1// SPDX-License-Identifier: GPL-2.0-only
2#define pr_fmt(fmt) "efi: " fmt
3
4#include <linux/init.h>
5#include <linux/kernel.h>
6#include <linux/string.h>
7#include <linux/time.h>
8#include <linux/types.h>
9#include <linux/efi.h>
10#include <linux/slab.h>
11#include <linux/memblock.h>
12#include <linux/acpi.h>
13#include <linux/dmi.h>
14
15#include <asm/e820/api.h>
16#include <asm/efi.h>
17#include <asm/uv/uv.h>
18#include <asm/cpu_device_id.h>
19#include <asm/realmode.h>
20#include <asm/reboot.h>
21
22#define EFI_MIN_RESERVE 5120
23
24#define EFI_DUMMY_GUID \
25	EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
26
27#define QUARK_CSH_SIGNATURE		0x5f435348	/* _CSH */
28#define QUARK_SECURITY_HEADER_SIZE	0x400
29
30/*
31 * Header prepended to the standard EFI capsule on Quark systems the are based
32 * on Intel firmware BSP.
33 * @csh_signature:	Unique identifier to sanity check signed module
34 * 			presence ("_CSH").
35 * @version:		Current version of CSH used. Should be one for Quark A0.
36 * @modulesize:		Size of the entire module including the module header
37 * 			and payload.
38 * @security_version_number_index: Index of SVN to use for validation of signed
39 * 			module.
40 * @security_version_number: Used to prevent against roll back of modules.
41 * @rsvd_module_id:	Currently unused for Clanton (Quark).
42 * @rsvd_module_vendor:	Vendor Identifier. For Intel products value is
43 * 			0x00008086.
44 * @rsvd_date:		BCD representation of build date as yyyymmdd, where
45 * 			yyyy=4 digit year, mm=1-12, dd=1-31.
46 * @headersize:		Total length of the header including including any
47 * 			padding optionally added by the signing tool.
48 * @hash_algo:		What Hash is used in the module signing.
49 * @cryp_algo:		What Crypto is used in the module signing.
50 * @keysize:		Total length of the key data including including any
51 * 			padding optionally added by the signing tool.
52 * @signaturesize:	Total length of the signature including including any
53 * 			padding optionally added by the signing tool.
54 * @rsvd_next_header:	32-bit pointer to the next Secure Boot Module in the
55 * 			chain, if there is a next header.
56 * @rsvd:		Reserved, padding structure to required size.
57 *
58 * See also QuartSecurityHeader_t in
59 * Quark_EDKII_v1.2.1.1/QuarkPlatformPkg/Include/QuarkBootRom.h
60 * from https://downloadcenter.intel.com/download/23197/Intel-Quark-SoC-X1000-Board-Support-Package-BSP
61 */
62struct quark_security_header {
63	u32 csh_signature;
64	u32 version;
65	u32 modulesize;
66	u32 security_version_number_index;
67	u32 security_version_number;
68	u32 rsvd_module_id;
69	u32 rsvd_module_vendor;
70	u32 rsvd_date;
71	u32 headersize;
72	u32 hash_algo;
73	u32 cryp_algo;
74	u32 keysize;
75	u32 signaturesize;
76	u32 rsvd_next_header;
77	u32 rsvd[2];
78};
79
80static const efi_char16_t efi_dummy_name[] = L"DUMMY";
81
82static bool efi_no_storage_paranoia;
83
84/*
85 * Some firmware implementations refuse to boot if there's insufficient
86 * space in the variable store. The implementation of garbage collection
87 * in some FW versions causes stale (deleted) variables to take up space
88 * longer than intended and space is only freed once the store becomes
89 * almost completely full.
90 *
91 * Enabling this option disables the space checks in
92 * efi_query_variable_store() and forces garbage collection.
93 *
94 * Only enable this option if deleting EFI variables does not free up
95 * space in your variable store, e.g. if despite deleting variables
96 * you're unable to create new ones.
