1// SPDX-License-Identifier: GPL-2.0
2/*
3 * x86_64 specific EFI support functions
4 * Based on Extensible Firmware Interface Specification version 1.0
5 *
6 * Copyright (C) 2005-2008 Intel Co.
7 *	Fenghua Yu <fenghua.yu@intel.com>
8 *	Bibo Mao <bibo.mao@intel.com>
9 *	Chandramouli Narayanan <mouli@linux.intel.com>
10 *	Huang Ying <ying.huang@intel.com>
11 *
12 * Code to convert EFI to E820 map has been implemented in elilo bootloader
13 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14 * is setup appropriately for EFI runtime code.
15 * - mouli 06/14/2007.
16 *
17 */
18
19#define pr_fmt(fmt) "efi: " fmt
20
21#include <linux/kernel.h>
22#include <linux/init.h>
23#include <linux/mm.h>
24#include <linux/types.h>
25#include <linux/spinlock.h>
26#include <linux/memblock.h>
27#include <linux/ioport.h>
28#include <linux/mc146818rtc.h>
29#include <linux/efi.h>
30#include <linux/export.h>
31#include <linux/uaccess.h>
32#include <linux/io.h>
33#include <linux/reboot.h>
34#include <linux/slab.h>
35#include <linux/ucs2_string.h>
36#include <linux/mem_encrypt.h>
37#include <linux/sched/task.h>
38
39#include <asm/setup.h>
40#include <asm/page.h>
41#include <asm/e820/api.h>
42#include <asm/tlbflush.h>
43#include <asm/proto.h>
44#include <asm/efi.h>
45#include <asm/cacheflush.h>
46#include <asm/fixmap.h>
47#include <asm/realmode.h>
48#include <asm/time.h>
49#include <asm/pgalloc.h>
50#include <asm/sev-es.h>
51
52/*
53 * We allocate runtime services regions top-down, starting from -4G, i.e.
54 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
55 */
56static u64 efi_va = EFI_VA_START;
57
58struct efi_scratch efi_scratch;
59
60EXPORT_SYMBOL_GPL(efi_mm);
61
62/*
63 * We need our own copy of the higher levels of the page tables
64 * because we want to avoid inserting EFI region mappings (EFI_VA_END
65 * to EFI_VA_START) into the standard kernel page tables. Everything
66 * else can be shared, see efi_sync_low_kernel_mappings().
67 *
68 * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
69 * allocation.
70 */
71int __init efi_alloc_page_tables(void)
72{
73	pgd_t *pgd, *efi_pgd;
74	p4d_t *p4d;
75	pud_t *pud;
76	gfp_t gfp_mask;
77
78	gfp_mask = GFP_KERNEL | __GFP_ZERO;
79	efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
80	if (!efi_pgd)
81		goto fail;
82
83	pgd = efi_pgd + pgd_index(EFI_VA_END);
84	p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
85	if (!p4d)
86		goto free_pgd;
87
88	pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
89	if (!pud)
90		goto free_p4d;
91
92	efi_mm.pgd = efi_pgd;
93	mm_init_cpumask(&efi_mm);
94	init_new_context(NULL, &efi_mm);
95
96	return 0;
97
98free_p4d:
99	if (pgtable_l5_enabled())
100		free_page((unsigned long)pgd_page_vaddr(*pgd));
101free_pgd:
102	free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
103fail:
104	return -ENOMEM;
105}
106
107/*
108 * Add low kernel mappings for passing arguments to EFI functions.
109 */
110void efi_sync_low_kernel_mappings(void)
111{
112	unsigned num_entries;
113	pgd_t *pgd_k, *pgd_efi;
114	p4d_t *p4d_k, *p4d_efi;
115	pud_t *pud_k, *pud_efi;
116	pgd_t *efi_pgd = efi_mm.pgd;
117
118	pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
119	pgd_k = pgd_offset_k(PAGE_OFFSET);
120
121	num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
122	memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
123
124	pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
125	pgd_k = pgd_offset_k(EFI_VA_END);
126	p4d_efi = p4d_offset(pgd_efi, 0);
127	p4d_k = p4d_offset(pgd_k, 0);
128
129	num_entries = p4d_index(EFI_VA_END);
130	memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
131
132	/*
133	 * We share all the PUD entries apart from those that map the
134	 * EFI regions. Copy around them.
