1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 *   Yaniv Kamay  <yaniv@qumranet.com>
15 *   Avi Kivity   <avi@qumranet.com>
16 */
17
18/*
19 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
20 * so the code in this file is compiled twice, once per pte size.
21 */
22
23#if PTTYPE == 64
24	#define pt_element_t u64
25	#define guest_walker guest_walker64
26	#define FNAME(name) paging##64_##name
27	#define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
28	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
29	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
30	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
31	#define PT_LEVEL_BITS PT64_LEVEL_BITS
32	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
33	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
34	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
35	#ifdef CONFIG_X86_64
36	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
37	#define CMPXCHG "cmpxchgq"
38	#else
39	#define PT_MAX_FULL_LEVELS 2
40	#endif
41#elif PTTYPE == 32
42	#define pt_element_t u32
43	#define guest_walker guest_walker32
44	#define FNAME(name) paging##32_##name
45	#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
46	#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
47	#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
48	#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
49	#define PT_LEVEL_BITS PT32_LEVEL_BITS
50	#define PT_MAX_FULL_LEVELS 2
51	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
52	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
53	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
54	#define CMPXCHG "cmpxchgl"
55#elif PTTYPE == PTTYPE_EPT
56	#define pt_element_t u64
57	#define guest_walker guest_walkerEPT
58	#define FNAME(name) ept_##name
59	#define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
60	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
61	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
62	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
63	#define PT_LEVEL_BITS PT64_LEVEL_BITS
64	#define PT_GUEST_DIRTY_SHIFT 9
65	#define PT_GUEST_ACCESSED_SHIFT 8
66	#define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
67	#ifdef CONFIG_X86_64
68	#define CMPXCHG "cmpxchgq"
69	#endif
70	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
71#else
72	#error Invalid PTTYPE value
73#endif
74
75#define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
76#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
77
78#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
79#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
80
81/*
82 * The guest_walker structure emulates the behavior of the hardware page
83 * table walker.
84 */
85struct guest_walker {
86	int level;
87	unsigned max_level;
88	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
89	pt_element_t ptes[PT_MAX_FULL_LEVELS];
90	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
91	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
92	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
93	bool pte_writable[PT_MAX_FULL_LEVELS];
94	unsigned int pt_access[PT_MAX_FULL_LEVELS];
95	unsigned int pte_access;
96	gfn_t gfn;
97	struct x86_exception fault;
98};
99
100static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
101{
102	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
103}
104
105static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
106					     unsigned gpte)
107{
108	unsigned mask;
109
110	/* dirty bit is not supported, so no need to track it */
111	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
112		return;
113
114	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
115
116	mask = (unsigned)~ACC_WRITE_MASK;
117	/* Allow write access to dirty gptes */
118	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
119		PT_WRITABLE_MASK;
120	*access &= mask;
121}
122
123static inline int FNAME(is_present_gpte)(unsigned long pte)
124{
125#if PTTYPE != PTTYPE_EPT
126	return pte & PT_PRESENT_MASK;
127#else
128	return pte & 7;
129#endif
130}
131
132static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
133{
134#if PTTYPE != PTTYPE_EPT
135	return false;
136#else
137	return __is_bad_mt_xwr(rsvd_check, gpte);
138#endif
139}
140
141static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
142{
143	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
144	       FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
145}
146
