xref: /kernel/linux/linux-5.10/arch/x86/mm/kmmio.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/* Support for MMIO probes.
3 * Benfit many code from kprobes
4 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
5 *     2007 Alexander Eichner
6 *     2008 Pekka Paalanen <pq@iki.fi>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/list.h>
12#include <linux/rculist.h>
13#include <linux/spinlock.h>
14#include <linux/hash.h>
15#include <linux/export.h>
16#include <linux/kernel.h>
17#include <linux/uaccess.h>
18#include <linux/ptrace.h>
19#include <linux/preempt.h>
20#include <linux/percpu.h>
21#include <linux/kdebug.h>
22#include <linux/mutex.h>
23#include <linux/io.h>
24#include <linux/slab.h>
25#include <asm/cacheflush.h>
26#include <asm/tlbflush.h>
27#include <linux/errno.h>
28#include <asm/debugreg.h>
29#include <linux/mmiotrace.h>
30
31#define KMMIO_PAGE_HASH_BITS 4
32#define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
33
34struct kmmio_fault_page {
35	struct list_head list;
36	struct kmmio_fault_page *release_next;
37	unsigned long addr; /* the requested address */
38	pteval_t old_presence; /* page presence prior to arming */
39	bool armed;
40
41	/*
42	 * Number of times this page has been registered as a part
43	 * of a probe. If zero, page is disarmed and this may be freed.
44	 * Used only by writers (RCU) and post_kmmio_handler().
45	 * Protected by kmmio_lock, when linked into kmmio_page_table.
46	 */
47	int count;
48
49	bool scheduled_for_release;
50};
51
52struct kmmio_delayed_release {
53	struct rcu_head rcu;
54	struct kmmio_fault_page *release_list;
55};
56
57struct kmmio_context {
58	struct kmmio_fault_page *fpage;
59	struct kmmio_probe *probe;
60	unsigned long saved_flags;
61	unsigned long addr;
62	int active;
63};
64
65static DEFINE_SPINLOCK(kmmio_lock);
66
67/* Protected by kmmio_lock */
68unsigned int kmmio_count;
69
70/* Read-protected by RCU, write-protected by kmmio_lock. */
71static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
72static LIST_HEAD(kmmio_probes);
73
74static struct list_head *kmmio_page_list(unsigned long addr)
75{
76	unsigned int l;
77	pte_t *pte = lookup_address(addr, &l);
78
79	if (!pte)
80		return NULL;
81	addr &= page_level_mask(l);
82
83	return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)];
84}
85
86/* Accessed per-cpu */
87static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
88
89/*
90 * this is basically a dynamic stabbing problem:
91 * Could use the existing prio tree code or
92 * Possible better implementations:
93 * The Interval Skip List: A Data Structure for Finding All Intervals That
94 * Overlap a Point (might be simple)
95 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
96 */
97/* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
98static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
99{
100	struct kmmio_probe *p;
101	list_for_each_entry_rcu(p, &kmmio_probes, list) {
102		if (addr >= p->addr && addr < (p->addr + p->len))
103			return p;
104	}
105	return NULL;
106}
107
108/* You must be holding RCU read lock. */
109static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr)
110{
111	struct list_head *head;
112	struct kmmio_fault_page *f;
113	unsigned int l;
114	pte_t *pte = lookup_address(addr, &l);
115
116	if (!pte)
117		return NULL;
118	addr &= page_level_mask(l);
119	head = kmmio_page_list(addr);
120	list_for_each_entry_rcu(f, head, list) {
121		if (f->addr == addr)
122			return f;
123	}
124	return NULL;
125}
126
127static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
128{
129	pmd_t new_pmd;
130	pmdval_t v = pmd_val(*pmd);
131	if (clear) {
132		*old = v;
133		new_pmd = pmd_mkinvalid(*pmd);
134	} else {
135		/* Presume this has been called with clear==true previously */
136		new_pmd = __pmd(*old);
137	}
138	set_pmd(pmd, new_pmd);
139}
140
141static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
142{
143	pteval_t v = pte_val(*pte);
144	if (clear) {
145		*old = v;
146		/* Nothing should care about address */
147		pte_clear(&init_mm, 0, pte);
148	} else {
149		/* Presume this has been called with clear==true previously */
150		set_pte_atomic(pte, __pte(*old));
151	}
152}
153
154static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
155{
156	unsigned int level;
157	pte_t *pte = lookup_address(f->addr, &level);
158
159	if (!pte) {
160		pr_err("no pte for addr 0x%08lx\n", f->addr);
161		return -1;
162	}
163
164	switch (level) {
165	case PG_LEVEL_2M:
166		clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
167		break;
168	case PG_LEVEL_4K:
169		clear_pte_presence(pte, clear, &f->old_presence);
170		break;
171	default:
172		pr_err("unexpected page level 0x%x.\n", level);
173		return -1;
174	}
175
176	flush_tlb_one_kernel(f->addr);
177	return 0;
178}
179
180/*
181 * Mark the given page as not present. Access to it will trigger a fault.