135	 */
136	BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
137	BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
138
139	p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
140	p4d_k = p4d_offset(pgd_k, EFI_VA_END);
141	pud_efi = pud_offset(p4d_efi, 0);
142	pud_k = pud_offset(p4d_k, 0);
143
144	num_entries = pud_index(EFI_VA_END);
145	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
146
147	pud_efi = pud_offset(p4d_efi, EFI_VA_START);
148	pud_k = pud_offset(p4d_k, EFI_VA_START);
149
150	num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
151	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
152}
153
154/*
155 * Wrapper for slow_virt_to_phys() that handles NULL addresses.
156 */
157static inline phys_addr_t
158virt_to_phys_or_null_size(void *va, unsigned long size)
159{
160	phys_addr_t pa;
161
162	if (!va)
163		return 0;
164
165	if (virt_addr_valid(va))
166		return virt_to_phys(va);
167
168	pa = slow_virt_to_phys(va);
169
170	/* check if the object crosses a page boundary */
171	if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK))
172		return 0;
173
174	return pa;
175}
176
177#define virt_to_phys_or_null(addr)				\
178	virt_to_phys_or_null_size((addr), sizeof(*(addr)))
179
180int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
181{
182	unsigned long pfn, text, pf, rodata;
183	struct page *page;
184	unsigned npages;
185	pgd_t *pgd = efi_mm.pgd;
186
187	/*
188	 * It can happen that the physical address of new_memmap lands in memory
189	 * which is not mapped in the EFI page table. Therefore we need to go
190	 * and ident-map those pages containing the map before calling
191	 * phys_efi_set_virtual_address_map().
192	 */
193	pfn = pa_memmap >> PAGE_SHIFT;
194	pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
195	if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
196		pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
197		return 1;
198	}
199
200	/*
201	 * Certain firmware versions are way too sentimential and still believe
202	 * they are exclusive and unquestionable owners of the first physical page,
203	 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
204	 * (but then write-access it later during SetVirtualAddressMap()).
205	 *
206	 * Create a 1:1 mapping for this page, to avoid triple faults during early
207	 * boot with such firmware. We are free to hand this page to the BIOS,
208	 * as trim_bios_range() will reserve the first page and isolate it away
209	 * from memory allocators anyway.
210	 */
211	if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
212		pr_err("Failed to create 1:1 mapping for the first page!\n");
213		return 1;
214	}
215
216	/*
217	 * When SEV-ES is active, the GHCB as set by the kernel will be used
218	 * by firmware. Create a 1:1 unencrypted mapping for each GHCB.
219	 */
220	if (sev_es_efi_map_ghcbs(pgd)) {
221		pr_err("Failed to create 1:1 mapping for the GHCBs!\n");
222		return 1;
223	}
224
225	/*
226	 * When making calls to the firmware everything needs to be 1:1
227	 * mapped and addressable with 32-bit pointers. Map the kernel
228	 * text and allocate a new stack because we can't rely on the
229	 * stack pointer being < 4GB.
230	 */
231	if (!efi_is_mixed())
232		return 0;
233
234	page = alloc_page(GFP_KERNEL|__GFP_DMA32);
235	if (!page) {
236		pr_err("Unable to allocate EFI runtime stack < 4GB\n");
237		return 1;
238	}
239
240	efi_scratch.phys_stack = page_to_phys(page + 1); /* stack grows down */
241
242	npages = (_etext - _text) >> PAGE_SHIFT;
243	text = __pa(_text);
244	pfn = text >> PAGE_SHIFT;
245
246	pf = _PAGE_ENC;
247	if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
248		pr_err("Failed to map kernel text 1:1\n");
249		return 1;
250	}
251
252	npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT;
253	rodata = __pa(__start_rodata);
254	pfn = rodata >> PAGE_SHIFT;
255
256	pf = _PAGE_NX | _PAGE_ENC;
257	if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) {
258		pr_err("Failed to map kernel rodata 1:1\n");
259		return 1;
260	}
261
262	return 0;
263}
264
265static void __init __map_region(efi_memory_desc_t *md, u64 va)
266{
267	unsigned long flags = _PAGE_RW;
268	unsigned long pfn;
269	pgd_t *pgd = efi_mm.pgd;
270
271	/*
272	 * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF
273	 * executable images in memory that consist of both R-X and
274	 * RW- sections, so we cannot apply read-only or non-exec
275	 * permissions just yet. However, modern EFI systems provide
276	 * a memory attributes table that describes those sections
277	 * with the appropriate restricted permissions, which are
278	 * applied in efi_runtime_update_mappings() below. All other
279	 * regions can be mapped non-executable at this point, with
280	 * the exception of boot services code regions, but those will
281	 * be unmapped again entirely in efi_free_boot_services().
