1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Re-map IO memory to kernel address space so that we can access it. 4 * This is needed for high PCI addresses that aren't mapped in the 5 * 640k-1MB IO memory area on PC's 6 * 7 * (C) Copyright 1995 1996 Linus Torvalds 8 */ 9 10#include <linux/memblock.h> 11#include <linux/init.h> 12#include <linux/io.h> 13#include <linux/ioport.h> 14#include <linux/slab.h> 15#include <linux/vmalloc.h> 16#include <linux/mmiotrace.h> 17#include <linux/mem_encrypt.h> 18#include <linux/efi.h> 19#include <linux/pgtable.h> 20 21#include <asm/set_memory.h> 22#include <asm/e820/api.h> 23#include <asm/efi.h> 24#include <asm/fixmap.h> 25#include <asm/tlbflush.h> 26#include <asm/pgalloc.h> 27#include <asm/memtype.h> 28#include <asm/setup.h> 29 30#include "physaddr.h" 31 32/* 33 * Descriptor controlling ioremap() behavior. 34 */ 35struct ioremap_desc { 36 unsigned int flags; 37}; 38 39/* 40 * Fix up the linear direct mapping of the kernel to avoid cache attribute 41 * conflicts. 42 */ 43int ioremap_change_attr(unsigned long vaddr, unsigned long size, 44 enum page_cache_mode pcm) 45{ 46 unsigned long nrpages = size >> PAGE_SHIFT; 47 int err; 48 49 switch (pcm) { 50 case _PAGE_CACHE_MODE_UC: 51 default: 52 err = _set_memory_uc(vaddr, nrpages); 53 break; 54 case _PAGE_CACHE_MODE_WC: 55 err = _set_memory_wc(vaddr, nrpages); 56 break; 57 case _PAGE_CACHE_MODE_WT: 58 err = _set_memory_wt(vaddr, nrpages); 59 break; 60 case _PAGE_CACHE_MODE_WB: 61 err = _set_memory_wb(vaddr, nrpages); 62 break; 63 } 64 65 return err; 66} 67 68/* Does the range (or a subset of) contain normal RAM? */ 69static unsigned int __ioremap_check_ram(struct resource *res) 70{ 71 unsigned long start_pfn, stop_pfn; 72 unsigned long i; 73 74 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM) 75 return 0; 76 77 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT; 78 stop_pfn = (res->end + 1) >> PAGE_SHIFT; 79 if (stop_pfn > start_pfn) { 80 for (i = 0; i < (stop_pfn - start_pfn); ++i) 81 if (pfn_valid(start_pfn + i) && 82 !PageReserved(pfn_to_page(start_pfn + i))) 83 return IORES_MAP_SYSTEM_RAM; 84 } 85 86 return 0; 87} 88 89/* 90 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because 91 * there the whole memory is already encrypted. 92 */ 93static unsigned int __ioremap_check_encrypted(struct resource *res) 94{ 95 if (!sev_active()) 96 return 0; 97 98 switch (res->desc) { 99 case IORES_DESC_NONE: 100 case IORES_DESC_RESERVED: 101 break; 102 default: 103 return IORES_MAP_ENCRYPTED; 104 } 105 106 return 0; 107} 108 109/* 110 * The EFI runtime services data area is not covered by walk_mem_res(), but must 111 * be mapped encrypted when SEV is active. 112 */ 113static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc) 114{ 115 if (!sev_active()) 116 return; 117 118 if (!IS_ENABLED(CONFIG_EFI)) 119 return; 120 121 if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA || 122 (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA && 123 efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME)) 124 desc->flags |= IORES_MAP_ENCRYPTED; 125} 126 127static int __ioremap_collect_map_flags(struct resource *res, void *arg) 128{ 129 struct ioremap_desc *desc = arg; 130 131 if (!(desc->flags & IORES_MAP_SYSTEM_RAM)) 132 desc->flags |= __ioremap_check_ram(res); 133 134 if (!(desc->flags & IORES_MAP_ENCRYPTED)) 135 desc->flags |= __ioremap_check_encrypted(res); 136 137 return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) == 138 (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)); 139} 140 141/* 142 * To avoid multiple resource walks, this function walks resources marked as 143 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a 144 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES). 145 * 146 * After that, deal with misc other ranges in __ioremap_check_other() which do 147 * not fall into the above category. 