18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
28c2ecf20Sopenharmony_ci/*---------------------------------------------------------------------------+
38c2ecf20Sopenharmony_ci |  poly_tan.c                                                               |
48c2ecf20Sopenharmony_ci |                                                                           |
58c2ecf20Sopenharmony_ci | Compute the tan of a FPU_REG, using a polynomial approximation.           |
68c2ecf20Sopenharmony_ci |                                                                           |
78c2ecf20Sopenharmony_ci | Copyright (C) 1992,1993,1994,1997,1999                                    |
88c2ecf20Sopenharmony_ci |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      |
98c2ecf20Sopenharmony_ci |                       Australia.  E-mail   billm@melbpc.org.au            |
108c2ecf20Sopenharmony_ci |                                                                           |
118c2ecf20Sopenharmony_ci |                                                                           |
128c2ecf20Sopenharmony_ci +---------------------------------------------------------------------------*/
138c2ecf20Sopenharmony_ci
148c2ecf20Sopenharmony_ci#include "exception.h"
158c2ecf20Sopenharmony_ci#include "reg_constant.h"
168c2ecf20Sopenharmony_ci#include "fpu_emu.h"
178c2ecf20Sopenharmony_ci#include "fpu_system.h"
188c2ecf20Sopenharmony_ci#include "control_w.h"
198c2ecf20Sopenharmony_ci#include "poly.h"
208c2ecf20Sopenharmony_ci
218c2ecf20Sopenharmony_ci#define	HiPOWERop	3	/* odd poly, positive terms */
228c2ecf20Sopenharmony_cistatic const unsigned long long oddplterm[HiPOWERop] = {
238c2ecf20Sopenharmony_ci	0x0000000000000000LL,
248c2ecf20Sopenharmony_ci	0x0051a1cf08fca228LL,
258c2ecf20Sopenharmony_ci	0x0000000071284ff7LL
268c2ecf20Sopenharmony_ci};
278c2ecf20Sopenharmony_ci
288c2ecf20Sopenharmony_ci#define	HiPOWERon	2	/* odd poly, negative terms */
298c2ecf20Sopenharmony_cistatic const unsigned long long oddnegterm[HiPOWERon] = {
308c2ecf20Sopenharmony_ci	0x1291a9a184244e80LL,
318c2ecf20Sopenharmony_ci	0x0000583245819c21LL
328c2ecf20Sopenharmony_ci};
338c2ecf20Sopenharmony_ci
348c2ecf20Sopenharmony_ci#define	HiPOWERep	2	/* even poly, positive terms */
358c2ecf20Sopenharmony_cistatic const unsigned long long evenplterm[HiPOWERep] = {
368c2ecf20Sopenharmony_ci	0x0e848884b539e888LL,
378c2ecf20Sopenharmony_ci	0x00003c7f18b887daLL
388c2ecf20Sopenharmony_ci};
398c2ecf20Sopenharmony_ci
408c2ecf20Sopenharmony_ci#define	HiPOWERen	2	/* even poly, negative terms */
418c2ecf20Sopenharmony_cistatic const unsigned long long evennegterm[HiPOWERen] = {
428c2ecf20Sopenharmony_ci	0xf1f0200fd51569ccLL,
438c2ecf20Sopenharmony_ci	0x003afb46105c4432LL
448c2ecf20Sopenharmony_ci};
458c2ecf20Sopenharmony_ci
468c2ecf20Sopenharmony_cistatic const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL;
478c2ecf20Sopenharmony_ci
488c2ecf20Sopenharmony_ci/*--- poly_tan() ------------------------------------------------------------+
498c2ecf20Sopenharmony_ci |                                                                           |
