xref: /kernel/linux/linux-5.10/arch/x86/kvm/pmu.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4 *
5 * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6 *
7 * Authors:
8 *   Avi Kivity   <avi@redhat.com>
9 *   Gleb Natapov <gleb@redhat.com>
10 *   Wei Huang    <wei@redhat.com>
11 */
12
13#include <linux/types.h>
14#include <linux/kvm_host.h>
15#include <linux/perf_event.h>
16#include <linux/bsearch.h>
17#include <linux/sort.h>
18#include <asm/perf_event.h>
19#include "x86.h"
20#include "cpuid.h"
21#include "lapic.h"
22#include "pmu.h"
23
24/* This is enough to filter the vast majority of currently defined events. */
25#define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
26
27/* NOTE:
28 * - Each perf counter is defined as "struct kvm_pmc";
29 * - There are two types of perf counters: general purpose (gp) and fixed.
30 *   gp counters are stored in gp_counters[] and fixed counters are stored
31 *   in fixed_counters[] respectively. Both of them are part of "struct
32 *   kvm_pmu";
33 * - pmu.c understands the difference between gp counters and fixed counters.
34 *   However AMD doesn't support fixed-counters;
35 * - There are three types of index to access perf counters (PMC):
36 *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
37 *        has MSR_K7_PERFCTRn.
38 *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
39 *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
40 *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
41 *        that it also supports fixed counters. idx can be used to as index to
42 *        gp and fixed counters.
43 *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
44 *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
45 *        all perf counters (both gp and fixed). The mapping relationship
46 *        between pmc and perf counters is as the following:
47 *        * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters
48 *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
49 *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters
50 */
51
52static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
53{
54	struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
55	struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
56
57	kvm_pmu_deliver_pmi(vcpu);
58}
59
60static void kvm_perf_overflow(struct perf_event *perf_event,
61			      struct perf_sample_data *data,
62			      struct pt_regs *regs)
63{
64	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
65	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
66
67	if (!test_and_set_bit(pmc->idx, pmu->reprogram_pmi)) {
68		__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
69		kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
70	}
71}
72
73static void kvm_perf_overflow_intr(struct perf_event *perf_event,
74				   struct perf_sample_data *data,
75				   struct pt_regs *regs)
76{
77	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
78	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
79
80	if (!test_and_set_bit(pmc->idx, pmu->reprogram_pmi)) {
81		__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
82		kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
83
84		/*
85		 * Inject PMI. If vcpu was in a guest mode during NMI PMI
86		 * can be ejected on a guest mode re-entry. Otherwise we can't
87		 * be sure that vcpu wasn't executing hlt instruction at the
88		 * time of vmexit and is not going to re-enter guest mode until
89		 * woken up. So we should wake it, but this is impossible from
90		 * NMI context. Do it from irq work instead.
91		 */
92		if (!kvm_is_in_guest())
93			irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
94		else
95			kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
96	}
97}
98
99static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type,
100				  u64 config, bool exclude_user,
101				  bool exclude_kernel, bool intr,
102				  bool in_tx, bool in_tx_cp)
103{
104	struct perf_event *event;
105	struct perf_event_attr attr = {
106		.type = type,
107		.size = sizeof(attr),
108		.pinned = true,
109		.exclude_idle = true,
110		.exclude_host = 1,
111		.exclude_user = exclude_user,
112		.exclude_kernel = exclude_kernel,
113		.config = config,
114	};
115
116	attr.sample_period = get_sample_period(pmc, pmc->counter);
117
118	if (in_tx)
119		attr.config |= HSW_IN_TX;
120	if (in_tx_cp) {
121		/*
122		 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
123		 * period. Just clear the sample period so at least
124		 * allocating the counter doesn't fail.