182 *
183 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
184 * protection is ignored here. RCU read lock is assumed held, so the struct
185 * will not disappear unexpectedly. Furthermore, the caller must guarantee,
186 * that double arming the same virtual address (page) cannot occur.
187 *
188 * Double disarming on the other hand is allowed, and may occur when a fault
189 * and mmiotrace shutdown happen simultaneously.
190 */
191static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
192{
193	int ret;
194	WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
195	if (f->armed) {
196		pr_warn("double-arm: addr 0x%08lx, ref %d, old %d\n",
197			f->addr, f->count, !!f->old_presence);
198	}
199	ret = clear_page_presence(f, true);
200	WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"),
201		  f->addr);
202	f->armed = true;
203	return ret;
204}
205
206/** Restore the given page to saved presence state. */
207static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
208{
209	int ret = clear_page_presence(f, false);
210	WARN_ONCE(ret < 0,
211			KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr);
212	f->armed = false;
213}
214
215/*
216 * This is being called from do_page_fault().
217 *
218 * We may be in an interrupt or a critical section. Also prefecthing may
219 * trigger a page fault. We may be in the middle of process switch.
220 * We cannot take any locks, because we could be executing especially
221 * within a kmmio critical section.
222 *
223 * Local interrupts are disabled, so preemption cannot happen.
224 * Do not enable interrupts, do not sleep, and watch out for other CPUs.
225 */
226/*
227 * Interrupts are disabled on entry as trap3 is an interrupt gate
228 * and they remain disabled throughout this function.
229 */
230int kmmio_handler(struct pt_regs *regs, unsigned long addr)
231{
232	struct kmmio_context *ctx;
233	struct kmmio_fault_page *faultpage;
234	int ret = 0; /* default to fault not handled */
235	unsigned long page_base = addr;
236	unsigned int l;
237	pte_t *pte = lookup_address(addr, &l);
238	if (!pte)
239		return -EINVAL;
240	page_base &= page_level_mask(l);
241
242	/*
243	 * Preemption is now disabled to prevent process switch during
244	 * single stepping. We can only handle one active kmmio trace
245	 * per cpu, so ensure that we finish it before something else
246	 * gets to run. We also hold the RCU read lock over single
247	 * stepping to avoid looking up the probe and kmmio_fault_page
248	 * again.
249	 */
250	preempt_disable();
251	rcu_read_lock();
252
253	faultpage = get_kmmio_fault_page(page_base);
254	if (!faultpage) {
255		/*
256		 * Either this page fault is not caused by kmmio, or
257		 * another CPU just pulled the kmmio probe from under
258		 * our feet. The latter case should not be possible.
259		 */
260		goto no_kmmio;
261	}
262
263	ctx = this_cpu_ptr(&kmmio_ctx);
264	if (ctx->active) {
265		if (page_base == ctx->addr) {
266			/*
267			 * A second fault on the same page means some other
268			 * condition needs handling by do_page_fault(), the
269			 * page really not being present is the most common.
270			 */
271			pr_debug("secondary hit for 0x%08lx CPU %d.\n",
272				 addr, smp_processor_id());
273
274			if (!faultpage->old_presence)
275				pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
276					addr, smp_processor_id());
277		} else {
278			/*
279			 * Prevent overwriting already in-flight context.
280			 * This should not happen, let's hope disarming at
281			 * least prevents a panic.
282			 */
283			pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
284				 smp_processor_id(), addr);
285			pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
286			disarm_kmmio_fault_page(faultpage);
287		}
288		goto no_kmmio;
289	}
290	ctx->active++;
291
292	ctx->fpage = faultpage;
293	ctx->probe = get_kmmio_probe(page_base);
294	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
295	ctx->addr = page_base;
296
297	if (ctx->probe && ctx->probe->pre_handler)
298		ctx->probe->pre_handler(ctx->probe, regs, addr);
299
300	/*
301	 * Enable single-stepping and disable interrupts for the faulting
302	 * context. Local interrupts must not get enabled during stepping.
303	 */
304	regs->flags |= X86_EFLAGS_TF;
305	regs->flags &= ~X86_EFLAGS_IF;
306
307	/* Now we set present bit in PTE and single step. */
308	disarm_kmmio_fault_page(ctx->fpage);
309
310	/*
311	 * If another cpu accesses the same page while we are stepping,
312	 * the access will not be caught. It will simply succeed and the
313	 * only downside is we lose the event. If this becomes a problem,
314	 * the user should drop to single cpu before tracing.
