock();
675		spin_lock_irq(&q->queue_lock);
676
677		blkg = blkg_lookup_check(pos, pol, q);
678		if (IS_ERR(blkg)) {
679			ret = PTR_ERR(blkg);
680			blkg_free(new_blkg);
681			goto fail_preloaded;
682		}
683
684		if (blkg) {
685			blkg_free(new_blkg);
686		} else {
687			blkg = blkg_create(pos, q, new_blkg);
688			if (IS_ERR(blkg)) {
689				ret = PTR_ERR(blkg);
690				goto fail_preloaded;
691			}
692		}
693
694		radix_tree_preload_end();
695
696		if (pos == blkcg)
697			goto success;
698	}
699success:
700	blk_queue_exit(q);
701	ctx->disk = disk;
702	ctx->blkg = blkg;
703	ctx->body = input;
704	return 0;
705
706fail_preloaded:
707	radix_tree_preload_end();
708fail_unlock:
709	spin_unlock_irq(&q->queue_lock);
710	rcu_read_unlock();
711fail_exit_queue:
712	blk_queue_exit(q);
713fail:
714	put_disk_and_module(disk);
715	/*
716	 * If queue was bypassing, we should retry.  Do so after a
717	 * short msleep().  It isn't strictly necessary but queue
718	 * can be bypassing for some time and it's always nice to
719	 * avoid busy looping.
720	 */
721	if (ret == -EBUSY) {
722		msleep(10);
723		ret = restart_syscall();
724	}
725	return ret;
726}
727EXPORT_SYMBOL_GPL(blkg_conf_prep);
728
729/**
730 * blkg_conf_finish - finish up per-blkg config update
731 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
732 *
733 * Finish up after per-blkg config update.  This function must be paired
734 * with blkg_conf_prep().
735 */
736void blkg_conf_finish(struct blkg_conf_ctx *ctx)
737	__releases(&ctx->disk->queue->queue_lock) __releases(rcu)
738{
739	spin_unlock_irq(&ctx->disk->queue->queue_lock);
740	rcu_read_unlock();
741	put_disk_and_module(ctx->disk);
742}
743EXPORT_SYMBOL_GPL(blkg_conf_finish);
744
745static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
746{
747	int i;
748
749	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
750		dst->bytes[i] = src->bytes[i];
751		dst->ios[i] = src->ios[i];
752	}
753}
754
755static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
756{
757	int i;
758
759	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
760		dst->bytes[i] += src->bytes[i];
761		dst->ios[i] += src->ios[i];
762	}
763}
764
765static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
766{
767	int i;
768
769	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
770		dst->bytes[i] -= src->bytes[i];
771		dst->ios[i] -= src->ios[i];
772	}
773}
774
775static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
776{
777	struct blkcg *blkcg = css_to_blkcg(css);
778	struct blkcg_gq *blkg;
779
780	rcu_read_lock();
781
782	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
783		struct blkcg_gq *parent = blkg->parent;
784		struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
785		struct blkg_iostat cur, delta;
786		unsigned int seq;
787
788		/* fetch the current per-cpu values */
789		do {
790			seq = u64_stats_fetch_begin(&bisc->sync);
791			blkg_iostat_set(&cur, &bisc->cur);
792		} while (u64_stats_fetch_retry(&bisc->sync, seq));
793
794		/* propagate percpu delta to global */
795		u64_stats_update_begin(&blkg->iostat.sync);
796		blkg_iostat_set(&delta, &cur);
797		blkg_iostat_sub(&delta, &bisc->last);
798		blkg_iostat_add(&blkg->iostat.cur, &delta);
799		blkg_iostat_add(&bisc->last, &delta);
800		u64_stats_update_end(&blkg->iostat.sync);
801
802		/* propagate global delta to parent */
803		if (parent) {
804			u64_stats_update_begin(&parent->iostat.sync);
805			blkg_iostat_set(&delta, &blkg->iostat.cur);
806			blkg_iostat_sub(&delta, &blkg->iostat.last);
807			blkg_iostat_add(&parent->iostat.cur, &delta);
808			blkg_iostat_add(&blkg->iostat.last, &delta);
809			u64_stats_update_end(&parent->iostat.sync);
810		}
811	}
812
813	rcu_read_unlock();
814}
815
816/*
817 * The rstat algorithms intentionally don't handle the root cgroup to avoid
818 * incurring overhead when no cgroups are defined. For that reason,
819 * cgroup_rstat_flush in blkcg_print_stat does not actually fill out the
820 * iostat in the root cgroup's blkcg_gq.
821 *
822 * However, we would like to re-use the printing code between the root and
823 * non-root cgroups to the extent possible. For that reason, we simulate
824 * flushing the root cgroup's stats by explicitly filling in the iostat
825 * with disk level statistics.