282	 */
283	if (md->type != EFI_BOOT_SERVICES_CODE &&
284	    md->type != EFI_RUNTIME_SERVICES_CODE)
285		flags |= _PAGE_NX;
286
287	if (!(md->attribute & EFI_MEMORY_WB))
288		flags |= _PAGE_PCD;
289
290	if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO)
291		flags |= _PAGE_ENC;
292
293	pfn = md->phys_addr >> PAGE_SHIFT;
294	if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
295		pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
296			   md->phys_addr, va);
297}
298
299void __init efi_map_region(efi_memory_desc_t *md)
300{
301	unsigned long size = md->num_pages << PAGE_SHIFT;
302	u64 pa = md->phys_addr;
303
304	/*
305	 * Make sure the 1:1 mappings are present as a catch-all for b0rked
306	 * firmware which doesn't update all internal pointers after switching
307	 * to virtual mode and would otherwise crap on us.
308	 */
309	__map_region(md, md->phys_addr);
310
311	/*
312	 * Enforce the 1:1 mapping as the default virtual address when
313	 * booting in EFI mixed mode, because even though we may be
314	 * running a 64-bit kernel, the firmware may only be 32-bit.
315	 */
316	if (efi_is_mixed()) {
317		md->virt_addr = md->phys_addr;
318		return;
319	}
320
321	efi_va -= size;
322
323	/* Is PA 2M-aligned? */
324	if (!(pa & (PMD_SIZE - 1))) {
325		efi_va &= PMD_MASK;
326	} else {
327		u64 pa_offset = pa & (PMD_SIZE - 1);
328		u64 prev_va = efi_va;
329
330		/* get us the same offset within this 2M page */
331		efi_va = (efi_va & PMD_MASK) + pa_offset;
332
333		if (efi_va > prev_va)
334			efi_va -= PMD_SIZE;
335	}
336
337	if (efi_va < EFI_VA_END) {
338		pr_warn(FW_WARN "VA address range overflow!\n");
339		return;
340	}
341
342	/* Do the VA map */
343	__map_region(md, efi_va);
344	md->virt_addr = efi_va;
345}
346
347/*
348 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
349 * md->virt_addr is the original virtual address which had been mapped in kexec
350 * 1st kernel.
351 */
352void __init efi_map_region_fixed(efi_memory_desc_t *md)
353{
354	__map_region(md, md->phys_addr);
355	__map_region(md, md->virt_addr);
356}
357
358void __init parse_efi_setup(u64 phys_addr, u32 data_len)
359{
360	efi_setup = phys_addr + sizeof(struct setup_data);
361}
362
363static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
364{
365	unsigned long pfn;
366	pgd_t *pgd = efi_mm.pgd;
367	int err1, err2;
368
369	/* Update the 1:1 mapping */
370	pfn = md->phys_addr >> PAGE_SHIFT;
371	err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
372	if (err1) {
373		pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
374			   md->phys_addr, md->virt_addr);
375	}
376
377	err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
378	if (err2) {
379		pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
380			   md->phys_addr, md->virt_addr);
381	}
382
383	return err1 || err2;
384}
385
386static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
387{
388	unsigned long pf = 0;
389
390	if (md->attribute & EFI_MEMORY_XP)
391		pf |= _PAGE_NX;
392
393	if (!(md->attribute & EFI_MEMORY_RO))
394		pf |= _PAGE_RW;
395
396	if (sev_active())
397		pf |= _PAGE_ENC;
398
399	return efi_update_mappings(md, pf);
400}
401
402void __init efi_runtime_update_mappings(void)
403{
404	efi_memory_desc_t *md;
405
406	/*
407	 * Use the EFI Memory Attribute Table for mapping permissions if it
408	 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
409	 */
410	if (efi_enabled(EFI_MEM_ATTR)) {
411		efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
412		return;
413	}
414
415	/*
416	 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
417	 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
418	 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
419	 * published by the firmware. Even if we find a buggy implementation of
420	 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
421	 * EFI_PROPERTIES_TABLE, because of the same reason.