508c2ecf20Sopenharmony_ci +---------------------------------------------------------------------------*/
518c2ecf20Sopenharmony_civoid poly_tan(FPU_REG *st0_ptr)
528c2ecf20Sopenharmony_ci{
538c2ecf20Sopenharmony_ci	long int exponent;
548c2ecf20Sopenharmony_ci	int invert;
558c2ecf20Sopenharmony_ci	Xsig argSq, argSqSq, accumulatoro, accumulatore, accum,
568c2ecf20Sopenharmony_ci	    argSignif, fix_up;
578c2ecf20Sopenharmony_ci	unsigned long adj;
588c2ecf20Sopenharmony_ci
598c2ecf20Sopenharmony_ci	exponent = exponent(st0_ptr);
608c2ecf20Sopenharmony_ci
618c2ecf20Sopenharmony_ci#ifdef PARANOID
628c2ecf20Sopenharmony_ci	if (signnegative(st0_ptr)) {	/* Can't hack a number < 0.0 */
638c2ecf20Sopenharmony_ci		arith_invalid(0);
648c2ecf20Sopenharmony_ci		return;
658c2ecf20Sopenharmony_ci	}			/* Need a positive number */
668c2ecf20Sopenharmony_ci#endif /* PARANOID */
678c2ecf20Sopenharmony_ci
688c2ecf20Sopenharmony_ci	/* Split the problem into two domains, smaller and larger than pi/4 */
698c2ecf20Sopenharmony_ci	if ((exponent == 0)
708c2ecf20Sopenharmony_ci	    || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2))) {
718c2ecf20Sopenharmony_ci		/* The argument is greater than (approx) pi/4 */
728c2ecf20Sopenharmony_ci		invert = 1;
738c2ecf20Sopenharmony_ci		accum.lsw = 0;
748c2ecf20Sopenharmony_ci		XSIG_LL(accum) = significand(st0_ptr);
758c2ecf20Sopenharmony_ci
768c2ecf20Sopenharmony_ci		if (exponent == 0) {
778c2ecf20Sopenharmony_ci			/* The argument is >= 1.0 */
788c2ecf20Sopenharmony_ci			/* Put the binary point at the left. */
798c2ecf20Sopenharmony_ci			XSIG_LL(accum) <<= 1;
808c2ecf20Sopenharmony_ci		}
818c2ecf20Sopenharmony_ci		/* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
828c2ecf20Sopenharmony_ci		XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum);
838c2ecf20Sopenharmony_ci		/* This is a special case which arises due to rounding. */
848c2ecf20Sopenharmony_ci		if (XSIG_LL(accum) == 0xffffffffffffffffLL) {
858c2ecf20Sopenharmony_ci			FPU_settag0(TAG_Valid);
868c2ecf20Sopenharmony_ci			significand(st0_ptr) = 0x8a51e04daabda360LL;
878c2ecf20Sopenharmony_ci			setexponent16(st0_ptr,
888c2ecf20Sopenharmony_ci				      (0x41 + EXTENDED_Ebias) | SIGN_Negative);
898c2ecf20Sopenharmony_ci			return;
908c2ecf20Sopenharmony_ci		}
918c2ecf20Sopenharmony_ci
928c2ecf20Sopenharmony_ci		argSignif.lsw = accum.lsw;
938c2ecf20Sopenharmony_ci		XSIG_LL(argSignif) = XSIG_LL(accum);
948c2ecf20Sopenharmony_ci		exponent = -1 + norm_Xsig(&argSignif);
958c2ecf20Sopenharmony_ci	} else {
968c2ecf20Sopenharmony_ci		invert = 0;
978c2ecf20Sopenharmony_ci		argSignif.lsw = 0;
988c2ecf20Sopenharmony_ci		XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr);
998c2ecf20Sopenharmony_ci
1008c2ecf20Sopenharmony_ci		if (exponent < -1) {
1018c2ecf20Sopenharmony_ci			/* shift the argument right by the required places */
1028c2ecf20Sopenharmony_ci			if (FPU_shrx(&XSIG_LL(accum), -1 - exponent) >=
1038c2ecf20Sopenharmony_ci			    0x80000000U)
1048c2ecf20Sopenharmony_ci				XSIG_LL(accum)++;	/* round up */
1058c2ecf20Sopenharmony_ci		}