147static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
148			       pt_element_t __user *ptep_user, unsigned index,
149			       pt_element_t orig_pte, pt_element_t new_pte)
150{
151	int r = -EFAULT;
152
153	if (!user_access_begin(ptep_user, sizeof(pt_element_t)))
154		return -EFAULT;
155
156#ifdef CMPXCHG
157	asm volatile("1:" LOCK_PREFIX CMPXCHG " %[new], %[ptr]\n"
158		     "mov $0, %[r]\n"
159		     "setnz %b[r]\n"
160		     "2:"
161		     _ASM_EXTABLE_UA(1b, 2b)
162		     : [ptr] "+m" (*ptep_user),
163		       [old] "+a" (orig_pte),
164		       [r] "+q" (r)
165		     : [new] "r" (new_pte)
166		     : "memory");
167#else
168	asm volatile("1:" LOCK_PREFIX "cmpxchg8b %[ptr]\n"
169		     "movl $0, %[r]\n"
170		     "jz 2f\n"
171		     "incl %[r]\n"
172		     "2:"
173		     _ASM_EXTABLE_UA(1b, 2b)
174		     : [ptr] "+m" (*ptep_user),
175		       [old] "+A" (orig_pte),
176		       [r] "+rm" (r)
177		     : [new_lo] "b" ((u32)new_pte),
178		       [new_hi] "c" ((u32)(new_pte >> 32))
179		     : "memory");
180#endif
181
182	user_access_end();
183	return r;
184}
185
186static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
187				  struct kvm_mmu_page *sp, u64 *spte,
188				  u64 gpte)
189{
190	if (!FNAME(is_present_gpte)(gpte))
191		goto no_present;
192
193	/* if accessed bit is not supported prefetch non accessed gpte */
194	if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
195	    !(gpte & PT_GUEST_ACCESSED_MASK))
196		goto no_present;
197
198	if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
199		goto no_present;
200
201	return false;
202
203no_present:
204	drop_spte(vcpu->kvm, spte);
205	return true;
206}
207
208/*
209 * For PTTYPE_EPT, a page table can be executable but not readable
210 * on supported processors. Therefore, set_spte does not automatically
211 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
212 * to signify readability since it isn't used in the EPT case
213 */
214static inline unsigned FNAME(gpte_access)(u64 gpte)
215{
216	unsigned access;
217#if PTTYPE == PTTYPE_EPT
218	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
219		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
220		((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
221#else
222	BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
223	BUILD_BUG_ON(ACC_EXEC_MASK != 1);
224	access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
225	/* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
226	access ^= (gpte >> PT64_NX_SHIFT);
227#endif
228
229	return access;
230}
231
232static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
233					     struct kvm_mmu *mmu,
234					     struct guest_walker *walker,
235					     gpa_t addr, int write_fault)
236{
237	unsigned level, index;
238	pt_element_t pte, orig_pte;
239	pt_element_t __user *ptep_user;
240	gfn_t table_gfn;
241	int ret;
242
243	/* dirty/accessed bits are not supported, so no need to update them */
244	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
245		return 0;
246
247	for (level = walker->max_level; level >= walker->level; --level) {
248		pte = orig_pte = walker->ptes[level - 1];
249		table_gfn = walker->table_gfn[level - 1];
250		ptep_user = walker->ptep_user[level - 1];
251		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
252		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
253			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
254			pte |= PT_GUEST_ACCESSED_MASK;
255		}
256		if (level == walker->level && write_fault &&
257				!(pte & PT_GUEST_DIRTY_MASK)) {
258			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
259#if PTTYPE == PTTYPE_EPT
260			if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
261				return -EINVAL;
262#endif
263			pte |= PT_GUEST_DIRTY_MASK;
264		}
265		if (pte == orig_pte)
266			continue;
267
268		/*
269		 * If the slot is read-only, simply do not process the accessed
270		 * and dirty bits.  This is the correct thing to do if the slot
271		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
272		 * are only supported if the accessed and dirty bits are already
273		 * set in the ROM (so that MMIO writes are never needed).
274		 *
275		 * Note that NPT does not allow this at all and faults, since
276		 * it always wants nested page table entries for the guest
277		 * page tables to be writable.  And EPT works but will simply
278		 * overwrite the read-only memory to set the accessed and dirty
279		 * bits.
