xref: /kernel/linux/linux-5.10/arch/x86/platform/efi/efi.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Common EFI (Extensible Firmware Interface) support functions
4 * Based on Extensible Firmware Interface Specification version 1.0
5 *
6 * Copyright (C) 1999 VA Linux Systems
7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8 * Copyright (C) 1999-2002 Hewlett-Packard Co.
9 *	David Mosberger-Tang <davidm@hpl.hp.com>
10 *	Stephane Eranian <eranian@hpl.hp.com>
11 * Copyright (C) 2005-2008 Intel Co.
12 *	Fenghua Yu <fenghua.yu@intel.com>
13 *	Bibo Mao <bibo.mao@intel.com>
14 *	Chandramouli Narayanan <mouli@linux.intel.com>
15 *	Huang Ying <ying.huang@intel.com>
16 * Copyright (C) 2013 SuSE Labs
17 *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
18 *
19 * Copied from efi_32.c to eliminate the duplicated code between EFI
20 * 32/64 support code. --ying 2007-10-26
21 *
22 * All EFI Runtime Services are not implemented yet as EFI only
23 * supports physical mode addressing on SoftSDV. This is to be fixed
24 * in a future version.  --drummond 1999-07-20
25 *
26 * Implemented EFI runtime services and virtual mode calls.  --davidm
27 *
28 * Goutham Rao: <goutham.rao@intel.com>
29 *	Skip non-WB memory and ignore empty memory ranges.
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/kernel.h>
35#include <linux/init.h>
36#include <linux/efi.h>
37#include <linux/efi-bgrt.h>
38#include <linux/export.h>
39#include <linux/memblock.h>
40#include <linux/slab.h>
41#include <linux/spinlock.h>
42#include <linux/uaccess.h>
43#include <linux/time.h>
44#include <linux/io.h>
45#include <linux/reboot.h>
46#include <linux/bcd.h>
47
48#include <asm/setup.h>
49#include <asm/efi.h>
50#include <asm/e820/api.h>
51#include <asm/time.h>
52#include <asm/tlbflush.h>
53#include <asm/x86_init.h>
54#include <asm/uv/uv.h>
55
56static unsigned long efi_systab_phys __initdata;
57static unsigned long prop_phys = EFI_INVALID_TABLE_ADDR;
58static unsigned long uga_phys = EFI_INVALID_TABLE_ADDR;
59static unsigned long efi_runtime, efi_nr_tables;
60
61unsigned long efi_fw_vendor, efi_config_table;
62
63static const efi_config_table_type_t arch_tables[] __initconst = {
64	{EFI_PROPERTIES_TABLE_GUID,	&prop_phys,		"PROP"		},
65	{UGA_IO_PROTOCOL_GUID,		&uga_phys,		"UGA"		},
66#ifdef CONFIG_X86_UV
67	{UV_SYSTEM_TABLE_GUID,		&uv_systab_phys,	"UVsystab"	},
68#endif
69	{},
70};
71
72static const unsigned long * const efi_tables[] = {
73	&efi.acpi,
74	&efi.acpi20,
75	&efi.smbios,
76	&efi.smbios3,
77	&uga_phys,
78#ifdef CONFIG_X86_UV
79	&uv_systab_phys,
80#endif
81	&efi_fw_vendor,
82	&efi_runtime,
83	&efi_config_table,
84	&efi.esrt,
85	&prop_phys,
86	&efi_mem_attr_table,
87#ifdef CONFIG_EFI_RCI2_TABLE
88	&rci2_table_phys,
89#endif
90	&efi.tpm_log,
91	&efi.tpm_final_log,
92	&efi_rng_seed,
93#ifdef CONFIG_LOAD_UEFI_KEYS
94	&efi.mokvar_table,
95#endif
96};
97
98u64 efi_setup;		/* efi setup_data physical address */
99
100static int add_efi_memmap __initdata;
101static int __init setup_add_efi_memmap(char *arg)
102{
103	add_efi_memmap = 1;
104	return 0;
105}
106early_param("add_efi_memmap", setup_add_efi_memmap);
107
108void __init efi_find_mirror(void)
109{
110	efi_memory_desc_t *md;
111	u64 mirror_size = 0, total_size = 0;
112
113	if (!efi_enabled(EFI_MEMMAP))
114		return;
115
116	for_each_efi_memory_desc(md) {
117		unsigned long long start = md->phys_addr;
118		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
119
120		total_size += size;
121		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
122			memblock_mark_mirror(start, size);
123			mirror_size += size;
124		}
125	}
126	if (mirror_size)
127		pr_info("Memory: %lldM/%lldM mirrored memory\n",
128			mirror_size>>20, total_size>>20);
129}
130
131/*
132 * Tell the kernel about the EFI memory map.  This might include
133 * more than the max 128 entries that can fit in the passed in e820
134 * legacy (zeropage) memory map, but the kernel's e820 table can hold
135 * E820_MAX_ENTRIES.
