xref: /kernel/linux/linux-5.10/arch/x86/mm/fault.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  Copyright (C) 1995  Linus Torvalds
4 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7#include <linux/sched.h>		/* test_thread_flag(), ...	*/
8#include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10#include <linux/extable.h>		/* search_exception_tables	*/
11#include <linux/memblock.h>		/* max_low_pfn			*/
12#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14#include <linux/perf_event.h>		/* perf_sw_event		*/
15#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16#include <linux/prefetch.h>		/* prefetchw			*/
17#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
19#include <linux/efi.h>			/* efi_recover_from_page_fault()*/
20#include <linux/mm_types.h>
21
22#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
23#include <asm/traps.h>			/* dotraplinkage, ...		*/
24#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
25#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
26#include <asm/vm86.h>			/* struct vm86			*/
27#include <asm/mmu_context.h>		/* vma_pkey()			*/
28#include <asm/efi.h>			/* efi_recover_from_page_fault()*/
29#include <asm/desc.h>			/* store_idt(), ...		*/
30#include <asm/cpu_entry_area.h>		/* exception stack		*/
31#include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
32#include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
33
34#define CREATE_TRACE_POINTS
35#include <asm/trace/exceptions.h>
36
37/*
38 * Returns 0 if mmiotrace is disabled, or if the fault is not
39 * handled by mmiotrace:
40 */
41static nokprobe_inline int
42kmmio_fault(struct pt_regs *regs, unsigned long addr)
43{
44	if (unlikely(is_kmmio_active()))
45		if (kmmio_handler(regs, addr) == 1)
46			return -1;
47	return 0;
48}
49
50/*
51 * Prefetch quirks:
52 *
53 * 32-bit mode:
54 *
55 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
56 *   Check that here and ignore it.  This is AMD erratum #91.
57 *
58 * 64-bit mode:
59 *
60 *   Sometimes the CPU reports invalid exceptions on prefetch.
61 *   Check that here and ignore it.
62 *
63 * Opcode checker based on code by Richard Brunner.
64 */
65static inline int
66check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
67		      unsigned char opcode, int *prefetch)
68{
69	unsigned char instr_hi = opcode & 0xf0;
70	unsigned char instr_lo = opcode & 0x0f;
71
72	switch (instr_hi) {
73	case 0x20:
74	case 0x30:
75		/*
76		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
77		 * In X86_64 long mode, the CPU will signal invalid
78		 * opcode if some of these prefixes are present so
79		 * X86_64 will never get here anyway
80		 */
81		return ((instr_lo & 7) == 0x6);
82#ifdef CONFIG_X86_64
83	case 0x40:
84		/*
85		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
86		 */
87		return (!user_mode(regs) || user_64bit_mode(regs));
88#endif
89	case 0x60:
90		/* 0x64 thru 0x67 are valid prefixes in all modes. */
91		return (instr_lo & 0xC) == 0x4;
92	case 0xF0:
93		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
94		return !instr_lo || (instr_lo>>1) == 1;
95	case 0x00:
96		/* Prefetch instruction is 0x0F0D or 0x0F18 */
97		if (get_kernel_nofault(opcode, instr))
98			return 0;
99
100		*prefetch = (instr_lo == 0xF) &&
101			(opcode == 0x0D || opcode == 0x18);
102		return 0;
103	default:
104		return 0;
105	}
106}
107
108static int
109is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
110{
111	unsigned char *max_instr;
112	unsigned char *instr;
113	int prefetch = 0;
114
115	/*
116	 * If it was a exec (instruction fetch) fault on NX page, then
117	 * do not ignore the fault:
118	 */
119	if (error_code & X86_PF_INSTR)
120		return 0;
121
122	instr = (void *)convert_ip_to_linear(current, regs);
123	max_instr = instr + 15;
124
125	/*
126	 * This code has historically always bailed out if IP points to a
127	 * not-present page (e.g. due to a race).  No one has ever
128	 * complained about this.
129	 */
130	pagefault_disable();
131
132	while (instr < max_instr) {
133		unsigned char opcode;
134
135		if (user_mode(regs)) {
136			if (get_user(opcode, instr))
137				break;
138		} else {
139			if (get_kernel_nofault(opcode, instr))
140				break;
141		}
142
143		instr++;
144
145		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
146			break;
147	}
148
149	pagefault_enable();
150	return prefetch;
151}
152
153DEFINE_SPINLOCK(pgd_lock);
154LIST_HEAD(pgd_list);
155
156#ifdef CONFIG_X86_32
157static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
158{
159	unsigned index = pgd_index(address);
160	pgd_t *pgd_k;
161	p4d_t *p4d, *p4d_k;
162	pud_t *pud, *pud_k;
163	pmd_t *pmd, *pmd_k;
164
165	pgd += index;
166	pgd_k = init_mm.pgd + index;
167
168	if (!pgd_present(*pgd_k))
169		return NULL;
170
171	/*
172	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
173	 * and redundant with the set_pmd() on non-PAE. As would
174	 * set_p4d/set_pud.
175	 */
176	p4d = p4d_offset(pgd, address);
177	p4d_k = p4d_offset(pgd_k, address);
178	if (!p4d_present(*p4d_k))
179		return NULL;
180
181	pud = pud_offset(p4d, address);
182	pud_k = pud_offset(p4d_k, address);
183	if (!pud_present(*pud_k))
184		return NULL;
185
186	pmd = pmd_offset(pud, address);
187	pmd_k = pmd_offset(pud_k, address);
188
189	if (pmd_present(*pmd) != pmd_present(*pmd_k))
190		set_pmd(pmd, *pmd_k);
191
192	if (!pmd_present(*pmd_k))
193		return NULL;
194	else
195		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
196
197	return pmd_k;
198}
199
200/*
201 *   Handle a fault on the vmalloc or module mapping area
202 *
203 *   This is needed because there is a race condition between the time
204 *   when the vmalloc mapping code updates the PMD to the point in time
205 *   where it synchronizes this update with the other page-tables in the
206 *   system.
