xref: /kernel/linux/linux-5.10/arch/x86/kvm/mmu/spte.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * Macros and functions to access KVM PTEs (also known as SPTEs)
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2020 Red Hat, Inc. and/or its affiliates.
9 */
10
11
12#include <linux/kvm_host.h>
13#include "mmu.h"
14#include "mmu_internal.h"
15#include "x86.h"
16#include "spte.h"
17
18#include <asm/e820/api.h>
19
20u64 __read_mostly shadow_nx_mask;
21u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
22u64 __read_mostly shadow_user_mask;
23u64 __read_mostly shadow_accessed_mask;
24u64 __read_mostly shadow_dirty_mask;
25u64 __read_mostly shadow_mmio_value;
26u64 __read_mostly shadow_mmio_access_mask;
27u64 __read_mostly shadow_present_mask;
28u64 __read_mostly shadow_me_mask;
29u64 __read_mostly shadow_acc_track_mask;
30
31u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
32u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
33
34u8 __read_mostly shadow_phys_bits;
35
36static u64 generation_mmio_spte_mask(u64 gen)
37{
38	u64 mask;
39
40	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
41	BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
42
43	mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
44	mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
45	return mask;
46}
47
48u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
49{
50	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
51	u64 mask = generation_mmio_spte_mask(gen);
52	u64 gpa = gfn << PAGE_SHIFT;
53
54	access &= shadow_mmio_access_mask;
55	mask |= shadow_mmio_value | access;
56	mask |= gpa | shadow_nonpresent_or_rsvd_mask;
57	mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
58		<< SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
59
60	return mask;
61}
62
63static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
64{
65	if (pfn_valid(pfn))
66		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
67			/*
68			 * Some reserved pages, such as those from NVDIMM
69			 * DAX devices, are not for MMIO, and can be mapped
70			 * with cached memory type for better performance.
71			 * However, the above check misconceives those pages
72			 * as MMIO, and results in KVM mapping them with UC
73			 * memory type, which would hurt the performance.
74			 * Therefore, we check the host memory type in addition
75			 * and only treat UC/UC-/WC pages as MMIO.
76			 */
77			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
78
79	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
80				     pfn_to_hpa(pfn + 1) - 1,
81				     E820_TYPE_RAM);
82}
83
84int make_spte(struct kvm_vcpu *vcpu, unsigned int pte_access, int level,
85		     gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool speculative,
86		     bool can_unsync, bool host_writable, bool ad_disabled,
87		     u64 *new_spte)
88{
89	u64 spte = 0;
90	int ret = 0;
91
92	if (ad_disabled)
93		spte |= SPTE_AD_DISABLED_MASK;
94	else if (kvm_vcpu_ad_need_write_protect(vcpu))
95		spte |= SPTE_AD_WRPROT_ONLY_MASK;
96
97	/*
98	 * For the EPT case, shadow_present_mask is 0 if hardware
99	 * supports exec-only page table entries.  In that case,
100	 * ACC_USER_MASK and shadow_user_mask are used to represent
101	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
102	 */
103	spte |= shadow_present_mask;
104	if (!speculative)
105		spte |= spte_shadow_accessed_mask(spte);
106
107	if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
108	    is_nx_huge_page_enabled()) {
109		pte_access &= ~ACC_EXEC_MASK;
110	}
111
112	if (pte_access & ACC_EXEC_MASK)
113		spte |= shadow_x_mask;
114	else
115		spte |= shadow_nx_mask;
116
117	if (pte_access & ACC_USER_MASK)
118		spte |= shadow_user_mask;
119
120	if (level > PG_LEVEL_4K)
121		spte |= PT_PAGE_SIZE_MASK;
122	if (tdp_enabled)
123		spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
124			kvm_is_mmio_pfn(pfn));
125
126	if (host_writable)
127		spte |= SPTE_HOST_WRITEABLE;
128	else
129		pte_access &= ~ACC_WRITE_MASK;
130
131	if (!kvm_is_mmio_pfn(pfn))
132		spte |= shadow_me_mask;
133
134	spte |= (u64)pfn << PAGE_SHIFT;
135
136	if (pte_access & ACC_WRITE_MASK) {
137		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
138
139		/*
140		 * Optimization: for pte sync, if spte was writable the hash
141		 * lookup is unnecessary (and expensive). Write protection
142		 * is responsibility of mmu_get_page / kvm_sync_page.
143		 * Same reasoning can be applied to dirty page accounting.