280		 */
281		if (unlikely(!walker->pte_writable[level - 1]))
282			continue;
283
284		ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
285		if (ret)
286			return ret;
287
288		kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
289		walker->ptes[level - 1] = pte;
290	}
291	return 0;
292}
293
294static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
295{
296	unsigned pkeys = 0;
297#if PTTYPE == 64
298	pte_t pte = {.pte = gpte};
299
300	pkeys = pte_flags_pkey(pte_flags(pte));
301#endif
302	return pkeys;
303}
304
305/*
306 * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
307 */
308static int FNAME(walk_addr_generic)(struct guest_walker *walker,
309				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
310				    gpa_t addr, u32 access)
311{
312	int ret;
313	pt_element_t pte;
314	pt_element_t __user *ptep_user;
315	gfn_t table_gfn;
316	u64 pt_access, pte_access;
317	unsigned index, accessed_dirty, pte_pkey;
318	unsigned nested_access;
319	gpa_t pte_gpa;
320	bool have_ad;
321	int offset;
322	u64 walk_nx_mask = 0;
323	const int write_fault = access & PFERR_WRITE_MASK;
324	const int user_fault  = access & PFERR_USER_MASK;
325	const int fetch_fault = access & PFERR_FETCH_MASK;
326	u16 errcode = 0;
327	gpa_t real_gpa;
328	gfn_t gfn;
329
330	trace_kvm_mmu_pagetable_walk(addr, access);
331retry_walk:
332	walker->level = mmu->root_level;
333	pte           = mmu->get_guest_pgd(vcpu);
334	have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
335
336#if PTTYPE == 64
337	walk_nx_mask = 1ULL << PT64_NX_SHIFT;
338	if (walker->level == PT32E_ROOT_LEVEL) {
339		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
340		trace_kvm_mmu_paging_element(pte, walker->level);
341		if (!FNAME(is_present_gpte)(pte))
342			goto error;
343		--walker->level;
344	}
345#endif
346	walker->max_level = walker->level;
347	ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
348
349	/*
350	 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
351	 * by the MOV to CR instruction are treated as reads and do not cause the
352	 * processor to set the dirty flag in any EPT paging-structure entry.
353	 */
354	nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
355
356	pte_access = ~0;
357	++walker->level;
358
359	do {
360		unsigned long host_addr;
361
362		pt_access = pte_access;
363		--walker->level;
364
365		index = PT_INDEX(addr, walker->level);
366		table_gfn = gpte_to_gfn(pte);
367		offset    = index * sizeof(pt_element_t);
368		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
369
370		BUG_ON(walker->level < 1);
371		walker->table_gfn[walker->level - 1] = table_gfn;
372		walker->pte_gpa[walker->level - 1] = pte_gpa;
373
374		real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
375					      nested_access,
376					      &walker->fault);
377
378		/*
379		 * FIXME: This can happen if emulation (for of an INS/OUTS
380		 * instruction) triggers a nested page fault.  The exit
381		 * qualification / exit info field will incorrectly have
382		 * "guest page access" as the nested page fault's cause,
383		 * instead of "guest page structure access".  To fix this,
384		 * the x86_exception struct should be augmented with enough
385		 * information to fix the exit_qualification or exit_info_1
386		 * fields.
387		 */
388		if (unlikely(real_gpa == UNMAPPED_GVA))
389			return 0;
390
391		host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa),
392					    &walker->pte_writable[walker->level - 1]);
393		if (unlikely(kvm_is_error_hva(host_addr)))
394			goto error;
395
396		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
397		if (unlikely(__get_user(pte, ptep_user)))
398			goto error;
399		walker->ptep_user[walker->level - 1] = ptep_user;
400
401		trace_kvm_mmu_paging_element(pte, walker->level);
402
403		/*
404		 * Inverting the NX it lets us AND it like other
405		 * permission bits.
406		 */
407		pte_access = pt_access & (pte ^ walk_nx_mask);
408
409		if (unlikely(!FNAME(is_present_gpte)(pte)))
410			goto error;
411
412		if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
413			errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
414			goto error;
415		}
416
417		walker->ptes[walker->level - 1] = pte;
418
419		/* Convert to ACC_*_MASK flags for struct guest_walker.  */
420		walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
421	} while (!is_last_gpte(mmu, walker->level, pte));
422
423	pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
424	accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
425
426	/* Convert to ACC_*_MASK flags for struct guest_walker.  */
427	walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
428	errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
429	if (unlikely(errcode))
430		goto error;
431
432	gfn = gpte_to_gfn_lvl(pte, walker->level);
433	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
434
435	if (PTTYPE == 32 && walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
436		gfn += pse36_gfn_delta(pte);
437
438	real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
439	if (real_gpa == UNMAPPED_GVA)
440		return 0;
441
442	walker->gfn = real_gpa >> PAGE_SHIFT;
443
444	if (!write_fault)
445		FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
446	else
447		/*
448		 * On a write fault, fold the dirty bit into accessed_dirty.
