1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Common Block IO controller cgroup interface 4 * 5 * Based on ideas and code from CFQ, CFS and BFQ: 6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 7 * 8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 9 * Paolo Valente <paolo.valente@unimore.it> 10 * 11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com> 12 * Nauman Rafique <nauman@google.com> 13 * 14 * For policy-specific per-blkcg data: 15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it> 16 * Arianna Avanzini <avanzini.arianna@gmail.com> 17 */ 18#include <linux/ioprio.h> 19#include <linux/kdev_t.h> 20#include <linux/module.h> 21#include <linux/sched/signal.h> 22#include <linux/err.h> 23#include <linux/blkdev.h> 24#include <linux/backing-dev.h> 25#include <linux/slab.h> 26#include <linux/genhd.h> 27#include <linux/delay.h> 28#include <linux/atomic.h> 29#include <linux/ctype.h> 30#include <linux/blk-cgroup.h> 31#include <linux/tracehook.h> 32#include <linux/psi.h> 33#include "blk.h" 34 35#define MAX_KEY_LEN 100 36 37/* 38 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation. 39 * blkcg_pol_register_mutex nests outside of it and synchronizes entire 40 * policy [un]register operations including cgroup file additions / 41 * removals. Putting cgroup file registration outside blkcg_pol_mutex 42 * allows grabbing it from cgroup callbacks. 43 */ 44static DEFINE_MUTEX(blkcg_pol_register_mutex); 45static DEFINE_MUTEX(blkcg_pol_mutex); 46 47struct blkcg blkcg_root; 48EXPORT_SYMBOL_GPL(blkcg_root); 49 50struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css; 51EXPORT_SYMBOL_GPL(blkcg_root_css); 52 53static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS]; 54 55static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */ 56 57bool blkcg_debug_stats = false; 58static struct workqueue_struct *blkcg_punt_bio_wq; 59 60static bool blkcg_policy_enabled(struct request_queue *q, 61 const struct blkcg_policy *pol) 62{ 63 return pol && test_bit(pol->plid, q->blkcg_pols); 64} 65 66/** 67 * blkg_free - free a blkg 68 * @blkg: blkg to free 69 * 70 * Free @blkg which may be partially allocated. 71 */ 72static void blkg_free(struct blkcg_gq *blkg) 73{ 74 int i; 75 76 if (!blkg) 77 return; 78 79 for (i = 0; i < BLKCG_MAX_POLS; i++) 80 if (blkg->pd[i]) 81 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 82 83 free_percpu(blkg->iostat_cpu); 84 percpu_ref_exit(&blkg->refcnt); 85 kfree(blkg); 86} 87 88static void __blkg_release(struct rcu_head *rcu) 89{ 90 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head); 91 92 WARN_ON(!bio_list_empty(&blkg->async_bios)); 93 94 /* release the blkcg and parent blkg refs this blkg has been holding */ 95 css_put(&blkg->blkcg->css); 96 if (blkg->parent) 97 blkg_put(blkg->parent); 98 blkg_free(blkg); 99} 100 101/* 102 * A group is RCU protected, but having an rcu lock does not mean that one 103 * can access all the fields of blkg and assume these are valid. For 104 * example, don't try to follow throtl_data and request queue links. 105 * 106 * Having a reference to blkg under an rcu allows accesses to only values 107 * local to groups like group stats and group rate limits. 108 */ 109static void blkg_release(struct percpu_ref *ref) 110{ 111 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt); 112 113 call_rcu(&blkg->rcu_head, __blkg_release); 114} 115 116static void blkg_async_bio_workfn(struct work_struct *work) 117{ 118 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 119 async_bio_work); 120 struct bio_list bios = BIO_EMPTY_LIST; 121 struct bio *bio; 122 struct blk_plug plug; 123 bool need_plug = false; 124 125 /* as long as there are pending bios, @blkg can't go away */ 126 spin_lock_bh(&blkg->async_bio_lock); 127 bio_list_merge(&bios, &blkg->async_bios); 128 bio_list_init(&blkg->async_bios); 129 spin_unlock_bh(&blkg->async_bio_lock); 130 131 /* start plug only when bio_list contains at least 2 bios */ 132 if (bios.head && bios.head->bi_next) { 133 need_plug = true; 134 blk_start_plug(&plug); 135 } 136 while ((bio = bio_list_pop(&bios))) 137 submit_bio(bio); 138 if (need_plug) 139 blk_finish_plug(&plug); 140} 141 142/** 143 * blkg_alloc - allocate a blkg 144 * @blkcg: block cgroup the new blkg is associated with 145 * @q: request_queue the new blkg is associated with 146 * @gfp_mask: allocation mask to use 147 * 148 * Allocate a new blkg assocating @blkcg and @q. 149 */ 150static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q, 151 gfp_t gfp_mask) 152{ 153 struct blkcg_gq *blkg; 154 int i, cpu; 155 156 /* alloc and init base part */ 157 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node); 158 if (!blkg) 159 return NULL; 160 161 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask)) 162 goto err_free; 163 164 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask); 165 if (!blkg->iostat_cpu) 166 goto err_free; 167 168 blkg->q = q; 169 INIT_LIST_HEAD(&blkg->q_node); 170 spin_lock_init(&blkg->async_bio_lock); 171 bio_list_init(&blkg->async_bios); 172 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn); 173 blkg->blkcg = blkcg; 174 175 u64_stats_init(&blkg->iostat.sync); 176 for_each_possible_cpu(cpu) 177 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync); 178 179 for (i = 0; i < BLKCG_MAX_POLS; i++) { 180 struct blkcg_policy *pol = blkcg_policy[i]; 181 struct blkg_policy_data *pd; 182 183 if (!blkcg_policy_enabled(q, pol)) 184 continue; 185 186 /* alloc per-policy data and attach it to blkg */ 187 pd = pol->pd_alloc_fn(gfp_mask, q, blkcg); 188 if (!pd) 189 goto err_free; 190 191 blkg->pd[i] = pd; 192 pd->blkg = blkg; 193 pd->plid = i; 194 } 195 196 return blkg; 197 198err_free: 199 blkg_free(blkg); 200 return NULL; 201} 202 203struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg, 204 struct request_queue *q, bool update_hint) 205{ 206 struct blkcg_gq *blkg; 207 208 /* 209 * Hint didn't match. Look up from the radix tree. Note that the 210 * hint can only be updated under queue_lock as otherwise @blkg 211 * could have already been removed from blkg_tree. The caller is 212 * responsible for grabbing queue_lock if @update_hint. 213 */ 214 blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id); 215 if (blkg && blkg->q == q) { 216 if (update_hint) { 217 lockdep_assert_held(&q->queue_lock); 218 rcu_assign_pointer(blkcg->blkg_hint, blkg); 219 } 220 return blkg; 221 } 222 223 return NULL; 224} 225EXPORT_SYMBOL_GPL(blkg_lookup_slowpath); 226 227/* 228 * If @new_blkg is %NULL, this function tries to allocate a new one as 229 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return. 