97 */
98static int __init setup_storage_paranoia(char *arg)
99{
100	efi_no_storage_paranoia = true;
101	return 0;
102}
103early_param("efi_no_storage_paranoia", setup_storage_paranoia);
104
105/*
106 * Deleting the dummy variable which kicks off garbage collection
107*/
108void efi_delete_dummy_variable(void)
109{
110	efi.set_variable_nonblocking((efi_char16_t *)efi_dummy_name,
111				     &EFI_DUMMY_GUID,
112				     EFI_VARIABLE_NON_VOLATILE |
113				     EFI_VARIABLE_BOOTSERVICE_ACCESS |
114				     EFI_VARIABLE_RUNTIME_ACCESS, 0, NULL);
115}
116
117/*
118 * In the nonblocking case we do not attempt to perform garbage
119 * collection if we do not have enough free space. Rather, we do the
120 * bare minimum check and give up immediately if the available space
121 * is below EFI_MIN_RESERVE.
122 *
123 * This function is intended to be small and simple because it is
124 * invoked from crash handler paths.
125 */
126static efi_status_t
127query_variable_store_nonblocking(u32 attributes, unsigned long size)
128{
129	efi_status_t status;
130	u64 storage_size, remaining_size, max_size;
131
132	status = efi.query_variable_info_nonblocking(attributes, &storage_size,
133						     &remaining_size,
134						     &max_size);
135	if (status != EFI_SUCCESS)
136		return status;
137
138	if (remaining_size - size < EFI_MIN_RESERVE)
139		return EFI_OUT_OF_RESOURCES;
140
141	return EFI_SUCCESS;
142}
143
144/*
145 * Some firmware implementations refuse to boot if there's insufficient space
146 * in the variable store. Ensure that we never use more than a safe limit.
147 *
148 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
149 * store.
150 */
151efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
152				      bool nonblocking)
153{
154	efi_status_t status;
155	u64 storage_size, remaining_size, max_size;
156
157	if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
158		return 0;
159
160	if (nonblocking)
161		return query_variable_store_nonblocking(attributes, size);
162
163	status = efi.query_variable_info(attributes, &storage_size,
164					 &remaining_size, &max_size);
165	if (status != EFI_SUCCESS)
166		return status;
167
168	/*
169	 * We account for that by refusing the write if permitting it would
170	 * reduce the available space to under 5KB. This figure was provided by
171	 * Samsung, so should be safe.
172	 */
173	if ((remaining_size - size < EFI_MIN_RESERVE) &&
174		!efi_no_storage_paranoia) {
175
176		/*
177		 * Triggering garbage collection may require that the firmware
178		 * generate a real EFI_OUT_OF_RESOURCES error. We can force
179		 * that by attempting to use more space than is available.
180		 */
181		unsigned long dummy_size = remaining_size + 1024;
182		void *dummy = kzalloc(dummy_size, GFP_KERNEL);
183
184		if (!dummy)
185			return EFI_OUT_OF_RESOURCES;
186
187		status = efi.set_variable((efi_char16_t *)efi_dummy_name,
188					  &EFI_DUMMY_GUID,
189					  EFI_VARIABLE_NON_VOLATILE |
190					  EFI_VARIABLE_BOOTSERVICE_ACCESS |
191					  EFI_VARIABLE_RUNTIME_ACCESS,
192					  dummy_size, dummy);
193
194		if (status == EFI_SUCCESS) {
195			/*
196			 * This should have failed, so if it didn't make sure
197			 * that we delete it...
198			 */
199			efi_delete_dummy_variable();
200		}
201
202		kfree(dummy);
203
204		/*
205		 * The runtime code may now have triggered a garbage collection
206		 * run, so check the variable info again
207		 */
208		status = efi.query_variable_info(attributes, &storage_size,
209						 &remaining_size, &max_size);
210
211		if (status != EFI_SUCCESS)
212			return status;
213
214		/*
215		 * There still isn't enough room, so return an error
216		 */
217		if (remaining_size - size < EFI_MIN_RESERVE)
218			return EFI_OUT_OF_RESOURCES;
219	}
220
221	return EFI_SUCCESS;
222}
223EXPORT_SYMBOL_GPL(efi_query_variable_store);
224
225/*
226 * The UEFI specification makes it clear that the operating system is
227 * free to do whatever it wants with boot services code after
228 * ExitBootServices() has been called. Ignoring this recommendation a
229 * significant bunch of EFI implementations continue calling into boot
230 * services code (SetVirtualAddressMap). In order to work around such
231 * buggy implementations we reserve boot services region during EFI
232 * init and make sure it stays executable. Then, after
233 * SetVirtualAddressMap(), it is discarded.
