1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * include/asm-xtensa/pgtable.h
4 *
5 * Copyright (C) 2001 - 2013 Tensilica Inc.
6 */
7
8#ifndef _XTENSA_PGTABLE_H
9#define _XTENSA_PGTABLE_H
10
11#include <asm/page.h>
12#include <asm/kmem_layout.h>
13#include <asm-generic/pgtable-nopmd.h>
14
15/*
16 * We only use two ring levels, user and kernel space.
17 */
18
19#ifdef CONFIG_MMU
20#define USER_RING		1	/* user ring level */
21#else
22#define USER_RING		0
23#endif
24#define KERNEL_RING		0	/* kernel ring level */
25
26/*
27 * The Xtensa architecture port of Linux has a two-level page table system,
28 * i.e. the logical three-level Linux page table layout is folded.
29 * Each task has the following memory page tables:
30 *
31 *   PGD table (page directory), ie. 3rd-level page table:
32 *	One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
33 *	(Architectures that don't have the PMD folded point to the PMD tables)
34 *
35 *	The pointer to the PGD table for a given task can be retrieved from
36 *	the task structure (struct task_struct*) t, e.g. current():
37 *	  (t->mm ? t->mm : t->active_mm)->pgd
38 *
39 *   PMD tables (page middle-directory), ie. 2nd-level page tables:
40 *	Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
41 *
42 *   PTE tables (page table entry), ie. 1st-level page tables:
43 *	One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
44 *	invalid_pte_table for absent mappings.
45 *
46 * The individual pages are 4 kB big with special pages for the empty_zero_page.
47 */
48
49#define PGDIR_SHIFT	22
50#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
51#define PGDIR_MASK	(~(PGDIR_SIZE-1))
52
53/*
54 * Entries per page directory level: we use two-level, so
55 * we don't really have any PMD directory physically.
56 */
57#define PTRS_PER_PTE		1024
58#define PTRS_PER_PTE_SHIFT	10
59#define PTRS_PER_PGD		1024
60#define PGD_ORDER		0
61#define USER_PTRS_PER_PGD	(TASK_SIZE/PGDIR_SIZE)
62#define FIRST_USER_ADDRESS	0UL
63#define FIRST_USER_PGD_NR	(FIRST_USER_ADDRESS >> PGDIR_SHIFT)
64
65#ifdef CONFIG_MMU
66/*
67 * Virtual memory area. We keep a distance to other memory regions to be
68 * on the safe side. We also use this area for cache aliasing.
69 */
70#define VMALLOC_START		(XCHAL_KSEG_CACHED_VADDR - 0x10000000)
71#define VMALLOC_END		(VMALLOC_START + 0x07FEFFFF)
72#define TLBTEMP_BASE_1		(VMALLOC_START + 0x08000000)
73#define TLBTEMP_BASE_2		(TLBTEMP_BASE_1 + DCACHE_WAY_SIZE)
74#if 2 * DCACHE_WAY_SIZE > ICACHE_WAY_SIZE
75#define TLBTEMP_SIZE		(2 * DCACHE_WAY_SIZE)
76#else
77#define TLBTEMP_SIZE		ICACHE_WAY_SIZE
78#endif
79
80#else
81
82#define VMALLOC_START		__XTENSA_UL_CONST(0)
83#define VMALLOC_END		__XTENSA_UL_CONST(0xffffffff)
84
85#endif
86
87/*
88 * For the Xtensa architecture, the PTE layout is as follows:
89 *
90 *		31------12  11  10-9   8-6  5-4  3-2  1-0
91 *		+-----------------------------------------+
92 *		|           |   Software   |   HARDWARE   |
93 *		|    PPN    |          ADW | RI |Attribute|
94 *		+-----------------------------------------+
95 *   pte_none	|             MBZ          | 01 | 11 | 00 |
96 *		+-----------------------------------------+
97 *   present	|    PPN    | 0 | 00 | ADW | RI | CA | wx |
98 *		+- - - - - - - - - - - - - - - - - - - - -+
99 *   (PAGE_NONE)|    PPN    | 0 | 00 | ADW | 01 | 11 | 11 |
100 *		+-----------------------------------------+
101 *   swap	|     index     |   type   | 01 | 11 | 00 |
102 *		+-----------------------------------------+
103 *
104 * For T1050 hardware and earlier the layout differs for present and (PAGE_NONE)
105 *		+-----------------------------------------+
106 *   present	|    PPN    | 0 | 00 | ADW | RI | CA | w1 |
107 *		+-----------------------------------------+
108 *   (PAGE_NONE)|    PPN    | 0 | 00 | ADW | 01 | 01 | 00 |
109 *		+-----------------------------------------+
110 *
111 *  Legend:
112 *   PPN        Physical Page Number