207 *
208 *   In this race window another thread/CPU can map an area on the same
209 *   PMD, finds it already present and does not synchronize it with the
210 *   rest of the system yet. As a result v[mz]alloc might return areas
211 *   which are not mapped in every page-table in the system, causing an
212 *   unhandled page-fault when they are accessed.
213 */
214static noinline int vmalloc_fault(unsigned long address)
215{
216	unsigned long pgd_paddr;
217	pmd_t *pmd_k;
218	pte_t *pte_k;
219
220	/* Make sure we are in vmalloc area: */
221	if (!(address >= VMALLOC_START && address < VMALLOC_END))
222		return -1;
223
224	/*
225	 * Synchronize this task's top level page-table
226	 * with the 'reference' page table.
227	 *
228	 * Do _not_ use "current" here. We might be inside
229	 * an interrupt in the middle of a task switch..
230	 */
231	pgd_paddr = read_cr3_pa();
232	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
233	if (!pmd_k)
234		return -1;
235
236	if (pmd_large(*pmd_k))
237		return 0;
238
239	pte_k = pte_offset_kernel(pmd_k, address);
240	if (!pte_present(*pte_k))
241		return -1;
242
243	return 0;
244}
245NOKPROBE_SYMBOL(vmalloc_fault);
246
247void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
248{
249	unsigned long addr;
250
251	for (addr = start & PMD_MASK;
252	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
253	     addr += PMD_SIZE) {
254		struct page *page;
255
256		spin_lock(&pgd_lock);
257		list_for_each_entry(page, &pgd_list, lru) {
258			spinlock_t *pgt_lock;
259
260			/* the pgt_lock only for Xen */
261			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
262
263			spin_lock(pgt_lock);
264			vmalloc_sync_one(page_address(page), addr);
265			spin_unlock(pgt_lock);
266		}
267		spin_unlock(&pgd_lock);
268	}
269}
270
271/*
272 * Did it hit the DOS screen memory VA from vm86 mode?
273 */
274static inline void
275check_v8086_mode(struct pt_regs *regs, unsigned long address,
276		 struct task_struct *tsk)
277{
278#ifdef CONFIG_VM86
279	unsigned long bit;
280
281	if (!v8086_mode(regs) || !tsk->thread.vm86)
282		return;
283
284	bit = (address - 0xA0000) >> PAGE_SHIFT;
285	if (bit < 32)
286		tsk->thread.vm86->screen_bitmap |= 1 << bit;
287#endif
288}
289
290static bool low_pfn(unsigned long pfn)
291{
292	return pfn < max_low_pfn;
293}
294
295static void dump_pagetable(unsigned long address)
296{
297	pgd_t *base = __va(read_cr3_pa());
298	pgd_t *pgd = &base[pgd_index(address)];
299	p4d_t *p4d;
300	pud_t *pud;
301	pmd_t *pmd;
302	pte_t *pte;
303
304#ifdef CONFIG_X86_PAE
305	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
306	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
307		goto out;
308#define pr_pde pr_cont
309#else
310#define pr_pde pr_info
311#endif
312	p4d = p4d_offset(pgd, address);
313	pud = pud_offset(p4d, address);
314	pmd = pmd_offset(pud, address);
315	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
316#undef pr_pde
317
318	/*
319	 * We must not directly access the pte in the highpte
320	 * case if the page table is located in highmem.
321	 * And let's rather not kmap-atomic the pte, just in case
322	 * it's allocated already:
323	 */
324	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
325		goto out;
326
327	pte = pte_offset_kernel(pmd, address);
328	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
329out:
330	pr_cont("\n");
331}
332
333#else /* CONFIG_X86_64: */
334
335#ifdef CONFIG_CPU_SUP_AMD
336static const char errata93_warning[] =
337KERN_ERR
338"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
339"******* Working around it, but it may cause SEGVs or burn power.\n"
340"******* Please consider a BIOS update.\n"
341"******* Disabling USB legacy in the BIOS may also help.\n";
342#endif
343
344/*
345 * No vm86 mode in 64-bit mode:
346 */
347static inline void
348check_v8086_mode(struct pt_regs *regs, unsigned long address,
349		 struct task_struct *tsk)
350{
351}
352
353static int bad_address(void *p)
354{
355	unsigned long dummy;
356
357	return get_kernel_nofault(dummy, (unsigned long *)p);
358}
359
360static void dump_pagetable(unsigned long address)
361{
362	pgd_t *base = __va(read_cr3_pa());
363	pgd_t *pgd = base + pgd_index(address);
364	p4d_t *p4d;
365	pud_t *pud;
366	pmd_t *pmd;
367	pte_t *pte;
368
369	if (bad_address(pgd))
370		goto bad;
371
372	pr_info("PGD %lx ", pgd_val(*pgd));
373
374	if (!pgd_present(*pgd))
375		goto out;
376
377	p4d = p4d_offset(pgd, address);
378	if (bad_address(p4d))
379		goto bad;
380
381	pr_cont("P4D %lx ", p4d_val(*p4d));
382	if (!p4d_present(*p4d) || p4d_large(*p4d))
383		goto out;
384
385	pud = pud_offset(p4d, address);
386	if (bad_address(pud))
387		goto bad;
388
389	pr_cont("PUD %lx ", pud_val(*pud));
390	if (!pud_present(*pud) || pud_large(*pud))
391		goto out;
392
393	pmd = pmd_offset(pud, address);
394	if (bad_address(pmd))
395		goto bad;
396
397	pr_cont("PMD %lx ", pmd_val(*pmd));
398	if (!pmd_present(*pmd) || pmd_large(*pmd))
399		goto out;
400
401	pte = pte_offset_kernel(pmd, address);
402	if (bad_address(pte))
403		goto bad;
404
405	pr_cont("PTE %lx", pte_val(*pte));
406out:
407	pr_cont("\n");
408	return;
409bad:
410	pr_info("BAD\n");
411}
412
413#endif /* CONFIG_X86_64 */
414
415/*
416 * Workaround for K8 erratum #93 & buggy BIOS.
