1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * AMD Memory Encryption Support
4 *
5 * Copyright (C) 2016 Advanced Micro Devices, Inc.
6 *
7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 */
9
10#define DISABLE_BRANCH_PROFILING
11
12/*
13 * Since we're dealing with identity mappings, physical and virtual
14 * addresses are the same, so override these defines which are ultimately
15 * used by the headers in misc.h.
16 */
17#define __pa(x)  ((unsigned long)(x))
18#define __va(x)  ((void *)((unsigned long)(x)))
19
20/*
21 * Special hack: we have to be careful, because no indirections are
22 * allowed here, and paravirt_ops is a kind of one. As it will only run in
23 * baremetal anyway, we just keep it from happening. (This list needs to
24 * be extended when new paravirt and debugging variants are added.)
25 */
26#undef CONFIG_PARAVIRT
27#undef CONFIG_PARAVIRT_XXL
28#undef CONFIG_PARAVIRT_SPINLOCKS
29
30/*
31 * This code runs before CPU feature bits are set. By default, the
32 * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if
33 * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5
34 * is provided to handle this situation and, instead, use a variable that
35 * has been set by the early boot code.
36 */
37#define USE_EARLY_PGTABLE_L5
38
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/mem_encrypt.h>
42
43#include <asm/setup.h>
44#include <asm/sections.h>
45#include <asm/cmdline.h>
46
47#include "mm_internal.h"
48
49#define PGD_FLAGS		_KERNPG_TABLE_NOENC
50#define P4D_FLAGS		_KERNPG_TABLE_NOENC
51#define PUD_FLAGS		_KERNPG_TABLE_NOENC
52#define PMD_FLAGS		_KERNPG_TABLE_NOENC
53
54#define PMD_FLAGS_LARGE		(__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
55
56#define PMD_FLAGS_DEC		PMD_FLAGS_LARGE
57#define PMD_FLAGS_DEC_WP	((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \
58				 (_PAGE_PAT_LARGE | _PAGE_PWT))
59
60#define PMD_FLAGS_ENC		(PMD_FLAGS_LARGE | _PAGE_ENC)
61
62#define PTE_FLAGS		(__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
63
64#define PTE_FLAGS_DEC		PTE_FLAGS
65#define PTE_FLAGS_DEC_WP	((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
66				 (_PAGE_PAT | _PAGE_PWT))
67
68#define PTE_FLAGS_ENC		(PTE_FLAGS | _PAGE_ENC)
69
70struct sme_populate_pgd_data {
71	void    *pgtable_area;
72	pgd_t   *pgd;
73
74	pmdval_t pmd_flags;
75	pteval_t pte_flags;
76	unsigned long paddr;
77
78	unsigned long vaddr;
79	unsigned long vaddr_end;
80};
81
82/*
83 * This work area lives in the .init.scratch section, which lives outside of
84 * the kernel proper. It is sized to hold the intermediate copy buffer and
85 * more than enough pagetable pages.
86 *
87 * By using this section, the kernel can be encrypted in place and it
88 * avoids any possibility of boot parameters or initramfs images being
89 * placed such that the in-place encryption logic overwrites them.  This
90 * section is 2MB aligned to allow for simple pagetable setup using only
91 * PMD entries (see vmlinux.lds.S).