449		 * For modes without A/D bits support accessed_dirty will be
450		 * always clear.
451		 */
452		accessed_dirty &= pte >>
453			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
454
455	if (unlikely(!accessed_dirty)) {
456		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
457							addr, write_fault);
458		if (unlikely(ret < 0))
459			goto error;
460		else if (ret)
461			goto retry_walk;
462	}
463
464	pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
465		 __func__, (u64)pte, walker->pte_access,
466		 walker->pt_access[walker->level - 1]);
467	return 1;
468
469error:
470	errcode |= write_fault | user_fault;
471	if (fetch_fault && (mmu->nx || mmu->mmu_role.ext.cr4_smep))
472		errcode |= PFERR_FETCH_MASK;
473
474	walker->fault.vector = PF_VECTOR;
475	walker->fault.error_code_valid = true;
476	walker->fault.error_code = errcode;
477
478#if PTTYPE == PTTYPE_EPT
479	/*
480	 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
481	 * misconfiguration requires to be injected. The detection is
482	 * done by is_rsvd_bits_set() above.
483	 *
484	 * We set up the value of exit_qualification to inject:
485	 * [2:0] - Derive from the access bits. The exit_qualification might be
486	 *         out of date if it is serving an EPT misconfiguration.
487	 * [5:3] - Calculated by the page walk of the guest EPT page tables
488	 * [7:8] - Derived from [7:8] of real exit_qualification
489	 *
490	 * The other bits are set to 0.
491	 */
492	if (!(errcode & PFERR_RSVD_MASK)) {
493		vcpu->arch.exit_qualification &= 0x180;
494		if (write_fault)
495			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
496		if (user_fault)
497			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
498		if (fetch_fault)
499			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
500		vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
501	}
502#endif
503	walker->fault.address = addr;
504	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
505
506	trace_kvm_mmu_walker_error(walker->fault.error_code);
507	return 0;
508}
509
510static int FNAME(walk_addr)(struct guest_walker *walker,
511			    struct kvm_vcpu *vcpu, gpa_t addr, u32 access)
512{
513	return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
514					access);
515}
516
517#if PTTYPE != PTTYPE_EPT
518static int FNAME(walk_addr_nested)(struct guest_walker *walker,
519				   struct kvm_vcpu *vcpu, gva_t addr,
520				   u32 access)
521{
522	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
523					addr, access);
524}
525#endif
526
527static bool
528FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
529		     u64 *spte, pt_element_t gpte, bool no_dirty_log)
530{
531	unsigned pte_access;
532	gfn_t gfn;
533	kvm_pfn_t pfn;
534
535	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
536		return false;
537
538	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
539
540	gfn = gpte_to_gfn(gpte);
541	pte_access = sp->role.access & FNAME(gpte_access)(gpte);
542	FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
543	pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
544			no_dirty_log && (pte_access & ACC_WRITE_MASK));
545	if (is_error_pfn(pfn))
546		return false;
547
548	/*
549	 * we call mmu_set_spte() with host_writable = true because
550	 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
551	 */
552	mmu_set_spte(vcpu, spte, pte_access, false, PG_LEVEL_4K, gfn, pfn,
553		     true, true);
554
555	kvm_release_pfn_clean(pfn);
556	return true;
557}
558
559static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
560			      u64 *spte, const void *pte)
561{
562	pt_element_t gpte = *(const pt_element_t *)pte;
563
564	FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
565}
566
567static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
568				struct guest_walker *gw, int level)
569{
570	pt_element_t curr_pte;
571	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
572	u64 mask;
573	int r, index;
574
575	if (level == PG_LEVEL_4K) {
576		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
577		base_gpa = pte_gpa & ~mask;
578		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
579
580		r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
581				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
582		curr_pte = gw->prefetch_ptes[index];
583	} else
584		r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
585				  &curr_pte, sizeof(curr_pte));
586
587	return r || curr_pte != gw->ptes[level - 1];
588}
589
590static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
591				u64 *sptep)
592{
593	struct kvm_mmu_page *sp;
594	pt_element_t *gptep = gw->prefetch_ptes;
595	u64 *spte;
596	int i;
597
598	sp = sptep_to_sp(sptep);
599
600	if (sp->role.level > PG_LEVEL_4K)
601		return;
602
603	if (sp->role.direct)
604		return __direct_pte_prefetch(vcpu, sp, sptep);
605
606	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
607	spte = sp->spt + i;
608
609	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
610		if (spte == sptep)
611			continue;
612
613		if (is_shadow_present_pte(*spte))
614			continue;
615
616		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
617			break;
618	}
619}
620
621/*
622 * Fetch a shadow pte for a specific level in the paging hierarchy.
