xref: /kernel/linux/linux-5.10/block/bio.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
9#include <linux/uio.h>
10#include <linux/iocontext.h>
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
14#include <linux/export.h>
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
17#include <linux/cgroup.h>
18#include <linux/blk-cgroup.h>
19#include <linux/highmem.h>
20#include <linux/sched/sysctl.h>
21#include <linux/blk-crypto.h>
22
23#include <trace/events/block.h>
24#include "blk.h"
25#include "blk-rq-qos.h"
26
27/*
28 * Test patch to inline a certain number of bi_io_vec's inside the bio
29 * itself, to shrink a bio data allocation from two mempool calls to one
30 */
31#define BIO_INLINE_VECS		4
32
33/*
34 * if you change this list, also change bvec_alloc or things will
35 * break badly! cannot be bigger than what you can fit into an
36 * unsigned short
37 */
38#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
39static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
40	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
41};
42#undef BV
43
44/*
45 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
46 * IO code that does not need private memory pools.
47 */
48struct bio_set fs_bio_set;
49EXPORT_SYMBOL(fs_bio_set);
50
51/*
52 * Our slab pool management
53 */
54struct bio_slab {
55	struct kmem_cache *slab;
56	unsigned int slab_ref;
57	unsigned int slab_size;
58	char name[8];
59};
60static DEFINE_MUTEX(bio_slab_lock);
61static struct bio_slab *bio_slabs;
62static unsigned int bio_slab_nr, bio_slab_max;
63
64static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
65{
66	unsigned int sz = sizeof(struct bio) + extra_size;
67	struct kmem_cache *slab = NULL;
68	struct bio_slab *bslab, *new_bio_slabs;
69	unsigned int new_bio_slab_max;
70	unsigned int i, entry = -1;
71
72	mutex_lock(&bio_slab_lock);
73
74	i = 0;
75	while (i < bio_slab_nr) {
76		bslab = &bio_slabs[i];
77
78		if (!bslab->slab && entry == -1)
79			entry = i;
80		else if (bslab->slab_size == sz) {
81			slab = bslab->slab;
82			bslab->slab_ref++;
83			break;
84		}
85		i++;
86	}
87
88	if (slab)
89		goto out_unlock;
90
91	if (bio_slab_nr == bio_slab_max && entry == -1) {
92		new_bio_slab_max = bio_slab_max << 1;
93		new_bio_slabs = krealloc(bio_slabs,
94					 new_bio_slab_max * sizeof(struct bio_slab),
95					 GFP_KERNEL);
96		if (!new_bio_slabs)
97			goto out_unlock;
98		bio_slab_max = new_bio_slab_max;
99		bio_slabs = new_bio_slabs;
100	}
101	if (entry == -1)
102		entry = bio_slab_nr++;
103
104	bslab = &bio_slabs[entry];
105
106	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
107	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
108				 SLAB_HWCACHE_ALIGN, NULL);
109	if (!slab)
110		goto out_unlock;
111
112	bslab->slab = slab;
113	bslab->slab_ref = 1;
114	bslab->slab_size = sz;
115out_unlock:
116	mutex_unlock(&bio_slab_lock);
117	return slab;
118}
119
120static void bio_put_slab(struct bio_set *bs)
121{
122	struct bio_slab *bslab = NULL;
123	unsigned int i;
124
125	mutex_lock(&bio_slab_lock);
126
127	for (i = 0; i < bio_slab_nr; i++) {
128		if (bs->bio_slab == bio_slabs[i].slab) {
129			bslab = &bio_slabs[i];
130			break;
131		}
132	}
133
134	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
135		goto out;
136
137	WARN_ON(!bslab->slab_ref);
138
139	if (--bslab->slab_ref)
140		goto out;
141
142	kmem_cache_destroy(bslab->slab);
143	bslab->slab = NULL;
144
145out:
146	mutex_unlock(&bio_slab_lock);
147}
148
149unsigned int bvec_nr_vecs(unsigned short idx)
150{
151	return bvec_slabs[--idx].nr_vecs;
152}
153
154void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
155{
156	if (!idx)
157		return;
158	idx--;
159
160	BIO_BUG_ON(idx >= BVEC_POOL_NR);
161
162	if (idx == BVEC_POOL_MAX) {
163		mempool_free(bv, pool);
164	} else {
165		struct biovec_slab *bvs = bvec_slabs + idx;
166
167		kmem_cache_free(bvs->slab, bv);
168	}
169}
170
171struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
172			   mempool_t *pool)
173{
174	struct bio_vec *bvl;
175
176	/*
177	 * see comment near bvec_array define!
178	 */
179	switch (nr) {
180	case 1:
181		*idx = 0;
182		break;
183	case 2 ... 4:
184		*idx = 1;
185		break;
186	case 5 ... 16:
187		*idx = 2;
188		break;
189	case 17 ... 64:
190		*idx = 3;
191		break;
192	case 65 ... 128:
193		*idx = 4;
194		break;
195	case 129 ... BIO_MAX_PAGES:
196		*idx = 5;
197		break;
198	default:
199		return NULL;
200	}
201
202	/*
203	 * idx now points to the pool we want to allocate from. only the
204	 * 1-vec entry pool is mempool backed.
205	 */
206	if (*idx == BVEC_POOL_MAX) {
207fallback:
208		bvl = mempool_alloc(pool, gfp_mask);
209	} else {
210		struct biovec_slab *bvs = bvec_slabs + *idx;
211		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
212
213		/*
214		 * Make this allocation restricted and don't dump info on
215		 * allocation failures, since we'll fallback to the mempool
216		 * in case of failure.
217		 */
218		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
219
220		/*
221		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
222		 * is set, retry with the 1-entry mempool
223		 */
224		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
225		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
226			*idx = BVEC_POOL_MAX;
227			goto fallback;
228		}
229	}
230
231	(*idx)++;
232	return bvl;
233}
234
235void bio_uninit(struct bio *bio)
236{
237#ifdef CONFIG_BLK_CGROUP
238	if (bio->bi_blkg) {
239		blkg_put(bio->bi_blkg);
240		bio->bi_blkg = NULL;
241	}
242#endif
243	if (bio_integrity(bio))
244		bio_integrity_free(bio);
245
246	bio_crypt_free_ctx(bio);
247}
248EXPORT_SYMBOL(bio_uninit);
249
250static void bio_free(struct bio *bio)
251{
252	struct bio_set *bs = bio->bi_pool;
253	void *p;
254
255	bio_uninit(bio);
256
257	if (bs) {
258		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
259
260		/*
261		 * If we have front padding, adjust the bio pointer before freeing
262		 */
263		p = bio;
264		p -= bs->front_pad;
265
266		mempool_free(p, &bs->bio_pool);
267	} else {
268		/* Bio was allocated by bio_kmalloc() */
269		kfree(bio);
270	}
271}
272
273/*
274 * Users of this function have their own bio allocation. Subsequently,
275 * they must remember to pair any call to bio_init() with bio_uninit()
276 * when IO has completed, or when the bio is released.
