18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * AMD Memory Encryption Support
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci * Copyright (C) 2016 Advanced Micro Devices, Inc.
68c2ecf20Sopenharmony_ci *
78c2ecf20Sopenharmony_ci * Author: Tom Lendacky <thomas.lendacky@amd.com>
88c2ecf20Sopenharmony_ci */
98c2ecf20Sopenharmony_ci
108c2ecf20Sopenharmony_ci#define DISABLE_BRANCH_PROFILING
118c2ecf20Sopenharmony_ci
128c2ecf20Sopenharmony_ci#include <linux/linkage.h>
138c2ecf20Sopenharmony_ci#include <linux/init.h>
148c2ecf20Sopenharmony_ci#include <linux/mm.h>
158c2ecf20Sopenharmony_ci#include <linux/dma-direct.h>
168c2ecf20Sopenharmony_ci#include <linux/swiotlb.h>
178c2ecf20Sopenharmony_ci#include <linux/mem_encrypt.h>
188c2ecf20Sopenharmony_ci#include <linux/device.h>
198c2ecf20Sopenharmony_ci#include <linux/kernel.h>
208c2ecf20Sopenharmony_ci#include <linux/bitops.h>
218c2ecf20Sopenharmony_ci#include <linux/dma-mapping.h>
228c2ecf20Sopenharmony_ci#include <linux/cc_platform.h>
238c2ecf20Sopenharmony_ci
248c2ecf20Sopenharmony_ci#include <asm/tlbflush.h>
258c2ecf20Sopenharmony_ci#include <asm/fixmap.h>
268c2ecf20Sopenharmony_ci#include <asm/setup.h>
278c2ecf20Sopenharmony_ci#include <asm/bootparam.h>
288c2ecf20Sopenharmony_ci#include <asm/set_memory.h>
298c2ecf20Sopenharmony_ci#include <asm/cacheflush.h>
308c2ecf20Sopenharmony_ci#include <asm/processor-flags.h>
318c2ecf20Sopenharmony_ci#include <asm/msr.h>
328c2ecf20Sopenharmony_ci#include <asm/cmdline.h>
338c2ecf20Sopenharmony_ci
348c2ecf20Sopenharmony_ci#include "mm_internal.h"
358c2ecf20Sopenharmony_ci
368c2ecf20Sopenharmony_ci/*
378c2ecf20Sopenharmony_ci * Since SME related variables are set early in the boot process they must
388c2ecf20Sopenharmony_ci * reside in the .data section so as not to be zeroed out when the .bss
398c2ecf20Sopenharmony_ci * section is later cleared.
408c2ecf20Sopenharmony_ci */
418c2ecf20Sopenharmony_ciu64 sme_me_mask __section(".data") = 0;
428c2ecf20Sopenharmony_ciu64 sev_status __section(".data") = 0;
438c2ecf20Sopenharmony_ciu64 sev_check_data __section(".data") = 0;
448c2ecf20Sopenharmony_ciEXPORT_SYMBOL(sme_me_mask);
458c2ecf20Sopenharmony_ciDEFINE_STATIC_KEY_FALSE(sev_enable_key);
468c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(sev_enable_key);
478c2ecf20Sopenharmony_ci
488c2ecf20Sopenharmony_cibool sev_enabled __section(".data");
498c2ecf20Sopenharmony_ci
508c2ecf20Sopenharmony_ci/* Buffer used for early in-place encryption by BSP, no locking needed */
518c2ecf20Sopenharmony_cistatic char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE);
528c2ecf20Sopenharmony_ci
538c2ecf20Sopenharmony_ci/*
548c2ecf20Sopenharmony_ci * This routine does not change the underlying encryption setting of the
558c2ecf20Sopenharmony_ci * page(s) that map this memory. It assumes that eventually the memory is
568c2ecf20Sopenharmony_ci * meant to be accessed as either encrypted or decrypted but the contents
578c2ecf20Sopenharmony_ci * are currently not in the desired state.