826 */
827static void blkcg_fill_root_iostats(void)
828{
829	struct class_dev_iter iter;
830	struct device *dev;
831
832	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
833	while ((dev = class_dev_iter_next(&iter))) {
834		struct gendisk *disk = dev_to_disk(dev);
835		struct hd_struct *part = disk_get_part(disk, 0);
836		struct blkcg_gq *blkg = blk_queue_root_blkg(disk->queue);
837		struct blkg_iostat tmp;
838		int cpu;
839
840		memset(&tmp, 0, sizeof(tmp));
841		for_each_possible_cpu(cpu) {
842			struct disk_stats *cpu_dkstats;
843
844			cpu_dkstats = per_cpu_ptr(part->dkstats, cpu);
845			tmp.ios[BLKG_IOSTAT_READ] +=
846				cpu_dkstats->ios[STAT_READ];
847			tmp.ios[BLKG_IOSTAT_WRITE] +=
848				cpu_dkstats->ios[STAT_WRITE];
849			tmp.ios[BLKG_IOSTAT_DISCARD] +=
850				cpu_dkstats->ios[STAT_DISCARD];
851			// convert sectors to bytes
852			tmp.bytes[BLKG_IOSTAT_READ] +=
853				cpu_dkstats->sectors[STAT_READ] << 9;
854			tmp.bytes[BLKG_IOSTAT_WRITE] +=
855				cpu_dkstats->sectors[STAT_WRITE] << 9;
856			tmp.bytes[BLKG_IOSTAT_DISCARD] +=
857				cpu_dkstats->sectors[STAT_DISCARD] << 9;
858
859			u64_stats_update_begin(&blkg->iostat.sync);
860			blkg_iostat_set(&blkg->iostat.cur, &tmp);
861			u64_stats_update_end(&blkg->iostat.sync);
862		}
863		disk_put_part(part);
864	}
865}
866
867static int blkcg_print_stat(struct seq_file *sf, void *v)
868{
869	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
870	struct blkcg_gq *blkg;
871
872	if (!seq_css(sf)->parent)
873		blkcg_fill_root_iostats();
874	else
875		cgroup_rstat_flush(blkcg->css.cgroup);
876
877	rcu_read_lock();
878
879	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
880		struct blkg_iostat_set *bis = &blkg->iostat;
881		const char *dname;
882		char *buf;
883		u64 rbytes, wbytes, rios, wios, dbytes, dios;
884		size_t size = seq_get_buf(sf, &buf), off = 0;
885		int i;
886		bool has_stats = false;
887		unsigned seq;
888
889		spin_lock_irq(&blkg->q->queue_lock);
890
891		if (!blkg->online)
892			goto skip;
893
894		dname = blkg_dev_name(blkg);
895		if (!dname)
896			goto skip;
897
898		/*
899		 * Hooray string manipulation, count is the size written NOT
900		 * INCLUDING THE \0, so size is now count+1 less than what we
901		 * had before, but we want to start writing the next bit from
902		 * the \0 so we only add count to buf.
903		 */
904		off += scnprintf(buf+off, size-off, "%s ", dname);
905
906		do {
907			seq = u64_stats_fetch_begin(&bis->sync);
908
909			rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
910			wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
911			dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
912			rios = bis->cur.ios[BLKG_IOSTAT_READ];
913			wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
914			dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
915		} while (u64_stats_fetch_retry(&bis->sync, seq));
916
917		if (rbytes || wbytes || rios || wios) {
918			has_stats = true;
919			off += scnprintf(buf+off, size-off,
920					 "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
921					 rbytes, wbytes, rios, wios,
922					 dbytes, dios);
923		}
924
925		if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
926			has_stats = true;
927			off += scnprintf(buf+off, size-off,
928					 " use_delay=%d delay_nsec=%llu",
929					 atomic_read(&blkg->use_delay),
930					(unsigned long long)atomic64_read(&blkg->delay_nsec));
931		}
932
933		for (i = 0; i < BLKCG_MAX_POLS; i++) {
934			struct blkcg_policy *pol = blkcg_policy[i];
935			size_t written;
936
937			if (!blkg->pd[i] || !pol->pd_stat_fn)
938				continue;
939
940			written = pol->pd_stat_fn(blkg->pd[i], buf+off, size-off);
941			if (written)
942				has_stats = true;
943			off += written;
944		}
945
946		if (has_stats) {
947			if (off < size - 1) {
948				off += scnprintf(buf+off, size-off, "\n");
949				seq_commit(sf, off);
950			} else {
951				seq_commit(sf, -1);
952			}
953		}
954	skip:
955		spin_unlock_irq(&blkg->q->queue_lock);
956	}
957
958	rcu_read_unlock();
959	return 0;
960}
961
962static struct cftype blkcg_files[] = {
963	{
964		.name = "stat",
965		.seq_show = blkcg_print_stat,
966	},
967	{ }	/* terminate */
968};
969
970static struct cftype blkcg_legacy_files[] = {
971	{
972		.name = "reset_stats",
973		.write_u64 = blkcg_reset_stats,
974	},
975	{ }	/* terminate */
976};
977
978/*
979 * blkcg destruction is a three-stage process.
980 *
981 * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
982 *    which offlines writeback.  Here we tie the next stage of blkg destruction
983 *    to the completion of writeback associated with the blkcg.  This lets us
984 *    avoid punting potentially large amounts of outstanding writeback to root
985 *    while maintaining any ongoing policies.  The next stage is triggered when
986 *    the nr_cgwbs count goes to zero.
987 *
988 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
989 *    and handles the destruction of blkgs.  Here the css reference held by
990 *    the blkg is put back eventually allowing blkcg_css_free() to be called.
991 *    This work may occur in cgwb_release_workfn() on the cgwb_release
992 *    workqueue.  Any submitted ios that fail to get the blkg ref will be
993 *    punted to the root_blkg.
994 *
995 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
996 *    This finally frees the blkcg.
997 */
998
999/**
1000 * blkcg_css_offline - cgroup css_offline callback
1001 * @css: css of interest
1002 *
1003 * This function is called when @css is about to go away.  Here the cgwbs are
1004 * offlined first and only once writeback associated with the blkcg has
1005 * finished do we start step 2 (see above).