623 * If the guest tries to write a write-protected page, we need to
624 * emulate this operation, return 1 to indicate this case.
625 */
626static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr,
627			 struct guest_walker *gw, u32 error_code,
628			 int max_level, kvm_pfn_t pfn, bool map_writable,
629			 bool prefault)
630{
631	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
632	bool write_fault = error_code & PFERR_WRITE_MASK;
633	bool exec = error_code & PFERR_FETCH_MASK;
634	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
635	struct kvm_mmu_page *sp = NULL;
636	struct kvm_shadow_walk_iterator it;
637	unsigned int direct_access, access;
638	int top_level, level, req_level, ret;
639	gfn_t base_gfn = gw->gfn;
640
641	direct_access = gw->pte_access;
642
643	top_level = vcpu->arch.mmu->root_level;
644	if (top_level == PT32E_ROOT_LEVEL)
645		top_level = PT32_ROOT_LEVEL;
646	/*
647	 * Verify that the top-level gpte is still there.  Since the page
648	 * is a root page, it is either write protected (and cannot be
649	 * changed from now on) or it is invalid (in which case, we don't
650	 * really care if it changes underneath us after this point).
651	 */
652	if (FNAME(gpte_changed)(vcpu, gw, top_level))
653		goto out_gpte_changed;
654
655	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
656		goto out_gpte_changed;
657
658	for (shadow_walk_init(&it, vcpu, addr);
659	     shadow_walk_okay(&it) && it.level > gw->level;
660	     shadow_walk_next(&it)) {
661		gfn_t table_gfn;
662
663		clear_sp_write_flooding_count(it.sptep);
664		drop_large_spte(vcpu, it.sptep);
665
666		sp = NULL;
667		if (!is_shadow_present_pte(*it.sptep)) {
668			table_gfn = gw->table_gfn[it.level - 2];
669			access = gw->pt_access[it.level - 2];
670			sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
671					      false, access);
672		}
673
674		/*
675		 * Verify that the gpte in the page we've just write
676		 * protected is still there.
677		 */
678		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
679			goto out_gpte_changed;
680
681		if (sp)
682			link_shadow_page(vcpu, it.sptep, sp);
683	}
684
685	level = kvm_mmu_hugepage_adjust(vcpu, gw->gfn, max_level, &pfn,
686					huge_page_disallowed, &req_level);
687
688	trace_kvm_mmu_spte_requested(addr, gw->level, pfn);
689
690	for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
691		clear_sp_write_flooding_count(it.sptep);
692
693		/*
694		 * We cannot overwrite existing page tables with an NX
695		 * large page, as the leaf could be executable.