230 */ 231static struct blkcg_gq *blkg_create(struct blkcg *blkcg, 232 struct request_queue *q, 233 struct blkcg_gq *new_blkg) 234{ 235 struct blkcg_gq *blkg; 236 int i, ret; 237 238 WARN_ON_ONCE(!rcu_read_lock_held()); 239 lockdep_assert_held(&q->queue_lock); 240 241 /* request_queue is dying, do not create/recreate a blkg */ 242 if (blk_queue_dying(q)) { 243 ret = -ENODEV; 244 goto err_free_blkg; 245 } 246 247 /* blkg holds a reference to blkcg */ 248 if (!css_tryget_online(&blkcg->css)) { 249 ret = -ENODEV; 250 goto err_free_blkg; 251 } 252 253 /* allocate */ 254 if (!new_blkg) { 255 new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN); 256 if (unlikely(!new_blkg)) { 257 ret = -ENOMEM; 258 goto err_put_css; 259 } 260 } 261 blkg = new_blkg; 262 263 /* link parent */ 264 if (blkcg_parent(blkcg)) { 265 blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false); 266 if (WARN_ON_ONCE(!blkg->parent)) { 267 ret = -ENODEV; 268 goto err_put_css; 269 } 270 blkg_get(blkg->parent); 271 } 272 273 /* invoke per-policy init */ 274 for (i = 0; i < BLKCG_MAX_POLS; i++) { 275 struct blkcg_policy *pol = blkcg_policy[i]; 276 277 if (blkg->pd[i] && pol->pd_init_fn) 278 pol->pd_init_fn(blkg->pd[i]); 279 } 280 281 /* insert */ 282 spin_lock(&blkcg->lock); 283 ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg); 284 if (likely(!ret)) { 285 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list); 286 list_add(&blkg->q_node, &q->blkg_list); 287 288 for (i = 0; i < BLKCG_MAX_POLS; i++) { 289 struct blkcg_policy *pol = blkcg_policy[i]; 290 291 if (blkg->pd[i] && pol->pd_online_fn) 292 pol->pd_online_fn(blkg->pd[i]); 293 } 294 } 295 blkg->online = true; 296 spin_unlock(&blkcg->lock); 297 298 if (!ret) 299 return blkg; 300 301 /* @blkg failed fully initialized, use the usual release path */ 302 blkg_put(blkg); 303 return ERR_PTR(ret); 304 305err_put_css: 306 css_put(&blkcg->css); 307err_free_blkg: 308 blkg_free(new_blkg); 309 return ERR_PTR(ret); 310} 311 312/** 313 * blkg_lookup_create - lookup blkg, try to create one if not there 314 * @blkcg: blkcg of interest 315 * @q: request_queue of interest 316 * 317 * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to 318 * create one. blkg creation is performed recursively from blkcg_root such 319 * that all non-root blkg's have access to the parent blkg. This function 320 * should be called under RCU read lock and takes @q->queue_lock. 321 * 322 * Returns the blkg or the closest blkg if blkg_create() fails as it walks 323 * down from root. 324 */ 325static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg, 326 struct request_queue *q) 327{ 328 struct blkcg_gq *blkg; 329 unsigned long flags; 330 331 WARN_ON_ONCE(!rcu_read_lock_held()); 332 333 blkg = blkg_lookup(blkcg, q); 334 if (blkg) 335 return blkg; 336 337 spin_lock_irqsave(&q->queue_lock, flags); 338 blkg = __blkg_lookup(blkcg, q, true); 339 if (blkg) 340 goto found; 341 342 /* 343 * Create blkgs walking down from blkcg_root to @blkcg, so that all 344 * non-root blkgs have access to their parents. Returns the closest 345 * blkg to the intended blkg should blkg_create() fail. 346 */ 347 while (true) { 348 struct blkcg *pos = blkcg; 349 struct blkcg *parent = blkcg_parent(blkcg); 350 struct blkcg_gq *ret_blkg = q->root_blkg; 351 352 while (parent) { 353 blkg = __blkg_lookup(parent, q, false); 354 if (blkg) { 355 /* remember closest blkg */ 356 ret_blkg = blkg; 357 break; 358 } 359 pos = parent; 360 parent = blkcg_parent(parent); 361 } 362 363 blkg = blkg_create(pos, q, NULL); 364 if (IS_ERR(blkg)) { 365 blkg = ret_blkg; 366 break; 367 } 368 if (pos == blkcg) 369 break; 370 } 371 372found: 373 spin_unlock_irqrestore(&q->queue_lock, flags); 374 return blkg; 375} 376 377static void blkg_destroy(struct blkcg_gq *blkg) 378{ 379 struct blkcg *blkcg = blkg->blkcg; 380 int i; 381 382 lockdep_assert_held(&blkg->q->queue_lock); 383 lockdep_assert_held(&blkcg->lock); 384 385 /* Something wrong if we are trying to remove same group twice */ 386 WARN_ON_ONCE(list_empty(&blkg->q_node)); 387 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node)); 388 389 for (i = 0; i < BLKCG_MAX_POLS; i++) { 390 struct blkcg_policy *pol = blkcg_policy[i]; 391 392 if (blkg->pd[i] && pol->pd_offline_fn) 393 pol->pd_offline_fn(blkg->pd[i]); 394 } 395 396 blkg->online = false; 397 398 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id); 399 list_del_init(&blkg->q_node); 400 hlist_del_init_rcu(&blkg->blkcg_node); 401 402 /* 403 * Both setting lookup hint to and clearing it from @blkg are done 404 * under queue_lock. If it's not pointing to @blkg now, it never 405 * will. Hint assignment itself can race safely. 406 */ 407 if (rcu_access_pointer(blkcg->blkg_hint) == blkg) 408 rcu_assign_pointer(blkcg->blkg_hint, NULL); 409 410 /* 411 * Put the reference taken at the time of creation so that when all 412 * queues are gone, group can be destroyed. 413 */ 414 percpu_ref_kill(&blkg->refcnt); 415} 416 417/** 418 * blkg_destroy_all - destroy all blkgs associated with a request_queue 419 * @q: request_queue of interest 420 * 421 * Destroy all blkgs associated with @q. 422 */ 423static void blkg_destroy_all(struct request_queue *q) 424{ 425 struct blkcg_gq *blkg, *n; 426 427 spin_lock_irq(&q->queue_lock); 428 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { 429 struct blkcg *blkcg = blkg->blkcg; 430 431 spin_lock(&blkcg->lock); 432 blkg_destroy(blkg); 433 spin_unlock(&blkcg->lock); 434 } 435 436 q->root_blkg = NULL; 437 spin_unlock_irq(&q->queue_lock); 438} 439 440static int blkcg_reset_stats(struct cgroup_subsys_state *css, 441 struct cftype *cftype, u64 val) 442{ 443 struct blkcg *blkcg = css_to_blkcg(css); 444 struct blkcg_gq *blkg; 445 int i, cpu; 446 447 mutex_lock(&blkcg_pol_mutex); 448 spin_lock_irq(&blkcg->lock); 449 450 /* 451 * Note that stat reset is racy - it doesn't synchronize against 452 * stat updates. This is a debug feature which shouldn't exist 453 * anyway. If you get hit by a race, retry. 454 */ 455 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 456 for_each_possible_cpu(cpu) { 457 struct blkg_iostat_set *bis = 458 per_cpu_ptr(blkg->iostat_cpu, cpu); 459 memset(bis, 0, sizeof(*bis)); 460 } 461 memset(&blkg->iostat, 0, sizeof(blkg->iostat)); 462 463 for (i = 0; i < BLKCG_MAX_POLS; i++) { 464 struct blkcg_policy *pol = blkcg_policy[i]; 465 466 if (blkg->pd[i] && pol->pd_reset_stats_fn) 467 pol->pd_reset_stats_fn(blkg->pd[i]); 468 } 469 } 470 471 spin_unlock_irq(&blkcg->lock); 472 mutex_unlock(&blkcg_pol_mutex); 473 return 0; 474} 475 476const char *blkg_dev_name(struct blkcg_gq *blkg) 477{ 478 /* some drivers (floppy) instantiate a queue w/o disk registered */ 479 if (blkg->q->backing_dev_info->dev) 480 return bdi_dev_name(blkg->q->backing_dev_info); 481 return NULL; 482} 483 484/** 485 * blkcg_print_blkgs - helper for printing per-blkg data 486 * @sf: seq_file to print to 487 * @blkcg: blkcg of interest 488 * @prfill: fill function to print out a blkg 489 * @pol: policy in question 490 * @data: data to be passed to @prfill 491 * @show_total: to print out sum of prfill return values or not 492 * 493 * This function invokes @prfill on each blkg of @blkcg if pd for the 494 * policy specified by @pol exists. @prfill is invoked with @sf, the 495 * policy data and @data and the matching queue lock held. If @show_total 496 * is %true, the sum of the return values from @prfill is printed with 497 * "Total" label at the end. 498 * 499 * This is to be used to construct print functions for 500 * cftype->read_seq_string method. 