136 */
137
138static void __init do_add_efi_memmap(void)
139{
140	efi_memory_desc_t *md;
141
142	if (!efi_enabled(EFI_MEMMAP))
143		return;
144
145	for_each_efi_memory_desc(md) {
146		unsigned long long start = md->phys_addr;
147		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
148		int e820_type;
149
150		switch (md->type) {
151		case EFI_LOADER_CODE:
152		case EFI_LOADER_DATA:
153		case EFI_BOOT_SERVICES_CODE:
154		case EFI_BOOT_SERVICES_DATA:
155		case EFI_CONVENTIONAL_MEMORY:
156			if (efi_soft_reserve_enabled()
157			    && (md->attribute & EFI_MEMORY_SP))
158				e820_type = E820_TYPE_SOFT_RESERVED;
159			else if (md->attribute & EFI_MEMORY_WB)
160				e820_type = E820_TYPE_RAM;
161			else
162				e820_type = E820_TYPE_RESERVED;
163			break;
164		case EFI_ACPI_RECLAIM_MEMORY:
165			e820_type = E820_TYPE_ACPI;
166			break;
167		case EFI_ACPI_MEMORY_NVS:
168			e820_type = E820_TYPE_NVS;
169			break;
170		case EFI_UNUSABLE_MEMORY:
171			e820_type = E820_TYPE_UNUSABLE;
172			break;
173		case EFI_PERSISTENT_MEMORY:
174			e820_type = E820_TYPE_PMEM;
175			break;
176		default:
177			/*
178			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
179			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
180			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
181			 */
182			e820_type = E820_TYPE_RESERVED;
183			break;
184		}
185
186		e820__range_add(start, size, e820_type);
187	}
188	e820__update_table(e820_table);
189}
190
191/*
192 * Given add_efi_memmap defaults to 0 and there there is no alternative
193 * e820 mechanism for soft-reserved memory, import the full EFI memory
194 * map if soft reservations are present and enabled. Otherwise, the
195 * mechanism to disable the kernel's consideration of EFI_MEMORY_SP is
196 * the efi=nosoftreserve option.