234 *
235 * However, some boot services regions contain data that is required
236 * by drivers, so we need to track which memory ranges can never be
237 * freed. This is done by tagging those regions with the
238 * EFI_MEMORY_RUNTIME attribute.
239 *
240 * Any driver that wants to mark a region as reserved must use
241 * efi_mem_reserve() which will insert a new EFI memory descriptor
242 * into efi.memmap (splitting existing regions if necessary) and tag
243 * it with EFI_MEMORY_RUNTIME.
244 */
245void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)
246{
247	struct efi_memory_map_data data = { 0 };
248	struct efi_mem_range mr;
249	efi_memory_desc_t md;
250	int num_entries;
251	void *new;
252
253	if (efi_mem_desc_lookup(addr, &md) ||
254	    md.type != EFI_BOOT_SERVICES_DATA) {
255		pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr);
256		return;
257	}
258
259	if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) {
260		pr_err("Region spans EFI memory descriptors, %pa\n", &addr);
261		return;
262	}
263
264	size += addr % EFI_PAGE_SIZE;
265	size = round_up(size, EFI_PAGE_SIZE);
266	addr = round_down(addr, EFI_PAGE_SIZE);
267
268	mr.range.start = addr;
269	mr.range.end = addr + size - 1;
270	mr.attribute = md.attribute | EFI_MEMORY_RUNTIME;
271
272	num_entries = efi_memmap_split_count(&md, &mr.range);
273	num_entries += efi.memmap.nr_map;
274
275	if (efi_memmap_alloc(num_entries, &data) != 0) {
276		pr_err("Could not allocate boot services memmap\n");
277		return;
278	}
279
280	new = early_memremap_prot(data.phys_map, data.size,
281				  pgprot_val(pgprot_encrypted(FIXMAP_PAGE_NORMAL)));
282	if (!new) {
283		pr_err("Failed to map new boot services memmap\n");
284		return;
285	}
286
287	efi_memmap_insert(&efi.memmap, new, &mr);
288	early_memunmap(new, data.size);
289
290	efi_memmap_install(&data);
291	e820__range_update(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
292	e820__update_table(e820_table);
293}
294
295/*
296 * Helper function for efi_reserve_boot_services() to figure out if we
297 * can free regions in efi_free_boot_services().
298 *
299 * Use this function to ensure we do not free regions owned by somebody
300 * else. We must only reserve (and then free) regions:
301 *
302 * - Not within any part of the kernel
303 * - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc)
304 */
305static __init bool can_free_region(u64 start, u64 size)
306{
307	if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
308		return false;
309
310	if (!e820__mapped_all(start, start+size, E820_TYPE_RAM))
311		return false;
312
313	return true;
314}
315
316void __init efi_reserve_boot_services(void)
317{
318	efi_memory_desc_t *md;
319
320	if (!efi_enabled(EFI_MEMMAP))
321		return;
322
323	for_each_efi_memory_desc(md) {
324		u64 start = md->phys_addr;
325		u64 size = md->num_pages << EFI_PAGE_SHIFT;
326		bool already_reserved;
327
328		if (md->type != EFI_BOOT_SERVICES_CODE &&
329		    md->type != EFI_BOOT_SERVICES_DATA)
330			continue;
331
332		already_reserved = memblock_is_region_reserved(start, size);
333
334		/*
335		 * Because the following memblock_reserve() is paired
336		 * with memblock_free_late() for this region in
337		 * efi_free_boot_services(), we must be extremely
338		 * careful not to reserve, and subsequently free,
339		 * critical regions of memory (like the kernel image) or
340		 * those regions that somebody else has already
341		 * reserved.
342		 *
343		 * A good example of a critical region that must not be
344		 * freed is page zero (first 4Kb of memory), which may
345		 * contain boot services code/data but is marked
346		 * E820_TYPE_RESERVED by trim_bios_range().
347		 */
348		if (!already_reserved) {
349			memblock_reserve(start, size);
350
351			/*
352			 * If we are the first to reserve the region, no
353			 * one else cares about it. We own it and can
354			 * free it later.
355			 */
356			if (can_free_region(start, size))
357				continue;
358		}
359
360		/*
361		 * We don't own the region. We must not free it.