501 */ 502void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg, 503 u64 (*prfill)(struct seq_file *, 504 struct blkg_policy_data *, int), 505 const struct blkcg_policy *pol, int data, 506 bool show_total) 507{ 508 struct blkcg_gq *blkg; 509 u64 total = 0; 510 511 rcu_read_lock(); 512 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 513 spin_lock_irq(&blkg->q->queue_lock); 514 if (blkcg_policy_enabled(blkg->q, pol)) 515 total += prfill(sf, blkg->pd[pol->plid], data); 516 spin_unlock_irq(&blkg->q->queue_lock); 517 } 518 rcu_read_unlock(); 519 520 if (show_total) 521 seq_printf(sf, "Total %llu\n", (unsigned long long)total); 522} 523EXPORT_SYMBOL_GPL(blkcg_print_blkgs); 524 525/** 526 * __blkg_prfill_u64 - prfill helper for a single u64 value 527 * @sf: seq_file to print to 528 * @pd: policy private data of interest 529 * @v: value to print 530 * 531 * Print @v to @sf for the device assocaited with @pd. 532 */ 533u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v) 534{ 535 const char *dname = blkg_dev_name(pd->blkg); 536 537 if (!dname) 538 return 0; 539 540 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v); 541 return v; 542} 543EXPORT_SYMBOL_GPL(__blkg_prfill_u64); 544 545/* Performs queue bypass and policy enabled checks then looks up blkg. */ 546static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg, 547 const struct blkcg_policy *pol, 548 struct request_queue *q) 549{ 550 WARN_ON_ONCE(!rcu_read_lock_held()); 551 lockdep_assert_held(&q->queue_lock); 552 553 if (!blkcg_policy_enabled(q, pol)) 554 return ERR_PTR(-EOPNOTSUPP); 555 return __blkg_lookup(blkcg, q, true /* update_hint */); 556} 557 558/** 559 * blkg_conf_prep - parse and prepare for per-blkg config update 560 * @inputp: input string pointer 561 * 562 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update 563 * from @input and get and return the matching gendisk. *@inputp is 564 * updated to point past the device node prefix. Returns an ERR_PTR() 565 * value on error. 566 * 567 * Use this function iff blkg_conf_prep() can't be used for some reason. 568 */ 569struct gendisk *blkcg_conf_get_disk(char **inputp) 570{ 571 char *input = *inputp; 572 unsigned int major, minor; 573 struct gendisk *disk; 574 int key_len, part; 575 576 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2) 577 return ERR_PTR(-EINVAL); 578 579 input += key_len; 580 if (!isspace(*input)) 581 return ERR_PTR(-EINVAL); 582 input = skip_spaces(input); 583 584 disk = get_gendisk(MKDEV(major, minor), &part); 585 if (!disk) 586 return ERR_PTR(-ENODEV); 587 if (part) { 588 put_disk_and_module(disk); 589 return ERR_PTR(-ENODEV); 590 } 591 592 *inputp = input; 593 return disk; 594} 595 596/** 597 * blkg_conf_prep - parse and prepare for per-blkg config update 598 * @blkcg: target block cgroup 599 * @pol: target policy 600 * @input: input string 601 * @ctx: blkg_conf_ctx to be filled 602 * 603 * Parse per-blkg config update from @input and initialize @ctx with the 604 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the 605 * part of @input following MAJ:MIN. This function returns with RCU read 606 * lock and queue lock held and must be paired with blkg_conf_finish(). 607 */ 608int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol, 609 char *input, struct blkg_conf_ctx *ctx) 610 __acquires(rcu) __acquires(&disk->queue->queue_lock) 611{ 612 struct gendisk *disk; 613 struct request_queue *q; 614 struct blkcg_gq *blkg; 615 int ret; 616 617 disk = blkcg_conf_get_disk(&input); 618 if (IS_ERR(disk)) 619 return PTR_ERR(disk); 620 621 q = disk->queue; 622 623 /* 624 * blkcg_deactivate_policy() requires queue to be frozen, we can grab 625 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy(). 626 */ 627 ret = blk_queue_enter(q, 0); 628 if (ret) 629 goto fail; 630 631 rcu_read_lock(); 632 spin_lock_irq(&q->queue_lock); 633 634 blkg = blkg_lookup_check(blkcg, pol, q); 635 if (IS_ERR(blkg)) { 636 ret = PTR_ERR(blkg); 637 goto fail_unlock; 638 } 639 640 if (blkg) 641 goto success; 642 643 /* 644 * Create blkgs walking down from blkcg_root to @blkcg, so that all 645 * non-root blkgs have access to their parents. 646 */ 647 while (true) { 648 struct blkcg *pos = blkcg; 649 struct blkcg *parent; 650 struct blkcg_gq *new_blkg; 651 652 parent = blkcg_parent(blkcg); 653 while (parent && !__blkg_lookup(parent, q, false)) { 654 pos = parent; 655 parent = blkcg_parent(parent); 656 } 657 658 /* Drop locks to do new blkg allocation with GFP_KERNEL. */ 659 spin_unlock_irq(&q->queue_lock); 660 rcu_read_unlock(); 661 662 new_blkg = blkg_alloc(pos, q, GFP_KERNEL); 663 if (unlikely(!new_blkg)) { 664 ret = -ENOMEM; 665 goto fail_exit_queue; 666 } 667 668 if (radix_tree_preload(GFP_KERNEL)) { 669 blkg_free(new_blkg); 670 ret = -ENOMEM; 671 goto fail_exit_queue; 672 } 673 674 rcu_read_lock(); 675 spin_lock_irq(&q->queue_lock); 676 677 blkg = blkg_lookup_check(pos, pol, q); 678 if (IS_ERR(blkg)) { 679 ret = PTR_ERR(blkg); 680 blkg_free(new_blkg); 681 goto fail_preloaded; 682 } 683 684 if (blkg) { 685 blkg_free(new_blkg); 686 } else { 687 blkg = blkg_create(pos, q, new_blkg); 688 if (IS_ERR(blkg)) { 689 ret = PTR_ERR(blkg); 690 goto fail_preloaded; 691 } 692 } 693 694 radix_tree_preload_end(); 695 696 if (pos == blkcg) 697 goto success; 698 } 699success: 700 blk_queue_exit(q); 701 ctx->disk = disk; 702 ctx->blkg = blkg; 703 ctx->body = input; 704 return 0; 705 706fail_preloaded: 707 radix_tree_preload_end(); 708fail_unlock: 709 spin_unlock_irq(&q->queue_lock); 710 rcu_read_unlock(); 711fail_exit_queue: 712 blk_queue_exit(q); 713fail: 714 put_disk_and_module(disk); 715 /* 716 * If queue was bypassing, we should retry. Do so after a 717 * short msleep(). It isn't strictly necessary but queue 718 * can be bypassing for some time and it's always nice to 719 * avoid busy looping. 720 */ 721 if (ret == -EBUSY) { 722 msleep(10); 723 ret = restart_syscall(); 724 } 725 return ret; 726} 727EXPORT_SYMBOL_GPL(blkg_conf_prep); 728 729/** 730 * blkg_conf_finish - finish up per-blkg config update 731 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep() 732 * 733 * Finish up after per-blkg config update. This function must be paired 734 * with blkg_conf_prep(). 735 */ 736void blkg_conf_finish(struct blkg_conf_ctx *ctx) 737 __releases(&ctx->disk->queue->queue_lock) __releases(rcu) 738{ 739 spin_unlock_irq(&ctx->disk->queue->queue_lock); 740 rcu_read_unlock(); 741 put_disk_and_module(ctx->disk); 742} 743EXPORT_SYMBOL_GPL(blkg_conf_finish); 744 745static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src) 746{ 747 int i; 748 749 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 750 dst->bytes[i] = src->bytes[i]; 751 dst->ios[i] = src->ios[i]; 752 } 753} 754 755static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src) 756{ 757 int i; 758 759 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 760 dst->bytes[i] += src->bytes[i]; 761 dst->ios[i] += src->ios[i]; 762 } 763} 764 765static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src) 766{ 767 int i; 768 769 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 770 dst->bytes[i] -= src->bytes[i]; 771 dst->ios[i] -= src->ios[i]; 772 } 773} 774 775static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu) 776{ 777 struct blkcg *blkcg = css_to_blkcg(css); 778 struct blkcg_gq *blkg; 779 780 rcu_read_lock(); 781 782 