148 */ 149static void __ioremap_check_mem(resource_size_t addr, unsigned long size, 150 struct ioremap_desc *desc) 151{ 152 u64 start, end; 153 154 start = (u64)addr; 155 end = start + size - 1; 156 memset(desc, 0, sizeof(struct ioremap_desc)); 157 158 walk_mem_res(start, end, desc, __ioremap_collect_map_flags); 159 160 __ioremap_check_other(addr, desc); 161} 162 163/* 164 * Remap an arbitrary physical address space into the kernel virtual 165 * address space. It transparently creates kernel huge I/O mapping when 166 * the physical address is aligned by a huge page size (1GB or 2MB) and 167 * the requested size is at least the huge page size. 168 * 169 * NOTE: MTRRs can override PAT memory types with a 4KB granularity. 170 * Therefore, the mapping code falls back to use a smaller page toward 4KB 171 * when a mapping range is covered by non-WB type of MTRRs. 172 * 173 * NOTE! We need to allow non-page-aligned mappings too: we will obviously 174 * have to convert them into an offset in a page-aligned mapping, but the 175 * caller shouldn't need to know that small detail. 176 */ 177static void __iomem * 178__ioremap_caller(resource_size_t phys_addr, unsigned long size, 179 enum page_cache_mode pcm, void *caller, bool encrypted) 180{ 181 unsigned long offset, vaddr; 182 resource_size_t last_addr; 183 const resource_size_t unaligned_phys_addr = phys_addr; 184 const unsigned long unaligned_size = size; 185 struct ioremap_desc io_desc; 186 struct vm_struct *area; 187 enum page_cache_mode new_pcm; 188 pgprot_t prot; 189 int retval; 190 void __iomem *ret_addr; 191 192 /* Don't allow wraparound or zero size */ 193 last_addr = phys_addr + size - 1; 194 if (!size || last_addr < phys_addr) 195 return NULL; 196 197 if (!phys_addr_valid(phys_addr)) { 198 printk(KERN_WARNING "ioremap: invalid physical address %llx\n", 199 (unsigned long long)phys_addr); 200 WARN_ON_ONCE(1); 201 return NULL; 202 } 203 204 __ioremap_check_mem(phys_addr, size, &io_desc); 205 206 /* 207 * Don't allow anybody to remap normal RAM that we're using.. 208 */ 209 if (io_desc.flags & IORES_MAP_SYSTEM_RAM) { 210 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n", 211 &phys_addr, &last_addr); 212 return NULL; 213 } 214 215 /* 216 * Mappings have to be page-aligned 217 */ 218 offset = phys_addr & ~PAGE_MASK; 219 phys_addr &= PAGE_MASK; 220 size = PAGE_ALIGN(last_addr+1) - phys_addr; 221 222 /* 223 * Mask out any bits not part of the actual physical 224 * address, like memory encryption bits. 225 */ 226 phys_addr &= PHYSICAL_PAGE_MASK; 227 228 retval = memtype_reserve(phys_addr, (u64)phys_addr + size, 229 pcm, &new_pcm); 230 if (retval) { 231 printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval); 232 return NULL; 233 } 234 235 if (pcm != new_pcm) { 236 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) { 237 printk(KERN_ERR 238 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n", 239 (unsigned long long)phys_addr, 240 (unsigned long long)(phys_addr + size), 241 pcm, new_pcm); 242 goto err_free_memtype; 243 } 244 pcm = new_pcm; 245 } 246 247 /* 248 * If the page being mapped is in memory and SEV is active then 249 * make sure the memory encryption attribute is enabled in the 250 * resulting mapping. 