422	 */
423
424	if (!efi_enabled(EFI_NX_PE_DATA))
425		return;
426
427	for_each_efi_memory_desc(md) {
428		unsigned long pf = 0;
429
430		if (!(md->attribute & EFI_MEMORY_RUNTIME))
431			continue;
432
433		if (!(md->attribute & EFI_MEMORY_WB))
434			pf |= _PAGE_PCD;
435
436		if ((md->attribute & EFI_MEMORY_XP) ||
437			(md->type == EFI_RUNTIME_SERVICES_DATA))
438			pf |= _PAGE_NX;
439
440		if (!(md->attribute & EFI_MEMORY_RO) &&
441			(md->type != EFI_RUNTIME_SERVICES_CODE))
442			pf |= _PAGE_RW;
443
444		if (sev_active())
445			pf |= _PAGE_ENC;
446
447		efi_update_mappings(md, pf);
448	}
449}
450
451void __init efi_dump_pagetable(void)
452{
453#ifdef CONFIG_EFI_PGT_DUMP
454	ptdump_walk_pgd_level(NULL, &efi_mm);
455#endif
456}
457
458/*
459 * Makes the calling thread switch to/from efi_mm context. Can be used
460 * in a kernel thread and user context. Preemption needs to remain disabled
461 * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
462 * can not change under us.
463 * It should be ensured that there are no concurent calls to this function.
464 */
465void efi_switch_mm(struct mm_struct *mm)
466{
467	efi_scratch.prev_mm = current->active_mm;
468	current->active_mm = mm;
469	switch_mm(efi_scratch.prev_mm, mm, NULL);
470}
471
472static DEFINE_SPINLOCK(efi_runtime_lock);
473
474/*
475 * DS and ES contain user values.  We need to save them.
476 * The 32-bit EFI code needs a valid DS, ES, and SS.  There's no
477 * need to save the old SS: __KERNEL_DS is always acceptable.
478 */
479#define __efi_thunk(func, ...)						\
480({									\
481	unsigned short __ds, __es;					\
482	efi_status_t ____s;						\
483									\
484	savesegment(ds, __ds);						\
485	savesegment(es, __es);						\
486									\
487	loadsegment(ss, __KERNEL_DS);					\
488	loadsegment(ds, __KERNEL_DS);					\
489	loadsegment(es, __KERNEL_DS);					\
490									\
491	____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__);	\
492									\
493	loadsegment(ds, __ds);						\
494	loadsegment(es, __es);						\
495									\
496	____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32;	\
497	____s;								\
498})
499
500/*
501 * Switch to the EFI page tables early so that we can access the 1:1
502 * runtime services mappings which are not mapped in any other page
503 * tables.
504 *
505 * Also, disable interrupts because the IDT points to 64-bit handlers,
506 * which aren't going to function correctly when we switch to 32-bit.
507 */
508#define efi_thunk(func...)						\
509({									\
510	efi_status_t __s;						\
511									\
512	arch_efi_call_virt_setup();					\
513									\
514	__s = __efi_thunk(func);					\
515									\
516	arch_efi_call_virt_teardown();					\
517									\
518	__s;								\
519})
520
521static efi_status_t __init __no_sanitize_address
522efi_thunk_set_virtual_address_map(unsigned long memory_map_size,
523				  unsigned long descriptor_size,
524				  u32 descriptor_version,
525				  efi_memory_desc_t *virtual_map)
526{
527	efi_status_t status;
528	unsigned long flags;
529
530	efi_sync_low_kernel_mappings();
531	local_irq_save(flags);
532
533	efi_switch_mm(&efi_mm);
534
535	status = __efi_thunk(set_virtual_address_map, memory_map_size,
536			     descriptor_size, descriptor_version, virtual_map);
537
538	efi_switch_mm(efi_scratch.prev_mm);
539	local_irq_restore(flags);
540
541	return status;
542}
543
544static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
545{
546	return EFI_UNSUPPORTED;
547}
548
549static efi_status_t efi_thunk_set_time(efi_time_t *tm)
550{
551	return EFI_UNSUPPORTED;
552}
553
554static efi_status_t
555efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
556			  efi_time_t *tm)
557{
558	return EFI_UNSUPPORTED;
559}
560
561static efi_status_t
562efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
563{
564	return EFI_UNSUPPORTED;
565}
566
567static unsigned long efi_name_size(efi_char16_t *name)
568{
569	return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
570}
571
572static efi_status_t
573efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
574		       u32 *attr, unsigned long *data_size, void *data)
575{
576	u8 buf[24] __aligned(8);
577	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