588c2ecf20Sopenharmony_ci *
598c2ecf20Sopenharmony_ci * This routine follows the steps outlined in the AMD64 Architecture
608c2ecf20Sopenharmony_ci * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
618c2ecf20Sopenharmony_ci */
628c2ecf20Sopenharmony_cistatic void __init __sme_early_enc_dec(resource_size_t paddr,
638c2ecf20Sopenharmony_ci				       unsigned long size, bool enc)
648c2ecf20Sopenharmony_ci{
658c2ecf20Sopenharmony_ci	void *src, *dst;
668c2ecf20Sopenharmony_ci	size_t len;
678c2ecf20Sopenharmony_ci
688c2ecf20Sopenharmony_ci	if (!sme_me_mask)
698c2ecf20Sopenharmony_ci		return;
708c2ecf20Sopenharmony_ci
718c2ecf20Sopenharmony_ci	wbinvd();
728c2ecf20Sopenharmony_ci
738c2ecf20Sopenharmony_ci	/*
748c2ecf20Sopenharmony_ci	 * There are limited number of early mapping slots, so map (at most)
758c2ecf20Sopenharmony_ci	 * one page at time.
768c2ecf20Sopenharmony_ci	 */
778c2ecf20Sopenharmony_ci	while (size) {
788c2ecf20Sopenharmony_ci		len = min_t(size_t, sizeof(sme_early_buffer), size);
798c2ecf20Sopenharmony_ci
808c2ecf20Sopenharmony_ci		/*
818c2ecf20Sopenharmony_ci		 * Create mappings for the current and desired format of
828c2ecf20Sopenharmony_ci		 * the memory. Use a write-protected mapping for the source.
838c2ecf20Sopenharmony_ci		 */
848c2ecf20Sopenharmony_ci		src = enc ? early_memremap_decrypted_wp(paddr, len) :
858c2ecf20Sopenharmony_ci			    early_memremap_encrypted_wp(paddr, len);
868c2ecf20Sopenharmony_ci
878c2ecf20Sopenharmony_ci		dst = enc ? early_memremap_encrypted(paddr, len) :
888c2ecf20Sopenharmony_ci			    early_memremap_decrypted(paddr, len);
898c2ecf20Sopenharmony_ci
908c2ecf20Sopenharmony_ci		/*
918c2ecf20Sopenharmony_ci		 * If a mapping can't be obtained to perform the operation,
928c2ecf20Sopenharmony_ci		 * then eventual access of that area in the desired mode
938c2ecf20Sopenharmony_ci		 * will cause a crash.
948c2ecf20Sopenharmony_ci		 */
958c2ecf20Sopenharmony_ci		BUG_ON(!src || !dst);
968c2ecf20Sopenharmony_ci
978c2ecf20Sopenharmony_ci		/*
988c2ecf20Sopenharmony_ci		 * Use a temporary buffer, of cache-line multiple size, to
998c2ecf20Sopenharmony_ci		 * avoid data corruption as documented in the APM.