417 *
418 * BIOS SMM functions are required to use a specific workaround
419 * to avoid corruption of the 64bit RIP register on C stepping K8.
420 *
421 * A lot of BIOS that didn't get tested properly miss this.
422 *
423 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
424 * Try to work around it here.
425 *
426 * Note we only handle faults in kernel here.
427 * Does nothing on 32-bit.
428 */
429static int is_errata93(struct pt_regs *regs, unsigned long address)
430{
431#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
432	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
433	    || boot_cpu_data.x86 != 0xf)
434		return 0;
435
436	if (address != regs->ip)
437		return 0;
438
439	if ((address >> 32) != 0)
440		return 0;
441
442	address |= 0xffffffffUL << 32;
443	if ((address >= (u64)_stext && address <= (u64)_etext) ||
444	    (address >= MODULES_VADDR && address <= MODULES_END)) {
445		printk_once(errata93_warning);
446		regs->ip = address;
447		return 1;
448	}
449#endif
450	return 0;
451}
452
453/*
454 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
455 * to illegal addresses >4GB.
456 *
457 * We catch this in the page fault handler because these addresses
458 * are not reachable. Just detect this case and return.  Any code
459 * segment in LDT is compatibility mode.
460 */
461static int is_errata100(struct pt_regs *regs, unsigned long address)
462{
463#ifdef CONFIG_X86_64
464	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
465		return 1;
466#endif
467	return 0;
468}
469
470/* Pentium F0 0F C7 C8 bug workaround: */
471static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
472{
473#ifdef CONFIG_X86_F00F_BUG
474	if (boot_cpu_has_bug(X86_BUG_F00F) && idt_is_f00f_address(address)) {
475		handle_invalid_op(regs);
476		return 1;
477	}
478#endif
479	return 0;
480}
481
482static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
483{
484	u32 offset = (index >> 3) * sizeof(struct desc_struct);
485	unsigned long addr;
486	struct ldttss_desc desc;
487
488	if (index == 0) {
489		pr_alert("%s: NULL\n", name);
490		return;
491	}
492
493	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
494		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
495		return;
496	}
497
498	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
499			      sizeof(struct ldttss_desc))) {
500		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
501			 name, index);
502		return;
503	}
504
505	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
506#ifdef CONFIG_X86_64
507	addr |= ((u64)desc.base3 << 32);
508#endif
509	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
510		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
511}
512
513static void
514show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
515{
516	if (!oops_may_print())
517		return;
518
519	if (error_code & X86_PF_INSTR) {
520		unsigned int level;
521		pgd_t *pgd;
522		pte_t *pte;
523
524		pgd = __va(read_cr3_pa());
525		pgd += pgd_index(address);
526
527		pte = lookup_address_in_pgd(pgd, address, &level);
528
529		if (pte && pte_present(*pte) && !pte_exec(*pte))
530			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
531				from_kuid(&init_user_ns, current_uid()));
532		if (pte && pte_present(*pte) && pte_exec(*pte) &&
533				(pgd_flags(*pgd) & _PAGE_USER) &&
534				(__read_cr4() & X86_CR4_SMEP))
535			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
536				from_kuid(&init_user_ns, current_uid()));
537	}
538
539	if (address < PAGE_SIZE && !user_mode(regs))
540		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
541			(void *)address);
542	else
543		pr_alert("BUG: unable to handle page fault for address: %px\n",
544			(void *)address);
545
546	pr_alert("#PF: %s %s in %s mode\n",
547		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
548		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
549		 (error_code & X86_PF_WRITE) ? "write access" :
550					       "read access",
551			     user_mode(regs) ? "user" : "kernel");
552	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
553		 !(error_code & X86_PF_PROT) ? "not-present page" :
554		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
555		 (error_code & X86_PF_PK)    ? "protection keys violation" :
556					       "permissions violation");
557
558	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
559		struct desc_ptr idt, gdt;
560		u16 ldtr, tr;
561
562		/*
563		 * This can happen for quite a few reasons.  The more obvious
564		 * ones are faults accessing the GDT, or LDT.  Perhaps
565		 * surprisingly, if the CPU tries to deliver a benign or
566		 * contributory exception from user code and gets a page fault
567		 * during delivery, the page fault can be delivered as though
568		 * it originated directly from user code.  This could happen
569		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
570		 * kernel or IST stack.
