xref: /kernel/linux/linux-5.10/arch/x86/xen/time.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Xen time implementation.
4 *
5 * This is implemented in terms of a clocksource driver which uses
6 * the hypervisor clock as a nanosecond timebase, and a clockevent
7 * driver which uses the hypervisor's timer mechanism.
8 *
9 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
10 */
11#include <linux/kernel.h>
12#include <linux/interrupt.h>
13#include <linux/clocksource.h>
14#include <linux/clockchips.h>
15#include <linux/gfp.h>
16#include <linux/slab.h>
17#include <linux/pvclock_gtod.h>
18#include <linux/timekeeper_internal.h>
19
20#include <asm/pvclock.h>
21#include <asm/xen/hypervisor.h>
22#include <asm/xen/hypercall.h>
23
24#include <xen/events.h>
25#include <xen/features.h>
26#include <xen/interface/xen.h>
27#include <xen/interface/vcpu.h>
28
29#include "xen-ops.h"
30
31/* Minimum amount of time until next clock event fires */
32#define TIMER_SLOP	100000
33
34static u64 xen_sched_clock_offset __read_mostly;
35
36/* Get the TSC speed from Xen */
37static unsigned long xen_tsc_khz(void)
38{
39	struct pvclock_vcpu_time_info *info =
40		&HYPERVISOR_shared_info->vcpu_info[0].time;
41
42	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
43	return pvclock_tsc_khz(info);
44}
45
46static u64 xen_clocksource_read(void)
47{
48        struct pvclock_vcpu_time_info *src;
49	u64 ret;
50
51	preempt_disable_notrace();
52	src = &__this_cpu_read(xen_vcpu)->time;
53	ret = pvclock_clocksource_read(src);
54	preempt_enable_notrace();
55	return ret;
56}
57
58static u64 xen_clocksource_get_cycles(struct clocksource *cs)
59{
60	return xen_clocksource_read();
61}
62
63static u64 xen_sched_clock(void)
64{
65	return xen_clocksource_read() - xen_sched_clock_offset;
66}
67
68static void xen_read_wallclock(struct timespec64 *ts)
69{
70	struct shared_info *s = HYPERVISOR_shared_info;
71	struct pvclock_wall_clock *wall_clock = &(s->wc);
72        struct pvclock_vcpu_time_info *vcpu_time;
73
74	vcpu_time = &get_cpu_var(xen_vcpu)->time;
75	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
76	put_cpu_var(xen_vcpu);
77}
78
79static void xen_get_wallclock(struct timespec64 *now)
80{
81	xen_read_wallclock(now);
82}
83
84static int xen_set_wallclock(const struct timespec64 *now)
85{
86	return -ENODEV;
87}
88
89static int xen_pvclock_gtod_notify(struct notifier_block *nb,
90				   unsigned long was_set, void *priv)
91{
92	/* Protected by the calling core code serialization */
93	static struct timespec64 next_sync;
94
95	struct xen_platform_op op;
96	struct timespec64 now;
97	struct timekeeper *tk = priv;
98	static bool settime64_supported = true;
99	int ret;
100
101	now.tv_sec = tk->xtime_sec;
102	now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
103
104	/*
105	 * We only take the expensive HV call when the clock was set
106	 * or when the 11 minutes RTC synchronization time elapsed.
107	 */
108	if (!was_set && timespec64_compare(&now, &next_sync) < 0)
109		return NOTIFY_OK;
110
111again:
112	if (settime64_supported) {
113		op.cmd = XENPF_settime64;
114		op.u.settime64.mbz = 0;
115		op.u.settime64.secs = now.tv_sec;
116		op.u.settime64.nsecs = now.tv_nsec;
117		op.u.settime64.system_time = xen_clocksource_read();
118	} else {
119		op.cmd = XENPF_settime32;
120		op.u.settime32.secs = now.tv_sec;
121		op.u.settime32.nsecs = now.tv_nsec;
122		op.u.settime32.system_time = xen_clocksource_read();
123	}
124
125	ret = HYPERVISOR_platform_op(&op);
126
127	if (ret == -ENOSYS && settime64_supported) {
128		settime64_supported = false;
129		goto again;
130	}
131	if (ret < 0)
132		return NOTIFY_BAD;
133
134	/*
135	 * Move the next drift compensation time 11 minutes
136	 * ahead. That's emulating the sync_cmos_clock() update for
137	 * the hardware RTC.