251 */ 252 prot = PAGE_KERNEL_IO; 253 if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted) 254 prot = pgprot_encrypted(prot); 255 256 switch (pcm) { 257 case _PAGE_CACHE_MODE_UC: 258 default: 259 prot = __pgprot(pgprot_val(prot) | 260 cachemode2protval(_PAGE_CACHE_MODE_UC)); 261 break; 262 case _PAGE_CACHE_MODE_UC_MINUS: 263 prot = __pgprot(pgprot_val(prot) | 264 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)); 265 break; 266 case _PAGE_CACHE_MODE_WC: 267 prot = __pgprot(pgprot_val(prot) | 268 cachemode2protval(_PAGE_CACHE_MODE_WC)); 269 break; 270 case _PAGE_CACHE_MODE_WT: 271 prot = __pgprot(pgprot_val(prot) | 272 cachemode2protval(_PAGE_CACHE_MODE_WT)); 273 break; 274 case _PAGE_CACHE_MODE_WB: 275 break; 276 } 277 278 /* 279 * Ok, go for it.. 280 */ 281 area = get_vm_area_caller(size, VM_IOREMAP, caller); 282 if (!area) 283 goto err_free_memtype; 284 area->phys_addr = phys_addr; 285 vaddr = (unsigned long) area->addr; 286 287 if (memtype_kernel_map_sync(phys_addr, size, pcm)) 288 goto err_free_area; 289 290 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot)) 291 goto err_free_area; 292 293 ret_addr = (void __iomem *) (vaddr + offset); 294 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr); 295 296 /* 297 * Check if the request spans more than any BAR in the iomem resource 298 * tree. 299 */ 300 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size)) 301 pr_warn("caller %pS mapping multiple BARs\n", caller); 302 303 return ret_addr; 304err_free_area: 305 free_vm_area(area); 306err_free_memtype: 307 memtype_free(phys_addr, phys_addr + size); 308 return NULL; 309} 310 311/** 312 * ioremap - map bus memory into CPU space 313 * @phys_addr: bus address of the memory 314 * @size: size of the resource to map 315 * 316 * ioremap performs a platform specific sequence of operations to 317 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 318 * writew/writel functions and the other mmio helpers. The returned 319 * address is not guaranteed to be usable directly as a virtual 320 * address. 321 * 322 * This version of ioremap ensures that the memory is marked uncachable 323 * on the CPU as well as honouring existing caching rules from things like 324 * the PCI bus. Note that there are other caches and buffers on many 325 * busses. In particular driver authors should read up on PCI writes 326 * 327 * It's useful if some control registers are in such an area and 328 * write combining or read caching is not desirable: 329 * 330 * Must be freed with iounmap. 331 */ 332void __iomem *ioremap(resource_size_t phys_addr, unsigned long size) 333{ 334 /* 335 * Ideally, this should be: 336 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS; 337 * 338 * Till we fix all X drivers to use ioremap_wc(), we will use 339 * UC MINUS. Drivers that are certain they need or can already 340 * be converted over to strong UC can use ioremap_uc(). 341 */ 342 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS; 343 344 return __ioremap_caller(phys_addr, size, pcm, 345 __builtin_return_address(0), false); 346} 347EXPORT_SYMBOL(ioremap); 348 349/** 350 * ioremap_uc - map bus memory into CPU space as strongly uncachable 351 * @phys_addr: bus address of the memory 352 * @size: size of the resource to map 353 * 354 * ioremap_uc performs a platform specific sequence of operations to 355 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 356 * writew/writel functions and the other mmio helpers. The returned 357 * address is not guaranteed to be usable directly as a virtual 358 * address. 359 * 360 * This version of ioremap ensures that the memory is marked with a strong 361 * preference as completely uncachable on the CPU when possible. For non-PAT 362 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT 363 * systems this will set the PAT entry for the pages as strong UC. This call 364 * will honor existing caching rules from things like the PCI bus. Note that 365 * there are other caches and buffers on many busses. In particular driver 366 * authors should read up on PCI writes. 367 * 368 * It's useful if some control registers are in such an area and 369 * write combining or read caching is not desirable: 370 * 371 * Must be freed with iounmap. 