1008c2ecf20Sopenharmony_ci		 */
1018c2ecf20Sopenharmony_ci		memcpy(sme_early_buffer, src, len);
1028c2ecf20Sopenharmony_ci		memcpy(dst, sme_early_buffer, len);
1038c2ecf20Sopenharmony_ci
1048c2ecf20Sopenharmony_ci		early_memunmap(dst, len);
1058c2ecf20Sopenharmony_ci		early_memunmap(src, len);
1068c2ecf20Sopenharmony_ci
1078c2ecf20Sopenharmony_ci		paddr += len;
1088c2ecf20Sopenharmony_ci		size -= len;
1098c2ecf20Sopenharmony_ci	}
1108c2ecf20Sopenharmony_ci}
1118c2ecf20Sopenharmony_ci
1128c2ecf20Sopenharmony_civoid __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
1138c2ecf20Sopenharmony_ci{
1148c2ecf20Sopenharmony_ci	__sme_early_enc_dec(paddr, size, true);
1158c2ecf20Sopenharmony_ci}
1168c2ecf20Sopenharmony_ci
1178c2ecf20Sopenharmony_civoid __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
1188c2ecf20Sopenharmony_ci{
1198c2ecf20Sopenharmony_ci	__sme_early_enc_dec(paddr, size, false);
1208c2ecf20Sopenharmony_ci}
1218c2ecf20Sopenharmony_ci
1228c2ecf20Sopenharmony_cistatic void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
1238c2ecf20Sopenharmony_ci					     bool map)
1248c2ecf20Sopenharmony_ci{
1258c2ecf20Sopenharmony_ci	unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
1268c2ecf20Sopenharmony_ci	pmdval_t pmd_flags, pmd;
1278c2ecf20Sopenharmony_ci
1288c2ecf20Sopenharmony_ci	/* Use early_pmd_flags but remove the encryption mask */
1298c2ecf20Sopenharmony_ci	pmd_flags = __sme_clr(early_pmd_flags);
1308c2ecf20Sopenharmony_ci
1318c2ecf20Sopenharmony_ci	do {
1328c2ecf20Sopenharmony_ci		pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
1338c2ecf20Sopenharmony_ci		__early_make_pgtable((unsigned long)vaddr, pmd);
1348c2ecf20Sopenharmony_ci
1358c2ecf20Sopenharmony_ci		vaddr += PMD_SIZE;
1368c2ecf20Sopenharmony_ci		paddr += PMD_SIZE;
1378c2ecf20Sopenharmony_ci		size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
1388c2ecf20Sopenharmony_ci	} while (size);
1398c2ecf20Sopenharmony_ci
1408c2ecf20Sopenharmony_ci	flush_tlb_local();
1418c2ecf20Sopenharmony_ci}
1428c2ecf20Sopenharmony_ci
1438c2ecf20Sopenharmony_civoid __init sme_unmap_bootdata(char *real_mode_data)
1448c2ecf20Sopenharmony_ci{
1458c2ecf20Sopenharmony_ci	struct boot_params *boot_data;
1468c2ecf20Sopenharmony_ci	unsigned long cmdline_paddr;
1478c2ecf20Sopenharmony_ci
1488c2ecf20Sopenharmony_ci	if (!sme_active())
1498c2ecf20Sopenharmony_ci		return;
1508c2ecf20Sopenharmony_ci
1518c2ecf20Sopenharmony_ci	/* Get the command line address before unmapping the real_mode_data */
1528c2ecf20Sopenharmony_ci	boot_data = (struct boot_params *)real_mode_data;
1538c2ecf20Sopenharmony_ci	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
1548c2ecf20Sopenharmony_ci
1558c2ecf20Sopenharmony_ci	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
1568c2ecf20Sopenharmony_ci
1578c2ecf20Sopenharmony_ci	if (!cmdline_paddr)
1588c2ecf20Sopenharmony_ci		return;
1598c2ecf20Sopenharmony_ci
1608c2ecf20Sopenharmony_ci	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
1618c2ecf20Sopenharmony_ci}
1628c2ecf20Sopenharmony_ci
1638c2ecf20Sopenharmony_civoid __init sme_map_bootdata(char *real_mode_data)
1648c2ecf20Sopenharmony_ci{
1658c2ecf20Sopenharmony_ci	struct boot_params *boot_data;
1668c2ecf20Sopenharmony_ci	unsigned long cmdline_paddr;
1678c2ecf20Sopenharmony_ci
1688c2ecf20Sopenharmony_ci	if (!sme_active())
1698c2ecf20Sopenharmony_ci		return;
1708c2ecf20Sopenharmony_ci
1718c2ecf20Sopenharmony_ci	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