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 783 struct blkcg_gq *parent = blkg->parent; 784 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu); 785 struct blkg_iostat cur, delta; 786 unsigned int seq; 787 788 /* fetch the current per-cpu values */ 789 do { 790 seq = u64_stats_fetch_begin(&bisc->sync); 791 blkg_iostat_set(&cur, &bisc->cur); 792 } while (u64_stats_fetch_retry(&bisc->sync, seq)); 793 794 /* propagate percpu delta to global */ 795 u64_stats_update_begin(&blkg->iostat.sync); 796 blkg_iostat_set(&delta, &cur); 797 blkg_iostat_sub(&delta, &bisc->last); 798 blkg_iostat_add(&blkg->iostat.cur, &delta); 799 blkg_iostat_add(&bisc->last, &delta); 800 u64_stats_update_end(&blkg->iostat.sync); 801 802 /* propagate global delta to parent */ 803 if (parent) { 804 u64_stats_update_begin(&parent->iostat.sync); 805 blkg_iostat_set(&delta, &blkg->iostat.cur); 806 blkg_iostat_sub(&delta, &blkg->iostat.last); 807 blkg_iostat_add(&parent->iostat.cur, &delta); 808 blkg_iostat_add(&blkg->iostat.last, &delta); 809 u64_stats_update_end(&parent->iostat.sync); 810 } 811 } 812 813 rcu_read_unlock(); 814} 815 816/* 817 * The rstat algorithms intentionally don't handle the root cgroup to avoid 818 * incurring overhead when no cgroups are defined. For that reason, 819 * cgroup_rstat_flush in blkcg_print_stat does not actually fill out the 820 * iostat in the root cgroup's blkcg_gq. 821 * 822 * However, we would like to re-use the printing code between the root and 823 * non-root cgroups to the extent possible. For that reason, we simulate 824 * flushing the root cgroup's stats by explicitly filling in the iostat 825 * with disk level statistics. 826 */ 827static void blkcg_fill_root_iostats(void) 828{ 829 struct class_dev_iter iter; 830 struct device *dev; 831 832 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 833 while ((dev = class_dev_iter_next(&iter))) { 834 struct gendisk *disk = dev_to_disk(dev); 835 struct hd_struct *part = disk_get_part(disk, 0); 836 struct blkcg_gq *blkg = blk_queue_root_blkg(disk->queue); 837 struct blkg_iostat tmp; 838 int cpu; 839 840 memset(&tmp, 0, sizeof(tmp)); 841 for_each_possible_cpu(cpu) { 842 struct disk_stats *cpu_dkstats; 843 844 cpu_dkstats = per_cpu_ptr(part->dkstats, cpu); 845 tmp.ios[BLKG_IOSTAT_READ] += 846 cpu_dkstats->ios[STAT_READ]; 847 tmp.ios[BLKG_IOSTAT_WRITE] += 848 cpu_dkstats->ios[STAT_WRITE]; 849 tmp.ios[BLKG_IOSTAT_DISCARD] += 850 cpu_dkstats->ios[STAT_DISCARD]; 851 // convert sectors to bytes 852 tmp.bytes[BLKG_IOSTAT_READ] += 853 cpu_dkstats->sectors[STAT_READ] << 9; 854 tmp.bytes[BLKG_IOSTAT_WRITE] += 855 cpu_dkstats->sectors[STAT_WRITE] << 9; 856 tmp.bytes[BLKG_IOSTAT_DISCARD] += 857 cpu_dkstats->sectors[STAT_DISCARD] << 9; 858 859 u64_stats_update_begin(&blkg->iostat.sync); 860 blkg_iostat_set(&blkg->iostat.cur, &tmp); 861 u64_stats_update_end(&blkg->iostat.sync); 862 } 863 disk_put_part(part); 864 } 865} 866 867static int blkcg_print_stat(struct seq_file *sf, void *v) 868{ 869 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 870 struct blkcg_gq *blkg; 871 872 if (!seq_css(sf)->parent) 873 blkcg_fill_root_iostats(); 874 else 875 cgroup_rstat_flush(blkcg->css.cgroup); 876 877 rcu_read_lock(); 878 879 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 880 struct blkg_iostat_set *bis = &blkg->iostat; 881 const char *dname; 882 char *buf; 883 u64 rbytes, wbytes, rios, wios, dbytes, dios; 884 size_t size = seq_get_buf(sf, &buf), off = 0; 885 int i; 886 bool has_stats = false; 887 unsigned seq; 888 889 spin_lock_irq(&blkg->q->queue_lock); 890 891 if (!blkg->online) 892 goto skip; 893 894 dname = blkg_dev_name(blkg); 895 if (!dname) 896 goto skip; 897 898 /* 899 * Hooray string manipulation, count is the size written NOT 900 * INCLUDING THE \0, so size is now count+1 less than what we 901 * had before, but we want to start writing the next bit from 902 * the \0 so we only add count to buf. 903 */ 904 off += scnprintf(buf+off, size-off, "%s ", dname); 905 906 do { 907 seq = u64_stats_fetch_begin(&bis->sync); 908 909 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ]; 910 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE]; 911 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD]; 912 rios = bis->cur.ios[BLKG_IOSTAT_READ]; 913 wios = bis->cur.ios[BLKG_IOSTAT_WRITE]; 914 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD]; 915 } while (u64_stats_fetch_retry(&bis->sync, seq)); 916 917 if (rbytes || wbytes || rios || wios) { 918 has_stats = true; 919 off += scnprintf(buf+off, size-off, 920 "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu", 921 rbytes, wbytes, rios, wios, 922 dbytes, dios); 923 } 924 925 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) { 926 has_stats = true; 927 off += scnprintf(buf+off, size-off, 928 " use_delay=%d delay_nsec=%llu", 929 atomic_read(&blkg->use_delay), 930 (unsigned long long)atomic64_read(&blkg->delay_nsec)); 931 } 932 933 for (i = 0; i < BLKCG_MAX_POLS; i++) { 934 struct blkcg_policy *pol = blkcg_policy[i]; 935 size_t written; 936 937 if (!blkg->pd[i] || !pol->pd_stat_fn) 938 continue; 939 940 written = pol->pd_stat_fn(blkg->pd[i], buf+off, size-off); 941 if (written) 942 has_stats = true; 943 off += written; 944 } 945 946 if (has_stats) { 947 if (off < size - 1) { 948 off += scnprintf(buf+off, size-off, "\n"); 949 seq_commit(sf, off); 950 } else { 951 seq_commit(sf, -1); 952 } 953 } 954 skip: 955 spin_unlock_irq(&blkg->q->queue_lock); 956 } 957 958 rcu_read_unlock(); 959 return 0; 960} 961 962static struct cftype blkcg_files[] = { 963 { 964 .name = "stat", 965 .seq_show = blkcg_print_stat, 966 }, 967 { } /* terminate */ 968}; 969 970static struct cftype blkcg_legacy_files[] = { 971 { 972 .name = "reset_stats", 973 .write_u64 = blkcg_reset_stats, 974 }, 975 { } /* terminate */ 976}; 977 978/* 979 * blkcg destruction is a three-stage process. 980 * 981 * 1. Destruction starts. The blkcg_css_offline() callback is invoked 982 * which offlines writeback. Here we tie the next stage of blkg destruction 983 * to the completion of writeback associated with the blkcg. This lets us 984 * avoid punting potentially large amounts of outstanding writeback to root 985 * while maintaining any ongoing policies. The next stage is triggered when 986 * the nr_cgwbs count goes to zero. 987 * 988 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called 989 * and handles the destruction of blkgs. Here the css reference held by 990 * the blkg is put back eventually allowing blkcg_css_free() to be called. 991 * This work may occur in cgwb_release_workfn() on the cgwb_release 992 * workqueue. Any submitted ios that fail to get the blkg ref will be 993 * punted to the root_blkg. 994 * 995 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called. 996 * This finally frees the blkcg. 997 */ 998 999/** 1000 * blkcg_css_offline - cgroup css_offline callback 1001 * @css: css of interest 1002 * 1003 * This function is called when @css is about to go away. Here the cgwbs are 1004 * offlined first and only once writeback associated with the blkcg has 1005 * finished do we start step 2 (see above). 