1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18#include "irq.h" 19#include "ioapic.h" 20#include "mmu.h" 21#include "mmu_internal.h" 22#include "tdp_mmu.h" 23#include "x86.h" 24#include "kvm_cache_regs.h" 25#include "kvm_emulate.h" 26#include "cpuid.h" 27#include "spte.h" 28 29#include <linux/kvm_host.h> 30#include <linux/types.h> 31#include <linux/string.h> 32#include <linux/mm.h> 33#include <linux/highmem.h> 34#include <linux/moduleparam.h> 35#include <linux/export.h> 36#include <linux/swap.h> 37#include <linux/hugetlb.h> 38#include <linux/compiler.h> 39#include <linux/srcu.h> 40#include <linux/slab.h> 41#include <linux/sched/signal.h> 42#include <linux/uaccess.h> 43#include <linux/hash.h> 44#include <linux/kern_levels.h> 45#include <linux/kthread.h> 46 47#include <asm/page.h> 48#include <asm/memtype.h> 49#include <asm/cmpxchg.h> 50#include <asm/io.h> 51#include <asm/vmx.h> 52#include <asm/kvm_page_track.h> 53#include "trace.h" 54 55#include "paging.h" 56 57extern bool itlb_multihit_kvm_mitigation; 58 59static int __read_mostly nx_huge_pages = -1; 60#ifdef CONFIG_PREEMPT_RT 61/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 62static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 63#else 64static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 65#endif 66 67static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 68static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp); 69 70static const struct kernel_param_ops nx_huge_pages_ops = { 71 .set = set_nx_huge_pages, 72 .get = param_get_bool, 73}; 74 75static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = { 76 .set = set_nx_huge_pages_recovery_ratio, 77 .get = param_get_uint, 78}; 79 80module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 81__MODULE_PARM_TYPE(nx_huge_pages, "bool"); 82module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops, 83 &nx_huge_pages_recovery_ratio, 0644); 84__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 85 86static bool __read_mostly force_flush_and_sync_on_reuse; 87module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 88 89/* 90 * When setting this variable to true it enables Two-Dimensional-Paging 91 * where the hardware walks 2 page tables: 92 * 1. the guest-virtual to guest-physical 93 * 2. while doing 1. it walks guest-physical to host-physical 94 * If the hardware supports that we don't need to do shadow paging. 95 */ 96bool tdp_enabled = false; 97 98static int max_huge_page_level __read_mostly; 99static int max_tdp_level __read_mostly; 100 101enum { 102 AUDIT_PRE_PAGE_FAULT, 103 AUDIT_POST_PAGE_FAULT, 104 AUDIT_PRE_PTE_WRITE, 105 AUDIT_POST_PTE_WRITE, 106 AUDIT_PRE_SYNC, 107 AUDIT_POST_SYNC 108}; 109 110#ifdef MMU_DEBUG 111bool dbg = 0; 112module_param(dbg, bool, 0644); 113#endif 114 115#define PTE_PREFETCH_NUM 8 116 117#define PT32_LEVEL_BITS 10 118 119#define PT32_LEVEL_SHIFT(level) \ 120 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) 121 122#define PT32_LVL_OFFSET_MASK(level) \ 123 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 124 * PT32_LEVEL_BITS))) - 1)) 125 126#define PT32_INDEX(address, level)\ 127 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) 128 129 130#define PT32_BASE_ADDR_MASK PAGE_MASK 131#define PT32_DIR_BASE_ADDR_MASK \ 132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) 133#define PT32_LVL_ADDR_MASK(level) \ 134 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 135 * PT32_LEVEL_BITS))) - 1)) 136 137#include <trace/events/kvm.h> 138 139/* make pte_list_desc fit well in cache line */ 140#define PTE_LIST_EXT 3 141 142struct pte_list_desc { 143 u64 *sptes[PTE_LIST_EXT]; 144 struct pte_list_desc *more; 145}; 146 147struct kvm_shadow_walk_iterator { 148 u64 addr; 149 hpa_t shadow_addr; 150 u64 *sptep; 151 int level; 152 unsigned index; 153}; 154 