571		 */
572		store_idt(&idt);
573
574		/* Usable even on Xen PV -- it's just slow. */
575		native_store_gdt(&gdt);
576
577		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
578			 idt.address, idt.size, gdt.address, gdt.size);
579
580		store_ldt(ldtr);
581		show_ldttss(&gdt, "LDTR", ldtr);
582
583		store_tr(tr);
584		show_ldttss(&gdt, "TR", tr);
585	}
586
587	dump_pagetable(address);
588}
589
590static noinline void
591pgtable_bad(struct pt_regs *regs, unsigned long error_code,
592	    unsigned long address)
593{
594	struct task_struct *tsk;
595	unsigned long flags;
596	int sig;
597
598	flags = oops_begin();
599	tsk = current;
600	sig = SIGKILL;
601
602	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
603	       tsk->comm, address);
604	dump_pagetable(address);
605
606	if (__die("Bad pagetable", regs, error_code))
607		sig = 0;
608
609	oops_end(flags, regs, sig);
610}
611
612static void set_signal_archinfo(unsigned long address,
613				unsigned long error_code)
614{
615	struct task_struct *tsk = current;
616
617	/*
618	 * To avoid leaking information about the kernel page
619	 * table layout, pretend that user-mode accesses to
620	 * kernel addresses are always protection faults.
621	 *
622	 * NB: This means that failed vsyscalls with vsyscall=none
623	 * will have the PROT bit.  This doesn't leak any
624	 * information and does not appear to cause any problems.
625	 */
626	if (address >= TASK_SIZE_MAX)
627		error_code |= X86_PF_PROT;
628
629	tsk->thread.trap_nr = X86_TRAP_PF;
630	tsk->thread.error_code = error_code | X86_PF_USER;
631	tsk->thread.cr2 = address;
632}
633
634static noinline void
635no_context(struct pt_regs *regs, unsigned long error_code,
636	   unsigned long address, int signal, int si_code)
637{
638	struct task_struct *tsk = current;
639	unsigned long flags;
640	int sig;
641
642	if (user_mode(regs)) {
643		/*
644		 * This is an implicit supervisor-mode access from user
645		 * mode.  Bypass all the kernel-mode recovery code and just
646		 * OOPS.
647		 */
648		goto oops;
649	}
650
651	/* Are we prepared to handle this kernel fault? */
652	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
653		/*
654		 * Any interrupt that takes a fault gets the fixup. This makes
655		 * the below recursive fault logic only apply to a faults from
656		 * task context.
657		 */
658		if (in_interrupt())
659			return;
660
661		/*
662		 * Per the above we're !in_interrupt(), aka. task context.
663		 *
664		 * In this case we need to make sure we're not recursively
665		 * faulting through the emulate_vsyscall() logic.
666		 */
667		if (current->thread.sig_on_uaccess_err && signal) {
668			set_signal_archinfo(address, error_code);
669
670			/* XXX: hwpoison faults will set the wrong code. */
671			force_sig_fault(signal, si_code, (void __user *)address);
672		}
673
674		/*
675		 * Barring that, we can do the fixup and be happy.
676		 */
677		return;
678	}
679
680#ifdef CONFIG_VMAP_STACK
681	/*
682	 * Stack overflow?  During boot, we can fault near the initial
683	 * stack in the direct map, but that's not an overflow -- check
684	 * that we're in vmalloc space to avoid this.
685	 */
686	if (is_vmalloc_addr((void *)address) &&
687	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
688	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
689		unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
690		/*
691		 * We're likely to be running with very little stack space
692		 * left.  It's plausible that we'd hit this condition but
693		 * double-fault even before we get this far, in which case
694		 * we're fine: the double-fault handler will deal with it.
695		 *
696		 * We don't want to make it all the way into the oops code
697		 * and then double-fault, though, because we're likely to
698		 * break the console driver and lose most of the stack dump.
699		 */
700		asm volatile ("movq %[stack], %%rsp\n\t"
701			      "call handle_stack_overflow\n\t"
702			      "1: jmp 1b"
703			      : ASM_CALL_CONSTRAINT
704			      : "D" ("kernel stack overflow (page fault)"),
705				"S" (regs), "d" (address),
706				[stack] "rm" (stack));
707		unreachable();
708	}
709#endif
710
711	/*
712	 * 32-bit:
713	 *
714	 *   Valid to do another page fault here, because if this fault
715	 *   had been triggered by is_prefetch fixup_exception would have
716	 *   handled it.
717	 *
718	 * 64-bit:
719	 *
720	 *   Hall of shame of CPU/BIOS bugs.
721	 */
722	if (is_prefetch(regs, error_code, address))
723		return;
724
725	if (is_errata93(regs, address))
726		return;
727
728	/*
729	 * Buggy firmware could access regions which might page fault, try to
730	 * recover from such faults.
731	 */
732	if (IS_ENABLED(CONFIG_EFI))
733		efi_recover_from_page_fault(address);
734
735oops:
736	/*
737	 * Oops. The kernel tried to access some bad page. We'll have to
738	 * terminate things with extreme prejudice:
739	 */
740	flags = oops_begin();
741
742	show_fault_oops(regs, error_code, address);
743
744	if (task_stack_end_corrupted(tsk))
745		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
746
747	sig = SIGKILL;
748	if (__die("Oops", regs, error_code))
749		sig = 0;
750
751	/* Executive summary in case the body of the oops scrolled away */
752	printk(KERN_DEFAULT "CR2: %016lx\n", address);
753
754	oops_end(flags, regs, sig);
755}
756
757/*
758 * Print out info about fatal segfaults, if the show_unhandled_signals
759 * sysctl is set:
760 */
761static inline void
762show_signal_msg(struct pt_regs *regs, unsigned long error_code,
763		unsigned long address, struct task_struct *tsk)
764{
765	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
766
767	if (!unhandled_signal(tsk, SIGSEGV))
768		return;
769
770	if (!printk_ratelimit())
771		return;
772
773	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
774		loglvl, tsk->comm, task_pid_nr(tsk), address,
775		(void *)regs->ip, (void *)regs->sp, error_code);
776
777	print_vma_addr(KERN_CONT " in ", regs->ip);
778
779	printk(KERN_CONT "\n");
780
781	show_opcodes(regs, loglvl);
782}
783
784/*
785 * The (legacy) vsyscall page is the long page in the kernel portion
786 * of the address space that has user-accessible permissions.