1006 */
1007static void blkcg_css_offline(struct cgroup_subsys_state *css)
1008{
1009	struct blkcg *blkcg = css_to_blkcg(css);
1010
1011	/* this prevents anyone from attaching or migrating to this blkcg */
1012	wb_blkcg_offline(blkcg);
1013
1014	/* put the base online pin allowing step 2 to be triggered */
1015	blkcg_unpin_online(blkcg);
1016}
1017
1018/**
1019 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1020 * @blkcg: blkcg of interest
1021 *
1022 * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
1023 * is nested inside q lock, this function performs reverse double lock dancing.
1024 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1025 * blkcg_css_free to eventually be called.
1026 *
1027 * This is the blkcg counterpart of ioc_release_fn().
1028 */
1029void blkcg_destroy_blkgs(struct blkcg *blkcg)
1030{
1031	might_sleep();
1032
1033	spin_lock_irq(&blkcg->lock);
1034
1035	while (!hlist_empty(&blkcg->blkg_list)) {
1036		struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1037						struct blkcg_gq, blkcg_node);
1038		struct request_queue *q = blkg->q;
1039
1040		if (need_resched() || !spin_trylock(&q->queue_lock)) {
1041			/*
1042			 * Given that the system can accumulate a huge number
1043			 * of blkgs in pathological cases, check to see if we
1044			 * need to rescheduling to avoid softlockup.
1045			 */
1046			spin_unlock_irq(&blkcg->lock);
1047			cond_resched();
1048			spin_lock_irq(&blkcg->lock);
1049			continue;
1050		}
1051
1052		blkg_destroy(blkg);
1053		spin_unlock(&q->queue_lock);
1054	}
1055
1056	spin_unlock_irq(&blkcg->lock);
1057}
1058
1059static void blkcg_css_free(struct cgroup_subsys_state *css)
1060{
1061	struct blkcg *blkcg = css_to_blkcg(css);
1062	int i;
1063
1064	mutex_lock(&blkcg_pol_mutex);
1065
1066	list_del(&blkcg->all_blkcgs_node);
1067
1068	for (i = 0; i < BLKCG_MAX_POLS; i++)
1069		if (blkcg->cpd[i])
1070			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1071
1072	mutex_unlock(&blkcg_pol_mutex);
1073
1074	kfree(blkcg);
1075}
1076
1077static struct cgroup_subsys_state *
1078blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1079{
1080	struct blkcg *blkcg;
1081	struct cgroup_subsys_state *ret;
1082	int i;
1083
1084	mutex_lock(&blkcg_pol_mutex);
1085
1086	if (!parent_css) {
1087		blkcg = &blkcg_root;
1088	} else {
1089		blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1090		if (!blkcg) {
1091			ret = ERR_PTR(-ENOMEM);
1092			goto unlock;
1093		}
1094	}
1095
1096	for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1097		struct blkcg_policy *pol = blkcg_policy[i];
1098		struct blkcg_policy_data *cpd;
1099
1100		/*
1101		 * If the policy hasn't been attached yet, wait for it
1102		 * to be attached before doing anything else. Otherwise,
1103		 * check if the policy requires any specific per-cgroup
1104		 * data: if it does, allocate and initialize it.
1105		 */
1106		if (!pol || !pol->cpd_alloc_fn)
1107			continue;
1108
1109		cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1110		if (!cpd) {
1111			ret = ERR_PTR(-ENOMEM);
1112			goto free_pd_blkcg;
1113		}
1114		blkcg->cpd[i] = cpd;
1115		cpd->blkcg = blkcg;
1116		cpd->plid = i;
1117		if (pol->cpd_init_fn)
1118			pol->cpd_init_fn(cpd);
1119	}
1120
1121	spin_lock_init(&blkcg->lock);
1122	refcount_set(&blkcg->online_pin, 1);
1123	INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1124	INIT_HLIST_HEAD(&blkcg->blkg_list);
1125#ifdef CONFIG_CGROUP_WRITEBACK
1126	INIT_LIST_HEAD(&blkcg->cgwb_list);
1127#endif
1128	list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1129
1130	mutex_unlock(&blkcg_pol_mutex);
1131	return &blkcg->css;
1132
1133free_pd_blkcg:
1134	for (i--; i >= 0; i--)
1135		if (blkcg->cpd[i])
1136			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1137
1138	if (blkcg != &blkcg_root)
1139		kfree(blkcg);
1140unlock:
1141	mutex_unlock(&blkcg_pol_mutex);
1142	return ret;
1143}
1144
1145static int blkcg_css_online(struct cgroup_subsys_state *css)
1146{
1147	struct blkcg *blkcg = css_to_blkcg(css);
1148	struct blkcg *parent = blkcg_parent(blkcg);
1149
1150	/*
1151	 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1152	 * don't go offline while cgwbs are still active on them.  Pin the
1153	 * parent so that offline always happens towards the root.
1154	 */
1155	if (parent)
1156		blkcg_pin_online(parent);
1157	return 0;
1158}
1159
1160/**
1161 * blkcg_init_queue - initialize blkcg part of request queue
1162 * @q: request_queue to initialize
1163 *
1164 * Called from blk_alloc_queue(). Responsible for initializing blkcg
1165 * part of new request_queue @q.
1166 *
1167 * RETURNS:
1168 * 0 on success, -errno on failure.