197 */
198static bool do_efi_soft_reserve(void)
199{
200	efi_memory_desc_t *md;
201
202	if (!efi_enabled(EFI_MEMMAP))
203		return false;
204
205	if (!efi_soft_reserve_enabled())
206		return false;
207
208	for_each_efi_memory_desc(md)
209		if (md->type == EFI_CONVENTIONAL_MEMORY &&
210		    (md->attribute & EFI_MEMORY_SP))
211			return true;
212	return false;
213}
214
215int __init efi_memblock_x86_reserve_range(void)
216{
217	struct efi_info *e = &boot_params.efi_info;
218	struct efi_memory_map_data data;
219	phys_addr_t pmap;
220	int rv;
221
222	if (efi_enabled(EFI_PARAVIRT))
223		return 0;
224
225	/* Can't handle firmware tables above 4GB on i386 */
226	if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) {
227		pr_err("Memory map is above 4GB, disabling EFI.\n");
228		return -EINVAL;
229	}
230	pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32));
231
232	data.phys_map		= pmap;
233	data.size 		= e->efi_memmap_size;
234	data.desc_size		= e->efi_memdesc_size;
235	data.desc_version	= e->efi_memdesc_version;
236
237	rv = efi_memmap_init_early(&data);
238	if (rv)
239		return rv;
240
241	if (add_efi_memmap || do_efi_soft_reserve())
242		do_add_efi_memmap();
243
244	efi_fake_memmap_early();
245
246	WARN(efi.memmap.desc_version != 1,
247	     "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
248	     efi.memmap.desc_version);
249
250	memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
251	set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags);
252
253	return 0;
254}
255
256#define OVERFLOW_ADDR_SHIFT	(64 - EFI_PAGE_SHIFT)
257#define OVERFLOW_ADDR_MASK	(U64_MAX << OVERFLOW_ADDR_SHIFT)
258#define U64_HIGH_BIT		(~(U64_MAX >> 1))
259
260static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
261{
262	u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
263	u64 end_hi = 0;
264	char buf[64];
265
266	if (md->num_pages == 0) {
267		end = 0;
268	} else if (md->num_pages > EFI_PAGES_MAX ||
269		   EFI_PAGES_MAX - md->num_pages <
270		   (md->phys_addr >> EFI_PAGE_SHIFT)) {
271		end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
272			>> OVERFLOW_ADDR_SHIFT;
273
274		if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
275			end_hi += 1;
276	} else {
277		return true;
278	}
279
280	pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
281
282	if (end_hi) {
283		pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
284			i, efi_md_typeattr_format(buf, sizeof(buf), md),
285			md->phys_addr, end_hi, end);
286	} else {
287		pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
288			i, efi_md_typeattr_format(buf, sizeof(buf), md),
289			md->phys_addr, end);
290	}
291	return false;
292}
293
294static void __init efi_clean_memmap(void)
295{
296	efi_memory_desc_t *out = efi.memmap.map;
297	const efi_memory_desc_t *in = out;
298	const efi_memory_desc_t *end = efi.memmap.map_end;
299	int i, n_removal;
300
301	for (i = n_removal = 0; in < end; i++) {
302		if (efi_memmap_entry_valid(in, i)) {
303			if (out != in)
304				memcpy(out, in, efi.memmap.desc_size);
305			out = (void *)out + efi.memmap.desc_size;
306		} else {
307			n_removal++;
308		}
309		in = (void *)in + efi.memmap.desc_size;
310	}
311
312	if (n_removal > 0) {
313		struct efi_memory_map_data data = {
314			.phys_map	= efi.memmap.phys_map,
315			.desc_version	= efi.memmap.desc_version,
316			.desc_size	= efi.memmap.desc_size,
317			.size		= efi.memmap.desc_size * (efi.memmap.nr_map - n_removal),
318			.flags		= 0,
319		};
320
321		pr_warn("Removing %d invalid memory map entries.\n", n_removal);
322		efi_memmap_install(&data);
323	}
324}
325
326void __init efi_print_memmap(void)
327{
328	efi_memory_desc_t *md;
329	int i = 0;