1006 */ 1007static void blkcg_css_offline(struct cgroup_subsys_state *css) 1008{ 1009 struct blkcg *blkcg = css_to_blkcg(css); 1010 1011 /* this prevents anyone from attaching or migrating to this blkcg */ 1012 wb_blkcg_offline(blkcg); 1013 1014 /* put the base online pin allowing step 2 to be triggered */ 1015 blkcg_unpin_online(blkcg); 1016} 1017 1018/** 1019 * blkcg_destroy_blkgs - responsible for shooting down blkgs 1020 * @blkcg: blkcg of interest 1021 * 1022 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock 1023 * is nested inside q lock, this function performs reverse double lock dancing. 1024 * Destroying the blkgs releases the reference held on the blkcg's css allowing 1025 * blkcg_css_free to eventually be called. 1026 * 1027 * This is the blkcg counterpart of ioc_release_fn(). 1028 */ 1029void blkcg_destroy_blkgs(struct blkcg *blkcg) 1030{ 1031 might_sleep(); 1032 1033 spin_lock_irq(&blkcg->lock); 1034 1035 while (!hlist_empty(&blkcg->blkg_list)) { 1036 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first, 1037 struct blkcg_gq, blkcg_node); 1038 struct request_queue *q = blkg->q; 1039 1040 if (need_resched() || !spin_trylock(&q->queue_lock)) { 1041 /* 1042 * Given that the system can accumulate a huge number 1043 * of blkgs in pathological cases, check to see if we 1044 * need to rescheduling to avoid softlockup. 1045 */ 1046 spin_unlock_irq(&blkcg->lock); 1047 cond_resched(); 1048 spin_lock_irq(&blkcg->lock); 1049 continue; 1050 } 1051 1052 blkg_destroy(blkg); 1053 spin_unlock(&q->queue_lock); 1054 } 1055 1056 spin_unlock_irq(&blkcg->lock); 1057} 1058 1059static void blkcg_css_free(struct cgroup_subsys_state *css) 1060{ 1061 struct blkcg *blkcg = css_to_blkcg(css); 1062 int i; 1063 1064 mutex_lock(&blkcg_pol_mutex); 1065 1066 list_del(&blkcg->all_blkcgs_node); 1067 1068 for (i = 0; i < BLKCG_MAX_POLS; i++) 1069 if (blkcg->cpd[i]) 1070 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1071 1072 mutex_unlock(&blkcg_pol_mutex); 1073 1074 kfree(blkcg); 1075} 1076 1077static struct cgroup_subsys_state * 1078blkcg_css_alloc(struct cgroup_subsys_state *parent_css) 1079{ 1080 struct blkcg *blkcg; 1081 struct cgroup_subsys_state *ret; 1082 int i; 1083 1084 mutex_lock(&blkcg_pol_mutex); 1085 1086 if (!parent_css) { 1087 blkcg = &blkcg_root; 1088 } else { 1089 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL); 1090 if (!blkcg) { 1091 ret = ERR_PTR(-ENOMEM); 1092 goto unlock; 1093 } 1094 } 1095 1096 for (i = 0; i < BLKCG_MAX_POLS ; i++) { 1097 struct blkcg_policy *pol = blkcg_policy[i]; 1098 struct blkcg_policy_data *cpd; 1099 1100 /* 1101 * If the policy hasn't been attached yet, wait for it 1102 * to be attached before doing anything else. Otherwise, 1103 * check if the policy requires any specific per-cgroup 1104 * data: if it does, allocate and initialize it. 1105 */ 1106 if (!pol || !pol->cpd_alloc_fn) 1107 continue; 1108 1109 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1110 if (!cpd) { 1111 ret = ERR_PTR(-ENOMEM); 1112 goto free_pd_blkcg; 1113 } 1114 blkcg->cpd[i] = cpd; 1115 cpd->blkcg = blkcg; 1116 cpd->plid = i; 1117 if (pol->cpd_init_fn) 1118 pol->cpd_init_fn(cpd); 1119 } 1120 1121 spin_lock_init(&blkcg->lock); 1122 refcount_set(&blkcg->online_pin, 1); 1123 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN); 1124 INIT_HLIST_HEAD(&blkcg->blkg_list); 1125#ifdef CONFIG_CGROUP_WRITEBACK 1126 INIT_LIST_HEAD(&blkcg->cgwb_list); 1127#endif 1128 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs); 1129 1130 mutex_unlock(&blkcg_pol_mutex); 1131 return &blkcg->css; 1132 1133free_pd_blkcg: 1134 for (i--; i >= 0; i--) 1135 if (blkcg->cpd[i]) 1136 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1137 1138 if (blkcg != &blkcg_root) 1139 kfree(blkcg); 1140unlock: 1141 mutex_unlock(&blkcg_pol_mutex); 1142 return ret; 1143} 1144 1145static int blkcg_css_online(struct cgroup_subsys_state *css) 1146{ 1147 struct blkcg *blkcg = css_to_blkcg(css); 1148 struct blkcg *parent = blkcg_parent(blkcg); 1149 1150 /* 1151 * blkcg_pin_online() is used to delay blkcg offline so that blkgs 1152 * don't go offline while cgwbs are still active on them. Pin the 1153 * parent so that offline always happens towards the root. 1154 */ 1155 if (parent) 1156 blkcg_pin_online(parent); 1157 return 0; 1158} 1159 1160/** 1161 * blkcg_init_queue - initialize blkcg part of request queue 1162 * @q: request_queue to initialize 1163 * 1164 * Called from blk_alloc_queue(). Responsible for initializing blkcg 1165 * part of new request_queue @q. 1166 * 1167 * RETURNS: 1168 * 0 on success, -errno on failure. 1169 */ 1170int blkcg_init_queue(struct request_queue *q) 1171{ 1172 struct blkcg_gq *new_blkg, *blkg; 1173 bool preloaded; 1174 int ret; 1175 1176 new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL); 1177 if (!new_blkg) 1178 return -ENOMEM; 1179 1180 preloaded = !radix_tree_preload(GFP_KERNEL); 1181 1182 /* Make sure the root blkg exists. */ 1183 rcu_read_lock(); 1184 spin_lock_irq(&q->queue_lock); 1185 blkg = blkg_create(&blkcg_root, q, new_blkg); 1186 if (IS_ERR(blkg)) 1187 goto err_unlock; 1188 q->root_blkg = blkg; 1189 spin_unlock_irq(&q->queue_lock); 1190 rcu_read_unlock(); 1191 1192 if (preloaded) 1193 radix_tree_preload_end(); 1194 1195 ret = blk_throtl_init(q); 1196 if (ret) 1197 goto err_destroy_all; 1198 1199 ret = blk_iolatency_init(q); 1200 if (ret) { 1201 blk_throtl_exit(q); 1202 goto err_destroy_all; 1203 } 1204 return 0; 1205 1206err_destroy_all: 1207 blkg_destroy_all(q); 1208 return ret; 1209err_unlock: 1210 spin_unlock_irq(&q->queue_lock); 1211 rcu_read_unlock(); 1212 if (preloaded) 1213 radix_tree_preload_end(); 1214 return PTR_ERR(blkg); 1215} 1216 1217/** 1218 * blkcg_exit_queue - exit and release blkcg part of request_queue 1219 * @q: request_queue being released 1220 * 1221 * Called from blk_exit_queue(). Responsible for exiting blkcg part. 1222 */ 1223void blkcg_exit_queue(struct request_queue *q) 1224{ 1225 blkg_destroy_all(q); 1226 blk_throtl_exit(q); 1227} 1228 1229/* 1230 * We cannot support shared io contexts, as we have no mean to support 1231 * two tasks with the same ioc in two different groups without major rework 1232 * of the main cic data structures. For now we allow a task to change 1233 * its cgroup only if it's the only owner of its ioc. 1234 */ 1235static int blkcg_can_attach(struct cgroup_taskset *tset) 1236{ 1237 struct task_struct *task; 1238 struct cgroup_subsys_state *dst_css; 1239 struct io_context *ioc; 1240 int ret = 0; 1241 1242 /* task_lock() is needed to avoid races with exit_io_context() */ 1243 cgroup_taskset_for_each(task, dst_css, tset) { 1244 task_lock(task); 1245 ioc = task->io_context; 1246 if (ioc && atomic_read(&ioc->nr_tasks) > 1) 1247 ret = -EINVAL; 1248 task_unlock(task); 1249 if (ret) 1250 break; 1251 } 1252 return ret; 1253} 1254 1255static void blkcg_bind(struct cgroup_subsys_state *root_css) 1256{ 1257 int i; 1258 1259 mutex_lock(&blkcg_pol_mutex); 1260 1261 for (i = 0; i < BLKCG_MAX_POLS; i++) { 1262 struct blkcg_policy *pol = blkcg_policy[i]; 1263 struct blkcg *blkcg; 1264 1265 if (!pol || !pol->cpd_bind_fn) 1266 continue; 1267 1268 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) 1269 if (blkcg->cpd[pol->plid]) 1270 pol->cpd_bind_fn(blkcg->cpd[pol->plid]); 1271 } 1272 mutex_unlock(&blkcg_pol_mutex); 1273} 1274 1275static void blkcg_exit(struct task_struct *tsk) 1276{ 1277 if (tsk->throttle_queue) 1278 blk_put_queue(tsk->throttle_queue); 1279 tsk->throttle_queue = NULL; 1280} 1281 1282struct cgroup_subsys io_cgrp_subsys = { 1283 .css_alloc = blkcg_css_alloc, 1284 .css_online = blkcg_css_online, 1285 .css_offline = blkcg_css_offline, 1286 .css_free = blkcg_css_free, 1287 .can_attach = blkcg_can_attach, 1288 .css_rstat_flush = blkcg_rstat_flush, 1289 .bind = blkcg_bind, 1290 .dfl_cftypes = blkcg_files, 1291 .legacy_cftypes = blkcg_legacy_files, 1292 .legacy_name = "blkio", 1293 .exit = blkcg_exit, 1294#ifdef CONFIG_MEMCG 1295 /* 1296 * This ensures that, if available, memcg is automatically enabled 1297 * together on the default hierarchy so that the owner cgroup can 1298 * be retrieved from writeback pages. 