18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only 28c2ecf20Sopenharmony_ci/* 38c2ecf20Sopenharmony_ci * AMD Memory Encryption Support 48c2ecf20Sopenharmony_ci * 58c2ecf20Sopenharmony_ci * Copyright (C) 2016 Advanced Micro Devices, Inc. 68c2ecf20Sopenharmony_ci * 78c2ecf20Sopenharmony_ci * Author: Tom Lendacky <thomas.lendacky@amd.com> 88c2ecf20Sopenharmony_ci */ 98c2ecf20Sopenharmony_ci 108c2ecf20Sopenharmony_ci#define DISABLE_BRANCH_PROFILING 118c2ecf20Sopenharmony_ci 128c2ecf20Sopenharmony_ci#include <linux/linkage.h> 138c2ecf20Sopenharmony_ci#include <linux/init.h> 148c2ecf20Sopenharmony_ci#include <linux/mm.h> 158c2ecf20Sopenharmony_ci#include <linux/dma-direct.h> 168c2ecf20Sopenharmony_ci#include <linux/swiotlb.h> 178c2ecf20Sopenharmony_ci#include <linux/mem_encrypt.h> 188c2ecf20Sopenharmony_ci#include <linux/device.h> 198c2ecf20Sopenharmony_ci#include <linux/kernel.h> 208c2ecf20Sopenharmony_ci#include <linux/bitops.h> 218c2ecf20Sopenharmony_ci#include <linux/dma-mapping.h> 228c2ecf20Sopenharmony_ci#include <linux/cc_platform.h> 238c2ecf20Sopenharmony_ci 248c2ecf20Sopenharmony_ci#include <asm/tlbflush.h> 258c2ecf20Sopenharmony_ci#include <asm/fixmap.h> 268c2ecf20Sopenharmony_ci#include <asm/setup.h> 278c2ecf20Sopenharmony_ci#include <asm/bootparam.h> 288c2ecf20Sopenharmony_ci#include <asm/set_memory.h> 298c2ecf20Sopenharmony_ci#include <asm/cacheflush.h> 308c2ecf20Sopenharmony_ci#include <asm/processor-flags.h> 318c2ecf20Sopenharmony_ci#include <asm/msr.h> 328c2ecf20Sopenharmony_ci#include <asm/cmdline.h> 338c2ecf20Sopenharmony_ci 348c2ecf20Sopenharmony_ci#include "mm_internal.h" 358c2ecf20Sopenharmony_ci 368c2ecf20Sopenharmony_ci/* 378c2ecf20Sopenharmony_ci * Since SME related variables are set early in the boot process they must 388c2ecf20Sopenharmony_ci * reside in the .data section so as not to be zeroed out when the .bss 398c2ecf20Sopenharmony_ci * section is later cleared. 408c2ecf20Sopenharmony_ci */ 418c2ecf20Sopenharmony_ciu64 sme_me_mask __section(".data") = 0; 428c2ecf20Sopenharmony_ciu64 sev_status __section(".data") = 0; 438c2ecf20Sopenharmony_ciu64 sev_check_data __section(".data") = 0; 448c2ecf20Sopenharmony_ciEXPORT_SYMBOL(sme_me_mask); 458c2ecf20Sopenharmony_ciDEFINE_STATIC_KEY_FALSE(sev_enable_key); 468c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(sev_enable_key); 478c2ecf20Sopenharmony_ci 488c2ecf20Sopenharmony_cibool sev_enabled __section(".data"); 498c2ecf20Sopenharmony_ci 508c2ecf20Sopenharmony_ci/* Buffer used for early in-place encryption by BSP, no locking needed */ 518c2ecf20Sopenharmony_cistatic char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE); 528c2ecf20Sopenharmony_ci 538c2ecf20Sopenharmony_ci/* 548c2ecf20Sopenharmony_ci * This routine does not change the underlying encryption setting of the 558c2ecf20Sopenharmony_ci * page(s) that map this memory. It assumes that eventually the memory is 568c2ecf20Sopenharmony_ci * meant to be accessed as either encrypted or decrypted but the contents 578c2ecf20Sopenharmony_ci * are currently not in the desired state. 