1728c2ecf20Sopenharmony_ci
1738c2ecf20Sopenharmony_ci	/* Get the command line address after mapping the real_mode_data */
1748c2ecf20Sopenharmony_ci	boot_data = (struct boot_params *)real_mode_data;
1758c2ecf20Sopenharmony_ci	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
1768c2ecf20Sopenharmony_ci
1778c2ecf20Sopenharmony_ci	if (!cmdline_paddr)
1788c2ecf20Sopenharmony_ci		return;
1798c2ecf20Sopenharmony_ci
1808c2ecf20Sopenharmony_ci	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
1818c2ecf20Sopenharmony_ci}
1828c2ecf20Sopenharmony_ci
1838c2ecf20Sopenharmony_civoid __init sme_early_init(void)
1848c2ecf20Sopenharmony_ci{
1858c2ecf20Sopenharmony_ci	unsigned int i;
1868c2ecf20Sopenharmony_ci
1878c2ecf20Sopenharmony_ci	if (!sme_me_mask)
1888c2ecf20Sopenharmony_ci		return;
1898c2ecf20Sopenharmony_ci
1908c2ecf20Sopenharmony_ci	early_pmd_flags = __sme_set(early_pmd_flags);
1918c2ecf20Sopenharmony_ci
1928c2ecf20Sopenharmony_ci	__supported_pte_mask = __sme_set(__supported_pte_mask);
1938c2ecf20Sopenharmony_ci
1948c2ecf20Sopenharmony_ci	/* Update the protection map with memory encryption mask */
1958c2ecf20Sopenharmony_ci	for (i = 0; i < ARRAY_SIZE(protection_map); i++)
1968c2ecf20Sopenharmony_ci		protection_map[i] = pgprot_encrypted(protection_map[i]);
1978c2ecf20Sopenharmony_ci
1988c2ecf20Sopenharmony_ci	if (sev_active())
1998c2ecf20Sopenharmony_ci		swiotlb_force = SWIOTLB_FORCE;
2008c2ecf20Sopenharmony_ci}
2018c2ecf20Sopenharmony_ci
2028c2ecf20Sopenharmony_cistatic void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
2038c2ecf20Sopenharmony_ci{
2048c2ecf20Sopenharmony_ci	pgprot_t old_prot, new_prot;
2058c2ecf20Sopenharmony_ci	unsigned long pfn, pa, size;
2068c2ecf20Sopenharmony_ci	pte_t new_pte;
2078c2ecf20Sopenharmony_ci
2088c2ecf20Sopenharmony_ci	switch (level) {
2098c2ecf20Sopenharmony_ci	case PG_LEVEL_4K:
2108c2ecf20Sopenharmony_ci		pfn = pte_pfn(*kpte);
2118c2ecf20Sopenharmony_ci		old_prot = pte_pgprot(*kpte);
2128c2ecf20Sopenharmony_ci		break;
2138c2ecf20Sopenharmony_ci	case PG_LEVEL_2M:
2148c2ecf20Sopenharmony_ci		pfn = pmd_pfn(*(pmd_t *)kpte);
2158c2ecf20Sopenharmony_ci		old_prot = pmd_pgprot(*(pmd_t *)kpte);
2168c2ecf20Sopenharmony_ci		break;
2178c2ecf20Sopenharmony_ci	case PG_LEVEL_1G:
2188c2ecf20Sopenharmony_ci		pfn = pud_pfn(*(pud_t *)kpte);
2198c2ecf20Sopenharmony_ci		old_prot = pud_pgprot(*(pud_t *)kpte);
2208c2ecf20Sopenharmony_ci		break;
2218c2ecf20Sopenharmony_ci	default:
2228c2ecf20Sopenharmony_ci		return;
2238c2ecf20Sopenharmony_ci	}
2248c2ecf20Sopenharmony_ci
2258c2ecf20Sopenharmony_ci	new_prot = old_prot;
2268c2ecf20Sopenharmony_ci	if (enc)
2278c2ecf20Sopenharmony_ci		pgprot_val(new_prot) |= _PAGE_ENC;
2288c2ecf20Sopenharmony_ci	else
2298c2ecf20Sopenharmony_ci		pgprot_val(new_prot) &= ~_PAGE_ENC;
2308c2ecf20Sopenharmony_ci
2318c2ecf20Sopenharmony_ci	/* If prot is same then do nothing. */
2328c2ecf20Sopenharmony_ci	if (pgprot_val(old_prot) == pgprot_val(new_prot))
2338c2ecf20Sopenharmony_ci		return;
2348c2ecf20Sopenharmony_ci
2358c2ecf20Sopenharmony_ci	pa = pfn << PAGE_SHIFT;
2368c2ecf20Sopenharmony_ci	size = page_level_size(level);
2378c2ecf20Sopenharmony_ci
2388c2ecf20Sopenharmony_ci	/*
2398c2ecf20Sopenharmony_ci	 * We are going to perform in-place en-/decryption and change the
2408c2ecf20Sopenharmony_ci	 * physical page attribute from C=1 to C=0 or vice versa. Flush the
2418c2ecf20Sopenharmony_ci	 * caches to ensure that data gets accessed with the correct C-bit.
