1// SPDX-License-Identifier: GPL-2.0-only 2 3#ifndef KVM_X86_MMU_SPTE_H 4#define KVM_X86_MMU_SPTE_H 5 6#include "mmu_internal.h" 7 8#define PT_FIRST_AVAIL_BITS_SHIFT 10 9#define PT64_SECOND_AVAIL_BITS_SHIFT 54 10 11/* 12 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or 13 * Access Tracking SPTEs. 14 */ 15#define SPTE_SPECIAL_MASK (3ULL << 52) 16#define SPTE_AD_ENABLED_MASK (0ULL << 52) 17#define SPTE_AD_DISABLED_MASK (1ULL << 52) 18#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52) 19#define SPTE_MMIO_MASK (3ULL << 52) 20 21#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK 22#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1)) 23#else 24#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) 25#endif 26 27#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ 28 | shadow_x_mask | shadow_nx_mask | shadow_me_mask) 29 30#define ACC_EXEC_MASK 1 31#define ACC_WRITE_MASK PT_WRITABLE_MASK 32#define ACC_USER_MASK PT_USER_MASK 33#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) 34 35/* The mask for the R/X bits in EPT PTEs */ 36#define PT64_EPT_READABLE_MASK 0x1ull 37#define PT64_EPT_EXECUTABLE_MASK 0x4ull 38 39#define PT64_LEVEL_BITS 9 40 41#define PT64_LEVEL_SHIFT(level) \ 42 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) 43 44#define PT64_INDEX(address, level)\ 45 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) 46#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) 47 48 49#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) 50#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1)) 51 52/* 53 * Due to limited space in PTEs, the MMIO generation is a 18 bit subset of 54 * the memslots generation and is derived as follows: 55 * 56 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11 57 * Bits 9-17 of the MMIO generation are propagated to spte bits 54-62 58 * 59 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in 60 * the MMIO generation number, as doing so would require stealing a bit from 61 * the "real" generation number and thus effectively halve the maximum number 62 * of MMIO generations that can be handled before encountering a wrap (which 63 * requires a full MMU zap). The flag is instead explicitly queried when 64 * checking for MMIO spte cache hits. 65 */ 66 67#define MMIO_SPTE_GEN_LOW_START 3 68#define MMIO_SPTE_GEN_LOW_END 11 69 70#define MMIO_SPTE_GEN_HIGH_START PT64_SECOND_AVAIL_BITS_SHIFT 71#define MMIO_SPTE_GEN_HIGH_END 62 72 73#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \ 74 MMIO_SPTE_GEN_LOW_START) 75#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \ 76 MMIO_SPTE_GEN_HIGH_START) 77 78#define MMIO_SPTE_GEN_LOW_BITS (MMIO_SPTE_GEN_LOW_END - MMIO_SPTE_GEN_LOW_START + 1) 79#define MMIO_SPTE_GEN_HIGH_BITS (MMIO_SPTE_GEN_HIGH_END - MMIO_SPTE_GEN_HIGH_START + 1) 80 81/* remember to adjust the comment above as well if you change these */ 82static_assert(MMIO_SPTE_GEN_LOW_BITS == 9 && MMIO_SPTE_GEN_HIGH_BITS == 9); 83 84#define MMIO_SPTE_GEN_LOW_SHIFT (MMIO_SPTE_GEN_LOW_START - 0) 85#define MMIO_SPTE_GEN_HIGH_SHIFT (MMIO_SPTE_GEN_HIGH_START - MMIO_SPTE_GEN_LOW_BITS) 86 87#define MMIO_SPTE_GEN_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_BITS + MMIO_SPTE_GEN_HIGH_BITS - 1, 0) 88 89extern u64 __read_mostly shadow_nx_mask; 90extern u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ 91extern u64 __read_mostly shadow_user_mask; 92extern u64 __read_mostly shadow_accessed_mask; 93extern u64 __read_mostly shadow_dirty_mask; 94extern u64 __read_mostly shadow_mmio_value; 95extern u64 __read_mostly shadow_mmio_access_mask; 96extern u64 __read_mostly shadow_present_mask; 97extern u64 __read_mostly shadow_me_mask; 98 99/* 100 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK; 101 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed 102 * pages. 103 */ 104extern u64 __read_mostly shadow_acc_track_mask; 105 106/* 107 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order 108 * to guard against L1TF attacks. 109 */ 110extern u64 __read_mostly shadow_nonpresent_or_rsvd_mask; 111 112/* 113 * The number of high-order 1 bits to use in the mask above. 