588c2ecf20Sopenharmony_ci * 598c2ecf20Sopenharmony_ci * This routine follows the steps outlined in the AMD64 Architecture 608c2ecf20Sopenharmony_ci * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place. 618c2ecf20Sopenharmony_ci */ 628c2ecf20Sopenharmony_cistatic void __init __sme_early_enc_dec(resource_size_t paddr, 638c2ecf20Sopenharmony_ci unsigned long size, bool enc) 648c2ecf20Sopenharmony_ci{ 658c2ecf20Sopenharmony_ci void *src, *dst; 668c2ecf20Sopenharmony_ci size_t len; 678c2ecf20Sopenharmony_ci 688c2ecf20Sopenharmony_ci if (!sme_me_mask) 698c2ecf20Sopenharmony_ci return; 708c2ecf20Sopenharmony_ci 718c2ecf20Sopenharmony_ci wbinvd(); 728c2ecf20Sopenharmony_ci 738c2ecf20Sopenharmony_ci /* 748c2ecf20Sopenharmony_ci * There are limited number of early mapping slots, so map (at most) 758c2ecf20Sopenharmony_ci * one page at time. 768c2ecf20Sopenharmony_ci */ 778c2ecf20Sopenharmony_ci while (size) { 788c2ecf20Sopenharmony_ci len = min_t(size_t, sizeof(sme_early_buffer), size); 798c2ecf20Sopenharmony_ci 808c2ecf20Sopenharmony_ci /* 818c2ecf20Sopenharmony_ci * Create mappings for the current and desired format of 828c2ecf20Sopenharmony_ci * the memory. Use a write-protected mapping for the source. 838c2ecf20Sopenharmony_ci */ 848c2ecf20Sopenharmony_ci src = enc ? early_memremap_decrypted_wp(paddr, len) : 858c2ecf20Sopenharmony_ci early_memremap_encrypted_wp(paddr, len); 868c2ecf20Sopenharmony_ci 878c2ecf20Sopenharmony_ci dst = enc ? early_memremap_encrypted(paddr, len) : 888c2ecf20Sopenharmony_ci early_memremap_decrypted(paddr, len); 898c2ecf20Sopenharmony_ci 908c2ecf20Sopenharmony_ci /* 918c2ecf20Sopenharmony_ci * If a mapping can't be obtained to perform the operation, 928c2ecf20Sopenharmony_ci * then eventual access of that area in the desired mode 938c2ecf20Sopenharmony_ci * will cause a crash. 948c2ecf20Sopenharmony_ci */ 958c2ecf20Sopenharmony_ci BUG_ON(!src || !dst); 968c2ecf20Sopenharmony_ci 978c2ecf20Sopenharmony_ci /* 988c2ecf20Sopenharmony_ci * Use a temporary buffer, of cache-line multiple size, to 998c2ecf20Sopenharmony_ci * avoid data corruption as documented in the APM. 1008c2ecf20Sopenharmony_ci */ 1018c2ecf20Sopenharmony_ci memcpy(sme_early_buffer, src, len); 1028c2ecf20Sopenharmony_ci memcpy(dst, sme_early_buffer, len); 1038c2ecf20Sopenharmony_ci 1048c2ecf20Sopenharmony_ci early_memunmap(dst, len); 1058c2ecf20Sopenharmony_ci early_memunmap(src, len); 1068c2ecf20Sopenharmony_ci 1078c2ecf20Sopenharmony_ci paddr += len; 1088c2ecf20Sopenharmony_ci size -= len; 1098c2ecf20Sopenharmony_ci } 1108c2ecf20Sopenharmony_ci} 1118c2ecf20Sopenharmony_ci 1128c2ecf20Sopenharmony_civoid __init