1068c2ecf20Sopenharmony_ci	}
1078c2ecf20Sopenharmony_ci
1088c2ecf20Sopenharmony_ci	XSIG_LL(argSq) = XSIG_LL(accum);
1098c2ecf20Sopenharmony_ci	argSq.lsw = accum.lsw;
1108c2ecf20Sopenharmony_ci	mul_Xsig_Xsig(&argSq, &argSq);
1118c2ecf20Sopenharmony_ci	XSIG_LL(argSqSq) = XSIG_LL(argSq);
1128c2ecf20Sopenharmony_ci	argSqSq.lsw = argSq.lsw;
1138c2ecf20Sopenharmony_ci	mul_Xsig_Xsig(&argSqSq, &argSqSq);
1148c2ecf20Sopenharmony_ci
1158c2ecf20Sopenharmony_ci	/* Compute the negative terms for the numerator polynomial */
1168c2ecf20Sopenharmony_ci	accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0;
1178c2ecf20Sopenharmony_ci	polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm,
1188c2ecf20Sopenharmony_ci			HiPOWERon - 1);
1198c2ecf20Sopenharmony_ci	mul_Xsig_Xsig(&accumulatoro, &argSq);
1208c2ecf20Sopenharmony_ci	negate_Xsig(&accumulatoro);
1218c2ecf20Sopenharmony_ci	/* Add the positive terms */
1228c2ecf20Sopenharmony_ci	polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm,
1238c2ecf20Sopenharmony_ci			HiPOWERop - 1);
1248c2ecf20Sopenharmony_ci
1258c2ecf20Sopenharmony_ci	/* Compute the positive terms for the denominator polynomial */
1268c2ecf20Sopenharmony_ci	accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0;
1278c2ecf20Sopenharmony_ci	polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm,
1288c2ecf20Sopenharmony_ci			HiPOWERep - 1);
1298c2ecf20Sopenharmony_ci	mul_Xsig_Xsig(&accumulatore, &argSq);
1308c2ecf20Sopenharmony_ci	negate_Xsig(&accumulatore);
1318c2ecf20Sopenharmony_ci	/* Add the negative terms */
1328c2ecf20Sopenharmony_ci	polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm,
1338c2ecf20Sopenharmony_ci			HiPOWERen - 1);
1348c2ecf20Sopenharmony_ci	/* Multiply by arg^2 */
1358c2ecf20Sopenharmony_ci	mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
1368c2ecf20Sopenharmony_ci	mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
1378c2ecf20Sopenharmony_ci	/* de-normalize and divide by 2 */
1388c2ecf20Sopenharmony_ci	shr_Xsig(&accumulatore, -2 * (1 + exponent) + 1);
1398c2ecf20Sopenharmony_ci	negate_Xsig(&accumulatore);	/* This does 1 - accumulator */
1408c2ecf20Sopenharmony_ci
1418c2ecf20Sopenharmony_ci	/* Now find the ratio. */
1428c2ecf20Sopenharmony_ci	if (accumulatore.msw == 0) {
1438c2ecf20Sopenharmony_ci		/* accumulatoro must contain 1.0 here, (actually, 0) but it
1448c2ecf20Sopenharmony_ci		   really doesn't matter what value we use because it will
1458c2ecf20Sopenharmony_ci		   have negligible effect in later calculations
1468c2ecf20Sopenharmony_ci		 */
1478c2ecf20Sopenharmony_ci		XSIG_LL(accum) = 0x8000000000000000LL;
1488c2ecf20Sopenharmony_ci		accum.lsw = 0;
1498c2ecf20Sopenharmony_ci	} else {
1508c2ecf20Sopenharmony_ci		div_Xsig(&accumulatoro, &accumulatore, &accum);
1518c2ecf20Sopenharmony_ci	}
1528c2ecf20Sopenharmony_ci
1538c2ecf20Sopenharmony_ci	/* Multiply by 1/3 * arg^3 */
1548c2ecf20Sopenharmony_ci	mul64_Xsig(&accum, &XSIG_LL(argSignif));
1558c2ecf20Sopenharmony_ci	mul64_Xsig(&accum, &XSIG_LL(argSignif));
1568c2ecf20Sopenharmony_ci	mul64_Xsig(&accum, &XSIG_LL(argSignif));