1299 */ 1300 .depends_on = 1 << memory_cgrp_id, 1301#endif 1302}; 1303EXPORT_SYMBOL_GPL(io_cgrp_subsys); 1304 1305/** 1306 * blkcg_activate_policy - activate a blkcg policy on a request_queue 1307 * @q: request_queue of interest 1308 * @pol: blkcg policy to activate 1309 * 1310 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through 1311 * bypass mode to populate its blkgs with policy_data for @pol. 1312 * 1313 * Activation happens with @q bypassed, so nobody would be accessing blkgs 1314 * from IO path. Update of each blkg is protected by both queue and blkcg 1315 * locks so that holding either lock and testing blkcg_policy_enabled() is 1316 * always enough for dereferencing policy data. 1317 * 1318 * The caller is responsible for synchronizing [de]activations and policy 1319 * [un]registerations. Returns 0 on success, -errno on failure. 1320 */ 1321int blkcg_activate_policy(struct request_queue *q, 1322 const struct blkcg_policy *pol) 1323{ 1324 struct blkg_policy_data *pd_prealloc = NULL; 1325 struct blkcg_gq *blkg, *pinned_blkg = NULL; 1326 int ret; 1327 1328 if (blkcg_policy_enabled(q, pol)) 1329 return 0; 1330 1331 if (queue_is_mq(q)) 1332 blk_mq_freeze_queue(q); 1333retry: 1334 spin_lock_irq(&q->queue_lock); 1335 1336 /* blkg_list is pushed at the head, reverse walk to allocate parents first */ 1337 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1338 struct blkg_policy_data *pd; 1339 1340 if (blkg->pd[pol->plid]) 1341 continue; 1342 1343 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */ 1344 if (blkg == pinned_blkg) { 1345 pd = pd_prealloc; 1346 pd_prealloc = NULL; 1347 } else { 1348 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q, 1349 blkg->blkcg); 1350 } 1351 1352 if (!pd) { 1353 /* 1354 * GFP_NOWAIT failed. Free the existing one and 1355 * prealloc for @blkg w/ GFP_KERNEL. 1356 */ 1357 if (pinned_blkg) 1358 blkg_put(pinned_blkg); 1359 blkg_get(blkg); 1360 pinned_blkg = blkg; 1361 1362 spin_unlock_irq(&q->queue_lock); 1363 1364 if (pd_prealloc) 1365 pol->pd_free_fn(pd_prealloc); 1366 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q, 1367 blkg->blkcg); 1368 if (pd_prealloc) 1369 goto retry; 1370 else 1371 goto enomem; 1372 } 1373 1374 blkg->pd[pol->plid] = pd; 1375 pd->blkg = blkg; 1376 pd->plid = pol->plid; 1377 } 1378 1379 /* all allocated, init in the same order */ 1380 if (pol->pd_init_fn) 1381 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) 1382 pol->pd_init_fn(blkg->pd[pol->plid]); 1383 1384 if (pol->pd_online_fn) 1385 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) 1386 pol->pd_online_fn(blkg->pd[pol->plid]); 1387 1388 __set_bit(pol->plid, q->blkcg_pols); 1389 ret = 0; 1390 1391 spin_unlock_irq(&q->queue_lock); 1392out: 1393 if (queue_is_mq(q)) 1394 blk_mq_unfreeze_queue(q); 1395 if (pinned_blkg) 1396 blkg_put(pinned_blkg); 1397 if (pd_prealloc) 1398 pol->pd_free_fn(pd_prealloc); 1399 return ret; 1400 1401enomem: 1402 /* alloc failed, nothing's initialized yet, free everything */ 1403 spin_lock_irq(&q->queue_lock); 1404 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1405 struct blkcg *blkcg = blkg->blkcg; 1406 1407 spin_lock(&blkcg->lock); 1408 if (blkg->pd[pol->plid]) { 1409 pol->pd_free_fn(blkg->pd[pol->plid]); 1410 blkg->pd[pol->plid] = NULL; 1411 } 1412 spin_unlock(&blkcg->lock); 1413 } 1414 spin_unlock_irq(&q->queue_lock); 1415 ret = -ENOMEM; 1416 goto out; 1417} 1418EXPORT_SYMBOL_GPL(blkcg_activate_policy); 1419 1420/** 1421 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue 1422 * @q: request_queue of interest 1423 * @pol: blkcg policy to deactivate 1424 * 1425 * Deactivate @pol on @q. Follows the same synchronization rules as 1426 * blkcg_activate_policy(). 1427 */ 1428void blkcg_deactivate_policy(struct request_queue *q, 1429 const struct blkcg_policy *pol) 1430{ 1431 struct blkcg_gq *blkg; 1432 1433 if (!blkcg_policy_enabled(q, pol)) 1434 return; 1435 1436 if (queue_is_mq(q)) 1437 blk_mq_freeze_queue(q); 1438 1439 spin_lock_irq(&q->queue_lock); 1440 1441 __clear_bit(pol->plid, q->blkcg_pols); 1442 1443 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1444 struct blkcg *blkcg = blkg->blkcg; 1445 1446 spin_lock(&blkcg->lock); 1447 if (blkg->pd[pol->plid]) { 1448 if (pol->pd_offline_fn) 1449 pol->pd_offline_fn(blkg->pd[pol->plid]); 1450 pol->pd_free_fn(blkg->pd[pol->plid]); 1451 blkg->pd[pol->plid] = NULL; 1452 } 1453 spin_unlock(&blkcg->lock); 1454 } 1455 1456 spin_unlock_irq(&q->queue_lock); 1457 1458 if (queue_is_mq(q)) 1459 blk_mq_unfreeze_queue(q); 1460} 1461EXPORT_SYMBOL_GPL(blkcg_deactivate_policy); 1462 1463/** 1464 * blkcg_policy_register - register a blkcg policy 1465 * @pol: blkcg policy to register 1466 * 1467 * Register @pol with blkcg core. Might sleep and @pol may be modified on 1468 * successful registration. Returns 0 on success and -errno on failure. 1469 */ 1470int blkcg_policy_register(struct blkcg_policy *pol) 1471{ 1472 struct blkcg *blkcg; 1473 int i, ret; 1474 1475 mutex_lock(&blkcg_pol_register_mutex); 1476 mutex_lock(&blkcg_pol_mutex); 1477 1478 /* find an empty slot */ 1479 ret = -ENOSPC; 1480 for (i = 0; i < BLKCG_MAX_POLS; i++) 1481 if (!blkcg_policy[i]) 1482 break; 1483 if (i >= BLKCG_MAX_POLS) { 1484 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n"); 1485 goto err_unlock; 1486 } 1487 1488 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */ 1489 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) || 1490 (!pol->pd_alloc_fn ^ !pol->pd_free_fn)) 1491 goto err_unlock; 1492 1493 /* register @pol */ 1494 pol->plid = i; 1495 blkcg_policy[pol->plid] = pol; 1496 1497 /* allocate and install cpd's */ 1498 if (pol->cpd_alloc_fn) { 1499 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1500 struct blkcg_policy_data *cpd; 1501 1502 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1503 if (!cpd) 1504 goto err_free_cpds; 1505 1506 blkcg->cpd[pol->plid] = cpd; 1507 cpd->blkcg = blkcg; 1508 cpd->plid = pol->plid; 1509 if (pol->cpd_init_fn) 1510 pol->cpd_init_fn(cpd); 1511 } 1512 } 1513 1514 mutex_unlock(&blkcg_pol_mutex); 1515 1516 /* everything is in place, add intf files for the new policy */ 1517 if (pol->dfl_cftypes) 1518 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys, 1519 pol->dfl_cftypes)); 1520 if (pol->legacy_cftypes) 1521 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys, 1522 pol->legacy_cftypes)); 1523 mutex_unlock(&blkcg_pol_register_mutex); 1524 return 0; 1525 1526err_free_cpds: 1527 if (pol->cpd_free_fn) { 1528 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1529 if (blkcg->cpd[pol->plid]) { 1530 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1531 blkcg->cpd[pol->plid] = NULL; 1532 } 1533 } 1534 } 1535 blkcg_policy[pol->plid] = NULL; 1536err_unlock: 1537 mutex_unlock(&blkcg_pol_mutex); 1538 mutex_unlock(&blkcg_pol_register_mutex); 1539 return ret; 1540} 1541EXPORT_SYMBOL_GPL(blkcg_policy_register); 1542 1543/** 1544 * blkcg_policy_unregister - unregister a blkcg policy 1545 * @pol: blkcg policy to unregister 1546 * 1547 * Undo blkcg_policy_register(@pol). Might sleep. 