sme_early_encrypt(resource_size_t paddr, unsigned long size) 1138c2ecf20Sopenharmony_ci{ 1148c2ecf20Sopenharmony_ci __sme_early_enc_dec(paddr, size, true); 1158c2ecf20Sopenharmony_ci} 1168c2ecf20Sopenharmony_ci 1178c2ecf20Sopenharmony_civoid __init sme_early_decrypt(resource_size_t paddr, unsigned long size) 1188c2ecf20Sopenharmony_ci{ 1198c2ecf20Sopenharmony_ci __sme_early_enc_dec(paddr, size, false); 1208c2ecf20Sopenharmony_ci} 1218c2ecf20Sopenharmony_ci 1228c2ecf20Sopenharmony_cistatic void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size, 1238c2ecf20Sopenharmony_ci bool map) 1248c2ecf20Sopenharmony_ci{ 1258c2ecf20Sopenharmony_ci unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET; 1268c2ecf20Sopenharmony_ci pmdval_t pmd_flags, pmd; 1278c2ecf20Sopenharmony_ci 1288c2ecf20Sopenharmony_ci /* Use early_pmd_flags but remove the encryption mask */ 1298c2ecf20Sopenharmony_ci pmd_flags = __sme_clr(early_pmd_flags); 1308c2ecf20Sopenharmony_ci 1318c2ecf20Sopenharmony_ci do { 1328c2ecf20Sopenharmony_ci pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0; 1338c2ecf20Sopenharmony_ci __early_make_pgtable((unsigned long)vaddr, pmd); 1348c2ecf20Sopenharmony_ci 1358c2ecf20Sopenharmony_ci vaddr += PMD_SIZE; 1368c2ecf20Sopenharmony_ci paddr += PMD_SIZE; 1378c2ecf20Sopenharmony_ci size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE; 1388c2ecf20Sopenharmony_ci } while (size); 1398c2ecf20Sopenharmony_ci 1408c2ecf20Sopenharmony_ci flush_tlb_local(); 1418c2ecf20Sopenharmony_ci} 1428c2ecf20Sopenharmony_ci 1438c2ecf20Sopenharmony_civoid __init sme_unmap_bootdata(char *real_mode_data) 1448c2ecf20Sopenharmony_ci{ 1458c2ecf20Sopenharmony_ci struct boot_params *boot_data; 1468c2ecf20Sopenharmony_ci unsigned long cmdline_paddr; 1478c2ecf20Sopenharmony_ci 1488c2ecf20Sopenharmony_ci if (!sme_active()) 1498c2ecf20Sopenharmony_ci return; 1508c2ecf20Sopenharmony_ci 1518c2ecf20Sopenharmony_ci /* Get the command line address before unmapping the real_mode_data */ 1528c2ecf20Sopenharmony_ci boot_data = (struct boot_params *)real_mode_data; 1538c2ecf20Sopenharmony_ci cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 1548c2ecf20Sopenharmony_ci 1558c2ecf20Sopenharmony_ci __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false); 1568c2ecf20Sopenharmony_ci 1578c2ecf20Sopenharmony_ci if (!cmdline_paddr) 1588c2ecf20Sopenharmony_ci return; 1598c2ecf20Sopenharmony_ci 1608c2ecf20Sopenharmony_ci __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false); 1618c2ecf20Sopenharmony_ci} 1628c2ecf20Sopenharmony_ci 1638c2ecf20Sopenharmony_civoid __init sme_map_bootdata(char *real_mode_data) 1648c2ecf20Sopenharmony_ci{ 1658c2ecf20Sopenharmony_ci struct boot_params *boot_data; 1668c2ecf20Sopenharmony_ci unsigned long cmdline_paddr; 1678c2ecf20Sopenharmony_ci 1688c2ecf20Sopenharmony_ci if (!sme_active()) 1698c2ecf20Sopenharmony_ci