2428c2ecf20Sopenharmony_ci	 */
2438c2ecf20Sopenharmony_ci	clflush_cache_range(__va(pa), size);
2448c2ecf20Sopenharmony_ci
2458c2ecf20Sopenharmony_ci	/* Encrypt/decrypt the contents in-place */
2468c2ecf20Sopenharmony_ci	if (enc)
2478c2ecf20Sopenharmony_ci		sme_early_encrypt(pa, size);
2488c2ecf20Sopenharmony_ci	else
2498c2ecf20Sopenharmony_ci		sme_early_decrypt(pa, size);
2508c2ecf20Sopenharmony_ci
2518c2ecf20Sopenharmony_ci	/* Change the page encryption mask. */
2528c2ecf20Sopenharmony_ci	new_pte = pfn_pte(pfn, new_prot);
2538c2ecf20Sopenharmony_ci	set_pte_atomic(kpte, new_pte);
2548c2ecf20Sopenharmony_ci}
2558c2ecf20Sopenharmony_ci
2568c2ecf20Sopenharmony_cistatic int __init early_set_memory_enc_dec(unsigned long vaddr,
2578c2ecf20Sopenharmony_ci					   unsigned long size, bool enc)
2588c2ecf20Sopenharmony_ci{
2598c2ecf20Sopenharmony_ci	unsigned long vaddr_end, vaddr_next;
2608c2ecf20Sopenharmony_ci	unsigned long psize, pmask;
2618c2ecf20Sopenharmony_ci	int split_page_size_mask;
2628c2ecf20Sopenharmony_ci	int level, ret;
2638c2ecf20Sopenharmony_ci	pte_t *kpte;
2648c2ecf20Sopenharmony_ci
2658c2ecf20Sopenharmony_ci	vaddr_next = vaddr;
2668c2ecf20Sopenharmony_ci	vaddr_end = vaddr + size;
2678c2ecf20Sopenharmony_ci
2688c2ecf20Sopenharmony_ci	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
2698c2ecf20Sopenharmony_ci		kpte = lookup_address(vaddr, &level);
2708c2ecf20Sopenharmony_ci		if (!kpte || pte_none(*kpte)) {
2718c2ecf20Sopenharmony_ci			ret = 1;
2728c2ecf20Sopenharmony_ci			goto out;
2738c2ecf20Sopenharmony_ci		}
2748c2ecf20Sopenharmony_ci
2758c2ecf20Sopenharmony_ci		if (level == PG_LEVEL_4K) {
2768c2ecf20Sopenharmony_ci			__set_clr_pte_enc(kpte, level, enc);
2778c2ecf20Sopenharmony_ci			vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
2788c2ecf20Sopenharmony_ci			continue;
2798c2ecf20Sopenharmony_ci		}
2808c2ecf20Sopenharmony_ci
2818c2ecf20Sopenharmony_ci		psize = page_level_size(level);
2828c2ecf20Sopenharmony_ci		pmask = page_level_mask(level);
2838c2ecf20Sopenharmony_ci
2848c2ecf20Sopenharmony_ci		/*
2858c2ecf20Sopenharmony_ci		 * Check whether we can change the large page in one go.
2868c2ecf20Sopenharmony_ci		 * We request a split when the address is not aligned and
2878c2ecf20Sopenharmony_ci		 * the number of pages to set/clear encryption bit is smaller
2888c2ecf20Sopenharmony_ci		 * than the number of pages in the large page.