315	 */
316
317	return 1; /* fault handled */
318
319no_kmmio:
320	rcu_read_unlock();
321	preempt_enable_no_resched();
322	return ret;
323}
324
325/*
326 * Interrupts are disabled on entry as trap1 is an interrupt gate
327 * and they remain disabled throughout this function.
328 * This must always get called as the pair to kmmio_handler().
329 */
330static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
331{
332	int ret = 0;
333	struct kmmio_context *ctx = this_cpu_ptr(&kmmio_ctx);
334
335	if (!ctx->active) {
336		/*
337		 * debug traps without an active context are due to either
338		 * something external causing them (f.e. using a debugger while
339		 * mmio tracing enabled), or erroneous behaviour
340		 */
341		pr_warn("unexpected debug trap on CPU %d.\n", smp_processor_id());
342		goto out;
343	}
344
345	if (ctx->probe && ctx->probe->post_handler)
346		ctx->probe->post_handler(ctx->probe, condition, regs);
347
348	/* Prevent racing against release_kmmio_fault_page(). */
349	spin_lock(&kmmio_lock);
350	if (ctx->fpage->count)
351		arm_kmmio_fault_page(ctx->fpage);
352	spin_unlock(&kmmio_lock);
353
354	regs->flags &= ~X86_EFLAGS_TF;
355	regs->flags |= ctx->saved_flags;
356
357	/* These were acquired in kmmio_handler(). */
358	ctx->active--;
359	BUG_ON(ctx->active);
360	rcu_read_unlock();
361	preempt_enable_no_resched();
362
363	/*
364	 * if somebody else is singlestepping across a probe point, flags
365	 * will have TF set, in which case, continue the remaining processing
366	 * of do_debug, as if this is not a probe hit.
367	 */
368	if (!(regs->flags & X86_EFLAGS_TF))
369		ret = 1;
370out:
371	return ret;
372}
373
374/* You must be holding kmmio_lock. */
375static int add_kmmio_fault_page(unsigned long addr)
376{
377	struct kmmio_fault_page *f;
378
379	f = get_kmmio_fault_page(addr);
380	if (f) {
381		if (!f->count)
382			arm_kmmio_fault_page(f);
383		f->count++;
384		return 0;
385	}
386
387	f = kzalloc(sizeof(*f), GFP_ATOMIC);
388	if (!f)
389		return -1;
390
391	f->count = 1;
392	f->addr = addr;
393
394	if (arm_kmmio_fault_page(f)) {
395		kfree(f);
396		return -1;
397	}
398
399	list_add_rcu(&f->list, kmmio_page_list(f->addr));
400
401	return 0;
402}
403
404/* You must be holding kmmio_lock. */
405static void release_kmmio_fault_page(unsigned long addr,
406				struct kmmio_fault_page **release_list)
407{
408	struct kmmio_fault_page *f;
409
410	f = get_kmmio_fault_page(addr);
411	if (!f)
412		return;
413
414	f->count--;
415	BUG_ON(f->count < 0);
416	if (!f->count) {
417		disarm_kmmio_fault_page(f);
418		if (!f->scheduled_for_release) {
419			f->release_next = *release_list;
420			*release_list = f;
421			f->scheduled_for_release = true;
422		}
423	}
424}
425
426/*
427 * With page-unaligned ioremaps, one or two armed pages may contain
428 * addresses from outside the intended mapping. Events for these addresses
429 * are currently silently dropped. The events may result only from programming
430 * mistakes by accessing addresses before the beginning or past the end of a
431 * mapping.
432 */
433int register_kmmio_probe(struct kmmio_probe *p)
434{
435	unsigned long flags;
436	int ret = 0;
437	unsigned long size = 0;
438	unsigned long addr = p->addr & PAGE_MASK;
439	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
440	unsigned int l;
441	pte_t *pte;
442
443	spin_lock_irqsave(&kmmio_lock, flags);
444	if (get_kmmio_probe(addr)) {
445		ret = -EEXIST;
446		goto out;
447	}
448
449	pte = lookup_address(addr, &l);
450	if (!pte) {
451		ret = -EINVAL;
452		goto out;
453	}
454
455	kmmio_count++;
456	list_add_rcu(&p->list, &kmmio_probes);
457	while (size < size_lim) {
458		if (add_kmmio_fault_page(addr + size))
459			pr_err("Unable to set page fault.\n");
460		size += page_level_size(l);
461	}
462out:
463	spin_unlock_irqrestore(&kmmio_lock, flags);
464	/*
465	 * XXX: What should I do here?
466	 * Here was a call to global_flush_tlb(), but it does not exist
467	 * anymore. It seems it's not needed after all.