277 */
278void bio_init(struct bio *bio, struct bio_vec *table,
279	      unsigned short max_vecs)
280{
281	memset(bio, 0, sizeof(*bio));
282	atomic_set(&bio->__bi_remaining, 1);
283	atomic_set(&bio->__bi_cnt, 1);
284
285	bio->bi_io_vec = table;
286	bio->bi_max_vecs = max_vecs;
287}
288EXPORT_SYMBOL(bio_init);
289
290/**
291 * bio_reset - reinitialize a bio
292 * @bio:	bio to reset
293 *
294 * Description:
295 *   After calling bio_reset(), @bio will be in the same state as a freshly
296 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
297 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
298 *   comment in struct bio.
299 */
300void bio_reset(struct bio *bio)
301{
302	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
303
304	bio_uninit(bio);
305
306	memset(bio, 0, BIO_RESET_BYTES);
307	bio->bi_flags = flags;
308	atomic_set(&bio->__bi_remaining, 1);
309}
310EXPORT_SYMBOL(bio_reset);
311
312static struct bio *__bio_chain_endio(struct bio *bio)
313{
314	struct bio *parent = bio->bi_private;
315
316	if (bio->bi_status && !parent->bi_status)
317		parent->bi_status = bio->bi_status;
318	bio_put(bio);
319	return parent;
320}
321
322static void bio_chain_endio(struct bio *bio)
323{
324	bio_endio(__bio_chain_endio(bio));
325}
326
327/**
328 * bio_chain - chain bio completions
329 * @bio: the target bio
330 * @parent: the parent bio of @bio
331 *
332 * The caller won't have a bi_end_io called when @bio completes - instead,
333 * @parent's bi_end_io won't be called until both @parent and @bio have
334 * completed; the chained bio will also be freed when it completes.
335 *
336 * The caller must not set bi_private or bi_end_io in @bio.
337 */
338void bio_chain(struct bio *bio, struct bio *parent)
339{
340	BUG_ON(bio->bi_private || bio->bi_end_io);
341
342	bio->bi_private = parent;
343	bio->bi_end_io	= bio_chain_endio;
344	bio_inc_remaining(parent);
345}
346EXPORT_SYMBOL(bio_chain);
347
348static void bio_alloc_rescue(struct work_struct *work)
349{
350	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
351	struct bio *bio;
352
353	while (1) {
354		spin_lock(&bs->rescue_lock);
355		bio = bio_list_pop(&bs->rescue_list);
356		spin_unlock(&bs->rescue_lock);
357
358		if (!bio)
359			break;
360
361		submit_bio_noacct(bio);
362	}
363}
364
365static void punt_bios_to_rescuer(struct bio_set *bs)
366{
367	struct bio_list punt, nopunt;
368	struct bio *bio;
369
370	if (WARN_ON_ONCE(!bs->rescue_workqueue))
371		return;
372	/*
373	 * In order to guarantee forward progress we must punt only bios that
374	 * were allocated from this bio_set; otherwise, if there was a bio on
375	 * there for a stacking driver higher up in the stack, processing it
376	 * could require allocating bios from this bio_set, and doing that from
377	 * our own rescuer would be bad.
378	 *
379	 * Since bio lists are singly linked, pop them all instead of trying to
380	 * remove from the middle of the list:
381	 */
382
383	bio_list_init(&punt);
384	bio_list_init(&nopunt);
385
386	while ((bio = bio_list_pop(&current->bio_list[0])))
387		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
388	current->bio_list[0] = nopunt;
389
390	bio_list_init(&nopunt);
391	while ((bio = bio_list_pop(&current->bio_list[1])))
392		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
393	current->bio_list[1] = nopunt;
394
395	spin_lock(&bs->rescue_lock);
396	bio_list_merge(&bs->rescue_list, &punt);
397	spin_unlock(&bs->rescue_lock);
398
399	queue_work(bs->rescue_workqueue, &bs->rescue_work);
400}
401
402/**
403 * bio_alloc_bioset - allocate a bio for I/O
404 * @gfp_mask:   the GFP_* mask given to the slab allocator
405 * @nr_iovecs:	number of iovecs to pre-allocate
406 * @bs:		the bio_set to allocate from.
407 *
408 * Description:
409 *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
410 *   backed by the @bs's mempool.
411 *
412 *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
413 *   always be able to allocate a bio. This is due to the mempool guarantees.
414 *   To make this work, callers must never allocate more than 1 bio at a time
415 *   from this pool. Callers that need to allocate more than 1 bio must always
416 *   submit the previously allocated bio for IO before attempting to allocate
417 *   a new one. Failure to do so can cause deadlocks under memory pressure.
418 *
419 *   Note that when running under submit_bio_noacct() (i.e. any block
420 *   driver), bios are not submitted until after you return - see the code in
421 *   submit_bio_noacct() that converts recursion into iteration, to prevent
422 *   stack overflows.
423 *
424 *   This would normally mean allocating multiple bios under
425 *   submit_bio_noacct() would be susceptible to deadlocks, but we have
426 *   deadlock avoidance code that resubmits any blocked bios from a rescuer
427 *   thread.
428 *
429 *   However, we do not guarantee forward progress for allocations from other
430 *   mempools. Doing multiple allocations from the same mempool under
431 *   submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
432 *   for per bio allocations.
433 *
434 *   RETURNS:
435 *   Pointer to new bio on success, NULL on failure.