362		 *
363		 * Setting this bit for a boot services region really
364		 * doesn't make sense as far as the firmware is
365		 * concerned, but it does provide us with a way to tag
366		 * those regions that must not be paired with
367		 * memblock_free_late().
368		 */
369		md->attribute |= EFI_MEMORY_RUNTIME;
370	}
371}
372
373/*
374 * Apart from having VA mappings for EFI boot services code/data regions,
375 * (duplicate) 1:1 mappings were also created as a quirk for buggy firmware. So,
376 * unmap both 1:1 and VA mappings.
377 */
378static void __init efi_unmap_pages(efi_memory_desc_t *md)
379{
380	pgd_t *pgd = efi_mm.pgd;
381	u64 pa = md->phys_addr;
382	u64 va = md->virt_addr;
383
384	/*
385	 * EFI mixed mode has all RAM mapped to access arguments while making
386	 * EFI runtime calls, hence don't unmap EFI boot services code/data
387	 * regions.
388	 */
389	if (efi_is_mixed())
390		return;
391
392	if (kernel_unmap_pages_in_pgd(pgd, pa, md->num_pages))
393		pr_err("Failed to unmap 1:1 mapping for 0x%llx\n", pa);
394
395	if (kernel_unmap_pages_in_pgd(pgd, va, md->num_pages))
396		pr_err("Failed to unmap VA mapping for 0x%llx\n", va);
397}
398
399void __init efi_free_boot_services(void)
400{
401	struct efi_memory_map_data data = { 0 };
402	efi_memory_desc_t *md;
403	int num_entries = 0;
404	void *new, *new_md;
405
406	/* Keep all regions for /sys/kernel/debug/efi */
407	if (efi_enabled(EFI_DBG))
408		return;
409
410	for_each_efi_memory_desc(md) {
411		unsigned long long start = md->phys_addr;
412		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
413		size_t rm_size;
414
415		if (md->type != EFI_BOOT_SERVICES_CODE &&
416		    md->type != EFI_BOOT_SERVICES_DATA) {
417			num_entries++;
418			continue;
419		}
420
421		/* Do not free, someone else owns it: */
422		if (md->attribute & EFI_MEMORY_RUNTIME) {
423			num_entries++;
424			continue;
425		}
426
427		/*
428		 * Before calling set_virtual_address_map(), EFI boot services
429		 * code/data regions were mapped as a quirk for buggy firmware.
430		 * Unmap them from efi_pgd before freeing them up.
431		 */
432		efi_unmap_pages(md);
433
434		/*
435		 * Nasty quirk: if all sub-1MB memory is used for boot
436		 * services, we can get here without having allocated the
437		 * real mode trampoline.  It's too late to hand boot services
438		 * memory back to the memblock allocator, so instead
439		 * try to manually allocate the trampoline if needed.
440		 *
441		 * I've seen this on a Dell XPS 13 9350 with firmware
442		 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
443		 * grub2-efi on a hard disk.  (And no, I don't know why
444		 * this happened, but Linux should still try to boot rather
445		 * panicing early.)
446		 */
447		rm_size = real_mode_size_needed();
448		if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) {
449			set_real_mode_mem(start);
450			start += rm_size;
451			size -= rm_size;
452		}
453
454		memblock_free_late(start, size);
455	}
456
457	if (!num_entries)
458		return;
459
460	if (efi_memmap_alloc(num_entries, &data) != 0) {
461		pr_err("Failed to allocate new EFI memmap\n");
462		return;
463	}
464
465	new = memremap(data.phys_map, data.size, MEMREMAP_WB);
466	if (!new) {
467		pr_err("Failed to map new EFI memmap\n");
468		return;
469	}
470
471	/*
472	 * Build a new EFI memmap that excludes any boot services
473	 * regions that are not tagged EFI_MEMORY_RUNTIME, since those
474	 * regions have now been freed.
475	 */
476	new_md = new;
477	for_each_efi_memory_desc(md) {
478		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
479		    (md->type == EFI_BOOT_SERVICES_CODE ||
480		     md->type == EFI_BOOT_SERVICES_DATA))
481			continue;
482
483		memcpy(new_md, md, efi.memmap.desc_size);
484		new_md += efi.memmap.desc_size;
485	}
486
487	memunmap(new);
488
489	if (efi_memmap_install(&data) != 0) {
490		pr_err("Could not install new EFI memmap\n");
491		return;
492	}
493}
494
495/*
496 * A number of config table entries get remapped to virtual addresses
497 * after entering EFI virtual mode. However, the kexec kernel requires
498 * their physical addresses therefore we pass them via setup_data and
499 * correct those entries to their respective physical addresses here.