92 */
93static char sme_workarea[2 * PMD_PAGE_SIZE] __section(".init.scratch");
94
95static char sme_cmdline_arg[] __initdata = "mem_encrypt";
96static char sme_cmdline_on[]  __initdata = "on";
97static char sme_cmdline_off[] __initdata = "off";
98
99static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
100{
101	unsigned long pgd_start, pgd_end, pgd_size;
102	pgd_t *pgd_p;
103
104	pgd_start = ppd->vaddr & PGDIR_MASK;
105	pgd_end = ppd->vaddr_end & PGDIR_MASK;
106
107	pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
108
109	pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
110
111	memset(pgd_p, 0, pgd_size);
112}
113
114static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
115{
116	pgd_t *pgd;
117	p4d_t *p4d;
118	pud_t *pud;
119	pmd_t *pmd;
120
121	pgd = ppd->pgd + pgd_index(ppd->vaddr);
122	if (pgd_none(*pgd)) {
123		p4d = ppd->pgtable_area;
124		memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
125		ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
126		set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
127	}
128
129	p4d = p4d_offset(pgd, ppd->vaddr);
130	if (p4d_none(*p4d)) {
131		pud = ppd->pgtable_area;
132		memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
133		ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
134		set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
135	}
136
137	pud = pud_offset(p4d, ppd->vaddr);
138	if (pud_none(*pud)) {
139		pmd = ppd->pgtable_area;
140		memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
141		ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
142		set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
143	}
144
145	if (pud_large(*pud))
146		return NULL;
147
148	return pud;
149}
150
151static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
152{
153	pud_t *pud;
154	pmd_t *pmd;
155
156	pud = sme_prepare_pgd(ppd);
157	if (!pud)
158		return;
159
160	pmd = pmd_offset(pud, ppd->vaddr);
161	if (pmd_large(*pmd))
162		return;
163
164	set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
165}
166
167static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
168{
169	pud_t *pud;
170	pmd_t *pmd;
171	pte_t *pte;
172
173	pud = sme_prepare_pgd(ppd);
174	if (!pud)
175		return;
176
177	pmd = pmd_offset(pud, ppd->vaddr);
178	if (pmd_none(*pmd)) {
179		pte = ppd->pgtable_area;
180		memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
181		ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
182		set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
183	}
184
185	if (pmd_large(*pmd))
186		return;
187
188	pte = pte_offset_map(pmd, ppd->vaddr);
189	if (pte_none(*pte))
190		set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
191}
192
193static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
194{
195	while (ppd->vaddr < ppd->vaddr_end) {
196		sme_populate_pgd_large(ppd);
197
198		ppd->vaddr += PMD_PAGE_SIZE;
199		ppd->paddr += PMD_PAGE_SIZE;
200	}
201}
202
203static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
204{
205	while (ppd->vaddr < ppd->vaddr_end) {
206		sme_populate_pgd(ppd);
207
208		ppd->vaddr += PAGE_SIZE;
209		ppd->paddr += PAGE_SIZE;
210	}
211}
212
213static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
214				   pmdval_t pmd_flags, pteval_t pte_flags)
215{
216	unsigned long vaddr_end;
217
218	ppd->pmd_flags = pmd_flags;
219	ppd->pte_flags = pte_flags;
220
221	/* Save original end value since we modify the struct value */
222	vaddr_end = ppd->vaddr_end;
223
224	/* If start is not 2MB aligned, create PTE entries */
225	ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE);
226	__sme_map_range_pte(ppd);
227
228	/* Create PMD entries */
229	ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK;
230	__sme_map_range_pmd(ppd);
231
232	/* If end is not 2MB aligned, create PTE entries */
233	ppd->vaddr_end = vaddr_end;
234	__sme_map_range_pte(ppd);
235}
236
237static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
238{
239	__sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
240}
241
242static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
243{
244	__sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
245}
246
247static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
248{
249	__sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
250}
251
252static unsigned long __init sme_pgtable_calc(unsigned long len)
253{
254	unsigned long entries = 0, tables = 0;
255
256	/*
257	 * Perform a relatively simplistic calculation of the pagetable
258	 * entries that are needed. Those mappings will be covered mostly
259	 * by 2MB PMD entries so we can conservatively calculate the required
260	 * number of P4D, PUD and PMD structures needed to perform the
261	 * mappings.  For mappings that are not 2MB aligned, PTE mappings
262	 * would be needed for the start and end portion of the address range
263	 * that fall outside of the 2MB alignment.  This results in, at most,
264	 * two extra pages to hold PTE entries for each range that is mapped.
265	 * Incrementing the count for each covers the case where the addresses
266	 * cross entries.