436 */
437struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
438			     struct bio_set *bs)
439{
440	gfp_t saved_gfp = gfp_mask;
441	unsigned front_pad;
442	unsigned inline_vecs;
443	struct bio_vec *bvl = NULL;
444	struct bio *bio;
445	void *p;
446
447	if (!bs) {
448		if (nr_iovecs > UIO_MAXIOV)
449			return NULL;
450
451		p = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
452		front_pad = 0;
453		inline_vecs = nr_iovecs;
454	} else {
455		/* should not use nobvec bioset for nr_iovecs > 0 */
456		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
457				 nr_iovecs > 0))
458			return NULL;
459		/*
460		 * submit_bio_noacct() converts recursion to iteration; this
461		 * means if we're running beneath it, any bios we allocate and
462		 * submit will not be submitted (and thus freed) until after we
463		 * return.
464		 *
465		 * This exposes us to a potential deadlock if we allocate
466		 * multiple bios from the same bio_set() while running
467		 * underneath submit_bio_noacct(). If we were to allocate
468		 * multiple bios (say a stacking block driver that was splitting
469		 * bios), we would deadlock if we exhausted the mempool's
470		 * reserve.
471		 *
472		 * We solve this, and guarantee forward progress, with a rescuer
473		 * workqueue per bio_set. If we go to allocate and there are
474		 * bios on current->bio_list, we first try the allocation
475		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476		 * bios we would be blocking to the rescuer workqueue before
477		 * we retry with the original gfp_flags.
478		 */
479
480		if (current->bio_list &&
481		    (!bio_list_empty(&current->bio_list[0]) ||
482		     !bio_list_empty(&current->bio_list[1])) &&
483		    bs->rescue_workqueue)
484			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
485
486		p = mempool_alloc(&bs->bio_pool, gfp_mask);
487		if (!p && gfp_mask != saved_gfp) {
488			punt_bios_to_rescuer(bs);
489			gfp_mask = saved_gfp;
490			p = mempool_alloc(&bs->bio_pool, gfp_mask);
491		}
492
493		front_pad = bs->front_pad;
494		inline_vecs = BIO_INLINE_VECS;
495	}
496
497	if (unlikely(!p))
498		return NULL;
499
500	bio = p + front_pad;
501	bio_init(bio, NULL, 0);
502
503	if (nr_iovecs > inline_vecs) {
504		unsigned long idx = 0;
505
506		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
507		if (!bvl && gfp_mask != saved_gfp) {
508			punt_bios_to_rescuer(bs);
509			gfp_mask = saved_gfp;
510			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
511		}
512
513		if (unlikely(!bvl))
514			goto err_free;
515
516		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517	} else if (nr_iovecs) {
518		bvl = bio->bi_inline_vecs;
519	}
520
521	bio->bi_pool = bs;
522	bio->bi_max_vecs = nr_iovecs;
523	bio->bi_io_vec = bvl;
524	return bio;
525
526err_free:
527	mempool_free(p, &bs->bio_pool);
528	return NULL;
529}
530EXPORT_SYMBOL(bio_alloc_bioset);
531
532void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
533{
534	unsigned long flags;
535	struct bio_vec bv;
536	struct bvec_iter iter;
537
538	__bio_for_each_segment(bv, bio, iter, start) {
539		char *data = bvec_kmap_irq(&bv, &flags);
540		memset(data, 0, bv.bv_len);
541		flush_dcache_page(bv.bv_page);
542		bvec_kunmap_irq(data, &flags);
543	}
544}
545EXPORT_SYMBOL(zero_fill_bio_iter);
546
547/**
548 * bio_truncate - truncate the bio to small size of @new_size
549 * @bio:	the bio to be truncated
550 * @new_size:	new size for truncating the bio
551 *
552 * Description:
553 *   Truncate the bio to new size of @new_size. If bio_op(bio) is
554 *   REQ_OP_READ, zero the truncated part. This function should only
555 *   be used for handling corner cases, such as bio eod.
556 */
557void bio_truncate(struct bio *bio, unsigned new_size)
558{
559	struct bio_vec bv;
560	struct bvec_iter iter;
561	unsigned int done = 0;
562	bool truncated = false;
563
564	if (new_size >= bio->bi_iter.bi_size)
565		return;
566
567	if (bio_op(bio) != REQ_OP_READ)
568		goto exit;
569
570	bio_for_each_segment(bv, bio, iter) {
571		if (done + bv.bv_len > new_size) {
572			unsigned offset;
573
574			if (!truncated)
575				offset = new_size - done;
576			else
577				offset = 0;
578			zero_user(bv.bv_page, bv.bv_offset + offset,
579				  bv.bv_len - offset);
580			truncated = true;
581		}
582		done += bv.bv_len;
583	}
584
585 exit:
586	/*
587	 * Don't touch bvec table here and make it really immutable, since
588	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
589	 * in its .end_bio() callback.
590	 *
591	 * It is enough to truncate bio by updating .bi_size since we can make
592	 * correct bvec with the updated .bi_size for drivers.
593	 */
594	bio->bi_iter.bi_size = new_size;
595}
596
597/**
598 * guard_bio_eod - truncate a BIO to fit the block device
599 * @bio:	bio to truncate
600 *
601 * This allows us to do IO even on the odd last sectors of a device, even if the
602 * block size is some multiple of the physical sector size.
603 *
604 * We'll just truncate the bio to the size of the device, and clear the end of
605 * the buffer head manually.  Truly out-of-range accesses will turn into actual
606 * I/O errors, this only handles the "we need to be able to do I/O at the final
607 * sector" case.
608 */
609void guard_bio_eod(struct bio *bio)
610{
611	sector_t maxsector;
612	struct hd_struct *part;
613
614	rcu_read_lock();
615	part = __disk_get_part(bio->bi_disk, bio->bi_partno);
616	if (part)
617		maxsector = part_nr_sects_read(part);
618	else
619		maxsector = get_capacity(bio->bi_disk);
620	rcu_read_unlock();
621
622	if (!maxsector)
623		return;
624
625	/*
626	 * If the *whole* IO is past the end of the device,
627	 * let it through, and the IO layer will turn it into
628	 * an EIO.