125		 */
126		attr.sample_period = 0;
127		attr.config |= HSW_IN_TX_CHECKPOINTED;
128	}
129
130	event = perf_event_create_kernel_counter(&attr, -1, current,
131						 intr ? kvm_perf_overflow_intr :
132						 kvm_perf_overflow, pmc);
133	if (IS_ERR(event)) {
134		pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
135			    PTR_ERR(event), pmc->idx);
136		return;
137	}
138
139	pmc->perf_event = event;
140	pmc_to_pmu(pmc)->event_count++;
141	clear_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi);
142}
143
144static void pmc_pause_counter(struct kvm_pmc *pmc)
145{
146	u64 counter = pmc->counter;
147
148	if (!pmc->perf_event)
149		return;
150
151	/* update counter, reset event value to avoid redundant accumulation */
152	counter += perf_event_pause(pmc->perf_event, true);
153	pmc->counter = counter & pmc_bitmask(pmc);
154}
155
156static bool pmc_resume_counter(struct kvm_pmc *pmc)
157{
158	if (!pmc->perf_event)
159		return false;
160
161	/* recalibrate sample period and check if it's accepted by perf core */
162	if (perf_event_period(pmc->perf_event,
163			      get_sample_period(pmc, pmc->counter)))
164		return false;
165
166	/* reuse perf_event to serve as pmc_reprogram_counter() does*/
167	perf_event_enable(pmc->perf_event);
168
169	clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
170	return true;
171}
172
173static int cmp_u64(const void *pa, const void *pb)
174{
175	u64 a = *(u64 *)pa;
176	u64 b = *(u64 *)pb;
177
178	return (a > b) - (a < b);
179}
180
181void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel)
182{
183	u64 config;
184	u32 type = PERF_TYPE_RAW;
185	struct kvm *kvm = pmc->vcpu->kvm;
186	struct kvm_pmu_event_filter *filter;
187	struct kvm_pmu *pmu = vcpu_to_pmu(pmc->vcpu);
188	bool allow_event = true;
189
190	if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
191		printk_once("kvm pmu: pin control bit is ignored\n");
192
193	pmc->eventsel = eventsel;
194
195	pmc_pause_counter(pmc);
196
197	if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc))
198		return;
199
200	filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
201	if (filter) {
202		__u64 key = eventsel & AMD64_RAW_EVENT_MASK_NB;
203
204		if (bsearch(&key, filter->events, filter->nevents,
205			    sizeof(__u64), cmp_u64))
206			allow_event = filter->action == KVM_PMU_EVENT_ALLOW;
207		else
208			allow_event = filter->action == KVM_PMU_EVENT_DENY;
209	}
210	if (!allow_event)
211		return;
212
213	if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE |
214			  ARCH_PERFMON_EVENTSEL_INV |
215			  ARCH_PERFMON_EVENTSEL_CMASK |
216			  HSW_IN_TX |
217			  HSW_IN_TX_CHECKPOINTED))) {
218		config = kvm_x86_ops.pmu_ops->pmc_perf_hw_id(pmc);
219		if (config != PERF_COUNT_HW_MAX)
220			type = PERF_TYPE_HARDWARE;
221	}
222
223	if (type == PERF_TYPE_RAW)
224		config = eventsel & pmu->raw_event_mask;
225
226	if (pmc->current_config == eventsel && pmc_resume_counter(pmc))
227		return;
228
229	pmc_release_perf_event(pmc);
230
231	pmc->current_config = eventsel;
232	pmc_reprogram_counter(pmc, type, config,
233			      !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
234			      !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
235			      eventsel & ARCH_PERFMON_EVENTSEL_INT,
236			      (eventsel & HSW_IN_TX),
237			      (eventsel & HSW_IN_TX_CHECKPOINTED));
238}
239EXPORT_SYMBOL_GPL(reprogram_gp_counter);
240
241void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx)
242{
243	unsigned en_field = ctrl & 0x3;
244	bool pmi = ctrl & 0x8;
245	struct kvm_pmu_event_filter *filter;
246	struct kvm *kvm = pmc->vcpu->kvm;
247
248	pmc_pause_counter(pmc);
249
250	if (!en_field || !pmc_is_enabled(pmc))
251		return;
252
253	filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
254	if (filter) {
255		if (filter->action == KVM_PMU_EVENT_DENY &&
256		    test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
257			return;
258		if (filter->action == KVM_PMU_EVENT_ALLOW &&
259		    !test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
260			return;
261	}
262
263	if (pmc->current_config == (u64)ctrl && pmc_resume_counter(pmc))
264		return;
265
266	pmc_release_perf_event(pmc);
267
268	pmc->current_config = (u64)ctrl;
269	pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE,