468	 */
469	return ret;
470}
471EXPORT_SYMBOL(register_kmmio_probe);
472
473static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
474{
475	struct kmmio_delayed_release *dr = container_of(
476						head,
477						struct kmmio_delayed_release,
478						rcu);
479	struct kmmio_fault_page *f = dr->release_list;
480	while (f) {
481		struct kmmio_fault_page *next = f->release_next;
482		BUG_ON(f->count);
483		kfree(f);
484		f = next;
485	}
486	kfree(dr);
487}
488
489static void remove_kmmio_fault_pages(struct rcu_head *head)
490{
491	struct kmmio_delayed_release *dr =
492		container_of(head, struct kmmio_delayed_release, rcu);
493	struct kmmio_fault_page *f = dr->release_list;
494	struct kmmio_fault_page **prevp = &dr->release_list;
495	unsigned long flags;
496
497	spin_lock_irqsave(&kmmio_lock, flags);
498	while (f) {
499		if (!f->count) {
500			list_del_rcu(&f->list);
501			prevp = &f->release_next;
502		} else {
503			*prevp = f->release_next;
504			f->release_next = NULL;
505			f->scheduled_for_release = false;
506		}
507		f = *prevp;
508	}
509	spin_unlock_irqrestore(&kmmio_lock, flags);
510
511	/* This is the real RCU destroy call. */
512	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
513}
514
515/*
516 * Remove a kmmio probe. You have to synchronize_rcu() before you can be
517 * sure that the callbacks will not be called anymore. Only after that
518 * you may actually release your struct kmmio_probe.
519 *
520 * Unregistering a kmmio fault page has three steps:
521 * 1. release_kmmio_fault_page()
522 *    Disarm the page, wait a grace period to let all faults finish.
523 * 2. remove_kmmio_fault_pages()
524 *    Remove the pages from kmmio_page_table.
525 * 3. rcu_free_kmmio_fault_pages()
526 *    Actually free the kmmio_fault_page structs as with RCU.
527 */
528void unregister_kmmio_probe(struct kmmio_probe *p)
529{
530	unsigned long flags;
531	unsigned long size = 0;
532	unsigned long addr = p->addr & PAGE_MASK;
533	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
534	struct kmmio_fault_page *release_list = NULL;
535	struct kmmio_delayed_release *drelease;
536	unsigned int l;
537	pte_t *pte;
538
539	pte = lookup_address(addr, &l);
540	if (!pte)
541		return;
542
543	spin_lock_irqsave(&kmmio_lock, flags);
544	while (size < size_lim) {
545		release_kmmio_fault_page(addr + size, &release_list);
546		size += page_level_size(l);
547	}
548	list_del_rcu(&p->list);
549	kmmio_count--;
550	spin_unlock_irqrestore(&kmmio_lock, flags);
551
552	if (!release_list)
553		return;
554
555	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
556	if (!drelease) {
557		pr_crit("leaking kmmio_fault_page objects.\n");
558		return;
559	}
560	drelease->release_list = release_list;
561
562	/*
563	 * This is not really RCU here. We have just disarmed a set of
564	 * pages so that they cannot trigger page faults anymore. However,
565	 * we cannot remove the pages from kmmio_page_table,
566	 * because a probe hit might be in flight on another CPU. The
567	 * pages are collected into a list, and they will be removed from
568	 * kmmio_page_table when it is certain that no probe hit related to
569	 * these pages can be in flight. RCU grace period sounds like a
570	 * good choice.
571	 *
572	 * If we removed the pages too early, kmmio page fault handler might
573	 * not find the respective kmmio_fault_page and determine it's not
574	 * a kmmio fault, when it actually is. This would lead to madness.
575	 */
576	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
577}
578EXPORT_SYMBOL(unregister_kmmio_probe);
579
580static int
581kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
582{
583	struct die_args *arg = args;
584	unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
585
586	if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
587		if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
588			/*
589			 * Reset the BS bit in dr6 (pointed by args->err) to
590			 * denote completion of processing
591			 */
592			*dr6_p &= ~DR_STEP;
593			return NOTIFY_STOP;
594		}
595
596	return NOTIFY_DONE;
597}
598
599static struct notifier_block nb_die = {
600	.notifier_call = kmmio_die_notifier
601};
602
603int kmmio_init(void)
604{
605	int i;
606
607	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
608		INIT_LIST_HEAD(&kmmio_page_table[i]);
609
610	return register_die_notifier(&nb_die);
611}
612
613void kmmio_cleanup(void)
614{
615	int i;
616
617	unregister_die_notifier(&nb_die);
618	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
619		WARN_ONCE(!list_empty(&kmmio_page_table[i]),
620			KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
621	}
622}
623