2898c2ecf20Sopenharmony_ci		 */
2908c2ecf20Sopenharmony_ci		if (vaddr == (vaddr & pmask) &&
2918c2ecf20Sopenharmony_ci		    ((vaddr_end - vaddr) >= psize)) {
2928c2ecf20Sopenharmony_ci			__set_clr_pte_enc(kpte, level, enc);
2938c2ecf20Sopenharmony_ci			vaddr_next = (vaddr & pmask) + psize;
2948c2ecf20Sopenharmony_ci			continue;
2958c2ecf20Sopenharmony_ci		}
2968c2ecf20Sopenharmony_ci
2978c2ecf20Sopenharmony_ci		/*
2988c2ecf20Sopenharmony_ci		 * The virtual address is part of a larger page, create the next
2998c2ecf20Sopenharmony_ci		 * level page table mapping (4K or 2M). If it is part of a 2M
3008c2ecf20Sopenharmony_ci		 * page then we request a split of the large page into 4K
3018c2ecf20Sopenharmony_ci		 * chunks. A 1GB large page is split into 2M pages, resp.
3028c2ecf20Sopenharmony_ci		 */
3038c2ecf20Sopenharmony_ci		if (level == PG_LEVEL_2M)
3048c2ecf20Sopenharmony_ci			split_page_size_mask = 0;
3058c2ecf20Sopenharmony_ci		else
3068c2ecf20Sopenharmony_ci			split_page_size_mask = 1 << PG_LEVEL_2M;
3078c2ecf20Sopenharmony_ci
3088c2ecf20Sopenharmony_ci		/*
3098c2ecf20Sopenharmony_ci		 * kernel_physical_mapping_change() does not flush the TLBs, so
3108c2ecf20Sopenharmony_ci		 * a TLB flush is required after we exit from the for loop.
3118c2ecf20Sopenharmony_ci		 */
3128c2ecf20Sopenharmony_ci		kernel_physical_mapping_change(__pa(vaddr & pmask),
3138c2ecf20Sopenharmony_ci					       __pa((vaddr_end & pmask) + psize),
3148c2ecf20Sopenharmony_ci					       split_page_size_mask);
3158c2ecf20Sopenharmony_ci	}
3168c2ecf20Sopenharmony_ci
3178c2ecf20Sopenharmony_ci	ret = 0;
3188c2ecf20Sopenharmony_ci
3198c2ecf20Sopenharmony_ciout:
3208c2ecf20Sopenharmony_ci	__flush_tlb_all();
3218c2ecf20Sopenharmony_ci	return ret;
3228c2ecf20Sopenharmony_ci}
3238c2ecf20Sopenharmony_ci
3248c2ecf20Sopenharmony_ciint __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
3258c2ecf20Sopenharmony_ci{
3268c2ecf20Sopenharmony_ci	return early_set_memory_enc_dec(vaddr, size, false);
3278c2ecf20Sopenharmony_ci}
3288c2ecf20Sopenharmony_ci
3298c2ecf20Sopenharmony_ciint __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
3308c2ecf20Sopenharmony_ci{
3318c2ecf20Sopenharmony_ci	return early_set_memory_enc_dec(vaddr, size, true);
3328c2ecf20Sopenharmony_ci}
3338c2ecf20Sopenharmony_ci
3348c2ecf20Sopenharmony_ci/*
3358c2ecf20Sopenharmony_ci * SME and SEV are very similar but they are not the same, so there are
3368c2ecf20Sopenharmony_ci * times that the kernel will need to distinguish between SME and SEV. The
3378c2ecf20Sopenharmony_ci * sme_active() and sev_active() functions are used for this.  When a
3388c2ecf20Sopenharmony_ci * distinction isn't needed, the mem_encrypt_active() function can be used.