629	 */
630	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
631		return;
632
633	maxsector -= bio->bi_iter.bi_sector;
634	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
635		return;
636
637	bio_truncate(bio, maxsector << 9);
638}
639
640/**
641 * bio_put - release a reference to a bio
642 * @bio:   bio to release reference to
643 *
644 * Description:
645 *   Put a reference to a &struct bio, either one you have gotten with
646 *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
647 **/
648void bio_put(struct bio *bio)
649{
650	if (!bio_flagged(bio, BIO_REFFED))
651		bio_free(bio);
652	else {
653		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
654
655		/*
656		 * last put frees it
657		 */
658		if (atomic_dec_and_test(&bio->__bi_cnt))
659			bio_free(bio);
660	}
661}
662EXPORT_SYMBOL(bio_put);
663
664/**
665 * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
666 * 	@bio: destination bio
667 * 	@bio_src: bio to clone
668 *
669 *	Clone a &bio. Caller will own the returned bio, but not
670 *	the actual data it points to. Reference count of returned
671 * 	bio will be one.
672 *
673 * 	Caller must ensure that @bio_src is not freed before @bio.
674 */
675void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
676{
677	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
678
679	/*
680	 * most users will be overriding ->bi_disk with a new target,
681	 * so we don't set nor calculate new physical/hw segment counts here
682	 */
683	bio->bi_disk = bio_src->bi_disk;
684	bio->bi_partno = bio_src->bi_partno;
685	bio_set_flag(bio, BIO_CLONED);
686	if (bio_flagged(bio_src, BIO_THROTTLED))
687		bio_set_flag(bio, BIO_THROTTLED);
688	bio->bi_opf = bio_src->bi_opf;
689	bio->bi_ioprio = bio_src->bi_ioprio;
690	bio->bi_write_hint = bio_src->bi_write_hint;
691	bio->bi_iter = bio_src->bi_iter;
692	bio->bi_io_vec = bio_src->bi_io_vec;
693
694	bio_clone_blkg_association(bio, bio_src);
695	blkcg_bio_issue_init(bio);
696}
697EXPORT_SYMBOL(__bio_clone_fast);
698
699/**
700 *	bio_clone_fast - clone a bio that shares the original bio's biovec
701 *	@bio: bio to clone
702 *	@gfp_mask: allocation priority
703 *	@bs: bio_set to allocate from
704 *
705 * 	Like __bio_clone_fast, only also allocates the returned bio
706 */
707struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
708{
709	struct bio *b;
710
711	b = bio_alloc_bioset(gfp_mask, 0, bs);
712	if (!b)
713		return NULL;
714
715	__bio_clone_fast(b, bio);
716
717	if (bio_crypt_clone(b, bio, gfp_mask) < 0)
718		goto err_put;
719
720	if (bio_integrity(bio) &&
721	    bio_integrity_clone(b, bio, gfp_mask) < 0)
722		goto err_put;
723
724	return b;
725
726err_put:
727	bio_put(b);
728	return NULL;
729}
730EXPORT_SYMBOL(bio_clone_fast);
731
732const char *bio_devname(struct bio *bio, char *buf)
733{
734	return disk_name(bio->bi_disk, bio->bi_partno, buf);
735}
736EXPORT_SYMBOL(bio_devname);
737
738static inline bool page_is_mergeable(const struct bio_vec *bv,
739		struct page *page, unsigned int len, unsigned int off,
740		bool *same_page)
741{
742	size_t bv_end = bv->bv_offset + bv->bv_len;
743	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
744	phys_addr_t page_addr = page_to_phys(page);
745
746	if (vec_end_addr + 1 != page_addr + off)
747		return false;
748	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
749		return false;
750
751	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
752	if (*same_page)
753		return true;
754	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
755}
756
757/*
758 * Try to merge a page into a segment, while obeying the hardware segment
759 * size limit.  This is not for normal read/write bios, but for passthrough
760 * or Zone Append operations that we can't split.
761 */
762static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
763				 struct page *page, unsigned len,
764				 unsigned offset, bool *same_page)
765{
766	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
767	unsigned long mask = queue_segment_boundary(q);
768	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
769	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
770
771	if ((addr1 | mask) != (addr2 | mask))
772		return false;
773	if (len > queue_max_segment_size(q) - bv->bv_len)
774		return false;
775	return __bio_try_merge_page(bio, page, len, offset, same_page);
776}
777
778/**
779 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
780 * @q: the target queue
781 * @bio: destination bio
782 * @page: page to add
783 * @len: vec entry length
784 * @offset: vec entry offset
785 * @max_sectors: maximum number of sectors that can be added
786 * @same_page: return if the segment has been merged inside the same page
787 *
788 * Add a page to a bio while respecting the hardware max_sectors, max_segment
789 * and gap limitations.
790 */
791int bio_add_hw_page(struct request_queue *q, struct bio *bio,
792		struct page *page, unsigned int len, unsigned int offset,
793		unsigned int max_sectors, bool *same_page)
794{
795	struct bio_vec *bvec;
796
797	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
798		return 0;
799
800	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
801		return 0;
802
803	if (bio->bi_vcnt > 0) {
804		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
805			return len;
806
807		/*
808		 * If the queue doesn't support SG gaps and adding this segment
809		 * would create a gap, disallow it.
810		 */
811		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
812		if (bvec_gap_to_prev(q, bvec, offset))
813			return 0;
814	}
815
816	if (bio_full(bio, len))
817		return 0;
818
819	if (bio->bi_vcnt >= queue_max_segments(q))
820		return 0;
821
822	bvec = &bio->bi_io_vec[bio->bi_vcnt];
823	bvec->bv_page = page;
824	bvec->bv_len = len;
825	bvec->bv_offset = offset;
826	bio->bi_vcnt++;
827	bio->bi_iter.bi_size += len;
828	return len;
829}
830
831/**
832 * bio_add_pc_page	- attempt to add page to passthrough bio
833 * @q: the target queue
834 * @bio: destination bio
835 * @page: page to add
836 * @len: vec entry length
837 * @offset: vec entry offset
838 *
839 * Attempt to add a page to the bio_vec maplist. This can fail for a
840 * number of reasons, such as the bio being full or target block device
841 * limitations. The target block device must allow bio's up to PAGE_SIZE,
842 * so it is always possible to add a single page to an empty bio.
843 *
844 * This should only be used by passthrough bios.
845 */
846int bio_add_pc_page(struct request_queue *q, struct bio *bio,
847		struct page *page, unsigned int len, unsigned int offset)
848{
849	bool same_page = false;
850	return bio_add_hw_page(q, bio, page, len, offset,
851			queue_max_hw_sectors(q), &same_page);
852}
853EXPORT_SYMBOL(bio_add_pc_page);
854
855/**
856 * __bio_try_merge_page - try appending data to an existing bvec.