696		 */
697		if (nx_huge_page_workaround_enabled)
698			disallowed_hugepage_adjust(*it.sptep, gw->gfn, it.level,
699						   &pfn, &level);
700
701		base_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
702		if (it.level == level)
703			break;
704
705		validate_direct_spte(vcpu, it.sptep, direct_access);
706
707		drop_large_spte(vcpu, it.sptep);
708
709		if (!is_shadow_present_pte(*it.sptep)) {
710			sp = kvm_mmu_get_page(vcpu, base_gfn, addr,
711					      it.level - 1, true, direct_access);
712			link_shadow_page(vcpu, it.sptep, sp);
713			if (huge_page_disallowed && req_level >= it.level)
714				account_huge_nx_page(vcpu->kvm, sp);
715		}
716	}
717
718	ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
719			   it.level, base_gfn, pfn, prefault, map_writable);
720	if (ret == RET_PF_SPURIOUS)
721		return ret;
722
723	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
724	++vcpu->stat.pf_fixed;
725	return ret;
726
727out_gpte_changed:
728	return RET_PF_RETRY;
729}
730
731 /*
732 * To see whether the mapped gfn can write its page table in the current
733 * mapping.
734 *
735 * It is the helper function of FNAME(page_fault). When guest uses large page
736 * size to map the writable gfn which is used as current page table, we should
737 * force kvm to use small page size to map it because new shadow page will be
738 * created when kvm establishes shadow page table that stop kvm using large
739 * page size. Do it early can avoid unnecessary #PF and emulation.
740 *
741 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
742 * currently used as its page table.
743 *
744 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
745 * since the PDPT is always shadowed, that means, we can not use large page
746 * size to map the gfn which is used as PDPT.
747 */
748static bool
749FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
750			      struct guest_walker *walker, bool user_fault,
751			      bool *write_fault_to_shadow_pgtable)
752{
753	int level;
754	gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
755	bool self_changed = false;
756
757	if (!(walker->pte_access & ACC_WRITE_MASK ||
758	      (!is_write_protection(vcpu) && !user_fault)))
759		return false;
760
761	for (level = walker->level; level <= walker->max_level; level++) {
762		gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
763
764		self_changed |= !(gfn & mask);
765		*write_fault_to_shadow_pgtable |= !gfn;
766	}
767
768	return self_changed;
769}
770
771/*
772 * Page fault handler.  There are several causes for a page fault:
773 *   - there is no shadow pte for the guest pte
774 *   - write access through a shadow pte marked read only so that we can set
775 *     the dirty bit
776 *   - write access to a shadow pte marked read only so we can update the page
777 *     dirty bitmap, when userspace requests it
778 *   - mmio access; in this case we will never install a present shadow pte
779 *   - normal guest page fault due to the guest pte marked not present, not
780 *     writable, or not executable
781 *
782 *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
783 *           a negative value on error.
784 */
785static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code,
786			     bool prefault)
787{
788	bool write_fault = error_code & PFERR_WRITE_MASK;
789	bool user_fault = error_code & PFERR_USER_MASK;
790	struct guest_walker walker;
791	int r;
792	kvm_pfn_t pfn;
793	unsigned long mmu_seq;
794	bool map_writable, is_self_change_mapping;
795	int max_level;
796
797	pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
798
799	/*
800	 * If PFEC.RSVD is set, this is a shadow page fault.
801	 * The bit needs to be cleared before walking guest page tables.
802	 */
803	error_code &= ~PFERR_RSVD_MASK;
804
805	/*
806	 * Look up the guest pte for the faulting address.
807	 */
808	r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
809
810	/*
811	 * The page is not mapped by the guest.  Let the guest handle it.
812	 */
813	if (!r) {
814		pgprintk("%s: guest page fault\n", __func__);
815		if (!prefault)
816			kvm_inject_emulated_page_fault(vcpu, &walker.fault);
817
818		return RET_PF_RETRY;
819	}
820
821	if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
822		shadow_page_table_clear_flood(vcpu, addr);
823		return RET_PF_EMULATE;
824	}
825
826	r = mmu_topup_memory_caches(vcpu, true);
827	if (r)
828		return r;
829
830	vcpu->arch.write_fault_to_shadow_pgtable = false;
831
832	is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
833	      &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
834
835	if (is_self_change_mapping)
836		max_level = PG_LEVEL_4K;
837	else
838		max_level = walker.level;
839
840	mmu_seq = vcpu->kvm->mmu_notifier_seq;
841	smp_rmb();
842
843	if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
844			 &map_writable))
845		return RET_PF_RETRY;
846
847	if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
848		return r;
849
850	/*
851	 * Do not change pte_access if the pfn is a mmio page, otherwise
852	 * we will cache the incorrect access into mmio spte.