1578c2ecf20Sopenharmony_ci	mul64_Xsig(&accum, &twothirds);
1588c2ecf20Sopenharmony_ci	shr_Xsig(&accum, -2 * (exponent + 1));
1598c2ecf20Sopenharmony_ci
1608c2ecf20Sopenharmony_ci	/* tan(arg) = arg + accum */
1618c2ecf20Sopenharmony_ci	add_two_Xsig(&accum, &argSignif, &exponent);
1628c2ecf20Sopenharmony_ci
1638c2ecf20Sopenharmony_ci	if (invert) {
1648c2ecf20Sopenharmony_ci		/* We now have the value of tan(pi_2 - arg) where pi_2 is an
1658c2ecf20Sopenharmony_ci		   approximation for pi/2
1668c2ecf20Sopenharmony_ci		 */
1678c2ecf20Sopenharmony_ci		/* The next step is to fix the answer to compensate for the
1688c2ecf20Sopenharmony_ci		   error due to the approximation used for pi/2
1698c2ecf20Sopenharmony_ci		 */
1708c2ecf20Sopenharmony_ci
1718c2ecf20Sopenharmony_ci		/* This is (approx) delta, the error in our approx for pi/2
1728c2ecf20Sopenharmony_ci		   (see above). It has an exponent of -65
1738c2ecf20Sopenharmony_ci		 */
1748c2ecf20Sopenharmony_ci		XSIG_LL(fix_up) = 0x898cc51701b839a2LL;
1758c2ecf20Sopenharmony_ci		fix_up.lsw = 0;
1768c2ecf20Sopenharmony_ci
1778c2ecf20Sopenharmony_ci		if (exponent == 0)
1788c2ecf20Sopenharmony_ci			adj = 0xffffffff;	/* We want approx 1.0 here, but
1798c2ecf20Sopenharmony_ci						   this is close enough. */
1808c2ecf20Sopenharmony_ci		else if (exponent > -30) {
1818c2ecf20Sopenharmony_ci			adj = accum.msw >> -(exponent + 1);	/* tan */
1828c2ecf20Sopenharmony_ci			adj = mul_32_32(adj, adj);	/* tan^2 */
1838c2ecf20Sopenharmony_ci		} else
1848c2ecf20Sopenharmony_ci			adj = 0;
1858c2ecf20Sopenharmony_ci		adj = mul_32_32(0x898cc517, adj);	/* delta * tan^2 */
1868c2ecf20Sopenharmony_ci
1878c2ecf20Sopenharmony_ci		fix_up.msw += adj;
1888c2ecf20Sopenharmony_ci		if (!(fix_up.msw & 0x80000000)) {	/* did fix_up overflow ? */
1898c2ecf20Sopenharmony_ci			/* Yes, we need to add an msb */
1908c2ecf20Sopenharmony_ci			shr_Xsig(&fix_up, 1);
1918c2ecf20Sopenharmony_ci			fix_up.msw |= 0x80000000;
1928c2ecf20Sopenharmony_ci			shr_Xsig(&fix_up, 64 + exponent);
1938c2ecf20Sopenharmony_ci		} else
1948c2ecf20Sopenharmony_ci			shr_Xsig(&fix_up, 65 + exponent);
1958c2ecf20Sopenharmony_ci
1968c2ecf20Sopenharmony_ci		add_two_Xsig(&accum, &fix_up, &exponent);
1978c2ecf20Sopenharmony_ci
1988c2ecf20Sopenharmony_ci		/* accum now contains tan(pi/2 - arg).
1998c2ecf20Sopenharmony_ci		   Use tan(arg) = 1.0 / tan(pi/2 - arg)
2008c2ecf20Sopenharmony_ci		 */
2018c2ecf20Sopenharmony_ci		accumulatoro.lsw = accumulatoro.midw = 0;
2028c2ecf20Sopenharmony_ci		accumulatoro.msw = 0x80000000;
2038c2ecf20Sopenharmony_ci		div_Xsig(&accumulatoro, &accum, &accum);
2048c2ecf20Sopenharmony_ci		exponent = -exponent - 1;
2058c2ecf20Sopenharmony_ci	}
2068c2ecf20Sopenharmony_ci
2078c2ecf20Sopenharmony_ci	/* Transfer the result */
2088c2ecf20Sopenharmony_ci	round_Xsig(&accum);
2098c2ecf20Sopenharmony_ci	FPU_settag0(TAG_Valid);
2108c2ecf20Sopenharmony_ci	significand(st0_ptr) = XSIG_LL(accum);
2118c2ecf20Sopenharmony_ci	setexponent16(st0_ptr, exponent + EXTENDED_Ebias);	/* Result is positive. */
2128c2ecf20Sopenharmony_ci
2138c2ecf20Sopenharmony_ci}
214