372 */ 373void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size) 374{ 375 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC; 376 377 return __ioremap_caller(phys_addr, size, pcm, 378 __builtin_return_address(0), false); 379} 380EXPORT_SYMBOL_GPL(ioremap_uc); 381 382/** 383 * ioremap_wc - map memory into CPU space write combined 384 * @phys_addr: bus address of the memory 385 * @size: size of the resource to map 386 * 387 * This version of ioremap ensures that the memory is marked write combining. 388 * Write combining allows faster writes to some hardware devices. 389 * 390 * Must be freed with iounmap. 391 */ 392void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size) 393{ 394 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC, 395 __builtin_return_address(0), false); 396} 397EXPORT_SYMBOL(ioremap_wc); 398 399/** 400 * ioremap_wt - map memory into CPU space write through 401 * @phys_addr: bus address of the memory 402 * @size: size of the resource to map 403 * 404 * This version of ioremap ensures that the memory is marked write through. 405 * Write through stores data into memory while keeping the cache up-to-date. 406 * 407 * Must be freed with iounmap. 408 */ 409void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size) 410{ 411 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT, 412 __builtin_return_address(0), false); 413} 414EXPORT_SYMBOL(ioremap_wt); 415 416void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size) 417{ 418 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, 419 __builtin_return_address(0), true); 420} 421EXPORT_SYMBOL(ioremap_encrypted); 422 423void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size) 424{ 425 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, 426 __builtin_return_address(0), false); 427} 428EXPORT_SYMBOL(ioremap_cache); 429 430void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, 431 unsigned long prot_val) 432{ 433 return __ioremap_caller(phys_addr, size, 434 pgprot2cachemode(__pgprot(prot_val)), 435 __builtin_return_address(0), false); 436} 437EXPORT_SYMBOL(ioremap_prot); 438 439/** 440 * iounmap - Free a IO remapping 441 * @addr: virtual address from ioremap_* 442 * 443 * Caller must ensure there is only one unmapping for the same pointer. 444 */ 445void iounmap(volatile void __iomem *addr) 446{ 447 struct vm_struct *p, *o; 448 449 if ((void __force *)addr <= high_memory) 450 return; 451 452 /* 453 * The PCI/ISA range special-casing was removed from __ioremap() 454 * so this check, in theory, can be removed. However, there are 455 * cases where iounmap() is called for addresses not obtained via 456 * ioremap() (vga16fb for example). Add a warning so that these 457 * cases can be caught and fixed. 458 */ 459 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) && 460 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) { 461 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n"); 462 return; 463 } 464 465 mmiotrace_iounmap(addr); 466 467 addr = (volatile void __iomem *) 468 (PAGE_MASK & (unsigned long __force)addr); 469 470 /* Use the vm area unlocked, assuming the caller 471 ensures there isn't another iounmap for the same address 472 in parallel. Reuse of the virtual address is prevented by 473 leaving it in the global lists until we're done with it. 474 cpa takes care of the direct mappings. */ 475 p = find_vm_area((void __force *)addr); 476 477 if (!p) { 478 printk(KERN_ERR "iounmap: bad address %p\n", addr); 479 dump_stack(); 480 return; 481 } 482 483 memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p)); 484 485 /* Finally remove it */ 486 o = remove_vm_area((void __force *)addr); 487 BUG_ON(p != o || o == NULL); 488 kfree(p); 489} 490EXPORT_SYMBOL(iounmap); 491 492int __init arch_ioremap_p4d_supported(void) 493{ 494 return 0; 495} 496 497int __init arch_ioremap_pud_supported(void) 498{ 499#ifdef CONFIG_X86_64 500 return boot_cpu_has(X86_FEATURE_GBPAGES); 501#else 502 return 0; 503#endif 504} 505 506int __init arch_ioremap_pmd_supported(void) 507{ 508 return