3398c2ecf20Sopenharmony_ci *
3408c2ecf20Sopenharmony_ci * The trampoline code is a good example for this requirement.  Before
3418c2ecf20Sopenharmony_ci * paging is activated, SME will access all memory as decrypted, but SEV
3428c2ecf20Sopenharmony_ci * will access all memory as encrypted.  So, when APs are being brought
3438c2ecf20Sopenharmony_ci * up under SME the trampoline area cannot be encrypted, whereas under SEV
3448c2ecf20Sopenharmony_ci * the trampoline area must be encrypted.
3458c2ecf20Sopenharmony_ci */
3468c2ecf20Sopenharmony_cibool sme_active(void)
3478c2ecf20Sopenharmony_ci{
3488c2ecf20Sopenharmony_ci	return sme_me_mask && !sev_enabled;
3498c2ecf20Sopenharmony_ci}
3508c2ecf20Sopenharmony_ci
3518c2ecf20Sopenharmony_cibool sev_active(void)
3528c2ecf20Sopenharmony_ci{
3538c2ecf20Sopenharmony_ci	return sev_status & MSR_AMD64_SEV_ENABLED;
3548c2ecf20Sopenharmony_ci}
3558c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(sev_active);
3568c2ecf20Sopenharmony_ci
3578c2ecf20Sopenharmony_ci/* Needs to be called from non-instrumentable code */
3588c2ecf20Sopenharmony_cibool noinstr sev_es_active(void)
3598c2ecf20Sopenharmony_ci{
3608c2ecf20Sopenharmony_ci	return sev_status & MSR_AMD64_SEV_ES_ENABLED;
3618c2ecf20Sopenharmony_ci}
3628c2ecf20Sopenharmony_ci
3638c2ecf20Sopenharmony_ci/* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */
3648c2ecf20Sopenharmony_cibool force_dma_unencrypted(struct device *dev)
3658c2ecf20Sopenharmony_ci{
3668c2ecf20Sopenharmony_ci	/*
3678c2ecf20Sopenharmony_ci	 * For SEV, all DMA must be to unencrypted addresses.
3688c2ecf20Sopenharmony_ci	 */
3698c2ecf20Sopenharmony_ci	if (sev_active())
3708c2ecf20Sopenharmony_ci		return true;
3718c2ecf20Sopenharmony_ci
3728c2ecf20Sopenharmony_ci	/*
3738c2ecf20Sopenharmony_ci	 * For SME, all DMA must be to unencrypted addresses if the
3748c2ecf20Sopenharmony_ci	 * device does not support DMA to addresses that include the
3758c2ecf20Sopenharmony_ci	 * encryption mask.
3768c2ecf20Sopenharmony_ci	 */
3778c2ecf20Sopenharmony_ci	if (sme_active()) {
3788c2ecf20Sopenharmony_ci		u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask));
3798c2ecf20Sopenharmony_ci		u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask,
3808c2ecf20Sopenharmony_ci						dev->bus_dma_limit);
3818c2ecf20Sopenharmony_ci
3828c2ecf20Sopenharmony_ci		if (dma_dev_mask <= dma_enc_mask)
3838c2ecf20Sopenharmony_ci			return true;
3848c2ecf20Sopenharmony_ci	}
3858c2ecf20Sopenharmony_ci
3868c2ecf20Sopenharmony_ci	return false;
3878c2ecf20Sopenharmony_ci}
3888c2ecf20Sopenharmony_ci
3898c2ecf20Sopenharmony_civoid __init mem_encrypt_free_decrypted_mem(void)
3908c2ecf20Sopenharmony_ci{
3918c2ecf20Sopenharmony_ci	unsigned long vaddr, vaddr_end, npages;
3928c2ecf20Sopenharmony_ci	int r;
3938c2ecf20Sopenharmony_ci
3948c2ecf20Sopenharmony_ci	vaddr = (unsigned long)__start_bss_decrypted_unused;
3958c2ecf20Sopenharmony_ci	vaddr_end = (unsigned long)__end_bss_decrypted;
3968c2ecf20Sopenharmony_ci	npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
3978c2ecf20Sopenharmony_ci
3988c2ecf20Sopenharmony_ci	/*
3998c2ecf20Sopenharmony_ci	 * The unused memory range was mapped decrypted, change the encryption
4008c2ecf20Sopenharmony_ci	 * attribute from decrypted to encrypted before freeing it.