270			      kvm_x86_ops.pmu_ops->find_fixed_event(idx),
271			      !(en_field & 0x2), /* exclude user */
272			      !(en_field & 0x1), /* exclude kernel */
273			      pmi, false, false);
274}
275EXPORT_SYMBOL_GPL(reprogram_fixed_counter);
276
277void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx)
278{
279	struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx);
280
281	if (!pmc)
282		return;
283
284	if (pmc_is_gp(pmc))
285		reprogram_gp_counter(pmc, pmc->eventsel);
286	else {
287		int idx = pmc_idx - INTEL_PMC_IDX_FIXED;
288		u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx);
289
290		reprogram_fixed_counter(pmc, ctrl, idx);
291	}
292}
293EXPORT_SYMBOL_GPL(reprogram_counter);
294
295void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
296{
297	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
298	int bit;
299
300	for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
301		struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, bit);
302
303		if (unlikely(!pmc || !pmc->perf_event)) {
304			clear_bit(bit, pmu->reprogram_pmi);
305			continue;
306		}
307
308		reprogram_counter(pmu, bit);
309	}
310
311	/*
312	 * Unused perf_events are only released if the corresponding MSRs
313	 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
314	 * triggers KVM_REQ_PMU if cleanup is needed.
315	 */
316	if (unlikely(pmu->need_cleanup))
317		kvm_pmu_cleanup(vcpu);
318}
319
320/* check if idx is a valid index to access PMU */
321int kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
322{
323	return kvm_x86_ops.pmu_ops->is_valid_rdpmc_ecx(vcpu, idx);
324}
325
326bool is_vmware_backdoor_pmc(u32 pmc_idx)
327{
328	switch (pmc_idx) {
329	case VMWARE_BACKDOOR_PMC_HOST_TSC:
330	case VMWARE_BACKDOOR_PMC_REAL_TIME:
331	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
332		return true;
333	}
334	return false;
335}
336
337static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
338{
339	u64 ctr_val;
340
341	switch (idx) {
342	case VMWARE_BACKDOOR_PMC_HOST_TSC:
343		ctr_val = rdtsc();
344		break;
345	case VMWARE_BACKDOOR_PMC_REAL_TIME:
346		ctr_val = ktime_get_boottime_ns();
347		break;
348	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
349		ctr_val = ktime_get_boottime_ns() +
350			vcpu->kvm->arch.kvmclock_offset;
351		break;
352	default:
353		return 1;
354	}
355
356	*data = ctr_val;
357	return 0;
358}
359
360int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
361{
362	bool fast_mode = idx & (1u << 31);
363	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
364	struct kvm_pmc *pmc;
365	u64 mask = fast_mode ? ~0u : ~0ull;
366
367	if (!pmu->version)
368		return 1;
369
370	if (is_vmware_backdoor_pmc(idx))
371		return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
372
373	pmc = kvm_x86_ops.pmu_ops->rdpmc_ecx_to_pmc(vcpu, idx, &mask);
374	if (!pmc)
375		return 1;
376
377	if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) &&
378	    (kvm_x86_ops.get_cpl(vcpu) != 0) &&
379	    (kvm_read_cr0(vcpu) & X86_CR0_PE))
380		return 1;
381
382	*data = pmc_read_counter(pmc) & mask;
383	return 0;
384}
385
386void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
387{
388	if (lapic_in_kernel(vcpu))
389		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
390}
391
392bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
393{
394	return kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr) ||
395		kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, msr);
396}
397
398static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
399{
400	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
401	struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr);
402
403	if (pmc)
404		__set_bit(pmc->idx, pmu->pmc_in_use);
405}
406
407int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
408{
409	return kvm_x86_ops.pmu_ops->get_msr(vcpu, msr_info);
410}
411
412int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
413{
414	kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
415	return kvm_x86_ops.pmu_ops->set_msr(vcpu, msr_info);
416}
417
418/* refresh PMU settings. This function generally is called when underlying
419 * settings are changed (such as changes of PMU CPUID by guest VMs), which
420 * should rarely happen.