857 * @bio: destination bio
858 * @page: start page to add
859 * @len: length of the data to add
860 * @off: offset of the data relative to @page
861 * @same_page: return if the segment has been merged inside the same page
862 *
863 * Try to add the data at @page + @off to the last bvec of @bio.  This is a
864 * useful optimisation for file systems with a block size smaller than the
865 * page size.
866 *
867 * Warn if (@len, @off) crosses pages in case that @same_page is true.
868 *
869 * Return %true on success or %false on failure.
870 */
871bool __bio_try_merge_page(struct bio *bio, struct page *page,
872		unsigned int len, unsigned int off, bool *same_page)
873{
874	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
875		return false;
876
877	if (bio->bi_vcnt > 0) {
878		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
879
880		if (page_is_mergeable(bv, page, len, off, same_page)) {
881			if (bio->bi_iter.bi_size > UINT_MAX - len) {
882				*same_page = false;
883				return false;
884			}
885			bv->bv_len += len;
886			bio->bi_iter.bi_size += len;
887			return true;
888		}
889	}
890	return false;
891}
892EXPORT_SYMBOL_GPL(__bio_try_merge_page);
893
894/**
895 * __bio_add_page - add page(s) to a bio in a new segment
896 * @bio: destination bio
897 * @page: start page to add
898 * @len: length of the data to add, may cross pages
899 * @off: offset of the data relative to @page, may cross pages
900 *
901 * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
902 * that @bio has space for another bvec.
903 */
904void __bio_add_page(struct bio *bio, struct page *page,
905		unsigned int len, unsigned int off)
906{
907	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
908
909	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
910	WARN_ON_ONCE(bio_full(bio, len));
911
912	bv->bv_page = page;
913	bv->bv_offset = off;
914	bv->bv_len = len;
915
916	bio->bi_iter.bi_size += len;
917	bio->bi_vcnt++;
918
919	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
920		bio_set_flag(bio, BIO_WORKINGSET);
921}
922EXPORT_SYMBOL_GPL(__bio_add_page);
923
924/**
925 *	bio_add_page	-	attempt to add page(s) to bio
926 *	@bio: destination bio
927 *	@page: start page to add
928 *	@len: vec entry length, may cross pages
929 *	@offset: vec entry offset relative to @page, may cross pages
930 *
931 *	Attempt to add page(s) to the bio_vec maplist. This will only fail
932 *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
933 */
934int bio_add_page(struct bio *bio, struct page *page,
935		 unsigned int len, unsigned int offset)
936{
937	bool same_page = false;
938
939	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
940		if (bio_full(bio, len))
941			return 0;
942		__bio_add_page(bio, page, len, offset);
943	}
944	return len;
945}
946EXPORT_SYMBOL(bio_add_page);
947
948void bio_release_pages(struct bio *bio, bool mark_dirty)
949{
950	struct bvec_iter_all iter_all;
951	struct bio_vec *bvec;
952
953	if (bio_flagged(bio, BIO_NO_PAGE_REF))
954		return;
955
956	bio_for_each_segment_all(bvec, bio, iter_all) {
957		if (mark_dirty)
958			set_page_dirty_lock(bvec->bv_page);
959		put_page(bvec->bv_page);
960	}
961}
962EXPORT_SYMBOL_GPL(bio_release_pages);
963
964static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
965{
966	const struct bio_vec *bv = iter->bvec;
967	unsigned int len;
968	size_t size;
969
970	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
971		return -EINVAL;
972
973	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
974	size = bio_add_page(bio, bv->bv_page, len,
975				bv->bv_offset + iter->iov_offset);
976	if (unlikely(size != len))
977		return -EINVAL;
978	iov_iter_advance(iter, size);
979	return 0;
980}
981
982static void bio_put_pages(struct page **pages, size_t size, size_t off)
983{
984	size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
985
986	for (i = 0; i < nr; i++)
987		put_page(pages[i]);
988}
989
990#define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
991
992/**
993 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
994 * @bio: bio to add pages to
995 * @iter: iov iterator describing the region to be mapped
996 *
997 * Pins pages from *iter and appends them to @bio's bvec array. The
998 * pages will have to be released using put_page() when done.
999 * For multi-segment *iter, this function only adds pages from the
1000 * next non-empty segment of the iov iterator.
1001 */
1002static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1003{
1004	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1005	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1006	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1007	struct page **pages = (struct page **)bv;
1008	bool same_page = false;
1009	ssize_t size, left;
1010	unsigned len, i;
1011	size_t offset;
1012
1013	/*
1014	 * Move page array up in the allocated memory for the bio vecs as far as
1015	 * possible so that we can start filling biovecs from the beginning
1016	 * without overwriting the temporary page array.
1017	*/
1018	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1019	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1020
1021	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1022	if (unlikely(size <= 0))
1023		return size ? size : -EFAULT;
1024
1025	for (left = size, i = 0; left > 0; left -= len, i++) {
1026		struct page *page = pages[i];
1027
1028		len = min_t(size_t, PAGE_SIZE - offset, left);
1029
1030		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1031			if (same_page)
1032				put_page(page);
1033		} else {
1034			if (WARN_ON_ONCE(bio_full(bio, len))) {
1035				bio_put_pages(pages + i, left, offset);
1036				return -EINVAL;
1037			}
1038			__bio_add_page(bio, page, len, offset);
1039		}
1040		offset = 0;
1041	}
1042
1043	iov_iter_advance(iter, size);
1044	return 0;
1045}
1046
1047static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1048{
1049	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1050	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1051	struct request_queue *q = bio->bi_disk->queue;
1052	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1053	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1054	struct page **pages = (struct page **)bv;
1055	ssize_t size, left;
1056	unsigned len, i;
1057	size_t offset;
1058	int ret = 0;
1059
1060	/*
1061	 * Move page array up in the allocated memory for the bio vecs as far as
1062	 * possible so that we can start filling biovecs from the beginning
1063	 * without overwriting the temporary page array.