boot_cpu_has(X86_FEATURE_PSE); 509} 510 511/* 512 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 513 * access 514 */ 515void *xlate_dev_mem_ptr(phys_addr_t phys) 516{ 517 unsigned long start = phys & PAGE_MASK; 518 unsigned long offset = phys & ~PAGE_MASK; 519 void *vaddr; 520 521 /* memremap() maps if RAM, otherwise falls back to ioremap() */ 522 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB); 523 524 /* Only add the offset on success and return NULL if memremap() failed */ 525 if (vaddr) 526 vaddr += offset; 527 528 return vaddr; 529} 530 531void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr) 532{ 533 memunmap((void *)((unsigned long)addr & PAGE_MASK)); 534} 535 536/* 537 * Examine the physical address to determine if it is an area of memory 538 * that should be mapped decrypted. If the memory is not part of the 539 * kernel usable area it was accessed and created decrypted, so these 540 * areas should be mapped decrypted. And since the encryption key can 541 * change across reboots, persistent memory should also be mapped 542 * decrypted. 543 * 544 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so 545 * only persistent memory should be mapped decrypted. 546 */ 547static bool memremap_should_map_decrypted(resource_size_t phys_addr, 548 unsigned long size) 549{ 550 int is_pmem; 551 552 /* 553 * Check if the address is part of a persistent memory region. 554 * This check covers areas added by E820, EFI and ACPI. 555 */ 556 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM, 557 IORES_DESC_PERSISTENT_MEMORY); 558 if (is_pmem != REGION_DISJOINT) 559 return true; 560 561 /* 562 * Check if the non-volatile attribute is set for an EFI 563 * reserved area. 564 */ 565 if (efi_enabled(EFI_BOOT)) { 566 switch (efi_mem_type(phys_addr)) { 567 case EFI_RESERVED_TYPE: 568 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV) 569 return true; 570 break; 571 default: 572 break; 573 } 574 } 575 576 /* Check if the address is outside kernel usable area */ 577 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) { 578 case E820_TYPE_RESERVED: 579 case E820_TYPE_ACPI: 580 case E820_TYPE_NVS: 581 case E820_TYPE_UNUSABLE: 582 /* For SEV, these areas are encrypted */ 583 if (sev_active()) 584 break; 585 fallthrough; 586 587 case E820_TYPE_PRAM: 588 return true; 589 default: 590 break; 591 } 592 593 return false; 594} 595 596/* 597 * Examine the physical address to determine if it is EFI data. Check 598 * it against the boot params structure and EFI tables and memory types. 599 */ 600static bool memremap_is_efi_data(resource_size_t phys_addr, 601 unsigned long size) 602{ 603 u64 paddr; 604 605 /* Check if the address is part of EFI boot/runtime data */ 606 if (!efi_enabled(EFI_BOOT)) 607 return false; 608 609 paddr = boot_params.efi_info.efi_memmap_hi; 610 paddr <<= 32; 611 paddr |= boot_params.efi_info.efi_memmap; 612 if (phys_addr == paddr) 613 return true; 614 615 paddr = boot_params.efi_info.efi_systab_hi; 616 paddr <<= 32; 617 paddr |= boot_params.efi_info.efi_systab; 618 if (phys_addr == paddr) 619 return true; 620 621 if (efi_is_table_address(phys_addr)) 622 return true; 623 624 switch (efi_mem_type(phys_addr)) { 625 case EFI_BOOT_SERVICES_DATA: 626 case EFI_RUNTIME_SERVICES_DATA: 627 return true; 628 default: 629 break; 630 } 631 632 return false; 633} 634 635/* 636 * Examine the physical address to determine if it is boot data by checking 637 * it against the boot params setup_data chain. 