267	 */
268
269	/* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
270	if (PTRS_PER_P4D > 1)
271		entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
272	entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
273	entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
274	entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
275
276	/*
277	 * Now calculate the added pagetable structures needed to populate
278	 * the new pagetables.
279	 */
280
281	if (PTRS_PER_P4D > 1)
282		tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
283	tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
284	tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
285
286	return entries + tables;
287}
288
289void __init sme_encrypt_kernel(struct boot_params *bp)
290{
291	unsigned long workarea_start, workarea_end, workarea_len;
292	unsigned long execute_start, execute_end, execute_len;
293	unsigned long kernel_start, kernel_end, kernel_len;
294	unsigned long initrd_start, initrd_end, initrd_len;
295	struct sme_populate_pgd_data ppd;
296	unsigned long pgtable_area_len;
297	unsigned long decrypted_base;
298
299	if (!sme_active())
300		return;
301
302	/*
303	 * Prepare for encrypting the kernel and initrd by building new
304	 * pagetables with the necessary attributes needed to encrypt the
305	 * kernel in place.
306	 *
307	 *   One range of virtual addresses will map the memory occupied
308	 *   by the kernel and initrd as encrypted.
309	 *
310	 *   Another range of virtual addresses will map the memory occupied
311	 *   by the kernel and initrd as decrypted and write-protected.
312	 *
313	 *     The use of write-protect attribute will prevent any of the
314	 *     memory from being cached.
315	 */
316
317	/* Physical addresses gives us the identity mapped virtual addresses */
318	kernel_start = __pa_symbol(_text);
319	kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
320	kernel_len = kernel_end - kernel_start;
321
322	initrd_start = 0;
323	initrd_end = 0;
324	initrd_len = 0;
325#ifdef CONFIG_BLK_DEV_INITRD
326	initrd_len = (unsigned long)bp->hdr.ramdisk_size |
327		     ((unsigned long)bp->ext_ramdisk_size << 32);
328	if (initrd_len) {
329		initrd_start = (unsigned long)bp->hdr.ramdisk_image |
330			       ((unsigned long)bp->ext_ramdisk_image << 32);
331		initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
332		initrd_len = initrd_end - initrd_start;
333	}
334#endif
335
336	/*
337	 * We're running identity mapped, so we must obtain the address to the
338	 * SME encryption workarea using rip-relative addressing.
339	 */
340	asm ("lea sme_workarea(%%rip), %0"
341	     : "=r" (workarea_start)
342	     : "p" (sme_workarea));
343
344	/*
345	 * Calculate required number of workarea bytes needed:
346	 *   executable encryption area size:
347	 *     stack page (PAGE_SIZE)
348	 *     encryption routine page (PAGE_SIZE)
349	 *     intermediate copy buffer (PMD_PAGE_SIZE)
350	 *   pagetable structures for the encryption of the kernel
351	 *   pagetable structures for workarea (in case not currently mapped)
352	 */
353	execute_start = workarea_start;
354	execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
355	execute_len = execute_end - execute_start;
356
357	/*
358	 * One PGD for both encrypted and decrypted mappings and a set of
359	 * PUDs and PMDs for each of the encrypted and decrypted mappings.
360	 */
361	pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
362	pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
363	if (initrd_len)
364		pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
365
366	/* PUDs and PMDs needed in the current pagetables for the workarea */
367	pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
368
369	/*
370	 * The total workarea includes the executable encryption area and
371	 * the pagetable area. The start of the workarea is already 2MB
372	 * aligned, align the end of the workarea on a 2MB boundary so that
373	 * we don't try to create/allocate PTE entries from the workarea
374	 * before it is mapped.
375	 */
376	workarea_len = execute_len + pgtable_area_len;
377	workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE);
378
379	/*
380	 * Set the address to the start of where newly created pagetable
381	 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
382	 * structures are created when the workarea is added to the current
383	 * pagetables and when the new encrypted and decrypted kernel
384	 * mappings are populated.