1064	 */
1065	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1066	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1067
1068	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1069	if (unlikely(size <= 0))
1070		return size ? size : -EFAULT;
1071
1072	for (left = size, i = 0; left > 0; left -= len, i++) {
1073		struct page *page = pages[i];
1074		bool same_page = false;
1075
1076		len = min_t(size_t, PAGE_SIZE - offset, left);
1077		if (bio_add_hw_page(q, bio, page, len, offset,
1078				max_append_sectors, &same_page) != len) {
1079			bio_put_pages(pages + i, left, offset);
1080			ret = -EINVAL;
1081			break;
1082		}
1083		if (same_page)
1084			put_page(page);
1085		offset = 0;
1086	}
1087
1088	iov_iter_advance(iter, size - left);
1089	return ret;
1090}
1091
1092/**
1093 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1094 * @bio: bio to add pages to
1095 * @iter: iov iterator describing the region to be added
1096 *
1097 * This takes either an iterator pointing to user memory, or one pointing to
1098 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1099 * map them into the kernel. On IO completion, the caller should put those
1100 * pages. If we're adding kernel pages, and the caller told us it's safe to
1101 * do so, we just have to add the pages to the bio directly. We don't grab an
1102 * extra reference to those pages (the user should already have that), and we
1103 * don't put the page on IO completion. The caller needs to check if the bio is
1104 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
1105 * released.
1106 *
1107 * The function tries, but does not guarantee, to pin as many pages as
1108 * fit into the bio, or are requested in @iter, whatever is smaller. If
1109 * MM encounters an error pinning the requested pages, it stops. Error
1110 * is returned only if 0 pages could be pinned.
1111 */
1112int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1113{
1114	const bool is_bvec = iov_iter_is_bvec(iter);
1115	int ret;
1116
1117	if (WARN_ON_ONCE(bio->bi_vcnt))
1118		return -EINVAL;
1119
1120	do {
1121		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1122			if (WARN_ON_ONCE(is_bvec))
1123				return -EINVAL;
1124			ret = __bio_iov_append_get_pages(bio, iter);
1125		} else {
1126			if (is_bvec)
1127				ret = __bio_iov_bvec_add_pages(bio, iter);
1128			else
1129				ret = __bio_iov_iter_get_pages(bio, iter);
1130		}
1131	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1132
1133	if (is_bvec)
1134		bio_set_flag(bio, BIO_NO_PAGE_REF);
1135	return bio->bi_vcnt ? 0 : ret;
1136}
1137EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1138
1139static void submit_bio_wait_endio(struct bio *bio)
1140{
1141	complete(bio->bi_private);
1142}
1143
1144/**
1145 * submit_bio_wait - submit a bio, and wait until it completes
1146 * @bio: The &struct bio which describes the I/O
1147 *
1148 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1149 * bio_endio() on failure.
1150 *
1151 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1152 * result in bio reference to be consumed. The caller must drop the reference
1153 * on his own.
1154 */
1155int submit_bio_wait(struct bio *bio)
1156{
1157	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1158	unsigned long hang_check;
1159
1160	bio->bi_private = &done;
1161	bio->bi_end_io = submit_bio_wait_endio;
1162	bio->bi_opf |= REQ_SYNC;
1163	submit_bio(bio);
1164
1165	/* Prevent hang_check timer from firing at us during very long I/O */
1166	hang_check = sysctl_hung_task_timeout_secs;
1167	if (hang_check)
1168		while (!wait_for_completion_io_timeout(&done,
1169					hang_check * (HZ/2)))
1170			;
1171	else
1172		wait_for_completion_io(&done);
1173
1174	return blk_status_to_errno(bio->bi_status);
1175}
1176EXPORT_SYMBOL(submit_bio_wait);
1177
1178/**
1179 * bio_advance - increment/complete a bio by some number of bytes
1180 * @bio:	bio to advance
1181 * @bytes:	number of bytes to complete
1182 *
1183 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1184 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1185 * be updated on the last bvec as well.
1186 *
1187 * @bio will then represent the remaining, uncompleted portion of the io.
1188 */
1189void bio_advance(struct bio *bio, unsigned bytes)
1190{
1191	if (bio_integrity(bio))
1192		bio_integrity_advance(bio, bytes);
1193
1194	bio_crypt_advance(bio, bytes);
1195	bio_advance_iter(bio, &bio->bi_iter, bytes);
1196}
1197EXPORT_SYMBOL(bio_advance);
1198
1199void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1200			struct bio *src, struct bvec_iter *src_iter)
1201{
1202	struct bio_vec src_bv, dst_bv;
1203	void *src_p, *dst_p;
1204	unsigned bytes;
1205
1206	while (src_iter->bi_size && dst_iter->bi_size) {
1207		src_bv = bio_iter_iovec(src, *src_iter);
1208		dst_bv = bio_iter_iovec(dst, *dst_iter);
1209
1210		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1211
1212		src_p = kmap_atomic(src_bv.bv_page);
1213		dst_p = kmap_atomic(dst_bv.bv_page);
1214
1215		memcpy(dst_p + dst_bv.bv_offset,
1216		       src_p + src_bv.bv_offset,
1217		       bytes);
1218
1219		kunmap_atomic(dst_p);
1220		kunmap_atomic(src_p);
1221
1222		flush_dcache_page(dst_bv.bv_page);
1223
1224		bio_advance_iter(src, src_iter, bytes);
1225		bio_advance_iter(dst, dst_iter, bytes);
1226	}
1227}
1228EXPORT_SYMBOL(bio_copy_data_iter);
1229
1230/**
1231 * bio_copy_data - copy contents of data buffers from one bio to another
1232 * @src: source bio
1233 * @dst: destination bio
1234 *
1235 * Stops when it reaches the end of either @src or @dst - that is, copies
1236 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1237 */
1238void bio_copy_data(struct bio *dst, struct bio *src)
1239{
1240	struct bvec_iter src_iter = src->bi_iter;
1241	struct bvec_iter dst_iter = dst->bi_iter;
1242
1243	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1244}
1245EXPORT_SYMBOL(bio_copy_data);
1246
1247/**
1248 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1249 * another
1250 * @src: source bio list
1251 * @dst: destination bio list
1252 *
1253 * Stops when it reaches the end of either the @src list or @dst list - that is,
1254 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1255 * bios).