330
331	for_each_efi_memory_desc(md) {
332		char buf[64];
333
334		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
335			i++, efi_md_typeattr_format(buf, sizeof(buf), md),
336			md->phys_addr,
337			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
338			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
339	}
340}
341
342static int __init efi_systab_init(unsigned long phys)
343{
344	int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t)
345					  : sizeof(efi_system_table_32_t);
346	const efi_table_hdr_t *hdr;
347	bool over4g = false;
348	void *p;
349	int ret;
350
351	hdr = p = early_memremap_ro(phys, size);
352	if (p == NULL) {
353		pr_err("Couldn't map the system table!\n");
354		return -ENOMEM;
355	}
356
357	ret = efi_systab_check_header(hdr, 1);
358	if (ret) {
359		early_memunmap(p, size);
360		return ret;
361	}
362
363	if (efi_enabled(EFI_64BIT)) {
364		const efi_system_table_64_t *systab64 = p;
365
366		efi_runtime	= systab64->runtime;
367		over4g		= systab64->runtime > U32_MAX;
368
369		if (efi_setup) {
370			struct efi_setup_data *data;
371
372			data = early_memremap_ro(efi_setup, sizeof(*data));
373			if (!data) {
374				early_memunmap(p, size);
375				return -ENOMEM;
376			}
377
378			efi_fw_vendor		= (unsigned long)data->fw_vendor;
379			efi_config_table	= (unsigned long)data->tables;
380
381			over4g |= data->fw_vendor	> U32_MAX ||
382				  data->tables		> U32_MAX;
383
384			early_memunmap(data, sizeof(*data));
385		} else {
386			efi_fw_vendor		= systab64->fw_vendor;
387			efi_config_table	= systab64->tables;
388
389			over4g |= systab64->fw_vendor	> U32_MAX ||
390				  systab64->tables	> U32_MAX;
391		}
392		efi_nr_tables = systab64->nr_tables;
393	} else {
394		const efi_system_table_32_t *systab32 = p;
395
396		efi_fw_vendor		= systab32->fw_vendor;
397		efi_runtime		= systab32->runtime;
398		efi_config_table	= systab32->tables;
399		efi_nr_tables		= systab32->nr_tables;
400	}
401
402	efi.runtime_version = hdr->revision;
403
404	efi_systab_report_header(hdr, efi_fw_vendor);
405	early_memunmap(p, size);
406
407	if (IS_ENABLED(CONFIG_X86_32) && over4g) {
408		pr_err("EFI data located above 4GB, disabling EFI.\n");
409		return -EINVAL;
410	}
411
412	return 0;
413}
414
415static int __init efi_config_init(const efi_config_table_type_t *arch_tables)
416{
417	void *config_tables;
418	int sz, ret;
419
420	if (efi_nr_tables == 0)
421		return 0;
422
423	if (efi_enabled(EFI_64BIT))
424		sz = sizeof(efi_config_table_64_t);
425	else
426		sz = sizeof(efi_config_table_32_t);
427
428	/*
429	 * Let's see what config tables the firmware passed to us.
430	 */
431	config_tables = early_memremap(efi_config_table, efi_nr_tables * sz);
432	if (config_tables == NULL) {
433		pr_err("Could not map Configuration table!\n");
434		return -ENOMEM;
435	}
436
437	ret = efi_config_parse_tables(config_tables, efi_nr_tables,
438				      arch_tables);
439
440	early_memunmap(config_tables, efi_nr_tables * sz);
441	return ret;
442}
443
444void __init efi_init(void)
445{
446	if (IS_ENABLED(CONFIG_X86_32) &&
447	    (boot_params.efi_info.efi_systab_hi ||
448	     boot_params.efi_info.efi_memmap_hi)) {
449		pr_info("Table located above 4GB, disabling EFI.\n");
450		return;
451	}
452
453	efi_systab_phys = boot_params.efi_info.efi_systab |
454			  ((__u64)boot_params.efi_info.efi_systab_hi << 32);
455
456	if (efi_systab_init(efi_systab_phys))
457		return;
458
459	if (efi_reuse_config(efi_config_table, efi_nr_tables))
460		return;
461
462	if (efi_config_init(arch_tables))
463		return;
464
465	/*
466	 * Note: We currently don't support runtime services on an EFI
467	 * that doesn't match the kernel 32/64-bit mode.