853	 */
854	if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
855	     !is_write_protection(vcpu) && !user_fault &&
856	      !is_noslot_pfn(pfn)) {
857		walker.pte_access |= ACC_WRITE_MASK;
858		walker.pte_access &= ~ACC_USER_MASK;
859
860		/*
861		 * If we converted a user page to a kernel page,
862		 * so that the kernel can write to it when cr0.wp=0,
863		 * then we should prevent the kernel from executing it
864		 * if SMEP is enabled.
865		 */
866		if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
867			walker.pte_access &= ~ACC_EXEC_MASK;
868	}
869
870	r = RET_PF_RETRY;
871	spin_lock(&vcpu->kvm->mmu_lock);
872	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
873		goto out_unlock;
874
875	kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
876	r = make_mmu_pages_available(vcpu);
877	if (r)
878		goto out_unlock;
879	r = FNAME(fetch)(vcpu, addr, &walker, error_code, max_level, pfn,
880			 map_writable, prefault);
881	kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
882
883out_unlock:
884	spin_unlock(&vcpu->kvm->mmu_lock);
885	kvm_release_pfn_clean(pfn);
886	return r;
887}
888
889static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
890{
891	int offset = 0;
892
893	WARN_ON(sp->role.level != PG_LEVEL_4K);
894
895	if (PTTYPE == 32)
896		offset = sp->role.quadrant << PT64_LEVEL_BITS;
897
898	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
899}
900
901static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
902{
903	struct kvm_shadow_walk_iterator iterator;
904	struct kvm_mmu_page *sp;
905	u64 old_spte;
906	int level;
907	u64 *sptep;
908
909	vcpu_clear_mmio_info(vcpu, gva);
910
911	/*
912	 * No need to check return value here, rmap_can_add() can
913	 * help us to skip pte prefetch later.
914	 */
915	mmu_topup_memory_caches(vcpu, true);
916
917	if (!VALID_PAGE(root_hpa)) {
918		WARN_ON(1);
919		return;
920	}
921
922	spin_lock(&vcpu->kvm->mmu_lock);
923	for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
924		level = iterator.level;
925		sptep = iterator.sptep;
926
927		sp = sptep_to_sp(sptep);
928		old_spte = *sptep;
929		if (is_last_spte(old_spte, level)) {
930			pt_element_t gpte;
931			gpa_t pte_gpa;
932
933			if (!sp->unsync)
934				break;
935
936			pte_gpa = FNAME(get_level1_sp_gpa)(sp);
937			pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
938
939			mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL);
940			if (is_shadow_present_pte(old_spte))
941				kvm_flush_remote_tlbs_with_address(vcpu->kvm,
942					sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
943
944			if (!rmap_can_add(vcpu))
945				break;
946
947			if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
948						       sizeof(pt_element_t)))
949				break;
950
951			FNAME(update_pte)(vcpu, sp, sptep, &gpte);
952		}
953
954		if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
955			break;
956	}
957	spin_unlock(&vcpu->kvm->mmu_lock);
958}
959
960/* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
961static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t addr, u32 access,
962			       struct x86_exception *exception)
963{
964	struct guest_walker walker;
965	gpa_t gpa = UNMAPPED_GVA;
966	int r;
967
968	r = FNAME(walk_addr)(&walker, vcpu, addr, access);
969
970	if (r) {
971		gpa = gfn_to_gpa(walker.gfn);
972		gpa |= addr & ~PAGE_MASK;
973	} else if (exception)
974		*exception = walker.fault;
975
976	return gpa;
977}
978
979#if PTTYPE != PTTYPE_EPT
980/* Note, gva_to_gpa_nested() is only used to translate L2 GVAs. */
981static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr,
982				      u32 access,
983				      struct x86_exception *exception)
984{
985	struct guest_walker walker;
986	gpa_t gpa = UNMAPPED_GVA;
987	int r;
988
989#ifndef CONFIG_X86_64
990	/* A 64-bit GVA should be impossible on 32-bit KVM. */
991	WARN_ON_ONCE(vaddr >> 32);
992#endif
993
994	r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
995
996	if (r) {
997		gpa = gfn_to_gpa(walker.gfn);
998		gpa |= vaddr & ~PAGE_MASK;
999	} else if (exception)
1000		*exception = walker.fault;
1001
1002	return gpa;
1003}
1004#endif
1005
1006/*
1007 * Using the cached information from sp->gfns is safe because:
1008 * - The spte has a reference to the struct page, so the pfn for a given gfn
1009 *   can't change unless all sptes pointing to it are nuked first.