return; 1708c2ecf20Sopenharmony_ci 1718c2ecf20Sopenharmony_ci __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true); 1728c2ecf20Sopenharmony_ci 1738c2ecf20Sopenharmony_ci /* Get the command line address after mapping the real_mode_data */ 1748c2ecf20Sopenharmony_ci boot_data = (struct boot_params *)real_mode_data; 1758c2ecf20Sopenharmony_ci cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 1768c2ecf20Sopenharmony_ci 1778c2ecf20Sopenharmony_ci if (!cmdline_paddr) 1788c2ecf20Sopenharmony_ci return; 1798c2ecf20Sopenharmony_ci 1808c2ecf20Sopenharmony_ci __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true); 1818c2ecf20Sopenharmony_ci} 1828c2ecf20Sopenharmony_ci 1838c2ecf20Sopenharmony_civoid __init sme_early_init(void) 1848c2ecf20Sopenharmony_ci{ 1858c2ecf20Sopenharmony_ci unsigned int i; 1868c2ecf20Sopenharmony_ci 1878c2ecf20Sopenharmony_ci if (!sme_me_mask) 1888c2ecf20Sopenharmony_ci return; 1898c2ecf20Sopenharmony_ci 1908c2ecf20Sopenharmony_ci early_pmd_flags = __sme_set(early_pmd_flags); 1918c2ecf20Sopenharmony_ci 1928c2ecf20Sopenharmony_ci __supported_pte_mask = __sme_set(__supported_pte_mask); 1938c2ecf20Sopenharmony_ci 1948c2ecf20Sopenharmony_ci /* Update the protection map with memory encryption mask */ 1958c2ecf20Sopenharmony_ci for (i = 0; i < ARRAY_SIZE(protection_map); i++) 1968c2ecf20Sopenharmony_ci protection_map[i] = pgprot_encrypted(protection_map[i]); 1978c2ecf20Sopenharmony_ci 1988c2ecf20Sopenharmony_ci if (sev_active()) 1998c2ecf20Sopenharmony_ci swiotlb_force = SWIOTLB_FORCE; 2008c2ecf20Sopenharmony_ci} 2018c2ecf20Sopenharmony_ci 2028c2ecf20Sopenharmony_cistatic void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc) 2038c2ecf20Sopenharmony_ci{ 2048c2ecf20Sopenharmony_ci pgprot_t old_prot, new_prot; 2058c2ecf20Sopenharmony_ci unsigned long pfn, pa, size; 2068c2ecf20Sopenharmony_ci pte_t new_pte; 2078c2ecf20Sopenharmony_ci 2088c2ecf20Sopenharmony_ci switch (level) { 2098c2ecf20Sopenharmony_ci case PG_LEVEL_4K: 2108c2ecf20Sopenharmony_ci pfn = pte_pfn(*kpte); 2118c2ecf20Sopenharmony_ci old_prot = pte_pgprot(*kpte); 2128c2ecf20Sopenharmony_ci break; 2138c2ecf20Sopenharmony_ci case PG_LEVEL_2M: 2148c2ecf20Sopenharmony_ci pfn = pmd_pfn(*(pmd_t *)kpte); 2158c2ecf20Sopenharmony_ci old_prot = pmd_pgprot(*(pmd_t *)kpte); 2168c2ecf20Sopenharmony_ci break; 2178c2ecf20Sopenharmony_ci case PG_LEVEL_1G: 2188c2ecf20Sopenharmony_ci pfn = pud_pfn(*(pud_t *)kpte); 2198c2ecf20Sopenharmony_ci old_prot = pud_pgprot(*(pud_t *)kpte); 2208c2ecf20Sopenharmony_ci break; 2218c2ecf20Sopenharmony_ci default: 2228c2ecf20Sopenharmony_ci return; 2238c2ecf20Sopenharmony_ci } 2248c2ecf20Sopenharmony_ci 2258c2ecf20Sopenharmony_ci new_prot = old_prot; 2268c2ecf20Sopenharmony_ci if (enc) 2278c2ecf20Sopenharmony_ci pgprot_val(new_prot) |= _PAGE_ENC; 2288c2ecf20Sopenharmony_ci else 2298c2ecf20Sopenharmony_ci