113 *   ADW	software: accessed (young) / dirty / writable
114 *   RI         ring (0=privileged, 1=user, 2 and 3 are unused)
115 *   CA		cache attribute: 00 bypass, 01 writeback, 10 writethrough
116 *		(11 is invalid and used to mark pages that are not present)
117 *   w		page is writable (hw)
118 *   x		page is executable (hw)
119 *   index      swap offset / PAGE_SIZE (bit 11-31: 21 bits -> 8 GB)
120 *		(note that the index is always non-zero)
121 *   type       swap type (5 bits -> 32 types)
122 *
123 *  Notes:
124 *   - (PROT_NONE) is a special case of 'present' but causes an exception for
125 *     any access (read, write, and execute).
126 *   - 'multihit-exception' has the highest priority of all MMU exceptions,
127 *     so the ring must be set to 'RING_USER' even for 'non-present' pages.
128 *   - on older hardware, the exectuable flag was not supported and
129 *     used as a 'valid' flag, so it needs to be always set.
130 *   - we need to keep track of certain flags in software (dirty and young)
131 *     to do this, we use write exceptions and have a separate software w-flag.
132 *   - attribute value 1101 (and 1111 on T1050 and earlier) is reserved
133 */
134
135#define _PAGE_ATTRIB_MASK	0xf
136
137#define _PAGE_HW_EXEC		(1<<0)	/* hardware: page is executable */
138#define _PAGE_HW_WRITE		(1<<1)	/* hardware: page is writable */
139
140#define _PAGE_CA_BYPASS		(0<<2)	/* bypass, non-speculative */
141#define _PAGE_CA_WB		(1<<2)	/* write-back */
142#define _PAGE_CA_WT		(2<<2)	/* write-through */
143#define _PAGE_CA_MASK		(3<<2)
144#define _PAGE_CA_INVALID	(3<<2)
145
146/* We use invalid attribute values to distinguish special pte entries */
147#if XCHAL_HW_VERSION_MAJOR < 2000
148#define _PAGE_HW_VALID		0x01	/* older HW needed this bit set */
149#define _PAGE_NONE		0x04
150#else
151#define _PAGE_HW_VALID		0x00
152#define _PAGE_NONE		0x0f
153#endif
154
155#define _PAGE_USER		(1<<4)	/* user access (ring=1) */
156
157/* Software */
158#define _PAGE_WRITABLE_BIT	6
159#define _PAGE_WRITABLE		(1<<6)	/* software: page writable */
160#define _PAGE_DIRTY		(1<<7)	/* software: page dirty */
161#define _PAGE_ACCESSED		(1<<8)	/* software: page accessed (read) */
162
163#ifdef CONFIG_MMU
164
165#define _PAGE_CHG_MASK	   (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
166#define _PAGE_PRESENT	   (_PAGE_HW_VALID | _PAGE_CA_WB | _PAGE_ACCESSED)
167
168#define PAGE_NONE	   __pgprot(_PAGE_NONE | _PAGE_USER)
169#define PAGE_COPY	   __pgprot(_PAGE_PRESENT | _PAGE_USER)
170#define PAGE_COPY_EXEC	   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
171#define PAGE_READONLY	   __pgprot(_PAGE_PRESENT | _PAGE_USER)
172#define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
173#define PAGE_SHARED	   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE)
174#define PAGE_SHARED_EXEC \
175	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC)
176#define PAGE_KERNEL	   __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE)
177#define PAGE_KERNEL_RO	   __pgprot(_PAGE_PRESENT)
178#define PAGE_KERNEL_EXEC   __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC)
179
180#if (DCACHE_WAY_SIZE > PAGE_SIZE)
181# define _PAGE_DIRECTORY   (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_BYPASS)
182#else
183# define _PAGE_DIRECTORY   (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_WB)
184#endif
185
186#else /* no mmu */
187
188# define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
189# define PAGE_NONE       __pgprot(0)
190# define PAGE_SHARED     __pgprot(0)
191# define PAGE_COPY       __pgprot(0)
192# define PAGE_READONLY   __pgprot(0)
193# define PAGE_KERNEL     __pgprot(0)
194
195#endif
196
197/*
198 * On certain configurations of Xtensa MMUs (eg. the initial Linux config),
199 * the MMU can't do page protection for execute, and considers that the same as
200 * read.  Also, write permissions may imply read permissions.