421 */
422void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
423{
424	kvm_x86_ops.pmu_ops->refresh(vcpu);
425}
426
427void kvm_pmu_reset(struct kvm_vcpu *vcpu)
428{
429	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
430
431	irq_work_sync(&pmu->irq_work);
432	kvm_x86_ops.pmu_ops->reset(vcpu);
433}
434
435void kvm_pmu_init(struct kvm_vcpu *vcpu)
436{
437	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
438
439	memset(pmu, 0, sizeof(*pmu));
440	kvm_x86_ops.pmu_ops->init(vcpu);
441	init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
442	pmu->event_count = 0;
443	pmu->need_cleanup = false;
444	kvm_pmu_refresh(vcpu);
445}
446
447static inline bool pmc_speculative_in_use(struct kvm_pmc *pmc)
448{
449	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
450
451	if (pmc_is_fixed(pmc))
452		return fixed_ctrl_field(pmu->fixed_ctr_ctrl,
453			pmc->idx - INTEL_PMC_IDX_FIXED) & 0x3;
454
455	return pmc->eventsel & ARCH_PERFMON_EVENTSEL_ENABLE;
456}
457
458/* Release perf_events for vPMCs that have been unused for a full time slice.  */
459void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
460{
461	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
462	struct kvm_pmc *pmc = NULL;
463	DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
464	int i;
465
466	pmu->need_cleanup = false;
467
468	bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
469		      pmu->pmc_in_use, X86_PMC_IDX_MAX);
470
471	for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
472		pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, i);
473
474		if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
475			pmc_stop_counter(pmc);
476	}
477
478	bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
479}
480
481void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
482{
483	kvm_pmu_reset(vcpu);
484}
485
486int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
487{
488	struct kvm_pmu_event_filter tmp, *filter;
489	size_t size;
490	int r;
491
492	if (copy_from_user(&tmp, argp, sizeof(tmp)))
493		return -EFAULT;
494
495	if (tmp.action != KVM_PMU_EVENT_ALLOW &&
496	    tmp.action != KVM_PMU_EVENT_DENY)
497		return -EINVAL;
498
499	if (tmp.flags != 0)
500		return -EINVAL;
501
502	if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
503		return -E2BIG;
504
505	size = struct_size(filter, events, tmp.nevents);
506	filter = kmalloc(size, GFP_KERNEL_ACCOUNT);
507	if (!filter)
508		return -ENOMEM;
509
510	r = -EFAULT;
511	if (copy_from_user(filter, argp, size))
512		goto cleanup;
513
514	/* Ensure nevents can't be changed between the user copies. */
515	*filter = tmp;
516
517	/*
518	 * Sort the in-kernel list so that we can search it with bsearch.
519	 */
520	sort(&filter->events, filter->nevents, sizeof(__u64), cmp_u64, NULL);
521
522	mutex_lock(&kvm->lock);
523	filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
524				     mutex_is_locked(&kvm->lock));
525	mutex_unlock(&kvm->lock);
526
527	synchronize_srcu_expedited(&kvm->srcu);
528	r = 0;
529cleanup:
530	kfree(filter);
531	return r;
532}
533