385	 */
386	ppd.pgtable_area = (void *)execute_end;
387
388	/*
389	 * Make sure the current pagetable structure has entries for
390	 * addressing the workarea.
391	 */
392	ppd.pgd = (pgd_t *)native_read_cr3_pa();
393	ppd.paddr = workarea_start;
394	ppd.vaddr = workarea_start;
395	ppd.vaddr_end = workarea_end;
396	sme_map_range_decrypted(&ppd);
397
398	/* Flush the TLB - no globals so cr3 is enough */
399	native_write_cr3(__native_read_cr3());
400
401	/*
402	 * A new pagetable structure is being built to allow for the kernel
403	 * and initrd to be encrypted. It starts with an empty PGD that will
404	 * then be populated with new PUDs and PMDs as the encrypted and
405	 * decrypted kernel mappings are created.
406	 */
407	ppd.pgd = ppd.pgtable_area;
408	memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
409	ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
410
411	/*
412	 * A different PGD index/entry must be used to get different
413	 * pagetable entries for the decrypted mapping. Choose the next
414	 * PGD index and convert it to a virtual address to be used as
415	 * the base of the mapping.
416	 */
417	decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
418	if (initrd_len) {
419		unsigned long check_base;
420
421		check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
422		decrypted_base = max(decrypted_base, check_base);
423	}
424	decrypted_base <<= PGDIR_SHIFT;
425
426	/* Add encrypted kernel (identity) mappings */
427	ppd.paddr = kernel_start;
428	ppd.vaddr = kernel_start;
429	ppd.vaddr_end = kernel_end;
430	sme_map_range_encrypted(&ppd);
431
432	/* Add decrypted, write-protected kernel (non-identity) mappings */
433	ppd.paddr = kernel_start;
434	ppd.vaddr = kernel_start + decrypted_base;
435	ppd.vaddr_end = kernel_end + decrypted_base;
436	sme_map_range_decrypted_wp(&ppd);
437
438	if (initrd_len) {
439		/* Add encrypted initrd (identity) mappings */
440		ppd.paddr = initrd_start;
441		ppd.vaddr = initrd_start;
442		ppd.vaddr_end = initrd_end;
443		sme_map_range_encrypted(&ppd);
444		/*
445		 * Add decrypted, write-protected initrd (non-identity) mappings
446		 */
447		ppd.paddr = initrd_start;
448		ppd.vaddr = initrd_start + decrypted_base;
449		ppd.vaddr_end = initrd_end + decrypted_base;
450		sme_map_range_decrypted_wp(&ppd);
451	}
452
453	/* Add decrypted workarea mappings to both kernel mappings */
454	ppd.paddr = workarea_start;
455	ppd.vaddr = workarea_start;
456	ppd.vaddr_end = workarea_end;
457	sme_map_range_decrypted(&ppd);
458
459	ppd.paddr = workarea_start;
460	ppd.vaddr = workarea_start + decrypted_base;
461	ppd.vaddr_end = workarea_end + decrypted_base;
462	sme_map_range_decrypted(&ppd);
463
464	/* Perform the encryption */
465	sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
466			    kernel_len, workarea_start, (unsigned long)ppd.pgd);
467
468	if (initrd_len)
469		sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
470				    initrd_len, workarea_start,
471				    (unsigned long)ppd.pgd);
472
473	/*
474	 * At this point we are running encrypted.  Remove the mappings for
475	 * the decrypted areas - all that is needed for this is to remove
476	 * the PGD entry/entries.