638 */ 639static bool memremap_is_setup_data(resource_size_t phys_addr, 640 unsigned long size) 641{ 642 struct setup_indirect *indirect; 643 struct setup_data *data; 644 u64 paddr, paddr_next; 645 646 paddr = boot_params.hdr.setup_data; 647 while (paddr) { 648 unsigned int len; 649 650 if (phys_addr == paddr) 651 return true; 652 653 data = memremap(paddr, sizeof(*data), 654 MEMREMAP_WB | MEMREMAP_DEC); 655 if (!data) { 656 pr_warn("failed to memremap setup_data entry\n"); 657 return false; 658 } 659 660 paddr_next = data->next; 661 len = data->len; 662 663 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) { 664 memunmap(data); 665 return true; 666 } 667 668 if (data->type == SETUP_INDIRECT) { 669 memunmap(data); 670 data = memremap(paddr, sizeof(*data) + len, 671 MEMREMAP_WB | MEMREMAP_DEC); 672 if (!data) { 673 pr_warn("failed to memremap indirect setup_data\n"); 674 return false; 675 } 676 677 indirect = (struct setup_indirect *)data->data; 678 679 if (indirect->type != SETUP_INDIRECT) { 680 paddr = indirect->addr; 681 len = indirect->len; 682 } 683 } 684 685 memunmap(data); 686 687 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) 688 return true; 689 690 paddr = paddr_next; 691 } 692 693 return false; 694} 695 696/* 697 * Examine the physical address to determine if it is boot data by checking 698 * it against the boot params setup_data chain (early boot version). 699 */ 700static bool __init early_memremap_is_setup_data(resource_size_t phys_addr, 701 unsigned long size) 702{ 703 struct setup_indirect *indirect; 704 struct setup_data *data; 705 u64 paddr, paddr_next; 706 707 paddr = boot_params.hdr.setup_data; 708 while (paddr) { 709 unsigned int len, size; 710 711 if (phys_addr == paddr) 712 return true; 713 714 data = early_memremap_decrypted(paddr, sizeof(*data)); 715 if (!data) { 716 pr_warn("failed to early memremap setup_data entry\n"); 717 return false; 718 } 719 720 size = sizeof(*data); 721 722 paddr_next = data->next; 723 len = data->len; 724 725 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) { 726 early_memunmap(data, sizeof(*data)); 727 return true; 728 } 729 730 if (data->type == SETUP_INDIRECT) { 731 size += len; 732 early_memunmap(data, sizeof(*data)); 733 data = early_memremap_decrypted(paddr, size); 734 if (!data) { 735 pr_warn("failed to early memremap indirect setup_data\n"); 736 return false; 737 } 738 739 indirect = (struct setup_indirect *)data->data; 740 741 if (indirect->type != SETUP_INDIRECT) { 742 paddr = indirect->addr; 743 len = indirect->len; 744 } 745 } 746 747 early_memunmap(data, size); 748 749 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) 750 return true; 751 752 paddr = paddr_next; 753 } 754 755 return false; 756} 757 758/* 759 * Architecture function to determine if RAM remap is allowed. By default, a 760 * RAM remap will map the data as encrypted. Determine if a RAM remap should 761 * not be done so that the data will be mapped decrypted. 762 */ 763bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size, 764 unsigned long flags) 765{ 766 if (!mem_encrypt_active()) 767 return true; 768 769 if (flags & MEMREMAP_ENC) 770 return true; 771 772 if (flags & MEMREMAP_DEC) 773 return false; 774 775 if (sme_active()) { 776 if (memremap_is_setup_data(phys_addr, size) || 777 memremap_is_efi_data(phys_addr, size)) 778 return false; 779 } 780 781 return !memremap_should_map_decrypted(phys_addr, size); 782} 783 784/* 785 * Architecture override of __weak function to adjust the protection attributes 786 * used when remapping memory. By default, early_memremap() will map the data 787 * as encrypted. Determine if an encrypted mapping should not be done and set 788 * the appropriate protection attributes. 