138	 */
139	next_sync = now;
140	next_sync.tv_sec += 11 * 60;
141
142	return NOTIFY_OK;
143}
144
145static struct notifier_block xen_pvclock_gtod_notifier = {
146	.notifier_call = xen_pvclock_gtod_notify,
147};
148
149static int xen_cs_enable(struct clocksource *cs)
150{
151	vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
152	return 0;
153}
154
155static struct clocksource xen_clocksource __read_mostly = {
156	.name	= "xen",
157	.rating	= 400,
158	.read	= xen_clocksource_get_cycles,
159	.mask	= CLOCKSOURCE_MASK(64),
160	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
161	.enable = xen_cs_enable,
162};
163
164/*
165   Xen clockevent implementation
166
167   Xen has two clockevent implementations:
168
169   The old timer_op one works with all released versions of Xen prior
170   to version 3.0.4.  This version of the hypervisor provides a
171   single-shot timer with nanosecond resolution.  However, sharing the
172   same event channel is a 100Hz tick which is delivered while the
173   vcpu is running.  We don't care about or use this tick, but it will
174   cause the core time code to think the timer fired too soon, and
175   will end up resetting it each time.  It could be filtered, but
176   doing so has complications when the ktime clocksource is not yet
177   the xen clocksource (ie, at boot time).
178
179   The new vcpu_op-based timer interface allows the tick timer period
180   to be changed or turned off.  The tick timer is not useful as a
181   periodic timer because events are only delivered to running vcpus.
182   The one-shot timer can report when a timeout is in the past, so
183   set_next_event is capable of returning -ETIME when appropriate.
184   This interface is used when available.
185*/
186
187
188/*
189  Get a hypervisor absolute time.  In theory we could maintain an
190  offset between the kernel's time and the hypervisor's time, and
191  apply that to a kernel's absolute timeout.  Unfortunately the
192  hypervisor and kernel times can drift even if the kernel is using
193  the Xen clocksource, because ntp can warp the kernel's clocksource.
194*/
195static s64 get_abs_timeout(unsigned long delta)
196{
197	return xen_clocksource_read() + delta;
198}
199
200static int xen_timerop_shutdown(struct clock_event_device *evt)
201{
202	/* cancel timeout */
203	HYPERVISOR_set_timer_op(0);
204
205	return 0;
206}
207
208static int xen_timerop_set_next_event(unsigned long delta,
209				      struct clock_event_device *evt)
210{
211	WARN_ON(!clockevent_state_oneshot(evt));
212
213	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
214		BUG();
215
216	/* We may have missed the deadline, but there's no real way of
217	   knowing for sure.  If the event was in the past, then we'll
218	   get an immediate interrupt. */
219
220	return 0;
221}
222
223static struct clock_event_device xen_timerop_clockevent __ro_after_init = {
224	.name			= "xen",
225	.features		= CLOCK_EVT_FEAT_ONESHOT,
226
227	.max_delta_ns		= 0xffffffff,
228	.max_delta_ticks	= 0xffffffff,
229	.min_delta_ns		= TIMER_SLOP,
230	.min_delta_ticks	= TIMER_SLOP,
231
232	.mult			= 1,
233	.shift			= 0,
234	.rating			= 500,
235
236	.set_state_shutdown	= xen_timerop_shutdown,
237	.set_next_event		= xen_timerop_set_next_event,
238};
239
240static int xen_vcpuop_shutdown(struct clock_event_device *evt)
241{
242	int cpu = smp_processor_id();
243
244	if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
245			       NULL) ||
246	    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
247			       NULL))
248		BUG();
249
250	return 0;
251}
252
253static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
254{
255	int cpu = smp_processor_id();
256
257	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
258			       NULL))
259		BUG();
260
261	return 0;
262}
263
264static int xen_vcpuop_set_next_event(unsigned long delta,
265				     struct clock_event_device *evt)
266{
267	int cpu = smp_processor_id();
268	struct vcpu_set_singleshot_timer single;
269	int ret;
270
271	WARN_ON(!clockevent_state_oneshot(evt));
272
273	single.timeout_abs_ns = get_abs_timeout(delta);
274	/* Get an event anyway, even if the timeout is already expired */
275	single.flags = 0;
276
277	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
278				 &single);
279	BUG_ON(ret != 0);
280
281	return ret;
282}
283
284static struct clock_event_device xen_vcpuop_clockevent __ro_after_init = {
285	.name = "xen",
286	.features = CLOCK_EVT_FEAT_ONESHOT,
287
288	.max_delta_ns = 0xffffffff,
289	.max_delta_ticks = 0xffffffff,
290	.min_delta_ns = TIMER_SLOP,