787 */
788static bool is_vsyscall_vaddr(unsigned long vaddr)
789{
790	return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
791}
792
793static void
794__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
795		       unsigned long address, u32 pkey, int si_code)
796{
797	struct task_struct *tsk = current;
798
799	/* User mode accesses just cause a SIGSEGV */
800	if (user_mode(regs) && (error_code & X86_PF_USER)) {
801		/*
802		 * It's possible to have interrupts off here:
803		 */
804		local_irq_enable();
805
806		/*
807		 * Valid to do another page fault here because this one came
808		 * from user space:
809		 */
810		if (is_prefetch(regs, error_code, address))
811			return;
812
813		if (is_errata100(regs, address))
814			return;
815
816		/*
817		 * To avoid leaking information about the kernel page table
818		 * layout, pretend that user-mode accesses to kernel addresses
819		 * are always protection faults.
820		 */
821		if (address >= TASK_SIZE_MAX)
822			error_code |= X86_PF_PROT;
823
824		if (likely(show_unhandled_signals))
825			show_signal_msg(regs, error_code, address, tsk);
826
827		set_signal_archinfo(address, error_code);
828
829		if (si_code == SEGV_PKUERR)
830			force_sig_pkuerr((void __user *)address, pkey);
831
832		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
833
834		local_irq_disable();
835
836		return;
837	}
838
839	if (is_f00f_bug(regs, address))
840		return;
841
842	no_context(regs, error_code, address, SIGSEGV, si_code);
843}
844
845static noinline void
846bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
847		     unsigned long address)
848{
849	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
850}
851
852static void
853__bad_area(struct pt_regs *regs, unsigned long error_code,
854	   unsigned long address, u32 pkey, int si_code)
855{
856	struct mm_struct *mm = current->mm;
857	/*
858	 * Something tried to access memory that isn't in our memory map..
859	 * Fix it, but check if it's kernel or user first..
860	 */
861	mmap_read_unlock(mm);
862
863	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
864}
865
866static noinline void
867bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
868{
869	__bad_area(regs, error_code, address, 0, SEGV_MAPERR);
870}
871
872static inline bool bad_area_access_from_pkeys(unsigned long error_code,
873		struct vm_area_struct *vma)
874{
875	/* This code is always called on the current mm */
876	bool foreign = false;
877
878	if (!boot_cpu_has(X86_FEATURE_OSPKE))
879		return false;
880	if (error_code & X86_PF_PK)
881		return true;
882	/* this checks permission keys on the VMA: */
883	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
884				       (error_code & X86_PF_INSTR), foreign))
885		return true;
886	return false;
887}
888
889static noinline void
890bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
891		      unsigned long address, struct vm_area_struct *vma)
892{
893	/*
894	 * This OSPKE check is not strictly necessary at runtime.
895	 * But, doing it this way allows compiler optimizations
896	 * if pkeys are compiled out.
897	 */
898	if (bad_area_access_from_pkeys(error_code, vma)) {
899		/*
900		 * A protection key fault means that the PKRU value did not allow
901		 * access to some PTE.  Userspace can figure out what PKRU was
902		 * from the XSAVE state.  This function captures the pkey from
903		 * the vma and passes it to userspace so userspace can discover
904		 * which protection key was set on the PTE.
905		 *
906		 * If we get here, we know that the hardware signaled a X86_PF_PK
907		 * fault and that there was a VMA once we got in the fault
908		 * handler.  It does *not* guarantee that the VMA we find here
909		 * was the one that we faulted on.
910		 *
911		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
912		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
913		 * 3. T1   : faults...
914		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
915		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
916		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
917		 *	     faulted on a pte with its pkey=4.
918		 */
919		u32 pkey = vma_pkey(vma);
920
921		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
922	} else {
923		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
924	}
925}
926
927static void
928do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
929	  vm_fault_t fault)
930{
931	/* Kernel mode? Handle exceptions or die: */
932	if (!(error_code & X86_PF_USER)) {
933		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
934		return;
935	}
936
937	/* User-space => ok to do another page fault: */
938	if (is_prefetch(regs, error_code, address))
939		return;
940
941	set_signal_archinfo(address, error_code);
942
943#ifdef CONFIG_MEMORY_FAILURE
944	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
945		struct task_struct *tsk = current;
946		unsigned lsb = 0;
947
948		pr_err(
949	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
950			tsk->comm, tsk->pid, address);
951		if (fault & VM_FAULT_HWPOISON_LARGE)
952			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
953		if (fault & VM_FAULT_HWPOISON)
954			lsb = PAGE_SHIFT;
955		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
956		return;
957	}
958#endif
959	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
960}
961
962static noinline void
963mm_fault_error(struct pt_regs *regs, unsigned long error_code,
964	       unsigned long address, vm_fault_t fault)
965{
966	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
967		no_context(regs, error_code, address, 0, 0);
968		return;
969	}
970
971	if (fault & VM_FAULT_OOM) {
972		/* Kernel mode? Handle exceptions or die: */
973		if (!(error_code & X86_PF_USER)) {
974			no_context(regs, error_code, address,
975				   SIGSEGV, SEGV_MAPERR);
976			return;
977		}
978
979		/*
980		 * We ran out of memory, call the OOM killer, and return the
981		 * userspace (which will retry the fault, or kill us if we got
982		 * oom-killed):
983		 */
984		pagefault_out_of_memory();
985	} else {
986		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
987			     VM_FAULT_HWPOISON_LARGE))
988			do_sigbus(regs, error_code, address, fault);
989		else if (fault & VM_FAULT_SIGSEGV)
990			bad_area_nosemaphore(regs, error_code, address);
991		else
992			BUG();
993	}
994}
995
996static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
997{
998	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
999		return 0;
1000
1001	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1002		return 0;
1003
1004	return 1;
1005}
1006
1007/*
1008 * Handle a spurious fault caused by a stale TLB entry.