468	 */
469
470	if (!efi_runtime_supported())
471		pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
472
473	if (!efi_runtime_supported() || efi_runtime_disabled()) {
474		efi_memmap_unmap();
475		return;
476	}
477
478	/* Parse the EFI Properties table if it exists */
479	if (prop_phys != EFI_INVALID_TABLE_ADDR) {
480		efi_properties_table_t *tbl;
481
482		tbl = early_memremap_ro(prop_phys, sizeof(*tbl));
483		if (tbl == NULL) {
484			pr_err("Could not map Properties table!\n");
485		} else {
486			if (tbl->memory_protection_attribute &
487			    EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
488				set_bit(EFI_NX_PE_DATA, &efi.flags);
489
490			early_memunmap(tbl, sizeof(*tbl));
491		}
492	}
493
494	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
495	efi_clean_memmap();
496
497	if (efi_enabled(EFI_DBG))
498		efi_print_memmap();
499}
500
501/* Merge contiguous regions of the same type and attribute */
502static void __init efi_merge_regions(void)
503{
504	efi_memory_desc_t *md, *prev_md = NULL;
505
506	for_each_efi_memory_desc(md) {
507		u64 prev_size;
508
509		if (!prev_md) {
510			prev_md = md;
511			continue;
512		}
513
514		if (prev_md->type != md->type ||
515		    prev_md->attribute != md->attribute) {
516			prev_md = md;
517			continue;
518		}
519
520		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
521
522		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
523			prev_md->num_pages += md->num_pages;
524			md->type = EFI_RESERVED_TYPE;
525			md->attribute = 0;
526			continue;
527		}
528		prev_md = md;
529	}
530}
531
532static void *realloc_pages(void *old_memmap, int old_shift)
533{
534	void *ret;
535
536	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
537	if (!ret)
538		goto out;
539
540	/*
541	 * A first-time allocation doesn't have anything to copy.
542	 */
543	if (!old_memmap)
544		return ret;
545
546	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
547
548out:
549	free_pages((unsigned long)old_memmap, old_shift);
550	return ret;
551}
552
553/*
554 * Iterate the EFI memory map in reverse order because the regions
555 * will be mapped top-down. The end result is the same as if we had
556 * mapped things forward, but doesn't require us to change the
557 * existing implementation of efi_map_region().
558 */
559static inline void *efi_map_next_entry_reverse(void *entry)
560{
561	/* Initial call */
562	if (!entry)
563		return efi.memmap.map_end - efi.memmap.desc_size;
564
565	entry -= efi.memmap.desc_size;
566	if (entry < efi.memmap.map)
567		return NULL;
568
569	return entry;
570}
571
572/*
573 * efi_map_next_entry - Return the next EFI memory map descriptor
574 * @entry: Previous EFI memory map descriptor
575 *
576 * This is a helper function to iterate over the EFI memory map, which
577 * we do in different orders depending on the current configuration.
578 *
579 * To begin traversing the memory map @entry must be %NULL.
580 *
581 * Returns %NULL when we reach the end of the memory map.
582 */
583static void *efi_map_next_entry(void *entry)
584{
585	if (efi_enabled(EFI_64BIT)) {
586		/*
587		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
588		 * config table feature requires us to map all entries
589		 * in the same order as they appear in the EFI memory
590		 * map. That is to say, entry N must have a lower
591		 * virtual address than entry N+1. This is because the
592		 * firmware toolchain leaves relative references in
593		 * the code/data sections, which are split and become
594		 * separate EFI memory regions. Mapping things
595		 * out-of-order leads to the firmware accessing
596		 * unmapped addresses.
597		 *
598		 * Since we need to map things this way whether or not
599		 * the kernel actually makes use of
600		 * EFI_PROPERTIES_TABLE, let's just switch to this
601		 * scheme by default for 64-bit.
602		 */
603		return efi_map_next_entry_reverse(entry);
604	}
605
606	/* Initial call */
607	if (!entry)
608		return efi.memmap.map;
609
610	entry += efi.memmap.desc_size;
611	if (entry >= efi.memmap.map_end)
612		return NULL;
613
614	return entry;
615}
616
617static bool should_map_region(efi_memory_desc_t *md)
618{
619	/*
620	 * Runtime regions always require runtime mappings (obviously).
621	 */
622	if (md->attribute & EFI_MEMORY_RUNTIME)
623		return true;
624
625	/*
626	 * 32-bit EFI doesn't suffer from the bug that requires us to
627	 * reserve boot services regions, and mixed mode support
628	 * doesn't exist for 32-bit kernels.
629	 */
630	if (IS_ENABLED(CONFIG_X86_32))
631		return false;
632
633	/*
634	 * EFI specific purpose memory may be reserved by default
635	 * depending on kernel config and boot options.
636	 */
637	if (md->type == EFI_CONVENTIONAL_MEMORY &&
638	    efi_soft_reserve_enabled() &&
639	    (md->attribute & EFI_MEMORY_SP))
640		return false;
641
642	/*
643	 * Map all of RAM so that we can access arguments in the 1:1
644	 * mapping when making EFI runtime calls.