201 * What follows is the closest we can get by reasonable means..
202 * See linux/mm/mmap.c for protection_map[] array that uses these definitions.
203 */
204#define __P000	PAGE_NONE		/* private --- */
205#define __P001	PAGE_READONLY		/* private --r */
206#define __P010	PAGE_COPY		/* private -w- */
207#define __P011	PAGE_COPY		/* private -wr */
208#define __P100	PAGE_READONLY_EXEC	/* private x-- */
209#define __P101	PAGE_READONLY_EXEC	/* private x-r */
210#define __P110	PAGE_COPY_EXEC		/* private xw- */
211#define __P111	PAGE_COPY_EXEC		/* private xwr */
212
213#define __S000	PAGE_NONE		/* shared  --- */
214#define __S001	PAGE_READONLY		/* shared  --r */
215#define __S010	PAGE_SHARED		/* shared  -w- */
216#define __S011	PAGE_SHARED		/* shared  -wr */
217#define __S100	PAGE_READONLY_EXEC	/* shared  x-- */
218#define __S101	PAGE_READONLY_EXEC	/* shared  x-r */
219#define __S110	PAGE_SHARED_EXEC	/* shared  xw- */
220#define __S111	PAGE_SHARED_EXEC	/* shared  xwr */
221
222#ifndef __ASSEMBLY__
223
224#define pte_ERROR(e) \
225	printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
226#define pgd_ERROR(e) \
227	printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
228
229extern unsigned long empty_zero_page[1024];
230
231#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
232
233#ifdef CONFIG_MMU
234extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];
235extern void paging_init(void);
236#else
237# define swapper_pg_dir NULL
238static inline void paging_init(void) { }
239#endif
240
241/*
242 * The pmd contains the kernel virtual address of the pte page.
243 */
244#define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
245#define pmd_page(pmd) virt_to_page(pmd_val(pmd))
246
247/*
248 * pte status.
249 */
250# define pte_none(pte)	 (pte_val(pte) == (_PAGE_CA_INVALID | _PAGE_USER))
251#if XCHAL_HW_VERSION_MAJOR < 2000
252# define pte_present(pte) ((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID)
253#else
254# define pte_present(pte)						\
255	(((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID)		\
256	 || ((pte_val(pte) & _PAGE_ATTRIB_MASK) == _PAGE_NONE))
257#endif
258#define pte_clear(mm,addr,ptep)						\
259	do { update_pte(ptep, __pte(_PAGE_CA_INVALID | _PAGE_USER)); } while (0)
260
261#define pmd_none(pmd)	 (!pmd_val(pmd))
262#define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
263#define pmd_bad(pmd)	 (pmd_val(pmd) & ~PAGE_MASK)
264#define pmd_clear(pmdp)	 do { set_pmd(pmdp, __pmd(0)); } while (0)
265
266static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; }
267static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
268static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
269
270static inline pte_t pte_wrprotect(pte_t pte)
271	{ pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; }
272static inline pte_t pte_mkclean(pte_t pte)
273	{ pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; }
274static inline pte_t pte_mkold(pte_t pte)
275	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
276static inline pte_t pte_mkdirty(pte_t pte)
277	{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
278static inline pte_t pte_mkyoung(pte_t pte)
279	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }
280static inline pte_t pte_mkwrite(pte_t pte)
281	{ pte_val(pte) |= _PAGE_WRITABLE; return pte; }
282
283#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) & ~_PAGE_CA_MASK))
284
285/*
286 * Conversion functions: convert a page and protection to a page entry,
287 * and a page entry and page directory to the page they refer to.