291	.min_delta_ticks = TIMER_SLOP,
292
293	.mult = 1,
294	.shift = 0,
295	.rating = 500,
296
297	.set_state_shutdown = xen_vcpuop_shutdown,
298	.set_state_oneshot = xen_vcpuop_set_oneshot,
299	.set_next_event = xen_vcpuop_set_next_event,
300};
301
302static const struct clock_event_device *xen_clockevent =
303	&xen_timerop_clockevent;
304
305struct xen_clock_event_device {
306	struct clock_event_device evt;
307	char name[16];
308};
309static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
310
311static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
312{
313	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
314	irqreturn_t ret;
315
316	ret = IRQ_NONE;
317	if (evt->event_handler) {
318		evt->event_handler(evt);
319		ret = IRQ_HANDLED;
320	}
321
322	return ret;
323}
324
325void xen_teardown_timer(int cpu)
326{
327	struct clock_event_device *evt;
328	evt = &per_cpu(xen_clock_events, cpu).evt;
329
330	if (evt->irq >= 0) {
331		unbind_from_irqhandler(evt->irq, NULL);
332		evt->irq = -1;
333	}
334}
335
336void xen_setup_timer(int cpu)
337{
338	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
339	struct clock_event_device *evt = &xevt->evt;
340	int irq;
341
342	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
343	if (evt->irq >= 0)
344		xen_teardown_timer(cpu);
345
346	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
347
348	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
349
350	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
351				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
352				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
353				      xevt->name, NULL);
354	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
355
356	memcpy(evt, xen_clockevent, sizeof(*evt));
357
358	evt->cpumask = cpumask_of(cpu);
359	evt->irq = irq;
360}
361
362
363void xen_setup_cpu_clockevents(void)
364{
365	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
366}
367
368void xen_timer_resume(void)
369{
370	int cpu;
371
372	if (xen_clockevent != &xen_vcpuop_clockevent)
373		return;
374
375	for_each_online_cpu(cpu) {
376		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
377				       xen_vcpu_nr(cpu), NULL))
378			BUG();
379	}
380}
381
382static const struct pv_time_ops xen_time_ops __initconst = {
383	.sched_clock = xen_sched_clock,
384	.steal_clock = xen_steal_clock,
385};
386
387static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
388static u64 xen_clock_value_saved;
389
390void xen_save_time_memory_area(void)
391{
392	struct vcpu_register_time_memory_area t;
393	int ret;
394
395	xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset;
396
397	if (!xen_clock)
398		return;
399
400	t.addr.v = NULL;
401
402	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
403	if (ret != 0)
404		pr_notice("Cannot save secondary vcpu_time_info (err %d)",
405			  ret);
406	else
407		clear_page(xen_clock);
408}
409
410void xen_restore_time_memory_area(void)
411{
412	struct vcpu_register_time_memory_area t;
413	int ret;
414
415	if (!xen_clock)
416		goto out;
417
418	t.addr.v = &xen_clock->pvti;
419
420	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
421
422	/*
423	 * We don't disable VDSO_CLOCKMODE_PVCLOCK entirely if it fails to
424	 * register the secondary time info with Xen or if we migrated to a
425	 * host without the necessary flags. On both of these cases what
426	 * happens is either process seeing a zeroed out pvti or seeing no
427	 * PVCLOCK_TSC_STABLE_BIT bit set. Userspace checks the latter and
428	 * if 0, it discards the data in pvti and fallbacks to a system
429	 * call for a reliable timestamp.
430	 */
431	if (ret != 0)
432		pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
433			  ret);
434
435out:
436	/* Need pvclock_resume() before using xen_clocksource_read(). */
437	pvclock_resume();
438	xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved;
439}
440
441static void xen_setup_vsyscall_time_info(void)
442{
443	struct vcpu_register_time_memory_area t;
444	struct pvclock_vsyscall_time_info *ti;
445	int ret;
446
447	ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
448	if (!ti)
449		return;
450
451	t.addr.v = &ti->pvti;
452
453	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
454	if (ret) {
455		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (err %d)\n", ret);
456		free_page((unsigned long)ti);
457		return;
458	}
459
460	/*
461	 * If primary time info had this bit set, secondary should too since
462	 * it's the same data on both just different memory regions. But we
463	 * still check it in case hypervisor is buggy.