4018c2ecf20Sopenharmony_ci	 */
4028c2ecf20Sopenharmony_ci	if (mem_encrypt_active()) {
4038c2ecf20Sopenharmony_ci		r = set_memory_encrypted(vaddr, npages);
4048c2ecf20Sopenharmony_ci		if (r) {
4058c2ecf20Sopenharmony_ci			pr_warn("failed to free unused decrypted pages\n");
4068c2ecf20Sopenharmony_ci			return;
4078c2ecf20Sopenharmony_ci		}
4088c2ecf20Sopenharmony_ci	}
4098c2ecf20Sopenharmony_ci
4108c2ecf20Sopenharmony_ci	free_init_pages("unused decrypted", vaddr, vaddr_end);
4118c2ecf20Sopenharmony_ci}
4128c2ecf20Sopenharmony_ci
4138c2ecf20Sopenharmony_cistatic void print_mem_encrypt_feature_info(void)
4148c2ecf20Sopenharmony_ci{
4158c2ecf20Sopenharmony_ci	pr_info("AMD Memory Encryption Features active:");
4168c2ecf20Sopenharmony_ci
4178c2ecf20Sopenharmony_ci	/* Secure Memory Encryption */
4188c2ecf20Sopenharmony_ci	if (sme_active()) {
4198c2ecf20Sopenharmony_ci		/*
4208c2ecf20Sopenharmony_ci		 * SME is mutually exclusive with any of the SEV
4218c2ecf20Sopenharmony_ci		 * features below.
4228c2ecf20Sopenharmony_ci		 */
4238c2ecf20Sopenharmony_ci		pr_cont(" SME\n");
4248c2ecf20Sopenharmony_ci		return;
4258c2ecf20Sopenharmony_ci	}
4268c2ecf20Sopenharmony_ci
4278c2ecf20Sopenharmony_ci	/* Secure Encrypted Virtualization */
4288c2ecf20Sopenharmony_ci	if (sev_active())
4298c2ecf20Sopenharmony_ci		pr_cont(" SEV");
4308c2ecf20Sopenharmony_ci
4318c2ecf20Sopenharmony_ci	/* Encrypted Register State */
4328c2ecf20Sopenharmony_ci	if (sev_es_active())
4338c2ecf20Sopenharmony_ci		pr_cont(" SEV-ES");
4348c2ecf20Sopenharmony_ci
4358c2ecf20Sopenharmony_ci	pr_cont("\n");
4368c2ecf20Sopenharmony_ci}
4378c2ecf20Sopenharmony_ci
4388c2ecf20Sopenharmony_ci/* Architecture __weak replacement functions */
4398c2ecf20Sopenharmony_civoid __init mem_encrypt_init(void)
4408c2ecf20Sopenharmony_ci{
4418c2ecf20Sopenharmony_ci	if (!sme_me_mask)
4428c2ecf20Sopenharmony_ci		return;
4438c2ecf20Sopenharmony_ci
4448c2ecf20Sopenharmony_ci	/* Call into SWIOTLB to update the SWIOTLB DMA buffers */
4458c2ecf20Sopenharmony_ci	swiotlb_update_mem_attributes();
4468c2ecf20Sopenharmony_ci
4478c2ecf20Sopenharmony_ci	/*
4488c2ecf20Sopenharmony_ci	 * With SEV, we need to unroll the rep string I/O instructions.
4498c2ecf20Sopenharmony_ci	 */
4508c2ecf20Sopenharmony_ci	if (sev_active())
4518c2ecf20Sopenharmony_ci		static_branch_enable(&sev_enable_key);
4528c2ecf20Sopenharmony_ci
4538c2ecf20Sopenharmony_ci	print_mem_encrypt_feature_info();
4548c2ecf20Sopenharmony_ci}
4558c2ecf20Sopenharmony_ci
456