pgprot_val(new_prot) &= ~_PAGE_ENC; 2308c2ecf20Sopenharmony_ci 2318c2ecf20Sopenharmony_ci /* If prot is same then do nothing. */ 2328c2ecf20Sopenharmony_ci if (pgprot_val(old_prot) == pgprot_val(new_prot)) 2338c2ecf20Sopenharmony_ci return; 2348c2ecf20Sopenharmony_ci 2358c2ecf20Sopenharmony_ci pa = pfn << PAGE_SHIFT; 2368c2ecf20Sopenharmony_ci size = page_level_size(level); 2378c2ecf20Sopenharmony_ci 2388c2ecf20Sopenharmony_ci /* 2398c2ecf20Sopenharmony_ci * We are going to perform in-place en-/decryption and change the 2408c2ecf20Sopenharmony_ci * physical page attribute from C=1 to C=0 or vice versa. Flush the 2418c2ecf20Sopenharmony_ci * caches to ensure that data gets accessed with the correct C-bit. 2428c2ecf20Sopenharmony_ci */ 2438c2ecf20Sopenharmony_ci clflush_cache_range(__va(pa), size); 2448c2ecf20Sopenharmony_ci 2458c2ecf20Sopenharmony_ci /* Encrypt/decrypt the contents in-place */ 2468c2ecf20Sopenharmony_ci if (enc) 2478c2ecf20Sopenharmony_ci sme_early_encrypt(pa, size); 2488c2ecf20Sopenharmony_ci else 2498c2ecf20Sopenharmony_ci sme_early_decrypt(pa, size); 2508c2ecf20Sopenharmony_ci 2518c2ecf20Sopenharmony_ci /* Change the page encryption mask. */ 2528c2ecf20Sopenharmony_ci new_pte = pfn_pte(pfn, new_prot); 2538c2ecf20Sopenharmony_ci set_pte_atomic(kpte, new_pte); 2548c2ecf20Sopenharmony_ci} 2558c2ecf20Sopenharmony_ci 2568c2ecf20Sopenharmony_cistatic int __init early_set_memory_enc_dec(unsigned long vaddr, 2578c2ecf20Sopenharmony_ci unsigned long size, bool enc) 2588c2ecf20Sopenharmony_ci{ 2598c2ecf20Sopenharmony_ci unsigned long vaddr_end, vaddr_next; 2608c2ecf20Sopenharmony_ci unsigned long psize, pmask; 2618c2ecf20Sopenharmony_ci int split_page_size_mask; 2628c2ecf20Sopenharmony_ci int level, ret; 2638c2ecf20Sopenharmony_ci pte_t *kpte; 2648c2ecf20Sopenharmony_ci 2658c2ecf20Sopenharmony_ci vaddr_next = vaddr; 2668c2ecf20Sopenharmony_ci vaddr_end = vaddr + size; 2678c2ecf20Sopenharmony_ci 2688c2ecf20Sopenharmony_ci for (; vaddr < vaddr_end; vaddr = vaddr_next) { 2698c2ecf20Sopenharmony_ci kpte = lookup_address(vaddr, &level); 2708c2ecf20Sopenharmony_ci if (!kpte || pte_none(*kpte)) { 2718c2ecf20Sopenharmony_ci ret = 1; 2728c2ecf20Sopenharmony_ci goto out; 2738c2ecf20Sopenharmony_ci } 2748c2ecf20Sopenharmony_ci 2758c2ecf20Sopenharmony_ci if (level == PG_LEVEL_4K) { 2768c2ecf20Sopenharmony_ci __set_clr_pte_enc(kpte, level, enc); 2778c2ecf20Sopenharmony_ci vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE; 2788c2ecf20Sopenharmony_ci continue; 2798c2ecf20Sopenharmony_ci } 2808c2ecf20Sopenharmony_ci 2818c2ecf20Sopenharmony_ci psize = page_level_size(level); 2828c2ecf20Sopenharmony_ci pmask = page_level_mask(level); 2838c2ecf20Sopenharmony_ci 2848c2ecf20Sopenharmony_ci /* 2858c2ecf20Sopenharmony_ci * Check whether we can change the large page in one go. 2868c2ecf20Sopenharmony_ci * We