1169 */
1170int blkcg_init_queue(struct request_queue *q)
1171{
1172	struct blkcg_gq *new_blkg, *blkg;
1173	bool preloaded;
1174	int ret;
1175
1176	new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL);
1177	if (!new_blkg)
1178		return -ENOMEM;
1179
1180	preloaded = !radix_tree_preload(GFP_KERNEL);
1181
1182	/* Make sure the root blkg exists. */
1183	rcu_read_lock();
1184	spin_lock_irq(&q->queue_lock);
1185	blkg = blkg_create(&blkcg_root, q, new_blkg);
1186	if (IS_ERR(blkg))
1187		goto err_unlock;
1188	q->root_blkg = blkg;
1189	spin_unlock_irq(&q->queue_lock);
1190	rcu_read_unlock();
1191
1192	if (preloaded)
1193		radix_tree_preload_end();
1194
1195	ret = blk_throtl_init(q);
1196	if (ret)
1197		goto err_destroy_all;
1198
1199	ret = blk_iolatency_init(q);
1200	if (ret) {
1201		blk_throtl_exit(q);
1202		goto err_destroy_all;
1203	}
1204	return 0;
1205
1206err_destroy_all:
1207	blkg_destroy_all(q);
1208	return ret;
1209err_unlock:
1210	spin_unlock_irq(&q->queue_lock);
1211	rcu_read_unlock();
1212	if (preloaded)
1213		radix_tree_preload_end();
1214	return PTR_ERR(blkg);
1215}
1216
1217/**
1218 * blkcg_exit_queue - exit and release blkcg part of request_queue
1219 * @q: request_queue being released
1220 *
1221 * Called from blk_exit_queue().  Responsible for exiting blkcg part.
1222 */
1223void blkcg_exit_queue(struct request_queue *q)
1224{
1225	blkg_destroy_all(q);
1226	blk_throtl_exit(q);
1227}
1228
1229/*
1230 * We cannot support shared io contexts, as we have no mean to support
1231 * two tasks with the same ioc in two different groups without major rework
1232 * of the main cic data structures.  For now we allow a task to change
1233 * its cgroup only if it's the only owner of its ioc.
1234 */
1235static int blkcg_can_attach(struct cgroup_taskset *tset)
1236{
1237	struct task_struct *task;
1238	struct cgroup_subsys_state *dst_css;
1239	struct io_context *ioc;
1240	int ret = 0;
1241
1242	/* task_lock() is needed to avoid races with exit_io_context() */
1243	cgroup_taskset_for_each(task, dst_css, tset) {
1244		task_lock(task);
1245		ioc = task->io_context;
1246		if (ioc && atomic_read(&ioc->nr_tasks) > 1)
1247			ret = -EINVAL;
1248		task_unlock(task);
1249		if (ret)
1250			break;
1251	}
1252	return ret;
1253}
1254
1255static void blkcg_bind(struct cgroup_subsys_state *root_css)
1256{
1257	int i;
1258
1259	mutex_lock(&blkcg_pol_mutex);
1260
1261	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1262		struct blkcg_policy *pol = blkcg_policy[i];
1263		struct blkcg *blkcg;
1264
1265		if (!pol || !pol->cpd_bind_fn)
1266			continue;
1267
1268		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1269			if (blkcg->cpd[pol->plid])
1270				pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1271	}
1272	mutex_unlock(&blkcg_pol_mutex);
1273}
1274
1275static void blkcg_exit(struct task_struct *tsk)
1276{
1277	if (tsk->throttle_queue)
1278		blk_put_queue(tsk->throttle_queue);
1279	tsk->throttle_queue = NULL;
1280}
1281
1282struct cgroup_subsys io_cgrp_subsys = {
1283	.css_alloc = blkcg_css_alloc,
1284	.css_online = blkcg_css_online,
1285	.css_offline = blkcg_css_offline,
1286	.css_free = blkcg_css_free,
1287	.can_attach = blkcg_can_attach,
1288	.css_rstat_flush = blkcg_rstat_flush,
1289	.bind = blkcg_bind,
1290	.dfl_cftypes = blkcg_files,
1291	.legacy_cftypes = blkcg_legacy_files,
1292	.legacy_name = "blkio",
1293	.exit = blkcg_exit,
1294#ifdef CONFIG_MEMCG
1295	/*
1296	 * This ensures that, if available, memcg is automatically enabled
1297	 * together on the default hierarchy so that the owner cgroup can
1298	 * be retrieved from writeback pages.
1299	 */
1300	.depends_on = 1 << memory_cgrp_id,
1301#endif
1302};
1303EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1304
1305/**
1306 * blkcg_activate_policy - activate a blkcg policy on a request_queue
1307 * @q: request_queue of interest
1308 * @pol: blkcg policy to activate
1309 *
1310 * Activate @pol on @q.  Requires %GFP_KERNEL context.  @q goes through
1311 * bypass mode to populate its blkgs with policy_data for @pol.
1312 *
1313 * Activation happens with @q bypassed, so nobody would be accessing blkgs
1314 * from IO path.  Update of each blkg is protected by both queue and blkcg
1315 * locks so that holding either lock and testing blkcg_policy_enabled() is
1316 * always enough for dereferencing policy data.
1317 *
1318 * The caller is responsible for synchronizing [de]activations and policy
1319 * [un]registerations.  Returns 0 on success, -errno on failure.