1548 */ 1549void blkcg_policy_unregister(struct blkcg_policy *pol) 1550{ 1551 struct blkcg *blkcg; 1552 1553 mutex_lock(&blkcg_pol_register_mutex); 1554 1555 if (WARN_ON(blkcg_policy[pol->plid] != pol)) 1556 goto out_unlock; 1557 1558 /* kill the intf files first */ 1559 if (pol->dfl_cftypes) 1560 cgroup_rm_cftypes(pol->dfl_cftypes); 1561 if (pol->legacy_cftypes) 1562 cgroup_rm_cftypes(pol->legacy_cftypes); 1563 1564 /* remove cpds and unregister */ 1565 mutex_lock(&blkcg_pol_mutex); 1566 1567 if (pol->cpd_free_fn) { 1568 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1569 if (blkcg->cpd[pol->plid]) { 1570 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1571 blkcg->cpd[pol->plid] = NULL; 1572 } 1573 } 1574 } 1575 blkcg_policy[pol->plid] = NULL; 1576 1577 mutex_unlock(&blkcg_pol_mutex); 1578out_unlock: 1579 mutex_unlock(&blkcg_pol_register_mutex); 1580} 1581EXPORT_SYMBOL_GPL(blkcg_policy_unregister); 1582 1583bool __blkcg_punt_bio_submit(struct bio *bio) 1584{ 1585 struct blkcg_gq *blkg = bio->bi_blkg; 1586 1587 /* consume the flag first */ 1588 bio->bi_opf &= ~REQ_CGROUP_PUNT; 1589 1590 /* never bounce for the root cgroup */ 1591 if (!blkg->parent) 1592 return false; 1593 1594 spin_lock_bh(&blkg->async_bio_lock); 1595 bio_list_add(&blkg->async_bios, bio); 1596 spin_unlock_bh(&blkg->async_bio_lock); 1597 1598 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work); 1599 return true; 1600} 1601 1602/* 1603 * Scale the accumulated delay based on how long it has been since we updated 1604 * the delay. We only call this when we are adding delay, in case it's been a 1605 * while since we added delay, and when we are checking to see if we need to 1606 * delay a task, to account for any delays that may have occurred. 1607 */ 1608static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now) 1609{ 1610 u64 old = atomic64_read(&blkg->delay_start); 1611 1612 /* negative use_delay means no scaling, see blkcg_set_delay() */ 1613 if (atomic_read(&blkg->use_delay) < 0) 1614 return; 1615 1616 /* 1617 * We only want to scale down every second. The idea here is that we 1618 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain 1619 * time window. We only want to throttle tasks for recent delay that 1620 * has occurred, in 1 second time windows since that's the maximum 1621 * things can be throttled. We save the current delay window in 1622 * blkg->last_delay so we know what amount is still left to be charged 1623 * to the blkg from this point onward. blkg->last_use keeps track of 1624 * the use_delay counter. The idea is if we're unthrottling the blkg we 1625 * are ok with whatever is happening now, and we can take away more of 1626 * the accumulated delay as we've already throttled enough that 1627 * everybody is happy with their IO latencies. 1628 */ 1629 if (time_before64(old + NSEC_PER_SEC, now) && 1630 atomic64_cmpxchg(&blkg->delay_start, old, now) == old) { 1631 u64 cur = atomic64_read(&blkg->delay_nsec); 1632 u64 sub = min_t(u64, blkg->last_delay, now - old); 1633 int cur_use = atomic_read(&blkg->use_delay); 1634 1635 /* 1636 * We've been unthrottled, subtract a larger chunk of our 1637 * accumulated delay. 1638 */ 1639 if (cur_use < blkg->last_use) 1640 sub = max_t(u64, sub, blkg->last_delay >> 1); 1641 1642 /* 1643 * This shouldn't happen, but handle it anyway. Our delay_nsec 1644 * should only ever be growing except here where we subtract out 1645 * min(last_delay, 1 second), but lord knows bugs happen and I'd 1646 * rather not end up with negative numbers. 1647 */ 1648 if (unlikely(cur < sub)) { 1649 atomic64_set(&blkg->delay_nsec, 0); 1650 blkg->last_delay = 0; 1651 } else { 1652 atomic64_sub(sub, &blkg->delay_nsec); 1653 blkg->last_delay = cur - sub; 1654 } 1655 blkg->last_use = cur_use; 1656 } 1657} 1658 1659/* 1660 * This is called when we want to actually walk up the hierarchy and check to 1661 * see if we need to throttle, and then actually throttle if there is some 1662 * accumulated delay. This should only be called upon return to user space so 1663 * we're not holding some lock that would induce a priority inversion. 1664 */ 1665static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay) 1666{ 1667 unsigned long pflags; 1668 bool clamp; 1669 u64 now = ktime_to_ns(ktime_get()); 1670 u64 exp; 1671 u64 delay_nsec = 0; 1672 int tok; 1673 1674 while (blkg->parent) { 1675 int use_delay = atomic_read(&blkg->use_delay); 1676 1677 if (use_delay) { 1678 u64 this_delay; 1679 1680 blkcg_scale_delay(blkg, now); 1681 this_delay = atomic64_read(&blkg->delay_nsec); 1682 if (this_delay > delay_nsec) { 1683 delay_nsec = this_delay; 1684 clamp = use_delay > 0; 1685 } 1686 } 1687 blkg = blkg->parent; 1688 } 1689 1690 if (!delay_nsec) 1691 return; 1692 1693 /* 1694 * Let's not sleep for all eternity if we've amassed a huge delay. 1695 * Swapping or metadata IO can accumulate 10's of seconds worth of 1696 * delay, and we want userspace to be able to do _something_ so cap the 1697 * delays at 0.25s. If there's 10's of seconds worth of delay then the 1698 * tasks will be delayed for 0.25 second for every syscall. If 1699 * blkcg_set_delay() was used as indicated by negative use_delay, the 1700 * caller is responsible for regulating the range. 1701 */ 1702 if (clamp) 1703 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC); 1704 1705 if (use_memdelay) 1706 psi_memstall_enter(&pflags); 1707 1708 exp = ktime_add_ns(now, delay_nsec); 1709 tok = io_schedule_prepare(); 1710 do { 1711 __set_current_state(TASK_KILLABLE); 1712 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS)) 1713 break; 1714 } while (!fatal_signal_pending(current)); 1715 io_schedule_finish(tok); 1716 1717 if (use_memdelay) 1718 psi_memstall_leave(&pflags); 1719} 1720 1721/** 1722 * blkcg_maybe_throttle_current - throttle the current task if it has been marked 1723 * 1724 * This is only called if we've been marked with set_notify_resume(). Obviously 1725 * we can be set_notify_resume() for reasons other than blkcg throttling, so we 1726 * check to see if current->throttle_queue is set and if not this doesn't do 1727 * anything. This should only ever be called by the resume code, it's not meant 1728 * to be called by people willy-nilly as it will actually do the work to 1729 * throttle the task if it is setup for throttling. 