578	efi_status_t status;
579	u32 phys_name, phys_vendor, phys_attr;
580	u32 phys_data_size, phys_data;
581	unsigned long flags;
582
583	spin_lock_irqsave(&efi_runtime_lock, flags);
584
585	*vnd = *vendor;
586
587	phys_data_size = virt_to_phys_or_null(data_size);
588	phys_vendor = virt_to_phys_or_null(vnd);
589	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
590	phys_attr = virt_to_phys_or_null(attr);
591	phys_data = virt_to_phys_or_null_size(data, *data_size);
592
593	if (!phys_name || (data && !phys_data))
594		status = EFI_INVALID_PARAMETER;
595	else
596		status = efi_thunk(get_variable, phys_name, phys_vendor,
597				   phys_attr, phys_data_size, phys_data);
598
599	spin_unlock_irqrestore(&efi_runtime_lock, flags);
600
601	return status;
602}
603
604static efi_status_t
605efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
606		       u32 attr, unsigned long data_size, void *data)
607{
608	u8 buf[24] __aligned(8);
609	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
610	u32 phys_name, phys_vendor, phys_data;
611	efi_status_t status;
612	unsigned long flags;
613
614	spin_lock_irqsave(&efi_runtime_lock, flags);
615
616	*vnd = *vendor;
617
618	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
619	phys_vendor = virt_to_phys_or_null(vnd);
620	phys_data = virt_to_phys_or_null_size(data, data_size);
621
622	if (!phys_name || (data && !phys_data))
623		status = EFI_INVALID_PARAMETER;
624	else
625		status = efi_thunk(set_variable, phys_name, phys_vendor,
626				   attr, data_size, phys_data);
627
628	spin_unlock_irqrestore(&efi_runtime_lock, flags);
629
630	return status;
631}
632
633static efi_status_t
634efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
635				   u32 attr, unsigned long data_size,
636				   void *data)
637{
638	u8 buf[24] __aligned(8);
639	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
640	u32 phys_name, phys_vendor, phys_data;
641	efi_status_t status;
642	unsigned long flags;
643
644	if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
645		return EFI_NOT_READY;
646
647	*vnd = *vendor;
648
649	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
650	phys_vendor = virt_to_phys_or_null(vnd);
651	phys_data = virt_to_phys_or_null_size(data, data_size);
652
653	if (!phys_name || (data && !phys_data))
654		status = EFI_INVALID_PARAMETER;
655	else
656		status = efi_thunk(set_variable, phys_name, phys_vendor,
657				   attr, data_size, phys_data);
658
659	spin_unlock_irqrestore(&efi_runtime_lock, flags);
660
661	return status;
662}
663
664static efi_status_t
665efi_thunk_get_next_variable(unsigned long *name_size,
666			    efi_char16_t *name,
667			    efi_guid_t *vendor)
668{
669	u8 buf[24] __aligned(8);
670	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
671	efi_status_t status;
672	u32 phys_name_size, phys_name, phys_vendor;
673	unsigned long flags;
674
675	spin_lock_irqsave(&efi_runtime_lock, flags);
676
677	*vnd = *vendor;
678
679	phys_name_size = virt_to_phys_or_null(name_size);
680	phys_vendor = virt_to_phys_or_null(vnd);
681	phys_name = virt_to_phys_or_null_size(name, *name_size);
682
683	if (!phys_name)
684		status = EFI_INVALID_PARAMETER;
685	else
686		status = efi_thunk(get_next_variable, phys_name_size,
687				   phys_name, phys_vendor);
688
689	spin_unlock_irqrestore(&efi_runtime_lock, flags);
690
691	*vendor = *vnd;
692	return status;
693}
694
695static efi_status_t
696efi_thunk_get_next_high_mono_count(u32 *count)
697{
698	return EFI_UNSUPPORTED;
699}
700
701static void
702efi_thunk_reset_system(int reset_type, efi_status_t status,
703		       unsigned long data_size, efi_char16_t *data)
704{
705	u32 phys_data;
706	unsigned long flags;
707
708	spin_lock_irqsave(&efi_runtime_lock, flags);
709
710	phys_data = virt_to_phys_or_null_size(data, data_size);
711
712	efi_thunk(reset_system, reset_type, status, data_size, phys_data);
713
714	spin_unlock_irqrestore(&efi_runtime_lock, flags);
715}
716
717static efi_status_t
718efi_thunk_update_capsule(efi_capsule_header_t **capsules,
719			 unsigned long count, unsigned long sg_list)
720{
721	/*
722	 * To properly support this function we would need to repackage
723	 * 'capsules' because the firmware doesn't understand 64-bit
724	 * pointers.