1320 */
1321int blkcg_activate_policy(struct request_queue *q,
1322			  const struct blkcg_policy *pol)
1323{
1324	struct blkg_policy_data *pd_prealloc = NULL;
1325	struct blkcg_gq *blkg, *pinned_blkg = NULL;
1326	int ret;
1327
1328	if (blkcg_policy_enabled(q, pol))
1329		return 0;
1330
1331	if (queue_is_mq(q))
1332		blk_mq_freeze_queue(q);
1333retry:
1334	spin_lock_irq(&q->queue_lock);
1335
1336	/* blkg_list is pushed at the head, reverse walk to allocate parents first */
1337	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1338		struct blkg_policy_data *pd;
1339
1340		if (blkg->pd[pol->plid])
1341			continue;
1342
1343		/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1344		if (blkg == pinned_blkg) {
1345			pd = pd_prealloc;
1346			pd_prealloc = NULL;
1347		} else {
1348			pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1349					      blkg->blkcg);
1350		}
1351
1352		if (!pd) {
1353			/*
1354			 * GFP_NOWAIT failed.  Free the existing one and
1355			 * prealloc for @blkg w/ GFP_KERNEL.
1356			 */
1357			if (pinned_blkg)
1358				blkg_put(pinned_blkg);
1359			blkg_get(blkg);
1360			pinned_blkg = blkg;
1361
1362			spin_unlock_irq(&q->queue_lock);
1363
1364			if (pd_prealloc)
1365				pol->pd_free_fn(pd_prealloc);
1366			pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1367						       blkg->blkcg);
1368			if (pd_prealloc)
1369				goto retry;
1370			else
1371				goto enomem;
1372		}
1373
1374		blkg->pd[pol->plid] = pd;
1375		pd->blkg = blkg;
1376		pd->plid = pol->plid;
1377	}
1378
1379	/* all allocated, init in the same order */
1380	if (pol->pd_init_fn)
1381		list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1382			pol->pd_init_fn(blkg->pd[pol->plid]);
1383
1384	if (pol->pd_online_fn)
1385		list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1386			pol->pd_online_fn(blkg->pd[pol->plid]);
1387
1388	__set_bit(pol->plid, q->blkcg_pols);
1389	ret = 0;
1390
1391	spin_unlock_irq(&q->queue_lock);
1392out:
1393	if (queue_is_mq(q))
1394		blk_mq_unfreeze_queue(q);
1395	if (pinned_blkg)
1396		blkg_put(pinned_blkg);
1397	if (pd_prealloc)
1398		pol->pd_free_fn(pd_prealloc);
1399	return ret;
1400
1401enomem:
1402	/* alloc failed, nothing's initialized yet, free everything */
1403	spin_lock_irq(&q->queue_lock);
1404	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1405		struct blkcg *blkcg = blkg->blkcg;
1406
1407		spin_lock(&blkcg->lock);
1408		if (blkg->pd[pol->plid]) {
1409			pol->pd_free_fn(blkg->pd[pol->plid]);
1410			blkg->pd[pol->plid] = NULL;
1411		}
1412		spin_unlock(&blkcg->lock);
1413	}
1414	spin_unlock_irq(&q->queue_lock);
1415	ret = -ENOMEM;
1416	goto out;
1417}
1418EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1419
1420/**
1421 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1422 * @q: request_queue of interest
1423 * @pol: blkcg policy to deactivate
1424 *
1425 * Deactivate @pol on @q.  Follows the same synchronization rules as
1426 * blkcg_activate_policy().
1427 */
1428void blkcg_deactivate_policy(struct request_queue *q,
1429			     const struct blkcg_policy *pol)
1430{
1431	struct blkcg_gq *blkg;
1432
1433	if (!blkcg_policy_enabled(q, pol))
1434		return;
1435
1436	if (queue_is_mq(q))
1437		blk_mq_freeze_queue(q);
1438
1439	spin_lock_irq(&q->queue_lock);
1440
1441	__clear_bit(pol->plid, q->blkcg_pols);
1442
1443	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1444		struct blkcg *blkcg = blkg->blkcg;
1445
1446		spin_lock(&blkcg->lock);
1447		if (blkg->pd[pol->plid]) {
1448			if (pol->pd_offline_fn)
1449				pol->pd_offline_fn(blkg->pd[pol->plid]);
1450			pol->pd_free_fn(blkg->pd[pol->plid]);
1451			blkg->pd[pol->plid] = NULL;
1452		}
1453		spin_unlock(&blkcg->lock);
1454	}
1455
1456	spin_unlock_irq(&q->queue_lock);
1457
1458	if (queue_is_mq(q))
1459		blk_mq_unfreeze_queue(q);
1460}
1461EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1462
1463/**
1464 * blkcg_policy_register - register a blkcg policy
1465 * @pol: blkcg policy to register
1466 *
1467 * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1468 * successful registration.  Returns 0 on success and -errno on failure.