request a split when the address is not aligned and 2878c2ecf20Sopenharmony_ci * the number of pages to set/clear encryption bit is smaller 2888c2ecf20Sopenharmony_ci * than the number of pages in the large page. 2898c2ecf20Sopenharmony_ci */ 2908c2ecf20Sopenharmony_ci if (vaddr == (vaddr & pmask) && 2918c2ecf20Sopenharmony_ci ((vaddr_end - vaddr) >= psize)) { 2928c2ecf20Sopenharmony_ci __set_clr_pte_enc(kpte, level, enc); 2938c2ecf20Sopenharmony_ci vaddr_next = (vaddr & pmask) + psize; 2948c2ecf20Sopenharmony_ci continue; 2958c2ecf20Sopenharmony_ci } 2968c2ecf20Sopenharmony_ci 2978c2ecf20Sopenharmony_ci /* 2988c2ecf20Sopenharmony_ci * The virtual address is part of a larger page, create the next 2998c2ecf20Sopenharmony_ci * level page table mapping (4K or 2M). If it is part of a 2M 3008c2ecf20Sopenharmony_ci * page then we request a split of the large page into 4K 3018c2ecf20Sopenharmony_ci * chunks. A 1GB large page is split into 2M pages, resp. 3028c2ecf20Sopenharmony_ci */ 3038c2ecf20Sopenharmony_ci if (level == PG_LEVEL_2M) 3048c2ecf20Sopenharmony_ci split_page_size_mask = 0; 3058c2ecf20Sopenharmony_ci else 3068c2ecf20Sopenharmony_ci split_page_size_mask = 1 << PG_LEVEL_2M; 3078c2ecf20Sopenharmony_ci 3088c2ecf20Sopenharmony_ci /* 3098c2ecf20Sopenharmony_ci * kernel_physical_mapping_change() does not flush the TLBs, so 3108c2ecf20Sopenharmony_ci * a TLB flush is required after we exit from the for loop. 3118c2ecf20Sopenharmony_ci */ 3128c2ecf20Sopenharmony_ci kernel_physical_mapping_change(__pa(vaddr & pmask), 3138c2ecf20Sopenharmony_ci __pa((vaddr_end & pmask) + psize), 3148c2ecf20Sopenharmony_ci split_page_size_mask); 3158c2ecf20Sopenharmony_ci } 3168c2ecf20Sopenharmony_ci 3178c2ecf20Sopenharmony_ci ret = 0; 3188c2ecf20Sopenharmony_ci 3198c2ecf20Sopenharmony_ciout: 3208c2ecf20Sopenharmony_ci __flush_tlb_all(); 3218c2ecf20Sopenharmony_ci return ret; 3228c2ecf20Sopenharmony_ci} 3238c2ecf20Sopenharmony_ci 3248c2ecf20Sopenharmony_ciint __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size) 3258c2ecf20Sopenharmony_ci{ 3268c2ecf20Sopenharmony_ci return early_set_memory_enc_dec(vaddr, size, false); 3278c2ecf20Sopenharmony_ci} 3288c2ecf20Sopenharmony_ci 3298c2ecf20Sopenharmony_ciint __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size) 3308c2ecf20Sopenharmony_ci{ 3318c2ecf20Sopenharmony_ci return early_set_memory_enc_dec(vaddr, size, true); 3328c2ecf20Sopenharmony_ci} 3338c2ecf20Sopenharmony_ci 3348c2ecf20Sopenharmony_ci/* 3358c2ecf20Sopenharmony_ci * SME and SEV are very similar but they are not the same, so there are 3368c2ecf20Sopenharmony_ci * times that the kernel will need to distinguish between SME and SEV. The 3378c2ecf20Sopenharmony_ci * sme_active() and sev_active() functions are used for this. When a 3388c2ecf20Sopenharmony_ci * distinction isn't needed, the mem_encrypt_active() function