1009 *
1010 * This allows us to lazily refresh the TLB when increasing the
1011 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1012 * eagerly is very expensive since that implies doing a full
1013 * cross-processor TLB flush, even if no stale TLB entries exist
1014 * on other processors.
1015 *
1016 * Spurious faults may only occur if the TLB contains an entry with
1017 * fewer permission than the page table entry.  Non-present (P = 0)
1018 * and reserved bit (R = 1) faults are never spurious.
1019 *
1020 * There are no security implications to leaving a stale TLB when
1021 * increasing the permissions on a page.
1022 *
1023 * Returns non-zero if a spurious fault was handled, zero otherwise.
1024 *
1025 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1026 * (Optional Invalidation).
1027 */
1028static noinline int
1029spurious_kernel_fault(unsigned long error_code, unsigned long address)
1030{
1031	pgd_t *pgd;
1032	p4d_t *p4d;
1033	pud_t *pud;
1034	pmd_t *pmd;
1035	pte_t *pte;
1036	int ret;
1037
1038	/*
1039	 * Only writes to RO or instruction fetches from NX may cause
1040	 * spurious faults.
1041	 *
1042	 * These could be from user or supervisor accesses but the TLB
1043	 * is only lazily flushed after a kernel mapping protection
1044	 * change, so user accesses are not expected to cause spurious
1045	 * faults.
1046	 */
1047	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1048	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1049		return 0;
1050
1051	pgd = init_mm.pgd + pgd_index(address);
1052	if (!pgd_present(*pgd))
1053		return 0;
1054
1055	p4d = p4d_offset(pgd, address);
1056	if (!p4d_present(*p4d))
1057		return 0;
1058
1059	if (p4d_large(*p4d))
1060		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1061
1062	pud = pud_offset(p4d, address);
1063	if (!pud_present(*pud))
1064		return 0;
1065
1066	if (pud_large(*pud))
1067		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1068
1069	pmd = pmd_offset(pud, address);
1070	if (!pmd_present(*pmd))
1071		return 0;
1072
1073	if (pmd_large(*pmd))
1074		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1075
1076	pte = pte_offset_kernel(pmd, address);
1077	if (!pte_present(*pte))
1078		return 0;
1079
1080	ret = spurious_kernel_fault_check(error_code, pte);
1081	if (!ret)
1082		return 0;
1083
1084	/*
1085	 * Make sure we have permissions in PMD.
1086	 * If not, then there's a bug in the page tables:
1087	 */
1088	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1089	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1090
1091	return ret;
1092}
1093NOKPROBE_SYMBOL(spurious_kernel_fault);
1094
1095int show_unhandled_signals = 1;
1096
1097static inline int
1098access_error(unsigned long error_code, struct vm_area_struct *vma)
1099{
1100	/* This is only called for the current mm, so: */
1101	bool foreign = false;
1102
1103	/*
1104	 * Read or write was blocked by protection keys.  This is
1105	 * always an unconditional error and can never result in
1106	 * a follow-up action to resolve the fault, like a COW.
1107	 */
1108	if (error_code & X86_PF_PK)
1109		return 1;
1110
1111	/*
1112	 * Make sure to check the VMA so that we do not perform
1113	 * faults just to hit a X86_PF_PK as soon as we fill in a
1114	 * page.
1115	 */
1116	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1117				       (error_code & X86_PF_INSTR), foreign))
1118		return 1;
1119
1120	if (error_code & X86_PF_WRITE) {
1121		/* write, present and write, not present: */
1122		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1123			return 1;
1124		return 0;
1125	}
1126
1127	/* read, present: */
1128	if (unlikely(error_code & X86_PF_PROT))
1129		return 1;
1130
1131	/* read, not present: */
1132	if (unlikely(!vma_is_accessible(vma)))
1133		return 1;
1134
1135	return 0;
1136}
1137
1138bool fault_in_kernel_space(unsigned long address)
1139{
1140	/*
1141	 * On 64-bit systems, the vsyscall page is at an address above
1142	 * TASK_SIZE_MAX, but is not considered part of the kernel
1143	 * address space.
1144	 */
1145	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1146		return false;
1147
1148	return address >= TASK_SIZE_MAX;
1149}
1150
1151/*
1152 * Called for all faults where 'address' is part of the kernel address
1153 * space.  Might get called for faults that originate from *code* that
1154 * ran in userspace or the kernel.
1155 */
1156static void
1157do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1158		   unsigned long address)
1159{
1160	/*
1161	 * Protection keys exceptions only happen on user pages.  We
1162	 * have no user pages in the kernel portion of the address
1163	 * space, so do not expect them here.
1164	 */
1165	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1166
1167#ifdef CONFIG_X86_32
1168	/*
1169	 * We can fault-in kernel-space virtual memory on-demand. The
1170	 * 'reference' page table is init_mm.pgd.
1171	 *
1172	 * NOTE! We MUST NOT take any locks for this case. We may
1173	 * be in an interrupt or a critical region, and should
1174	 * only copy the information from the master page table,
1175	 * nothing more.
1176	 *
1177	 * Before doing this on-demand faulting, ensure that the
1178	 * fault is not any of the following:
1179	 * 1. A fault on a PTE with a reserved bit set.