645	 */
646	if (efi_is_mixed()) {
647		if (md->type == EFI_CONVENTIONAL_MEMORY ||
648		    md->type == EFI_LOADER_DATA ||
649		    md->type == EFI_LOADER_CODE)
650			return true;
651	}
652
653	/*
654	 * Map boot services regions as a workaround for buggy
655	 * firmware that accesses them even when they shouldn't.
656	 *
657	 * See efi_{reserve,free}_boot_services().
658	 */
659	if (md->type == EFI_BOOT_SERVICES_CODE ||
660	    md->type == EFI_BOOT_SERVICES_DATA)
661		return true;
662
663	return false;
664}
665
666/*
667 * Map the efi memory ranges of the runtime services and update new_mmap with
668 * virtual addresses.
669 */
670static void * __init efi_map_regions(int *count, int *pg_shift)
671{
672	void *p, *new_memmap = NULL;
673	unsigned long left = 0;
674	unsigned long desc_size;
675	efi_memory_desc_t *md;
676
677	desc_size = efi.memmap.desc_size;
678
679	p = NULL;
680	while ((p = efi_map_next_entry(p))) {
681		md = p;
682
683		if (!should_map_region(md))
684			continue;
685
686		efi_map_region(md);
687
688		if (left < desc_size) {
689			new_memmap = realloc_pages(new_memmap, *pg_shift);
690			if (!new_memmap)
691				return NULL;
692
693			left += PAGE_SIZE << *pg_shift;
694			(*pg_shift)++;
695		}
696
697		memcpy(new_memmap + (*count * desc_size), md, desc_size);
698
699		left -= desc_size;
700		(*count)++;
701	}
702
703	return new_memmap;
704}
705
706static void __init kexec_enter_virtual_mode(void)
707{
708#ifdef CONFIG_KEXEC_CORE
709	efi_memory_desc_t *md;
710	unsigned int num_pages;
711
712	/*
713	 * We don't do virtual mode, since we don't do runtime services, on
714	 * non-native EFI.
715	 */
716	if (efi_is_mixed()) {
717		efi_memmap_unmap();
718		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
719		return;
720	}
721
722	if (efi_alloc_page_tables()) {
723		pr_err("Failed to allocate EFI page tables\n");
724		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
725		return;
726	}
727
728	/*
729	* Map efi regions which were passed via setup_data. The virt_addr is a
730	* fixed addr which was used in first kernel of a kexec boot.
731	*/
732	for_each_efi_memory_desc(md)
733		efi_map_region_fixed(md); /* FIXME: add error handling */
734
735	/*
736	 * Unregister the early EFI memmap from efi_init() and install
737	 * the new EFI memory map.
738	 */
739	efi_memmap_unmap();
740
741	if (efi_memmap_init_late(efi.memmap.phys_map,
742				 efi.memmap.desc_size * efi.memmap.nr_map)) {
743		pr_err("Failed to remap late EFI memory map\n");
744		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
745		return;
746	}
747
748	num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
749	num_pages >>= PAGE_SHIFT;
750
751	if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
752		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
753		return;
754	}
755
756	efi_sync_low_kernel_mappings();
757	efi_native_runtime_setup();
758#endif
759}
760
761/*
762 * This function will switch the EFI runtime services to virtual mode.
763 * Essentially, we look through the EFI memmap and map every region that
764 * has the runtime attribute bit set in its memory descriptor into the
765 * efi_pgd page table.
766 *
767 * The new method does a pagetable switch in a preemption-safe manner
768 * so that we're in a different address space when calling a runtime
769 * function. For function arguments passing we do copy the PUDs of the
770 * kernel page table into efi_pgd prior to each call.
771 *
772 * Specially for kexec boot, efi runtime maps in previous kernel should
773 * be passed in via setup_data. In that case runtime ranges will be mapped
774 * to the same virtual addresses as the first kernel, see
775 * kexec_enter_virtual_mode().