144		 */
145		if (!can_unsync && is_writable_pte(old_spte))
146			goto out;
147
148		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
149			pgprintk("%s: found shadow page for %llx, marking ro\n",
150				 __func__, gfn);
151			ret |= SET_SPTE_WRITE_PROTECTED_PT;
152			pte_access &= ~ACC_WRITE_MASK;
153			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
154		}
155	}
156
157	if (pte_access & ACC_WRITE_MASK)
158		spte |= spte_shadow_dirty_mask(spte);
159
160	if (speculative)
161		spte = mark_spte_for_access_track(spte);
162
163out:
164	*new_spte = spte;
165	return ret;
166}
167
168u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
169{
170	u64 spte;
171
172	spte = __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
173	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
174
175	if (ad_disabled)
176		spte |= SPTE_AD_DISABLED_MASK;
177	else
178		spte |= shadow_accessed_mask;
179
180	return spte;
181}
182
183u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn)
184{
185	u64 new_spte;
186
187	new_spte = old_spte & ~PT64_BASE_ADDR_MASK;
188	new_spte |= (u64)new_pfn << PAGE_SHIFT;
189
190	new_spte &= ~PT_WRITABLE_MASK;
191	new_spte &= ~SPTE_HOST_WRITEABLE;
192
193	new_spte = mark_spte_for_access_track(new_spte);
194
195	return new_spte;
196}
197
198static u8 kvm_get_shadow_phys_bits(void)
199{
200	/*
201	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
202	 * in CPU detection code, but the processor treats those reduced bits as
203	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
204	 * the physical address bits reported by CPUID.
205	 */
206	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
207		return cpuid_eax(0x80000008) & 0xff;
208
209	/*
210	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
211	 * custom CPUID.  Proceed with whatever the kernel found since these features
212	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
213	 */
214	return boot_cpu_data.x86_phys_bits;
215}
216
217u64 mark_spte_for_access_track(u64 spte)
218{
219	if (spte_ad_enabled(spte))
220		return spte & ~shadow_accessed_mask;
221
222	if (is_access_track_spte(spte))
223		return spte;
224
225	/*
226	 * Making an Access Tracking PTE will result in removal of write access
227	 * from the PTE. So, verify that we will be able to restore the write
228	 * access in the fast page fault path later on.
229	 */
230	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
231		  !spte_can_locklessly_be_made_writable(spte),
232		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");
233
234	WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
235			  SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
236		  "kvm: Access Tracking saved bit locations are not zero\n");
237
238	spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
239		SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
240	spte &= ~shadow_acc_track_mask;
241
242	return spte;
243}
244
245void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask)
246{
247	BUG_ON((u64)(unsigned)access_mask != access_mask);
248	WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN));
249	WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
250	shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
251	shadow_mmio_access_mask = access_mask;
252}
253EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
254
255/*
256 * Sets the shadow PTE masks used by the MMU.
257 *
258 * Assumptions:
259 *  - Setting either @accessed_mask or @dirty_mask requires setting both
260 *  - At least one of @accessed_mask or @acc_track_mask must be set
261 */
262void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
263		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
264		u64 acc_track_mask, u64 me_mask)
265{
266	BUG_ON(!dirty_mask != !accessed_mask);
267	BUG_ON(!accessed_mask && !acc_track_mask);
268	BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
269
270	shadow_user_mask = user_mask;
271	shadow_accessed_mask = accessed_mask;
272	shadow_dirty_mask = dirty_mask;
273	shadow_nx_mask = nx_mask;
274	shadow_x_mask = x_mask;
275	shadow_present_mask = p_mask;
276	shadow_acc_track_mask = acc_track_mask;
277	shadow_me_mask = me_mask;
278}
279EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
280
281void kvm_mmu_reset_all_pte_masks(void)
282{
283	u8 low_phys_bits;
284
285	shadow_user_mask = 0;
286	shadow_accessed_mask = 0;
287	shadow_dirty_mask = 0;
288	shadow_nx_mask = 0;
289	shadow_x_mask = 0;
290	shadow_present_mask = 0;
291	shadow_acc_track_mask = 0;
292
293	shadow_phys_bits = kvm_get_shadow_phys_bits();
294
295	/*
296	 * If the CPU has 46 or less physical address bits, then set an
297	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
298	 * assumed that the CPU is not vulnerable to L1TF.
299	 *
300	 * Some Intel CPUs address the L1 cache using more PA bits than are
301	 * reported by CPUID. Use the PA width of the L1 cache when possible
302	 * to achieve more effective mitigation, e.g. if system RAM overlaps
303	 * the most significant bits of legal physical address space.
304	 */
305	shadow_nonpresent_or_rsvd_mask = 0;
306	low_phys_bits = boot_cpu_data.x86_phys_bits;
307	if (boot_cpu_has_bug(X86_BUG_L1TF) &&
308	    !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
309			  52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
310		low_phys_bits = boot_cpu_data.x86_cache_bits
311			- SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
312		shadow_nonpresent_or_rsvd_mask =
313			rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
314	}
315
316	shadow_nonpresent_or_rsvd_lower_gfn_mask =
317		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
318}
319