1180	 * 2. A fault caused by a user-mode access.  (Do not demand-
1181	 *    fault kernel memory due to user-mode accesses).
1182	 * 3. A fault caused by a page-level protection violation.
1183	 *    (A demand fault would be on a non-present page which
1184	 *     would have X86_PF_PROT==0).
1185	 *
1186	 * This is only needed to close a race condition on x86-32 in
1187	 * the vmalloc mapping/unmapping code. See the comment above
1188	 * vmalloc_fault() for details. On x86-64 the race does not
1189	 * exist as the vmalloc mappings don't need to be synchronized
1190	 * there.
1191	 */
1192	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1193		if (vmalloc_fault(address) >= 0)
1194			return;
1195	}
1196#endif
1197
1198	/* Was the fault spurious, caused by lazy TLB invalidation? */
1199	if (spurious_kernel_fault(hw_error_code, address))
1200		return;
1201
1202	/* kprobes don't want to hook the spurious faults: */
1203	if (kprobe_page_fault(regs, X86_TRAP_PF))
1204		return;
1205
1206	/*
1207	 * Note, despite being a "bad area", there are quite a few
1208	 * acceptable reasons to get here, such as erratum fixups
1209	 * and handling kernel code that can fault, like get_user().
1210	 *
1211	 * Don't take the mm semaphore here. If we fixup a prefetch
1212	 * fault we could otherwise deadlock:
1213	 */
1214	bad_area_nosemaphore(regs, hw_error_code, address);
1215}
1216NOKPROBE_SYMBOL(do_kern_addr_fault);
1217
1218/* Handle faults in the user portion of the address space */
1219static inline
1220void do_user_addr_fault(struct pt_regs *regs,
1221			unsigned long hw_error_code,
1222			unsigned long address)
1223{
1224	struct vm_area_struct *vma;
1225	struct task_struct *tsk;
1226	struct mm_struct *mm;
1227	vm_fault_t fault;
1228	unsigned int flags = FAULT_FLAG_DEFAULT;
1229
1230	tsk = current;
1231	mm = tsk->mm;
1232
1233	/* kprobes don't want to hook the spurious faults: */
1234	if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1235		return;
1236
1237	/*
1238	 * Reserved bits are never expected to be set on
1239	 * entries in the user portion of the page tables.
1240	 */
1241	if (unlikely(hw_error_code & X86_PF_RSVD))
1242		pgtable_bad(regs, hw_error_code, address);
1243
1244	/*
1245	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1246	 * pages in the user address space.  The odd case here is WRUSS,
1247	 * which, according to the preliminary documentation, does not respect
1248	 * SMAP and will have the USER bit set so, in all cases, SMAP
1249	 * enforcement appears to be consistent with the USER bit.
1250	 */
1251	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1252		     !(hw_error_code & X86_PF_USER) &&
1253		     !(regs->flags & X86_EFLAGS_AC)))
1254	{
1255		bad_area_nosemaphore(regs, hw_error_code, address);
1256		return;
1257	}
1258
1259	/*
1260	 * If we're in an interrupt, have no user context or are running
1261	 * in a region with pagefaults disabled then we must not take the fault
1262	 */
1263	if (unlikely(faulthandler_disabled() || !mm)) {
1264		bad_area_nosemaphore(regs, hw_error_code, address);
1265		return;
1266	}
1267
1268	/*
1269	 * It's safe to allow irq's after cr2 has been saved and the
1270	 * vmalloc fault has been handled.
1271	 *
1272	 * User-mode registers count as a user access even for any
1273	 * potential system fault or CPU buglet:
1274	 */
1275	if (user_mode(regs)) {
1276		local_irq_enable();
1277		flags |= FAULT_FLAG_USER;
1278	} else {
1279		if (regs->flags & X86_EFLAGS_IF)
1280			local_irq_enable();
1281	}
1282
1283	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1284
1285	if (hw_error_code & X86_PF_WRITE)
1286		flags |= FAULT_FLAG_WRITE;
1287	if (hw_error_code & X86_PF_INSTR)
1288		flags |= FAULT_FLAG_INSTRUCTION;
1289
1290#ifdef CONFIG_X86_64
1291	/*
1292	 * Faults in the vsyscall page might need emulation.  The
1293	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1294	 * considered to be part of the user address space.
1295	 *
1296	 * The vsyscall page does not have a "real" VMA, so do this
1297	 * emulation before we go searching for VMAs.
1298	 *
1299	 * PKRU never rejects instruction fetches, so we don't need
1300	 * to consider the PF_PK bit.
1301	 */
1302	if (is_vsyscall_vaddr(address)) {
1303		if (emulate_vsyscall(hw_error_code, regs, address))
1304			return;
1305	}
1306#endif
1307
1308	/*
1309	 * Kernel-mode access to the user address space should only occur
1310	 * on well-defined single instructions listed in the exception
1311	 * tables.  But, an erroneous kernel fault occurring outside one of
1312	 * those areas which also holds mmap_lock might deadlock attempting
1313	 * to validate the fault against the address space.
1314	 *
1315	 * Only do the expensive exception table search when we might be at
1316	 * risk of a deadlock.  This happens if we
1317	 * 1. Failed to acquire mmap_lock, and
1318	 * 2. The access did not originate in userspace.
1319	 */
1320	if (unlikely(!mmap_read_trylock(mm))) {
1321		if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1322			/*
1323			 * Fault from code in kernel from
1324			 * which we do not expect faults.