776 */
777static void __init __efi_enter_virtual_mode(void)
778{
779	int count = 0, pg_shift = 0;
780	void *new_memmap = NULL;
781	efi_status_t status;
782	unsigned long pa;
783
784	if (efi_alloc_page_tables()) {
785		pr_err("Failed to allocate EFI page tables\n");
786		goto err;
787	}
788
789	efi_merge_regions();
790	new_memmap = efi_map_regions(&count, &pg_shift);
791	if (!new_memmap) {
792		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
793		goto err;
794	}
795
796	pa = __pa(new_memmap);
797
798	/*
799	 * Unregister the early EFI memmap from efi_init() and install
800	 * the new EFI memory map that we are about to pass to the
801	 * firmware via SetVirtualAddressMap().
802	 */
803	efi_memmap_unmap();
804
805	if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
806		pr_err("Failed to remap late EFI memory map\n");
807		goto err;
808	}
809
810	if (efi_enabled(EFI_DBG)) {
811		pr_info("EFI runtime memory map:\n");
812		efi_print_memmap();
813	}
814
815	if (efi_setup_page_tables(pa, 1 << pg_shift))
816		goto err;
817
818	efi_sync_low_kernel_mappings();
819
820	status = efi_set_virtual_address_map(efi.memmap.desc_size * count,
821					     efi.memmap.desc_size,
822					     efi.memmap.desc_version,
823					     (efi_memory_desc_t *)pa,
824					     efi_systab_phys);
825	if (status != EFI_SUCCESS) {
826		pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
827		       status);
828		goto err;
829	}
830
831	efi_check_for_embedded_firmwares();
832	efi_free_boot_services();
833
834	if (!efi_is_mixed())
835		efi_native_runtime_setup();
836	else
837		efi_thunk_runtime_setup();
838
839	/*
840	 * Apply more restrictive page table mapping attributes now that
841	 * SVAM() has been called and the firmware has performed all
842	 * necessary relocation fixups for the new virtual addresses.
843	 */
844	efi_runtime_update_mappings();
845
846	/* clean DUMMY object */
847	efi_delete_dummy_variable();
848	return;
849
850err:
851	clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
852}
853
854void __init efi_enter_virtual_mode(void)
855{
856	if (efi_enabled(EFI_PARAVIRT))
857		return;
858
859	efi.runtime = (efi_runtime_services_t *)efi_runtime;
860
861	if (efi_setup)
862		kexec_enter_virtual_mode();
863	else
864		__efi_enter_virtual_mode();
865
866	efi_dump_pagetable();
867}
868
869bool efi_is_table_address(unsigned long phys_addr)
870{
871	unsigned int i;
872
873	if (phys_addr == EFI_INVALID_TABLE_ADDR)
874		return false;
875
876	for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
877		if (*(efi_tables[i]) == phys_addr)
878			return true;
879
880	return false;
881}
882
883char *efi_systab_show_arch(char *str)
884{
885	if (uga_phys != EFI_INVALID_TABLE_ADDR)
886		str += sprintf(str, "UGA=0x%lx\n", uga_phys);
887	return str;
888}
889
890#define EFI_FIELD(var) efi_ ## var
891
892#define EFI_ATTR_SHOW(name) \
893static ssize_t name##_show(struct kobject *kobj, \
894				struct kobj_attribute *attr, char *buf) \
895{ \
896	return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
897}
898
899EFI_ATTR_SHOW(fw_vendor);
900EFI_ATTR_SHOW(runtime);
901EFI_ATTR_SHOW(config_table);
902
903struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
904struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
905struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
906
907umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n)
908{
909	if (attr == &efi_attr_fw_vendor.attr) {
910		if (efi_enabled(EFI_PARAVIRT) ||
911				efi_fw_vendor == EFI_INVALID_TABLE_ADDR)
912			return 0;
913	} else if (attr == &efi_attr_runtime.attr) {
914		if (efi_runtime == EFI_INVALID_TABLE_ADDR)
915			return 0;
916	} else if (attr == &efi_attr_config_table.attr) {
917		if (efi_config_table == EFI_INVALID_TABLE_ADDR)
918			return 0;
919	}
920	return attr->mode;
921}
922