500 *
501 * Currently only handles smbios which is necessary for some firmware
502 * implementation.
503 */
504int __init efi_reuse_config(u64 tables, int nr_tables)
505{
506	int i, sz, ret = 0;
507	void *p, *tablep;
508	struct efi_setup_data *data;
509
510	if (nr_tables == 0)
511		return 0;
512
513	if (!efi_setup)
514		return 0;
515
516	if (!efi_enabled(EFI_64BIT))
517		return 0;
518
519	data = early_memremap(efi_setup, sizeof(*data));
520	if (!data) {
521		ret = -ENOMEM;
522		goto out;
523	}
524
525	if (!data->smbios)
526		goto out_memremap;
527
528	sz = sizeof(efi_config_table_64_t);
529
530	p = tablep = early_memremap(tables, nr_tables * sz);
531	if (!p) {
532		pr_err("Could not map Configuration table!\n");
533		ret = -ENOMEM;
534		goto out_memremap;
535	}
536
537	for (i = 0; i < nr_tables; i++) {
538		efi_guid_t guid;
539
540		guid = ((efi_config_table_64_t *)p)->guid;
541
542		if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
543			((efi_config_table_64_t *)p)->table = data->smbios;
544		p += sz;
545	}
546	early_memunmap(tablep, nr_tables * sz);
547
548out_memremap:
549	early_memunmap(data, sizeof(*data));
550out:
551	return ret;
552}
553
554void __init efi_apply_memmap_quirks(void)
555{
556	/*
557	 * Once setup is done earlier, unmap the EFI memory map on mismatched
558	 * firmware/kernel architectures since there is no support for runtime
559	 * services.
560	 */
561	if (!efi_runtime_supported()) {
562		pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
563		efi_memmap_unmap();
564	}
565}
566
567/*
568 * For most modern platforms the preferred method of powering off is via
569 * ACPI. However, there are some that are known to require the use of
570 * EFI runtime services and for which ACPI does not work at all.
571 *
572 * Using EFI is a last resort, to be used only if no other option
573 * exists.
574 */
575bool efi_reboot_required(void)
576{
577	if (!acpi_gbl_reduced_hardware)
578		return false;
579
580	efi_reboot_quirk_mode = EFI_RESET_WARM;
581	return true;
582}
583
584bool efi_poweroff_required(void)
585{
586	return acpi_gbl_reduced_hardware || acpi_no_s5;
587}
588
589#ifdef CONFIG_EFI_CAPSULE_QUIRK_QUARK_CSH
590
591static int qrk_capsule_setup_info(struct capsule_info *cap_info, void **pkbuff,
592				  size_t hdr_bytes)
593{
594	struct quark_security_header *csh = *pkbuff;
595
596	/* Only process data block that is larger than the security header */
597	if (hdr_bytes < sizeof(struct quark_security_header))
598		return 0;
599
600	if (csh->csh_signature != QUARK_CSH_SIGNATURE ||
601	    csh->headersize != QUARK_SECURITY_HEADER_SIZE)
602		return 1;
603
604	/* Only process data block if EFI header is included */
605	if (hdr_bytes < QUARK_SECURITY_HEADER_SIZE +
606			sizeof(efi_capsule_header_t))
607		return 0;
608
609	pr_debug("Quark security header detected\n");
610
611	if (csh->rsvd_next_header != 0) {
612		pr_err("multiple Quark security headers not supported\n");
613		return -EINVAL;
614	}
615
616	*pkbuff += csh->headersize;
617	cap_info->total_size = csh->headersize;
618
619	/*
620	 * Update the first page pointer to skip over the CSH header.
621	 */
622	cap_info->phys[0] += csh->headersize;
623
624	/*
625	 * cap_info->capsule should point at a virtual mapping of the entire
626	 * capsule, starting at the capsule header. Our image has the Quark
627	 * security header prepended, so we cannot rely on the default vmap()
628	 * mapping created by the generic capsule code.
629	 * Given that the Quark firmware does not appear to care about the
630	 * virtual mapping, let's just point cap_info->capsule at our copy
631	 * of the capsule header.