789 */ 790pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr, 791 unsigned long size, 792 pgprot_t prot) 793{ 794 bool encrypted_prot; 795 796 if (!mem_encrypt_active()) 797 return prot; 798 799 encrypted_prot = true; 800 801 if (sme_active()) { 802 if (early_memremap_is_setup_data(phys_addr, size) || 803 memremap_is_efi_data(phys_addr, size)) 804 encrypted_prot = false; 805 } 806 807 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size)) 808 encrypted_prot = false; 809 810 return encrypted_prot ? pgprot_encrypted(prot) 811 : pgprot_decrypted(prot); 812} 813 814bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size) 815{ 816 return arch_memremap_can_ram_remap(phys_addr, size, 0); 817} 818 819#ifdef CONFIG_AMD_MEM_ENCRYPT 820/* Remap memory with encryption */ 821void __init *early_memremap_encrypted(resource_size_t phys_addr, 822 unsigned long size) 823{ 824 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC); 825} 826 827/* 828 * Remap memory with encryption and write-protected - cannot be called 829 * before pat_init() is called 830 */ 831void __init *early_memremap_encrypted_wp(resource_size_t phys_addr, 832 unsigned long size) 833{ 834 if (!x86_has_pat_wp()) 835 return NULL; 836 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP); 837} 838 839/* Remap memory without encryption */ 840void __init *early_memremap_decrypted(resource_size_t phys_addr, 841 unsigned long size) 842{ 843 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC); 844} 845 846/* 847 * Remap memory without encryption and write-protected - cannot be called 848 * before pat_init() is called 849 */ 850void __init *early_memremap_decrypted_wp(resource_size_t phys_addr, 851 unsigned long size) 852{ 853 if (!x86_has_pat_wp()) 854 return NULL; 855 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP); 856} 857#endif /* CONFIG_AMD_MEM_ENCRYPT */ 858 859static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss; 860 861static inline pmd_t * __init early_ioremap_pmd(unsigned long addr) 862{ 863 /* Don't assume we're using swapper_pg_dir at this point */ 864 pgd_t *base = __va(read_cr3_pa()); 865 pgd_t *pgd = &base[pgd_index(addr)]; 866 p4d_t *p4d = p4d_offset(pgd, addr); 867 pud_t *pud = pud_offset(p4d, addr); 868 pmd_t *pmd = pmd_offset(pud, addr); 869 870 return pmd; 871} 872 873static inline pte_t * __init early_ioremap_pte(unsigned long addr) 874{ 875 return &bm_pte[pte_index(addr)]; 876} 877 878bool __init is_early_ioremap_ptep(pte_t *ptep) 879{ 880 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)]; 881} 882 883void __init early_ioremap_init(void) 884{ 885 pmd_t *pmd; 886 887#ifdef CONFIG_X86_64 888 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 889#else 890 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 891#endif 892 893 early_ioremap_setup(); 894 895 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)); 896 memset(bm_pte, 0, sizeof(bm_pte)); 897 pmd_populate_kernel(&init_mm, pmd, bm_pte); 898 899 /* 900 * The boot-ioremap range spans multiple pmds, for which 901 * we are not prepared: 902 */ 903#define __FIXADDR_TOP (-PAGE_SIZE) 904 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) 905 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); 906#undef __FIXADDR_TOP 907 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) { 908 WARN_ON(1); 909 printk(KERN_WARNING "pmd %p != %p\n", 910 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))); 911 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", 912 fix_to_virt(FIX_BTMAP_BEGIN)); 913 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n", 914 fix_to_virt(FIX_BTMAP_END)); 915 916 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END); 917 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n", 918 FIX_BTMAP_BEGIN); 919 } 920} 921 922void __init __early_set_fixmap(enum fixed_addresses idx, 923 phys_addr_t phys, pgprot_t flags) 924{ 925 unsigned long addr = __fix_to_virt(idx); 926 pte_t *pte; 927 928 if (idx >= __end_of_fixed_addresses) { 929 BUG(); 930 return; 931 } 932 pte = early_ioremap_pte(addr); 933 934 /* Sanitize 'prot' against any unsupported bits: */ 935 pgprot_val(flags) &= __supported_pte_mask; 936 937 if (pgprot_val(flags)) 938 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags)); 939 else 940 pte_clear(&init_mm, addr, pte); 941 flush_tlb_one_kernel(addr); 942} 943