464	 */
465	if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
466		t.addr.v = NULL;
467		ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
468					 0, &t);
469		if (!ret)
470			free_page((unsigned long)ti);
471
472		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (tsc unstable)\n");
473		return;
474	}
475
476	xen_clock = ti;
477	pvclock_set_pvti_cpu0_va(xen_clock);
478
479	xen_clocksource.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
480}
481
482static void __init xen_time_init(void)
483{
484	struct pvclock_vcpu_time_info *pvti;
485	int cpu = smp_processor_id();
486	struct timespec64 tp;
487
488	/* As Dom0 is never moved, no penalty on using TSC there */
489	if (xen_initial_domain())
490		xen_clocksource.rating = 275;
491
492	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
493
494	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
495			       NULL) == 0) {
496		/* Successfully turned off 100Hz tick, so we have the
497		   vcpuop-based timer interface */
498		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
499		xen_clockevent = &xen_vcpuop_clockevent;
500	}
501
502	/* Set initial system time with full resolution */
503	xen_read_wallclock(&tp);
504	do_settimeofday64(&tp);
505
506	setup_force_cpu_cap(X86_FEATURE_TSC);
507
508	/*
509	 * We check ahead on the primary time info if this
510	 * bit is supported hence speeding up Xen clocksource.
511	 */
512	pvti = &__this_cpu_read(xen_vcpu)->time;
513	if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
514		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
515		xen_setup_vsyscall_time_info();
516	}
517
518	xen_setup_runstate_info(cpu);
519	xen_setup_timer(cpu);
520	xen_setup_cpu_clockevents();
521
522	xen_time_setup_guest();
523
524	if (xen_initial_domain())
525		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
526}
527
528void __init xen_init_time_ops(void)
529{
530	xen_sched_clock_offset = xen_clocksource_read();
531	pv_ops.time = xen_time_ops;
532
533	x86_init.timers.timer_init = xen_time_init;
534	x86_init.timers.setup_percpu_clockev = x86_init_noop;
535	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
536
537	x86_platform.calibrate_tsc = xen_tsc_khz;
538	x86_platform.get_wallclock = xen_get_wallclock;
539	/* Dom0 uses the native method to set the hardware RTC. */
540	if (!xen_initial_domain())
541		x86_platform.set_wallclock = xen_set_wallclock;
542}
543
544#ifdef CONFIG_XEN_PVHVM
545static void xen_hvm_setup_cpu_clockevents(void)
546{
547	int cpu = smp_processor_id();
548	xen_setup_runstate_info(cpu);
549	/*
550	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
551	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
552	 * early bootup and also during CPU hotplug events).
553	 */
554	xen_setup_cpu_clockevents();
555}
556
557void __init xen_hvm_init_time_ops(void)
558{
559	static bool hvm_time_initialized;
560
561	if (hvm_time_initialized)
562		return;
563
564	/*
565	 * vector callback is needed otherwise we cannot receive interrupts
566	 * on cpu > 0 and at this point we don't know how many cpus are
567	 * available.
568	 */
569	if (!xen_have_vector_callback)
570		return;
571
572	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
573		pr_info_once("Xen doesn't support pvclock on HVM, disable pv timer");
574		return;
575	}
576
577	/*
578	 * Only MAX_VIRT_CPUS 'vcpu_info' are embedded inside 'shared_info'.
579	 * The __this_cpu_read(xen_vcpu) is still NULL when Xen HVM guest
580	 * boots on vcpu >= MAX_VIRT_CPUS (e.g., kexec), To access
581	 * __this_cpu_read(xen_vcpu) via xen_clocksource_read() will panic.
582	 *
583	 * The xen_hvm_init_time_ops() should be called again later after
584	 * __this_cpu_read(xen_vcpu) is available.
585	 */
586	if (!__this_cpu_read(xen_vcpu)) {
587		pr_info("Delay xen_init_time_common() as kernel is running on vcpu=%d\n",
588			xen_vcpu_nr(0));
589		return;
590	}
591
592	xen_sched_clock_offset = xen_clocksource_read();
593	pv_ops.time = xen_time_ops;
594	x86_init.timers.setup_percpu_clockev = xen_time_init;
595	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
596
597	x86_platform.calibrate_tsc = xen_tsc_khz;
598	x86_platform.get_wallclock = xen_get_wallclock;
599	x86_platform.set_wallclock = xen_set_wallclock;
600
601	hvm_time_initialized = true;
602}
603#endif
604
605/* Kernel parameter to specify Xen timer slop */
606static int __init parse_xen_timer_slop(char *ptr)
607{
608	unsigned long slop = memparse(ptr, NULL);
609
610	xen_timerop_clockevent.min_delta_ns = slop;
611	xen_timerop_clockevent.min_delta_ticks = slop;
612	xen_vcpuop_clockevent.min_delta_ns = slop;
613	xen_vcpuop_clockevent.min_delta_ticks = slop;
614
615	return 0;
616}
617early_param("xen_timer_slop", parse_xen_timer_slop);
618