1730 */ 1731void blkcg_maybe_throttle_current(void) 1732{ 1733 struct request_queue *q = current->throttle_queue; 1734 struct cgroup_subsys_state *css; 1735 struct blkcg *blkcg; 1736 struct blkcg_gq *blkg; 1737 bool use_memdelay = current->use_memdelay; 1738 1739 if (!q) 1740 return; 1741 1742 current->throttle_queue = NULL; 1743 current->use_memdelay = false; 1744 1745 rcu_read_lock(); 1746 css = kthread_blkcg(); 1747 if (css) 1748 blkcg = css_to_blkcg(css); 1749 else 1750 blkcg = css_to_blkcg(task_css(current, io_cgrp_id)); 1751 1752 if (!blkcg) 1753 goto out; 1754 blkg = blkg_lookup(blkcg, q); 1755 if (!blkg) 1756 goto out; 1757 if (!blkg_tryget(blkg)) 1758 goto out; 1759 rcu_read_unlock(); 1760 1761 blkcg_maybe_throttle_blkg(blkg, use_memdelay); 1762 blkg_put(blkg); 1763 blk_put_queue(q); 1764 return; 1765out: 1766 rcu_read_unlock(); 1767 blk_put_queue(q); 1768} 1769 1770/** 1771 * blkcg_schedule_throttle - this task needs to check for throttling 1772 * @q: the request queue IO was submitted on 1773 * @use_memdelay: do we charge this to memory delay for PSI 1774 * 1775 * This is called by the IO controller when we know there's delay accumulated 1776 * for the blkg for this task. We do not pass the blkg because there are places 1777 * we call this that may not have that information, the swapping code for 1778 * instance will only have a request_queue at that point. This set's the 1779 * notify_resume for the task to check and see if it requires throttling before 1780 * returning to user space. 1781 * 1782 * We will only schedule once per syscall. You can call this over and over 1783 * again and it will only do the check once upon return to user space, and only 1784 * throttle once. If the task needs to be throttled again it'll need to be 1785 * re-set at the next time we see the task. 1786 */ 1787void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay) 1788{ 1789 if (unlikely(current->flags & PF_KTHREAD)) 1790 return; 1791 1792 if (!blk_get_queue(q)) 1793 return; 1794 1795 if (current->throttle_queue) 1796 blk_put_queue(current->throttle_queue); 1797 current->throttle_queue = q; 1798 if (use_memdelay) 1799 current->use_memdelay = use_memdelay; 1800 set_notify_resume(current); 1801} 1802 1803/** 1804 * blkcg_add_delay - add delay to this blkg 1805 * @blkg: blkg of interest 1806 * @now: the current time in nanoseconds 1807 * @delta: how many nanoseconds of delay to add 1808 * 1809 * Charge @delta to the blkg's current delay accumulation. This is used to 1810 * throttle tasks if an IO controller thinks we need more throttling. 1811 */ 1812void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta) 1813{ 1814 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0)) 1815 return; 1816 blkcg_scale_delay(blkg, now); 1817 atomic64_add(delta, &blkg->delay_nsec); 1818} 1819 1820/** 1821 * blkg_tryget_closest - try and get a blkg ref on the closet blkg 1822 * @bio: target bio 1823 * @css: target css 1824 * 1825 * As the failure mode here is to walk up the blkg tree, this ensure that the 1826 * blkg->parent pointers are always valid. This returns the blkg that it ended 1827 * up taking a reference on or %NULL if no reference was taken. 1828 */ 1829static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio, 1830 struct cgroup_subsys_state *css) 1831{ 1832 struct blkcg_gq *blkg, *ret_blkg = NULL; 1833 1834 rcu_read_lock(); 1835 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_disk->queue); 1836 while (blkg) { 1837 if (blkg_tryget(blkg)) { 1838 ret_blkg = blkg; 1839 break; 1840 } 1841 blkg = blkg->parent; 1842 } 1843 rcu_read_unlock(); 1844 1845 return ret_blkg; 1846} 1847 1848/** 1849 * bio_associate_blkg_from_css - associate a bio with a specified css 1850 * @bio: target bio 1851 * @css: target css 1852 * 1853 * Associate @bio with the blkg found by combining the css's blkg and the 1854 * request_queue of the @bio. An association failure is handled by walking up 1855 * the blkg tree. Therefore, the blkg associated can be anything between @blkg 1856 * and q->root_blkg. This situation only happens when a cgroup is dying and 1857 * then the remaining bios will spill to the closest alive blkg. 1858 * 1859 * A reference will be taken on the blkg and will be released when @bio is 1860 * freed. 1861 */ 1862void bio_associate_blkg_from_css(struct bio *bio, 1863 struct cgroup_subsys_state *css) 1864{ 1865 if (bio->bi_blkg) 1866 blkg_put(bio->bi_blkg); 1867 1868 if (css && css->parent) { 1869 bio->bi_blkg = blkg_tryget_closest(bio, css); 1870 } else { 1871 blkg_get(bio->bi_disk->queue->root_blkg); 1872 bio->bi_blkg = bio->bi_disk->queue->root_blkg; 1873 } 1874} 1875EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 1876 1877/** 1878 * bio_associate_blkg - associate a bio with a blkg 1879 * @bio: target bio 1880 * 1881 * Associate @bio with the blkg found from the bio's css and request_queue. 1882 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 1883 * already associated, the css is reused and association redone as the 1884 * request_queue may have changed. 1885 */ 1886void bio_associate_blkg(struct bio *bio) 1887{ 1888 struct cgroup_subsys_state *css; 1889 1890 rcu_read_lock(); 1891 1892 if (bio->bi_blkg) 1893 css = &bio_blkcg(bio)->css; 1894 else 1895 css = blkcg_css(); 1896 1897 bio_associate_blkg_from_css(bio, css); 1898 1899 rcu_read_unlock(); 1900} 1901EXPORT_SYMBOL_GPL(bio_associate_blkg); 1902 1903/** 1904 * bio_clone_blkg_association - clone blkg association from src to dst bio 1905 * @dst: destination bio 1906 * @src: source bio 1907 */ 1908void bio_clone_blkg_association(struct bio *dst, struct bio *src) 1909{ 1910 if (src->bi_blkg) 1911 bio_associate_blkg_from_css(dst, &bio_blkcg(src)->css); 1912} 1913EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 1914 1915static int blk_cgroup_io_type(struct bio *bio) 1916{ 1917 if (op_is_discard(bio->bi_opf)) 1918 return BLKG_IOSTAT_DISCARD; 1919 if (op_is_write(bio->bi_opf)) 1920 return BLKG_IOSTAT_WRITE; 1921 return BLKG_IOSTAT_READ; 1922} 1923 1924void blk_cgroup_bio_start(struct bio *bio) 1925{ 1926 int rwd = blk_cgroup_io_type(bio), cpu; 1927 struct blkg_iostat_set *bis; 1928 1929 cpu = get_cpu(); 1930 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu); 1931 u64_stats_update_begin(&bis->sync); 1932 1933 /* 1934 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split 1935 * bio and we would have already accounted for the size of the bio. 1936 */ 1937 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) { 1938 bio_set_flag(bio, BIO_CGROUP_ACCT); 1939 bis->cur.bytes[rwd] += bio->bi_iter.bi_size; 1940 } 1941 bis->cur.ios[rwd]++; 1942 1943 u64_stats_update_end(&bis->sync); 1944 if (cgroup_subsys_on_dfl(io_cgrp_subsys)) 1945 cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu); 1946 put_cpu(); 1947} 1948 1949static int __init blkcg_init(void) 1950{ 1951 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio", 1952 WQ_MEM_RECLAIM | WQ_FREEZABLE | 1953 WQ_UNBOUND | WQ_SYSFS, 0); 1954 if (!blkcg_punt_bio_wq) 1955 return -ENOMEM; 1956 return 0; 1957} 1958subsys_initcall(blkcg_init); 1959 1960module_param(blkcg_debug_stats, bool, 0644); 1961MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not"); 1962