114 */ 115#define SHADOW_NONPRESENT_OR_RSVD_MASK_LEN 5 116 117/* 118 * The mask/shift to use for saving the original R/X bits when marking the PTE 119 * as not-present for access tracking purposes. We do not save the W bit as the 120 * PTEs being access tracked also need to be dirty tracked, so the W bit will be 121 * restored only when a write is attempted to the page. 122 */ 123#define SHADOW_ACC_TRACK_SAVED_BITS_MASK (PT64_EPT_READABLE_MASK | \ 124 PT64_EPT_EXECUTABLE_MASK) 125#define SHADOW_ACC_TRACK_SAVED_BITS_SHIFT PT64_SECOND_AVAIL_BITS_SHIFT 126 127/* 128 * In some cases, we need to preserve the GFN of a non-present or reserved 129 * SPTE when we usurp the upper five bits of the physical address space to 130 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll 131 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask 132 * left into the reserved bits, i.e. the GFN in the SPTE will be split into 133 * high and low parts. This mask covers the lower bits of the GFN. 134 */ 135extern u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; 136 137/* 138 * The number of non-reserved physical address bits irrespective of features 139 * that repurpose legal bits, e.g. MKTME. 140 */ 141extern u8 __read_mostly shadow_phys_bits; 142 143static inline bool is_mmio_spte(u64 spte) 144{ 145 return (spte & SPTE_SPECIAL_MASK) == SPTE_MMIO_MASK; 146} 147 148static inline bool sp_ad_disabled(struct kvm_mmu_page *sp) 149{ 150 return sp->role.ad_disabled; 151} 152 153static inline bool spte_ad_enabled(u64 spte) 154{ 155 MMU_WARN_ON(is_mmio_spte(spte)); 156 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK; 157} 158 159static inline bool spte_ad_need_write_protect(u64 spte) 160{ 161 MMU_WARN_ON(is_mmio_spte(spte)); 162 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK; 163} 164 165static inline u64 spte_shadow_accessed_mask(u64 spte) 166{ 167 MMU_WARN_ON(is_mmio_spte(spte)); 168 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0; 169} 170 171static inline u64 spte_shadow_dirty_mask(u64 spte) 172{ 173 MMU_WARN_ON(is_mmio_spte(spte)); 174 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0; 175} 176 177static inline bool is_access_track_spte(u64 spte) 178{ 179 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0; 180} 181 182static inline int is_shadow_present_pte(u64 pte) 183{ 184 return (pte != 0) && !is_mmio_spte(pte); 185} 186 187static inline int is_large_pte(u64 pte) 188{ 189 return pte & PT_PAGE_SIZE_MASK; 190} 191 192static inline int is_last_spte(u64 pte, int level) 193{ 194 if (level == PG_LEVEL_4K) 195 return 1; 196 if (is_large_pte(pte)) 197 return 1; 198 return 0; 199} 200 201static inline bool is_executable_pte(u64 spte) 202{ 203 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask; 204} 205 206static inline kvm_pfn_t spte_to_pfn(u64 pte) 207{ 208 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; 209} 210 211static inline bool is_accessed_spte(u64 spte) 212{ 213 u64 accessed_mask = spte_shadow_accessed_mask(spte); 214 215 return accessed_mask ? spte & accessed_mask 216 : !is_access_track_spte(spte); 217} 218 219static inline bool is_dirty_spte(u64 spte) 220{ 221 u64 dirty_mask = spte_shadow_dirty_mask(spte); 222 223 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK; 224} 225 226static inline bool spte_can_locklessly_be_made_writable(u64 spte) 227{ 228 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) == 229 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE); 230} 231 232static inline u64 get_mmio_spte_generation(u64 spte) 233{ 234 u64 gen; 235 236 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_SHIFT; 237 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_SHIFT; 238 return gen; 239} 240 241/* Bits which may be returned by set_spte() */ 242#define SET_SPTE_WRITE_PROTECTED_PT BIT(0) 243#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1) 244#define SET_SPTE_SPURIOUS BIT(2) 245 246int make_spte(struct kvm_vcpu *vcpu, unsigned int pte_access, int level, 247 gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool speculative, 248 bool can_unsync, bool host_writable, bool ad_disabled, 249 u64 *new_spte); 250u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled); 251u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access); 252u64 mark_spte_for_access_track(u64 spte); 253u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn); 254 255void kvm_mmu_reset_all_pte_masks(void); 256 257#endif 258