632	 */
633	cap_info->capsule = &cap_info->header;
634
635	return 1;
636}
637
638static const struct x86_cpu_id efi_capsule_quirk_ids[] = {
639	X86_MATCH_VENDOR_FAM_MODEL(INTEL, 5, INTEL_FAM5_QUARK_X1000,
640				   &qrk_capsule_setup_info),
641	{ }
642};
643
644int efi_capsule_setup_info(struct capsule_info *cap_info, void *kbuff,
645			   size_t hdr_bytes)
646{
647	int (*quirk_handler)(struct capsule_info *, void **, size_t);
648	const struct x86_cpu_id *id;
649	int ret;
650
651	if (hdr_bytes < sizeof(efi_capsule_header_t))
652		return 0;
653
654	cap_info->total_size = 0;
655
656	id = x86_match_cpu(efi_capsule_quirk_ids);
657	if (id) {
658		/*
659		 * The quirk handler is supposed to return
660		 *  - a value > 0 if the setup should continue, after advancing
661		 *    kbuff as needed
662		 *  - 0 if not enough hdr_bytes are available yet
663		 *  - a negative error code otherwise
664		 */
665		quirk_handler = (typeof(quirk_handler))id->driver_data;
666		ret = quirk_handler(cap_info, &kbuff, hdr_bytes);
667		if (ret <= 0)
668			return ret;
669	}
670
671	memcpy(&cap_info->header, kbuff, sizeof(cap_info->header));
672
673	cap_info->total_size += cap_info->header.imagesize;
674
675	return __efi_capsule_setup_info(cap_info);
676}
677
678#endif
679
680/*
681 * If any access by any efi runtime service causes a page fault, then,
682 * 1. If it's efi_reset_system(), reboot through BIOS.
683 * 2. If any other efi runtime service, then
684 *    a. Return error status to the efi caller process.
685 *    b. Disable EFI Runtime Services forever and
686 *    c. Freeze efi_rts_wq and schedule new process.
687 *
688 * @return: Returns, if the page fault is not handled. This function
689 * will never return if the page fault is handled successfully.
690 */
691void efi_recover_from_page_fault(unsigned long phys_addr)
692{
693	if (!IS_ENABLED(CONFIG_X86_64))
694		return;
695
696	/*
697	 * Make sure that an efi runtime service caused the page fault.
698	 */
699	if (efi_rts_work.efi_rts_id == EFI_NONE)
700		return;
701
702	/*
703	 * Address range 0x0000 - 0x0fff is always mapped in the efi_pgd, so
704	 * page faulting on these addresses isn't expected.
705	 */
706	if (phys_addr <= 0x0fff)
707		return;
708
709	/*
710	 * Print stack trace as it might be useful to know which EFI Runtime
711	 * Service is buggy.
712	 */
713	WARN(1, FW_BUG "Page fault caused by firmware at PA: 0x%lx\n",
714	     phys_addr);
715
716	/*
717	 * Buggy efi_reset_system() is handled differently from other EFI
718	 * Runtime Services as it doesn't use efi_rts_wq. Although,
719	 * native_machine_emergency_restart() says that machine_real_restart()
720	 * could fail, it's better not to compilcate this fault handler
721	 * because this case occurs *very* rarely and hence could be improved
722	 * on a need by basis.
723	 */
724	if (efi_rts_work.efi_rts_id == EFI_RESET_SYSTEM) {
725		pr_info("efi_reset_system() buggy! Reboot through BIOS\n");
726		machine_real_restart(MRR_BIOS);
727		return;
728	}
729
730	/*
731	 * Before calling EFI Runtime Service, the kernel has switched the
732	 * calling process to efi_mm. Hence, switch back to task_mm.
733	 */
734	arch_efi_call_virt_teardown();
735
736	/* Signal error status to the efi caller process */
737	efi_rts_work.status = EFI_ABORTED;
738	complete(&efi_rts_work.efi_rts_comp);
739
740	clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
741	pr_info("Froze efi_rts_wq and disabled EFI Runtime Services\n");
742
743	/*
744	 * Call schedule() in an infinite loop, so that any spurious wake ups
745	 * will never run efi_rts_wq again.
746	 */
747	for (;;) {
748		set_current_state(TASK_IDLE);
749		schedule();
750	}
751
752	return;
753}
754