can be used. 3398c2ecf20Sopenharmony_ci * 3408c2ecf20Sopenharmony_ci * The trampoline code is a good example for this requirement. Before 3418c2ecf20Sopenharmony_ci * paging is activated, SME will access all memory as decrypted, but SEV 3428c2ecf20Sopenharmony_ci * will access all memory as encrypted. So, when APs are being brought 3438c2ecf20Sopenharmony_ci * up under SME the trampoline area cannot be encrypted, whereas under SEV 3448c2ecf20Sopenharmony_ci * the trampoline area must be encrypted. 3458c2ecf20Sopenharmony_ci */ 3468c2ecf20Sopenharmony_cibool sme_active(void) 3478c2ecf20Sopenharmony_ci{ 3488c2ecf20Sopenharmony_ci return sme_me_mask && !sev_enabled; 3498c2ecf20Sopenharmony_ci} 3508c2ecf20Sopenharmony_ci 3518c2ecf20Sopenharmony_cibool sev_active(void) 3528c2ecf20Sopenharmony_ci{ 3538c2ecf20Sopenharmony_ci return sev_status & MSR_AMD64_SEV_ENABLED; 3548c2ecf20Sopenharmony_ci} 3558c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(sev_active); 3568c2ecf20Sopenharmony_ci 3578c2ecf20Sopenharmony_ci/* Needs to be called from non-instrumentable code */ 3588c2ecf20Sopenharmony_cibool noinstr sev_es_active(void) 3598c2ecf20Sopenharmony_ci{ 3608c2ecf20Sopenharmony_ci return sev_status & MSR_AMD64_SEV_ES_ENABLED; 3618c2ecf20Sopenharmony_ci} 3628c2ecf20Sopenharmony_ci 3638c2ecf20Sopenharmony_ci/* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */ 3648c2ecf20Sopenharmony_cibool force_dma_unencrypted(struct device *dev) 3658c2ecf20Sopenharmony_ci{ 3668c2ecf20Sopenharmony_ci /* 3678c2ecf20Sopenharmony_ci * For SEV, all DMA must be to unencrypted addresses. 3688c2ecf20Sopenharmony_ci */ 3698c2ecf20Sopenharmony_ci if (sev_active()) 3708c2ecf20Sopenharmony_ci return true; 3718c2ecf20Sopenharmony_ci 3728c2ecf20Sopenharmony_ci /* 3738c2ecf20Sopenharmony_ci * For SME, all DMA must be to unencrypted addresses if the 3748c2ecf20Sopenharmony_ci * device does not support DMA to addresses that include the 3758c2ecf20Sopenharmony_ci * encryption mask. 3768c2ecf20Sopenharmony_ci */ 3778c2ecf20Sopenharmony_ci if (sme_active()) { 3788c2ecf20Sopenharmony_ci u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask)); 3798c2ecf20Sopenharmony_ci u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask, 3808c2ecf20Sopenharmony_ci dev->bus_dma_limit); 3818c2ecf20Sopenharmony_ci 3828c2ecf20Sopenharmony_ci if (dma_dev_mask <= dma_enc_mask) 3838c2ecf20Sopenharmony_ci return true; 3848c2ecf20Sopenharmony_ci } 3858c2ecf20Sopenharmony_ci 3868c2ecf20Sopenharmony_ci return false; 3878c2ecf20Sopenharmony_ci} 3888c2ecf20Sopenharmony_ci 3898c2ecf20Sopenharmony_civoid __init mem_encrypt_free_decrypted_mem(void) 3908c2ecf20Sopenharmony_ci{ 3918c2ecf20Sopenharmony_ci unsigned long vaddr, vaddr_end, npages; 3928c2ecf20Sopenharmony_ci int r; 3938c2ecf20Sopenharmony_ci 3948c2ecf20Sopenharmony_ci vaddr = (unsigned long)__start_bss_decrypted_unused; 