725	 */
726	return EFI_UNSUPPORTED;
727}
728
729static efi_status_t
730efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
731			      u64 *remaining_space,
732			      u64 *max_variable_size)
733{
734	efi_status_t status;
735	u32 phys_storage, phys_remaining, phys_max;
736	unsigned long flags;
737
738	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
739		return EFI_UNSUPPORTED;
740
741	spin_lock_irqsave(&efi_runtime_lock, flags);
742
743	phys_storage = virt_to_phys_or_null(storage_space);
744	phys_remaining = virt_to_phys_or_null(remaining_space);
745	phys_max = virt_to_phys_or_null(max_variable_size);
746
747	status = efi_thunk(query_variable_info, attr, phys_storage,
748			   phys_remaining, phys_max);
749
750	spin_unlock_irqrestore(&efi_runtime_lock, flags);
751
752	return status;
753}
754
755static efi_status_t
756efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
757					  u64 *remaining_space,
758					  u64 *max_variable_size)
759{
760	efi_status_t status;
761	u32 phys_storage, phys_remaining, phys_max;
762	unsigned long flags;
763
764	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
765		return EFI_UNSUPPORTED;
766
767	if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
768		return EFI_NOT_READY;
769
770	phys_storage = virt_to_phys_or_null(storage_space);
771	phys_remaining = virt_to_phys_or_null(remaining_space);
772	phys_max = virt_to_phys_or_null(max_variable_size);
773
774	status = efi_thunk(query_variable_info, attr, phys_storage,
775			   phys_remaining, phys_max);
776
777	spin_unlock_irqrestore(&efi_runtime_lock, flags);
778
779	return status;
780}
781
782static efi_status_t
783efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
784			     unsigned long count, u64 *max_size,
785			     int *reset_type)
786{
787	/*
788	 * To properly support this function we would need to repackage
789	 * 'capsules' because the firmware doesn't understand 64-bit
790	 * pointers.
791	 */
792	return EFI_UNSUPPORTED;
793}
794
795void __init efi_thunk_runtime_setup(void)
796{
797	if (!IS_ENABLED(CONFIG_EFI_MIXED))
798		return;
799
800	efi.get_time = efi_thunk_get_time;
801	efi.set_time = efi_thunk_set_time;
802	efi.get_wakeup_time = efi_thunk_get_wakeup_time;
803	efi.set_wakeup_time = efi_thunk_set_wakeup_time;
804	efi.get_variable = efi_thunk_get_variable;
805	efi.get_next_variable = efi_thunk_get_next_variable;
806	efi.set_variable = efi_thunk_set_variable;
807	efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
808	efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
809	efi.reset_system = efi_thunk_reset_system;
810	efi.query_variable_info = efi_thunk_query_variable_info;
811	efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
812	efi.update_capsule = efi_thunk_update_capsule;
813	efi.query_capsule_caps = efi_thunk_query_capsule_caps;
814}
815
816efi_status_t __init __no_sanitize_address
817efi_set_virtual_address_map(unsigned long memory_map_size,
818			    unsigned long descriptor_size,
819			    u32 descriptor_version,
820			    efi_memory_desc_t *virtual_map,
821			    unsigned long systab_phys)
822{
823	const efi_system_table_t *systab = (efi_system_table_t *)systab_phys;
824	efi_status_t status;
825	unsigned long flags;
826
827	if (efi_is_mixed())
828		return efi_thunk_set_virtual_address_map(memory_map_size,
829							 descriptor_size,
830							 descriptor_version,
831							 virtual_map);
832	efi_switch_mm(&efi_mm);
833
834	kernel_fpu_begin();
835
836	/* Disable interrupts around EFI calls: */
837	local_irq_save(flags);
838	status = efi_call(efi.runtime->set_virtual_address_map,
839			  memory_map_size, descriptor_size,
840			  descriptor_version, virtual_map);
841	local_irq_restore(flags);
842
843	kernel_fpu_end();
844
845	/* grab the virtually remapped EFI runtime services table pointer */
846	efi.runtime = READ_ONCE(systab->runtime);
847
848	efi_switch_mm(efi_scratch.prev_mm);
849
850	return status;
851}
852