1469 */
1470int blkcg_policy_register(struct blkcg_policy *pol)
1471{
1472	struct blkcg *blkcg;
1473	int i, ret;
1474
1475	mutex_lock(&blkcg_pol_register_mutex);
1476	mutex_lock(&blkcg_pol_mutex);
1477
1478	/* find an empty slot */
1479	ret = -ENOSPC;
1480	for (i = 0; i < BLKCG_MAX_POLS; i++)
1481		if (!blkcg_policy[i])
1482			break;
1483	if (i >= BLKCG_MAX_POLS) {
1484		pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1485		goto err_unlock;
1486	}
1487
1488	/* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1489	if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1490		(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1491		goto err_unlock;
1492
1493	/* register @pol */
1494	pol->plid = i;
1495	blkcg_policy[pol->plid] = pol;
1496
1497	/* allocate and install cpd's */
1498	if (pol->cpd_alloc_fn) {
1499		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1500			struct blkcg_policy_data *cpd;
1501
1502			cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1503			if (!cpd)
1504				goto err_free_cpds;
1505
1506			blkcg->cpd[pol->plid] = cpd;
1507			cpd->blkcg = blkcg;
1508			cpd->plid = pol->plid;
1509			if (pol->cpd_init_fn)
1510				pol->cpd_init_fn(cpd);
1511		}
1512	}
1513
1514	mutex_unlock(&blkcg_pol_mutex);
1515
1516	/* everything is in place, add intf files for the new policy */
1517	if (pol->dfl_cftypes)
1518		WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1519					       pol->dfl_cftypes));
1520	if (pol->legacy_cftypes)
1521		WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1522						  pol->legacy_cftypes));
1523	mutex_unlock(&blkcg_pol_register_mutex);
1524	return 0;
1525
1526err_free_cpds:
1527	if (pol->cpd_free_fn) {
1528		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1529			if (blkcg->cpd[pol->plid]) {
1530				pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1531				blkcg->cpd[pol->plid] = NULL;
1532			}
1533		}
1534	}
1535	blkcg_policy[pol->plid] = NULL;
1536err_unlock:
1537	mutex_unlock(&blkcg_pol_mutex);
1538	mutex_unlock(&blkcg_pol_register_mutex);
1539	return ret;
1540}
1541EXPORT_SYMBOL_GPL(blkcg_policy_register);
1542
1543/**
1544 * blkcg_policy_unregister - unregister a blkcg policy
1545 * @pol: blkcg policy to unregister
1546 *
1547 * Undo blkcg_policy_register(@pol).  Might sleep.
1548 */
1549void blkcg_policy_unregister(struct blkcg_policy *pol)
1550{
1551	struct blkcg *blkcg;
1552
1553	mutex_lock(&blkcg_pol_register_mutex);
1554
1555	if (WARN_ON(blkcg_policy[pol->plid] != pol))
1556		goto out_unlock;
1557
1558	/* kill the intf files first */
1559	if (pol->dfl_cftypes)
1560		cgroup_rm_cftypes(pol->dfl_cftypes);
1561	if (pol->legacy_cftypes)
1562		cgroup_rm_cftypes(pol->legacy_cftypes);
1563
1564	/* remove cpds and unregister */
1565	mutex_lock(&blkcg_pol_mutex);
1566
1567	if (pol->cpd_free_fn) {
1568		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1569			if (blkcg->cpd[pol->plid]) {
1570				pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1571				blkcg->cpd[pol->plid] = NULL;
1572			}
1573		}
1574	}
1575	blkcg_policy[pol->plid] = NULL;
1576
1577	mutex_unlock(&blkcg_pol_mutex);
1578out_unlock:
1579	mutex_unlock(&blkcg_pol_register_mutex);
1580}
1581EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1582
1583bool __blkcg_punt_bio_submit(struct bio *bio)
1584{
1585	struct blkcg_gq *blkg = bio->bi_blkg;
1586
1587	/* consume the flag first */
1588	bio->bi_opf &= ~REQ_CGROUP_PUNT;
1589
1590	/* never bounce for the root cgroup */
1591	if (!blkg->parent)
1592		return false;
1593
1594	spin_lock_bh(&blkg->async_bio_lock);
1595	bio_list_add(&blkg->async_bios, bio);
1596	spin_unlock_bh(&blkg->async_bio_lock);
1597
1598	queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1599	return true;
1600}
1601
1602/*
1603 * Scale the accumulated delay based on how long it has been since we updated
1604 * the delay.  We only call this when we are adding delay, in case it's been a
1605 * while since we added delay, and when we are checking to see if we need to
1606 * delay a task, to account for any delays that may have occurred.
1607 */
1608static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1609{
1610	u64 old = atomic64_read(&blkg->delay_start);
1611
1612	/* negative use_delay means no scaling, see blkcg_set_delay() */
1613	if (atomic_read(&blkg->use_delay) < 0)
1614		return;
1615
1616	/*
1617	 * We only want to scale down every second.  The idea here is that we
1618	 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1619	 * time window.  We only want to throttle tasks for recent delay that
1620	 * has occurred, in 1 second time windows since that's the maximum
1621	 * things can be throttled.  We save the current delay window in
1622	 * blkg->last_delay so we know what amount is still left to be charged
1623	 * to the blkg from this point onward.  blkg->last_use keeps track of
1624	 * the use_delay counter.  The idea is if we're unthrottling the blkg we
1625	 * are ok with whatever is happening now, and we can take away more of
1626	 * the accumulated delay as we've already throttled enough that
1627	 * everybody is happy with their IO latencies.
1628	 */
1629	if (time_before64(old + NSEC_PER_SEC, now) &&
1630	    atomic64_cmpxchg(&blkg->delay_start, old, now) == old) {
1631		u64 cur = atomic64_read(&blkg->delay_nsec);
1632		u64 sub = min_t(u64, blkg->last_delay, now - old);
1633		int cur_use = atomic_read(&blkg->use_delay);
1634
1635		/*
1636		 * We've been unthrottled, subtract a larger chunk of our
1637		 * accumulated delay.