288 */
289
290#define pte_pfn(pte)		(pte_val(pte) >> PAGE_SHIFT)
291#define pte_same(a,b)		(pte_val(a) == pte_val(b))
292#define pte_page(x)		pfn_to_page(pte_pfn(x))
293#define pfn_pte(pfn, prot)	__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
294#define mk_pte(page, prot)	pfn_pte(page_to_pfn(page), prot)
295
296static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
297{
298	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
299}
300
301/*
302 * Certain architectures need to do special things when pte's
303 * within a page table are directly modified.  Thus, the following
304 * hook is made available.
305 */
306static inline void update_pte(pte_t *ptep, pte_t pteval)
307{
308	*ptep = pteval;
309#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
310	__asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep));
311#endif
312
313}
314
315struct mm_struct;
316
317static inline void
318set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval)
319{
320	update_pte(ptep, pteval);
321}
322
323static inline void set_pte(pte_t *ptep, pte_t pteval)
324{
325	update_pte(ptep, pteval);
326}
327
328static inline void
329set_pmd(pmd_t *pmdp, pmd_t pmdval)
330{
331	*pmdp = pmdval;
332}
333
334struct vm_area_struct;
335
336static inline int
337ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
338			  pte_t *ptep)
339{
340	pte_t pte = *ptep;
341	if (!pte_young(pte))
342		return 0;
343	update_pte(ptep, pte_mkold(pte));
344	return 1;
345}
346
347static inline pte_t
348ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
349{
350	pte_t pte = *ptep;
351	pte_clear(mm, addr, ptep);
352	return pte;
353}
354
355static inline void
356ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
357{
358	pte_t pte = *ptep;
359	update_pte(ptep, pte_wrprotect(pte));
360}
361
362/*
363 * Encode and decode a swap and file entry.
364 */
365#define SWP_TYPE_BITS		5
366#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS)
367
368#define __swp_type(entry)	(((entry).val >> 6) & 0x1f)
369#define __swp_offset(entry)	((entry).val >> 11)
370#define __swp_entry(type,offs)	\
371	((swp_entry_t){((type) << 6) | ((offs) << 11) | \
372	 _PAGE_CA_INVALID | _PAGE_USER})
373#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
374#define __swp_entry_to_pte(x)	((pte_t) { (x).val })
375
376#endif /*  !defined (__ASSEMBLY__) */
377
378
379#ifdef __ASSEMBLY__
380
381/* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
382 *                _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
383 *                _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
384 *                _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
385 *
386 * Note: We require an additional temporary register which can be the same as
387 *       the register that holds the address.
388 *
389 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
390 *
391 */
392#define _PGD_INDEX(rt,rs)	extui	rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
393#define _PTE_INDEX(rt,rs)	extui	rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
394
395#define _PGD_OFFSET(mm,adr,tmp)		l32i	mm, mm, MM_PGD;		\
396					_PGD_INDEX(tmp, adr);		\
397					addx4	mm, tmp, mm
398
399#define _PTE_OFFSET(pmd,adr,tmp)	_PTE_INDEX(tmp, adr);		\
400					srli	pmd, pmd, PAGE_SHIFT;	\
401					slli	pmd, pmd, PAGE_SHIFT;	\
402					addx4	pmd, tmp, pmd
403
404#else
405
406#define kern_addr_valid(addr)	(1)
407
408extern  void update_mmu_cache(struct vm_area_struct * vma,
409			      unsigned long address, pte_t *ptep);
410
411typedef pte_t *pte_addr_t;
412
413#endif /* !defined (__ASSEMBLY__) */
414
415#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
416#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
417#define __HAVE_ARCH_PTEP_SET_WRPROTECT
418#define __HAVE_ARCH_PTEP_MKDIRTY
419#define __HAVE_ARCH_PTE_SAME
420/* We provide our own get_unmapped_area to cope with
421 * SHM area cache aliasing for userland.
422 */
423#define HAVE_ARCH_UNMAPPED_AREA
424
425#endif /* _XTENSA_PGTABLE_H */
426