1325			 */
1326			bad_area_nosemaphore(regs, hw_error_code, address);
1327			return;
1328		}
1329retry:
1330		mmap_read_lock(mm);
1331	} else {
1332		/*
1333		 * The above down_read_trylock() might have succeeded in
1334		 * which case we'll have missed the might_sleep() from
1335		 * down_read():
1336		 */
1337		might_sleep();
1338	}
1339
1340	vma = find_vma(mm, address);
1341	if (unlikely(!vma)) {
1342		bad_area(regs, hw_error_code, address);
1343		return;
1344	}
1345	if (likely(vma->vm_start <= address))
1346		goto good_area;
1347	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1348		bad_area(regs, hw_error_code, address);
1349		return;
1350	}
1351	if (unlikely(expand_stack(vma, address))) {
1352		bad_area(regs, hw_error_code, address);
1353		return;
1354	}
1355
1356	/*
1357	 * Ok, we have a good vm_area for this memory access, so
1358	 * we can handle it..
1359	 */
1360good_area:
1361	if (unlikely(access_error(hw_error_code, vma))) {
1362		bad_area_access_error(regs, hw_error_code, address, vma);
1363		return;
1364	}
1365
1366	/*
1367	 * If for any reason at all we couldn't handle the fault,
1368	 * make sure we exit gracefully rather than endlessly redo
1369	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1370	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1371	 *
1372	 * Note that handle_userfault() may also release and reacquire mmap_lock
1373	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1374	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1375	 * (potentially after handling any pending signal during the return to
1376	 * userland). The return to userland is identified whenever
1377	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1378	 */
1379	fault = handle_mm_fault(vma, address, flags, regs);
1380
1381	/* Quick path to respond to signals */
1382	if (fault_signal_pending(fault, regs)) {
1383		if (!user_mode(regs))
1384			no_context(regs, hw_error_code, address, SIGBUS,
1385				   BUS_ADRERR);
1386		return;
1387	}
1388
1389	/*
1390	 * If we need to retry the mmap_lock has already been released,
1391	 * and if there is a fatal signal pending there is no guarantee
1392	 * that we made any progress. Handle this case first.
1393	 */
1394	if (unlikely((fault & VM_FAULT_RETRY) &&
1395		     (flags & FAULT_FLAG_ALLOW_RETRY))) {
1396		flags |= FAULT_FLAG_TRIED;
1397		goto retry;
1398	}
1399
1400	mmap_read_unlock(mm);
1401	if (unlikely(fault & VM_FAULT_ERROR)) {
1402		mm_fault_error(regs, hw_error_code, address, fault);
1403		return;
1404	}
1405
1406	check_v8086_mode(regs, address, tsk);
1407}
1408NOKPROBE_SYMBOL(do_user_addr_fault);
1409
1410static __always_inline void
1411trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1412			 unsigned long address)
1413{
1414	if (!trace_pagefault_enabled())
1415		return;
1416
1417	if (user_mode(regs))
1418		trace_page_fault_user(address, regs, error_code);
1419	else
1420		trace_page_fault_kernel(address, regs, error_code);
1421}
1422
1423static __always_inline void
1424handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1425			      unsigned long address)
1426{
1427	trace_page_fault_entries(regs, error_code, address);
1428
1429	if (unlikely(kmmio_fault(regs, address)))
1430		return;
1431
1432	/* Was the fault on kernel-controlled part of the address space? */
1433	if (unlikely(fault_in_kernel_space(address))) {
1434		do_kern_addr_fault(regs, error_code, address);
1435	} else {
1436		do_user_addr_fault(regs, error_code, address);
1437		/*
1438		 * User address page fault handling might have reenabled
1439		 * interrupts. Fixing up all potential exit points of
1440		 * do_user_addr_fault() and its leaf functions is just not
1441		 * doable w/o creating an unholy mess or turning the code
1442		 * upside down.
1443		 */
1444		local_irq_disable();
1445	}
1446}
1447
1448DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1449{
1450	unsigned long address = read_cr2();
1451	irqentry_state_t state;
1452
1453	prefetchw(&current->mm->mmap_lock);
1454
1455	/*
1456	 * KVM uses #PF vector to deliver 'page not present' events to guests
1457	 * (asynchronous page fault mechanism). The event happens when a
1458	 * userspace task is trying to access some valid (from guest's point of
1459	 * view) memory which is not currently mapped by the host (e.g. the
1460	 * memory is swapped out). Note, the corresponding "page ready" event
1461	 * which is injected when the memory becomes available, is delived via
1462	 * an interrupt mechanism and not a #PF exception
1463	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1464	 *
1465	 * We are relying on the interrupted context being sane (valid RSP,
1466	 * relevant locks not held, etc.), which is fine as long as the
1467	 * interrupted context had IF=1.  We are also relying on the KVM
1468	 * async pf type field and CR2 being read consistently instead of
1469	 * getting values from real and async page faults mixed up.
1470	 *
1471	 * Fingers crossed.
1472	 *
1473	 * The async #PF handling code takes care of idtentry handling
1474	 * itself.
1475	 */
1476	if (kvm_handle_async_pf(regs, (u32)address))
1477		return;
1478
1479	/*
1480	 * Entry handling for valid #PF from kernel mode is slightly
1481	 * different: RCU is already watching and rcu_irq_enter() must not
1482	 * be invoked because a kernel fault on a user space address might
1483	 * sleep.
1484	 *
1485	 * In case the fault hit a RCU idle region the conditional entry
1486	 * code reenabled RCU to avoid subsequent wreckage which helps
1487	 * debugability.
1488	 */
1489	state = irqentry_enter(regs);
1490
1491	instrumentation_begin();
1492	handle_page_fault(regs, error_code, address);
1493	instrumentation_end();
1494
1495	irqentry_exit(regs, state);
1496}
1497