1638		 */
1639		if (cur_use < blkg->last_use)
1640			sub = max_t(u64, sub, blkg->last_delay >> 1);
1641
1642		/*
1643		 * This shouldn't happen, but handle it anyway.  Our delay_nsec
1644		 * should only ever be growing except here where we subtract out
1645		 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1646		 * rather not end up with negative numbers.
1647		 */
1648		if (unlikely(cur < sub)) {
1649			atomic64_set(&blkg->delay_nsec, 0);
1650			blkg->last_delay = 0;
1651		} else {
1652			atomic64_sub(sub, &blkg->delay_nsec);
1653			blkg->last_delay = cur - sub;
1654		}
1655		blkg->last_use = cur_use;
1656	}
1657}
1658
1659/*
1660 * This is called when we want to actually walk up the hierarchy and check to
1661 * see if we need to throttle, and then actually throttle if there is some
1662 * accumulated delay.  This should only be called upon return to user space so
1663 * we're not holding some lock that would induce a priority inversion.
1664 */
1665static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1666{
1667	unsigned long pflags;
1668	bool clamp;
1669	u64 now = ktime_to_ns(ktime_get());
1670	u64 exp;
1671	u64 delay_nsec = 0;
1672	int tok;
1673
1674	while (blkg->parent) {
1675		int use_delay = atomic_read(&blkg->use_delay);
1676
1677		if (use_delay) {
1678			u64 this_delay;
1679
1680			blkcg_scale_delay(blkg, now);
1681			this_delay = atomic64_read(&blkg->delay_nsec);
1682			if (this_delay > delay_nsec) {
1683				delay_nsec = this_delay;
1684				clamp = use_delay > 0;
1685			}
1686		}
1687		blkg = blkg->parent;
1688	}
1689
1690	if (!delay_nsec)
1691		return;
1692
1693	/*
1694	 * Let's not sleep for all eternity if we've amassed a huge delay.
1695	 * Swapping or metadata IO can accumulate 10's of seconds worth of
1696	 * delay, and we want userspace to be able to do _something_ so cap the
1697	 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1698	 * tasks will be delayed for 0.25 second for every syscall. If
1699	 * blkcg_set_delay() was used as indicated by negative use_delay, the
1700	 * caller is responsible for regulating the range.
1701	 */
1702	if (clamp)
1703		delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1704
1705	if (use_memdelay)
1706		psi_memstall_enter(&pflags);
1707
1708	exp = ktime_add_ns(now, delay_nsec);
1709	tok = io_schedule_prepare();
1710	do {
1711		__set_current_state(TASK_KILLABLE);
1712		if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1713			break;
1714	} while (!fatal_signal_pending(current));
1715	io_schedule_finish(tok);
1716
1717	if (use_memdelay)
1718		psi_memstall_leave(&pflags);
1719}
1720
1721/**
1722 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1723 *
1724 * This is only called if we've been marked with set_notify_resume().  Obviously
1725 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1726 * check to see if current->throttle_queue is set and if not this doesn't do
1727 * anything.  This should only ever be called by the resume code, it's not meant
1728 * to be called by people willy-nilly as it will actually do the work to
1729 * throttle the task if it is setup for throttling.
1730 */
1731void blkcg_maybe_throttle_current(void)
1732{
1733	struct request_queue *q = current->throttle_queue;
1734	struct cgroup_subsys_state *css;
1735	struct blkcg *blkcg;
1736	struct blkcg_gq *blkg;
1737	bool use_memdelay = current->use_memdelay;
1738
1739	if (!q)
1740		return;
1741
1742	current->throttle_queue = NULL;
1743	current->use_memdelay = false;
1744
1745	rcu_read_lock();
1746	css = kthread_blkcg();
1747	if (css)
1748		blkcg = css_to_blkcg(css);
1749	else
1750		blkcg = css_to_blkcg(task_css(current, io_cgrp_id));
1751
1752	if (!blkcg)
1753		goto out;
1754	blkg = blkg_lookup(blkcg, q);
1755	if (!blkg)
1756		goto out;
1757	if (!blkg_tryget(blkg))
1758		goto out;
1759	rcu_read_unlock();
1760
1761	blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1762	blkg_put(blkg);
1763	blk_put_queue(q);
1764	return;
1765out:
1766	rcu_read_unlock();
1767	blk_put_queue(q);
1768}
1769
1770/**
1771 * blkcg_schedule_throttle - this task needs to check for throttling
1772 * @q: the request queue IO was submitted on
1773 * @use_memdelay: do we charge this to memory delay for PSI
1774 *
1775 * This is called by the IO controller when we know there's delay accumulated
1776 * for the blkg for this task.  We do not pass the blkg because there are places
1777 * we call this that may not have that information, the swapping code for
1778 * instance will only have a request_queue at that point.  This set's the
1779 * notify_resume for the task to check and see if it requires throttling before
1780 * returning to user space.
1781 *
1782 * We will only schedule once per syscall.  You can call this over and over
1783 * again and it will only do the check once upon return to user space, and only
1784 * throttle once.  If the task needs to be throttled again it'll need to be
1785 * re-set at the next time we see the task.