1256 */
1257void bio_list_copy_data(struct bio *dst, struct bio *src)
1258{
1259	struct bvec_iter src_iter = src->bi_iter;
1260	struct bvec_iter dst_iter = dst->bi_iter;
1261
1262	while (1) {
1263		if (!src_iter.bi_size) {
1264			src = src->bi_next;
1265			if (!src)
1266				break;
1267
1268			src_iter = src->bi_iter;
1269		}
1270
1271		if (!dst_iter.bi_size) {
1272			dst = dst->bi_next;
1273			if (!dst)
1274				break;
1275
1276			dst_iter = dst->bi_iter;
1277		}
1278
1279		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1280	}
1281}
1282EXPORT_SYMBOL(bio_list_copy_data);
1283
1284void bio_free_pages(struct bio *bio)
1285{
1286	struct bio_vec *bvec;
1287	struct bvec_iter_all iter_all;
1288
1289	bio_for_each_segment_all(bvec, bio, iter_all)
1290		__free_page(bvec->bv_page);
1291}
1292EXPORT_SYMBOL(bio_free_pages);
1293
1294/*
1295 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1296 * for performing direct-IO in BIOs.
1297 *
1298 * The problem is that we cannot run set_page_dirty() from interrupt context
1299 * because the required locks are not interrupt-safe.  So what we can do is to
1300 * mark the pages dirty _before_ performing IO.  And in interrupt context,
1301 * check that the pages are still dirty.   If so, fine.  If not, redirty them
1302 * in process context.
1303 *
1304 * We special-case compound pages here: normally this means reads into hugetlb
1305 * pages.  The logic in here doesn't really work right for compound pages
1306 * because the VM does not uniformly chase down the head page in all cases.
1307 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1308 * handle them at all.  So we skip compound pages here at an early stage.
1309 *
1310 * Note that this code is very hard to test under normal circumstances because
1311 * direct-io pins the pages with get_user_pages().  This makes
1312 * is_page_cache_freeable return false, and the VM will not clean the pages.
1313 * But other code (eg, flusher threads) could clean the pages if they are mapped
1314 * pagecache.
1315 *
1316 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1317 * deferred bio dirtying paths.
1318 */
1319
1320/*
1321 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1322 */
1323void bio_set_pages_dirty(struct bio *bio)
1324{
1325	struct bio_vec *bvec;
1326	struct bvec_iter_all iter_all;
1327
1328	bio_for_each_segment_all(bvec, bio, iter_all) {
1329		set_page_dirty_lock(bvec->bv_page);
1330	}
1331}
1332
1333/*
1334 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1335 * If they are, then fine.  If, however, some pages are clean then they must
1336 * have been written out during the direct-IO read.  So we take another ref on
1337 * the BIO and re-dirty the pages in process context.
1338 *
1339 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1340 * here on.  It will run one put_page() against each page and will run one
1341 * bio_put() against the BIO.
1342 */
1343
1344static void bio_dirty_fn(struct work_struct *work);
1345
1346static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1347static DEFINE_SPINLOCK(bio_dirty_lock);
1348static struct bio *bio_dirty_list;
1349
1350/*
1351 * This runs in process context
1352 */
1353static void bio_dirty_fn(struct work_struct *work)
1354{
1355	struct bio *bio, *next;
1356
1357	spin_lock_irq(&bio_dirty_lock);
1358	next = bio_dirty_list;
1359	bio_dirty_list = NULL;
1360	spin_unlock_irq(&bio_dirty_lock);
1361
1362	while ((bio = next) != NULL) {
1363		next = bio->bi_private;
1364
1365		bio_release_pages(bio, true);
1366		bio_put(bio);
1367	}
1368}
1369
1370void bio_check_pages_dirty(struct bio *bio)
1371{
1372	struct bio_vec *bvec;
1373	unsigned long flags;
1374	struct bvec_iter_all iter_all;
1375
1376	bio_for_each_segment_all(bvec, bio, iter_all) {
1377		if (!PageDirty(bvec->bv_page))
1378			goto defer;
1379	}
1380
1381	bio_release_pages(bio, false);
1382	bio_put(bio);
1383	return;
1384defer:
1385	spin_lock_irqsave(&bio_dirty_lock, flags);
1386	bio->bi_private = bio_dirty_list;
1387	bio_dirty_list = bio;
1388	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1389	schedule_work(&bio_dirty_work);
1390}
1391
1392static inline bool bio_remaining_done(struct bio *bio)
1393{
1394	/*
1395	 * If we're not chaining, then ->__bi_remaining is always 1 and
1396	 * we always end io on the first invocation.
1397	 */
1398	if (!bio_flagged(bio, BIO_CHAIN))
1399		return true;
1400
1401	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1402
1403	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1404		bio_clear_flag(bio, BIO_CHAIN);
1405		return true;
1406	}
1407
1408	return false;
1409}
1410
1411/**
1412 * bio_endio - end I/O on a bio
1413 * @bio:	bio
1414 *
1415 * Description:
1416 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1417 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1418 *   bio unless they own it and thus know that it has an end_io function.
1419 *
1420 *   bio_endio() can be called several times on a bio that has been chained
1421 *   using bio_chain().  The ->bi_end_io() function will only be called the
1422 *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1423 *   generated if BIO_TRACE_COMPLETION is set.
1424 **/
1425void bio_endio(struct bio *bio)
1426{
1427again:
1428	if (!bio_remaining_done(bio))
1429		return;
1430	if (!bio_integrity_endio(bio))
1431		return;
1432
1433	if (bio->bi_disk && bio_flagged(bio, BIO_TRACKED))
1434		rq_qos_done_bio(bio->bi_disk->queue, bio);
1435
1436	/*
1437	 * Need to have a real endio function for chained bios, otherwise
1438	 * various corner cases will break (like stacking block devices that
1439	 * save/restore bi_end_io) - however, we want to avoid unbounded
1440	 * recursion and blowing the stack. Tail call optimization would
1441	 * handle this, but compiling with frame pointers also disables
1442	 * gcc's sibling call optimization.
1443	 */
1444	if (bio->bi_end_io == bio_chain_endio) {
1445		bio = __bio_chain_endio(bio);
1446		goto again;
1447	}
1448
1449	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1450		trace_block_bio_complete(bio->bi_disk->queue, bio);
1451		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1452	}
1453
1454	blk_throtl_bio_endio(bio);
1455	/* release cgroup info */
1456	bio_uninit(bio);
1457	if (bio->bi_end_io)
1458		bio->bi_end_io(bio);
1459}
1460EXPORT_SYMBOL(bio_endio);
1461
1462/**
1463 * bio_split - split a bio
1464 * @bio:	bio to split
1465 * @sectors:	number of sectors to split from the front of @bio
1466 * @gfp:	gfp mask
1467 * @bs:		bio set to allocate from
1468 *
1469 * Allocates and returns a new bio which represents @sectors from the start of
1470 * @bio, and updates @bio to represent the remaining sectors.