1010 *
1011 * Note:
1012 *   We should flush all tlbs if spte is dropped even though guest is
1013 *   responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
1014 *   and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
1015 *   used by guest then tlbs are not flushed, so guest is allowed to access the
1016 *   freed pages.
1017 *   And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
1018 */
1019static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1020{
1021	int i, nr_present = 0;
1022	bool host_writable;
1023	gpa_t first_pte_gpa;
1024	int set_spte_ret = 0;
1025
1026	/* direct kvm_mmu_page can not be unsync. */
1027	BUG_ON(sp->role.direct);
1028
1029	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
1030
1031	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
1032		unsigned pte_access;
1033		pt_element_t gpte;
1034		gpa_t pte_gpa;
1035		gfn_t gfn;
1036
1037		if (!sp->spt[i])
1038			continue;
1039
1040		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
1041
1042		if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1043					       sizeof(pt_element_t)))
1044			return 0;
1045
1046		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
1047			/*
1048			 * Update spte before increasing tlbs_dirty to make
1049			 * sure no tlb flush is lost after spte is zapped; see
1050			 * the comments in kvm_flush_remote_tlbs().
1051			 */
1052			smp_wmb();
1053			vcpu->kvm->tlbs_dirty++;
1054			continue;
1055		}
1056
1057		gfn = gpte_to_gfn(gpte);
1058		pte_access = sp->role.access;
1059		pte_access &= FNAME(gpte_access)(gpte);
1060		FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
1061
1062		if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
1063		      &nr_present))
1064			continue;
1065
1066		if (gfn != sp->gfns[i]) {
1067			drop_spte(vcpu->kvm, &sp->spt[i]);
1068			/*
1069			 * The same as above where we are doing
1070			 * prefetch_invalid_gpte().
1071			 */
1072			smp_wmb();
1073			vcpu->kvm->tlbs_dirty++;
1074			continue;
1075		}
1076
1077		nr_present++;
1078
1079		host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1080
1081		set_spte_ret |= set_spte(vcpu, &sp->spt[i],
1082					 pte_access, PG_LEVEL_4K,
1083					 gfn, spte_to_pfn(sp->spt[i]),
1084					 true, false, host_writable);
1085	}
1086
1087	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
1088		kvm_flush_remote_tlbs(vcpu->kvm);
1089
1090	return nr_present;
1091}
1092
1093#undef pt_element_t
1094#undef guest_walker
1095#undef FNAME
1096#undef PT_BASE_ADDR_MASK
1097#undef PT_INDEX
1098#undef PT_LVL_ADDR_MASK
1099#undef PT_LVL_OFFSET_MASK
1100#undef PT_LEVEL_BITS
1101#undef PT_MAX_FULL_LEVELS
1102#undef gpte_to_gfn
1103#undef gpte_to_gfn_lvl
1104#undef CMPXCHG
1105#undef PT_GUEST_ACCESSED_MASK
1106#undef PT_GUEST_DIRTY_MASK
1107#undef PT_GUEST_DIRTY_SHIFT
1108#undef PT_GUEST_ACCESSED_SHIFT
1109#undef PT_HAVE_ACCESSED_DIRTY
1110