477	 */
478	ppd.vaddr = kernel_start + decrypted_base;
479	ppd.vaddr_end = kernel_end + decrypted_base;
480	sme_clear_pgd(&ppd);
481
482	if (initrd_len) {
483		ppd.vaddr = initrd_start + decrypted_base;
484		ppd.vaddr_end = initrd_end + decrypted_base;
485		sme_clear_pgd(&ppd);
486	}
487
488	ppd.vaddr = workarea_start + decrypted_base;
489	ppd.vaddr_end = workarea_end + decrypted_base;
490	sme_clear_pgd(&ppd);
491
492	/* Flush the TLB - no globals so cr3 is enough */
493	native_write_cr3(__native_read_cr3());
494}
495
496void __init sme_enable(struct boot_params *bp)
497{
498	const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
499	unsigned int eax, ebx, ecx, edx;
500	unsigned long feature_mask;
501	bool active_by_default;
502	unsigned long me_mask;
503	char buffer[16];
504	u64 msr;
505
506	/* Check for the SME/SEV support leaf */
507	eax = 0x80000000;
508	ecx = 0;
509	native_cpuid(&eax, &ebx, &ecx, &edx);
510	if (eax < 0x8000001f)
511		return;
512
513#define AMD_SME_BIT	BIT(0)
514#define AMD_SEV_BIT	BIT(1)
515
516	/*
517	 * Check for the SME/SEV feature:
518	 *   CPUID Fn8000_001F[EAX]
519	 *   - Bit 0 - Secure Memory Encryption support
520	 *   - Bit 1 - Secure Encrypted Virtualization support
521	 *   CPUID Fn8000_001F[EBX]
522	 *   - Bits 5:0 - Pagetable bit position used to indicate encryption
523	 */
524	eax = 0x8000001f;
525	ecx = 0;
526	native_cpuid(&eax, &ebx, &ecx, &edx);
527	/* Check whether SEV or SME is supported */
528	if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT)))
529		return;
530
531	me_mask = 1UL << (ebx & 0x3f);
532
533	/* Check the SEV MSR whether SEV or SME is enabled */
534	sev_status   = __rdmsr(MSR_AMD64_SEV);
535	feature_mask = (sev_status & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT;
536
537	/* Check if memory encryption is enabled */
538	if (feature_mask == AMD_SME_BIT) {
539		/*
540		 * No SME if Hypervisor bit is set. This check is here to
541		 * prevent a guest from trying to enable SME. For running as a
542		 * KVM guest the MSR_K8_SYSCFG will be sufficient, but there
543		 * might be other hypervisors which emulate that MSR as non-zero
544		 * or even pass it through to the guest.
545		 * A malicious hypervisor can still trick a guest into this
546		 * path, but there is no way to protect against that.
547		 */
548		eax = 1;
549		ecx = 0;
550		native_cpuid(&eax, &ebx, &ecx, &edx);
551		if (ecx & BIT(31))
552			return;
553
554		/* For SME, check the SYSCFG MSR */
555		msr = __rdmsr(MSR_K8_SYSCFG);
556		if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
557			return;
558	} else {
559		/* SEV state cannot be controlled by a command line option */
560		sme_me_mask = me_mask;
561		sev_enabled = true;
562		physical_mask &= ~sme_me_mask;
563		return;
564	}
565
566	/*
567	 * Fixups have not been applied to phys_base yet and we're running
568	 * identity mapped, so we must obtain the address to the SME command
569	 * line argument data using rip-relative addressing.
570	 */
571	asm ("lea sme_cmdline_arg(%%rip), %0"
572	     : "=r" (cmdline_arg)
573	     : "p" (sme_cmdline_arg));
574	asm ("lea sme_cmdline_on(%%rip), %0"
575	     : "=r" (cmdline_on)
576	     : "p" (sme_cmdline_on));
577	asm ("lea sme_cmdline_off(%%rip), %0"
578	     : "=r" (cmdline_off)
579	     : "p" (sme_cmdline_off));
580
581	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
582		active_by_default = true;
583	else
584		active_by_default = false;
585
586	cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
587				     ((u64)bp->ext_cmd_line_ptr << 32));
588
589	if (cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer)) < 0)
590		return;
591
592	if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
593		sme_me_mask = me_mask;
594	else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
595		sme_me_mask = 0;
596	else
597		sme_me_mask = active_by_default ? me_mask : 0;
598
599	physical_mask &= ~sme_me_mask;
600}
601