1471 *
1472 * Unless this is a discard request the newly allocated bio will point
1473 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1474 * neither @bio nor @bs are freed before the split bio.
1475 */
1476struct bio *bio_split(struct bio *bio, int sectors,
1477		      gfp_t gfp, struct bio_set *bs)
1478{
1479	struct bio *split;
1480
1481	BUG_ON(sectors <= 0);
1482	BUG_ON(sectors >= bio_sectors(bio));
1483
1484	/* Zone append commands cannot be split */
1485	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1486		return NULL;
1487
1488	split = bio_clone_fast(bio, gfp, bs);
1489	if (!split)
1490		return NULL;
1491
1492	split->bi_iter.bi_size = sectors << 9;
1493
1494	if (bio_integrity(split))
1495		bio_integrity_trim(split);
1496
1497	bio_advance(bio, split->bi_iter.bi_size);
1498
1499	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1500		bio_set_flag(split, BIO_TRACE_COMPLETION);
1501
1502	return split;
1503}
1504EXPORT_SYMBOL(bio_split);
1505
1506/**
1507 * bio_trim - trim a bio
1508 * @bio:	bio to trim
1509 * @offset:	number of sectors to trim from the front of @bio
1510 * @size:	size we want to trim @bio to, in sectors
1511 */
1512void bio_trim(struct bio *bio, int offset, int size)
1513{
1514	/* 'bio' is a cloned bio which we need to trim to match
1515	 * the given offset and size.
1516	 */
1517
1518	size <<= 9;
1519	if (offset == 0 && size == bio->bi_iter.bi_size)
1520		return;
1521
1522	bio_advance(bio, offset << 9);
1523	bio->bi_iter.bi_size = size;
1524
1525	if (bio_integrity(bio))
1526		bio_integrity_trim(bio);
1527
1528}
1529EXPORT_SYMBOL_GPL(bio_trim);
1530
1531/*
1532 * create memory pools for biovec's in a bio_set.
1533 * use the global biovec slabs created for general use.
1534 */
1535int biovec_init_pool(mempool_t *pool, int pool_entries)
1536{
1537	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1538
1539	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1540}
1541
1542/*
1543 * bioset_exit - exit a bioset initialized with bioset_init()
1544 *
1545 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1546 * kzalloc()).
1547 */
1548void bioset_exit(struct bio_set *bs)
1549{
1550	if (bs->rescue_workqueue)
1551		destroy_workqueue(bs->rescue_workqueue);
1552	bs->rescue_workqueue = NULL;
1553
1554	mempool_exit(&bs->bio_pool);
1555	mempool_exit(&bs->bvec_pool);
1556
1557	bioset_integrity_free(bs);
1558	if (bs->bio_slab)
1559		bio_put_slab(bs);
1560	bs->bio_slab = NULL;
1561}
1562EXPORT_SYMBOL(bioset_exit);
1563
1564/**
1565 * bioset_init - Initialize a bio_set
1566 * @bs:		pool to initialize
1567 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1568 * @front_pad:	Number of bytes to allocate in front of the returned bio
1569 * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1570 *              and %BIOSET_NEED_RESCUER
1571 *
1572 * Description:
1573 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1574 *    to ask for a number of bytes to be allocated in front of the bio.
1575 *    Front pad allocation is useful for embedding the bio inside
1576 *    another structure, to avoid allocating extra data to go with the bio.
1577 *    Note that the bio must be embedded at the END of that structure always,
1578 *    or things will break badly.
1579 *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1580 *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1581 *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1582 *    dispatch queued requests when the mempool runs out of space.
1583 *
1584 */
1585int bioset_init(struct bio_set *bs,
1586		unsigned int pool_size,
1587		unsigned int front_pad,
1588		int flags)
1589{
1590	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1591
1592	bs->front_pad = front_pad;
1593
1594	spin_lock_init(&bs->rescue_lock);
1595	bio_list_init(&bs->rescue_list);
1596	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1597
1598	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1599	if (!bs->bio_slab)
1600		return -ENOMEM;
1601
1602	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1603		goto bad;
1604
1605	if ((flags & BIOSET_NEED_BVECS) &&
1606	    biovec_init_pool(&bs->bvec_pool, pool_size))
1607		goto bad;
1608
1609	if (!(flags & BIOSET_NEED_RESCUER))
1610		return 0;
1611
1612	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1613	if (!bs->rescue_workqueue)
1614		goto bad;
1615
1616	return 0;
1617bad:
1618	bioset_exit(bs);
1619	return -ENOMEM;
1620}
1621EXPORT_SYMBOL(bioset_init);
1622
1623/*
1624 * Initialize and setup a new bio_set, based on the settings from
1625 * another bio_set.
1626 */
1627int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1628{
1629	int flags;
1630
1631	flags = 0;
1632	if (src->bvec_pool.min_nr)
1633		flags |= BIOSET_NEED_BVECS;
1634	if (src->rescue_workqueue)
1635		flags |= BIOSET_NEED_RESCUER;
1636
1637	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1638}
1639EXPORT_SYMBOL(bioset_init_from_src);
1640
1641static void __init biovec_init_slabs(void)
1642{
1643	int i;
1644
1645	for (i = 0; i < BVEC_POOL_NR; i++) {
1646		int size;
1647		struct biovec_slab *bvs = bvec_slabs + i;
1648
1649		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1650			bvs->slab = NULL;
1651			continue;
1652		}
1653
1654		size = bvs->nr_vecs * sizeof(struct bio_vec);
1655		bvs->slab = kmem_cache_create(bvs->name, size, 0,
1656                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1657	}
1658}
1659
1660static int __init init_bio(void)
1661{
1662	bio_slab_max = 2;
1663	bio_slab_nr = 0;
1664	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
1665			    GFP_KERNEL);
1666
1667	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
1668
1669	if (!bio_slabs)
1670		panic("bio: can't allocate bios\n");
1671
1672	bio_integrity_init();
1673	biovec_init_slabs();
1674
1675	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1676		panic("bio: can't allocate bios\n");
1677
1678	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1679		panic("bio: can't create integrity pool\n");
1680
1681	return 0;
1682}
1683subsys_initcall(init_bio);
1684