1786 */
1787void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay)
1788{
1789	if (unlikely(current->flags & PF_KTHREAD))
1790		return;
1791
1792	if (!blk_get_queue(q))
1793		return;
1794
1795	if (current->throttle_queue)
1796		blk_put_queue(current->throttle_queue);
1797	current->throttle_queue = q;
1798	if (use_memdelay)
1799		current->use_memdelay = use_memdelay;
1800	set_notify_resume(current);
1801}
1802
1803/**
1804 * blkcg_add_delay - add delay to this blkg
1805 * @blkg: blkg of interest
1806 * @now: the current time in nanoseconds
1807 * @delta: how many nanoseconds of delay to add
1808 *
1809 * Charge @delta to the blkg's current delay accumulation.  This is used to
1810 * throttle tasks if an IO controller thinks we need more throttling.
1811 */
1812void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1813{
1814	if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1815		return;
1816	blkcg_scale_delay(blkg, now);
1817	atomic64_add(delta, &blkg->delay_nsec);
1818}
1819
1820/**
1821 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1822 * @bio: target bio
1823 * @css: target css
1824 *
1825 * As the failure mode here is to walk up the blkg tree, this ensure that the
1826 * blkg->parent pointers are always valid.  This returns the blkg that it ended
1827 * up taking a reference on or %NULL if no reference was taken.
1828 */
1829static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1830		struct cgroup_subsys_state *css)
1831{
1832	struct blkcg_gq *blkg, *ret_blkg = NULL;
1833
1834	rcu_read_lock();
1835	blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_disk->queue);
1836	while (blkg) {
1837		if (blkg_tryget(blkg)) {
1838			ret_blkg = blkg;
1839			break;
1840		}
1841		blkg = blkg->parent;
1842	}
1843	rcu_read_unlock();
1844
1845	return ret_blkg;
1846}
1847
1848/**
1849 * bio_associate_blkg_from_css - associate a bio with a specified css
1850 * @bio: target bio
1851 * @css: target css
1852 *
1853 * Associate @bio with the blkg found by combining the css's blkg and the
1854 * request_queue of the @bio.  An association failure is handled by walking up
1855 * the blkg tree.  Therefore, the blkg associated can be anything between @blkg
1856 * and q->root_blkg.  This situation only happens when a cgroup is dying and
1857 * then the remaining bios will spill to the closest alive blkg.
1858 *
1859 * A reference will be taken on the blkg and will be released when @bio is
1860 * freed.
1861 */
1862void bio_associate_blkg_from_css(struct bio *bio,
1863				 struct cgroup_subsys_state *css)
1864{
1865	if (bio->bi_blkg)
1866		blkg_put(bio->bi_blkg);
1867
1868	if (css && css->parent) {
1869		bio->bi_blkg = blkg_tryget_closest(bio, css);
1870	} else {
1871		blkg_get(bio->bi_disk->queue->root_blkg);
1872		bio->bi_blkg = bio->bi_disk->queue->root_blkg;
1873	}
1874}
1875EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1876
1877/**
1878 * bio_associate_blkg - associate a bio with a blkg
1879 * @bio: target bio
1880 *
1881 * Associate @bio with the blkg found from the bio's css and request_queue.
1882 * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
1883 * already associated, the css is reused and association redone as the
1884 * request_queue may have changed.
1885 */
1886void bio_associate_blkg(struct bio *bio)
1887{
1888	struct cgroup_subsys_state *css;
1889
1890	rcu_read_lock();
1891
1892	if (bio->bi_blkg)
1893		css = &bio_blkcg(bio)->css;
1894	else
1895		css = blkcg_css();
1896
1897	bio_associate_blkg_from_css(bio, css);
1898
1899	rcu_read_unlock();
1900}
1901EXPORT_SYMBOL_GPL(bio_associate_blkg);
1902
1903/**
1904 * bio_clone_blkg_association - clone blkg association from src to dst bio
1905 * @dst: destination bio
1906 * @src: source bio
1907 */
1908void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1909{
1910	if (src->bi_blkg)
1911		bio_associate_blkg_from_css(dst, &bio_blkcg(src)->css);
1912}
1913EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1914
1915static int blk_cgroup_io_type(struct bio *bio)
1916{
1917	if (op_is_discard(bio->bi_opf))
1918		return BLKG_IOSTAT_DISCARD;
1919	if (op_is_write(bio->bi_opf))
1920		return BLKG_IOSTAT_WRITE;
1921	return BLKG_IOSTAT_READ;
1922}
1923
1924void blk_cgroup_bio_start(struct bio *bio)
1925{
1926	int rwd = blk_cgroup_io_type(bio), cpu;
1927	struct blkg_iostat_set *bis;
1928
1929	cpu = get_cpu();
1930	bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
1931	u64_stats_update_begin(&bis->sync);
1932
1933	/*
1934	 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
1935	 * bio and we would have already accounted for the size of the bio.
1936	 */
1937	if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
1938		bio_set_flag(bio, BIO_CGROUP_ACCT);
1939		bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
1940	}
1941	bis->cur.ios[rwd]++;
1942
1943	u64_stats_update_end(&bis->sync);
1944	if (cgroup_subsys_on_dfl(io_cgrp_subsys))
1945		cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu);
1946	put_cpu();
1947}
1948
1949static int __init blkcg_init(void)
1950{
1951	blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
1952					    WQ_MEM_RECLAIM | WQ_FREEZABLE |
1953					    WQ_UNBOUND | WQ_SYSFS, 0);
1954	if (!blkcg_punt_bio_wq)
1955		return -ENOMEM;
1956	return 0;
1957}
1958subsys_initcall(blkcg_init);
1959
1960module_param(blkcg_debug_stats, bool, 0644);
1961MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
1962