3958c2ecf20Sopenharmony_ci vaddr_end = (unsigned long)__end_bss_decrypted; 3968c2ecf20Sopenharmony_ci npages = (vaddr_end - vaddr) >> PAGE_SHIFT; 3978c2ecf20Sopenharmony_ci 3988c2ecf20Sopenharmony_ci /* 3998c2ecf20Sopenharmony_ci * The unused memory range was mapped decrypted, change the encryption 4008c2ecf20Sopenharmony_ci * attribute from decrypted to encrypted before freeing it. 4018c2ecf20Sopenharmony_ci */ 4028c2ecf20Sopenharmony_ci if (mem_encrypt_active()) { 4038c2ecf20Sopenharmony_ci r = set_memory_encrypted(vaddr, npages); 4048c2ecf20Sopenharmony_ci if (r) { 4058c2ecf20Sopenharmony_ci pr_warn("failed to free unused decrypted pages\n"); 4068c2ecf20Sopenharmony_ci return; 4078c2ecf20Sopenharmony_ci } 4088c2ecf20Sopenharmony_ci } 4098c2ecf20Sopenharmony_ci 4108c2ecf20Sopenharmony_ci free_init_pages("unused decrypted", vaddr, vaddr_end); 4118c2ecf20Sopenharmony_ci} 4128c2ecf20Sopenharmony_ci 4138c2ecf20Sopenharmony_cistatic void print_mem_encrypt_feature_info(void) 4148c2ecf20Sopenharmony_ci{ 4158c2ecf20Sopenharmony_ci pr_info("AMD Memory Encryption Features active:"); 4168c2ecf20Sopenharmony_ci 4178c2ecf20Sopenharmony_ci /* Secure Memory Encryption */ 4188c2ecf20Sopenharmony_ci if (sme_active()) { 4198c2ecf20Sopenharmony_ci /* 4208c2ecf20Sopenharmony_ci * SME is mutually exclusive with any of the SEV 4218c2ecf20Sopenharmony_ci * features below. 4228c2ecf20Sopenharmony_ci */ 4238c2ecf20Sopenharmony_ci pr_cont(" SME\n"); 4248c2ecf20Sopenharmony_ci return; 4258c2ecf20Sopenharmony_ci } 4268c2ecf20Sopenharmony_ci 4278c2ecf20Sopenharmony_ci /* Secure Encrypted Virtualization */ 4288c2ecf20Sopenharmony_ci if (sev_active()) 4298c2ecf20Sopenharmony_ci pr_cont(" SEV"); 4308c2ecf20Sopenharmony_ci 4318c2ecf20Sopenharmony_ci /* Encrypted Register State */ 4328c2ecf20Sopenharmony_ci if (sev_es_active()) 4338c2ecf20Sopenharmony_ci pr_cont(" SEV-ES"); 4348c2ecf20Sopenharmony_ci 4358c2ecf20Sopenharmony_ci pr_cont("\n"); 4368c2ecf20Sopenharmony_ci} 4378c2ecf20Sopenharmony_ci 4388c2ecf20Sopenharmony_ci/* Architecture __weak replacement functions */ 4398c2ecf20Sopenharmony_civoid __init mem_encrypt_init(void) 4408c2ecf20Sopenharmony_ci{ 4418c2ecf20Sopenharmony_ci if (!sme_me_mask) 4428c2ecf20Sopenharmony_ci return; 4438c2ecf20Sopenharmony_ci 4448c2ecf20Sopenharmony_ci /* Call into SWIOTLB to update the SWIOTLB DMA buffers */ 4458c2ecf20Sopenharmony_ci swiotlb_update_mem_attributes(); 4468c2ecf20Sopenharmony_ci 4478c2ecf20Sopenharmony_ci /* 4488c2ecf20Sopenharmony_ci * With SEV, we need to unroll the rep string I/O instructions. 4498c2ecf20Sopenharmony_ci */ 4508c2ecf20Sopenharmony_ci if (sev_active()) 4518c2ecf20Sopenharmony_ci static_branch_enable(&sev_enable_key); 4528c2ecf20Sopenharmony_ci 4538c2ecf20Sopenharmony_ci print_mem_encrypt_feature_info(); 4548c2ecf20Sopenharmony_ci} 4558c2ecf20Sopenharmony_ci 456