155#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 156 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 157 (_root), (_addr)); \ 158 shadow_walk_okay(&(_walker)); \ 159 shadow_walk_next(&(_walker))) 160 161#define for_each_shadow_entry(_vcpu, _addr, _walker) \ 162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 163 shadow_walk_okay(&(_walker)); \ 164 shadow_walk_next(&(_walker))) 165 166#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 167 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 168 shadow_walk_okay(&(_walker)) && \ 169 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 170 __shadow_walk_next(&(_walker), spte)) 171 172static struct kmem_cache *pte_list_desc_cache; 173struct kmem_cache *mmu_page_header_cache; 174static struct percpu_counter kvm_total_used_mmu_pages; 175 176static void mmu_spte_set(u64 *sptep, u64 spte); 177static union kvm_mmu_page_role 178kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); 179 180#define CREATE_TRACE_POINTS 181#include "mmutrace.h" 182 183 184static inline bool kvm_available_flush_tlb_with_range(void) 185{ 186 return kvm_x86_ops.tlb_remote_flush_with_range; 187} 188 189static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 190 struct kvm_tlb_range *range) 191{ 192 int ret = -ENOTSUPP; 193 194 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 195 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range); 196 197 if (ret) 198 kvm_flush_remote_tlbs(kvm); 199} 200 201void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 202 u64 start_gfn, u64 pages) 203{ 204 struct kvm_tlb_range range; 205 206 range.start_gfn = start_gfn; 207 range.pages = pages; 208 209 kvm_flush_remote_tlbs_with_range(kvm, &range); 210} 211 212bool is_nx_huge_page_enabled(void) 213{ 214 return READ_ONCE(nx_huge_pages); 215} 216 217static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 218 unsigned int access) 219{ 220 u64 mask = make_mmio_spte(vcpu, gfn, access); 221 222 trace_mark_mmio_spte(sptep, gfn, mask); 223 mmu_spte_set(sptep, mask); 224} 225 226static gfn_t get_mmio_spte_gfn(u64 spte) 227{ 228 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 229 230 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 231 & shadow_nonpresent_or_rsvd_mask; 232 233 return gpa >> PAGE_SHIFT; 234} 235 236static unsigned get_mmio_spte_access(u64 spte) 237{ 238 return spte & shadow_mmio_access_mask; 239} 240 241static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 242 kvm_pfn_t pfn, unsigned int access) 243{ 244 if (unlikely(is_noslot_pfn(pfn))) { 245 mark_mmio_spte(vcpu, sptep, gfn, access); 246 return true; 247 } 248 249 return false; 250} 251 252static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 253{ 254 u64 kvm_gen, spte_gen, gen; 255 256 gen = kvm_vcpu_memslots(vcpu)->generation; 257 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 258 return false; 259 260 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 261 spte_gen = get_mmio_spte_generation(spte); 262 263 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 264 return likely(kvm_gen == spte_gen); 265} 266 267static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 268 struct x86_exception *exception) 269{ 270 return gpa; 271} 272 273static int is_cpuid_PSE36(void) 274{ 275 return 1; 276} 277 278static int is_nx(struct kvm_vcpu *vcpu) 279{ 280 return vcpu->arch.efer & EFER_NX; 281} 282 283static gfn_t pse36_gfn_delta(u32 gpte) 284{ 285 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 286 287 return (gpte & PT32_DIR_PSE36_MASK) << shift; 288} 289 290#ifdef CONFIG_X86_64 291static void __set_spte(u64 *sptep, u64 spte) 292{ 293 WRITE_ONCE(*sptep, spte); 294} 295 296static void __update_clear_spte_fast(u64 *sptep, u64 spte) 297{ 298 WRITE_ONCE(*sptep, spte); 299} 300 301static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 302{ 303 return xchg(sptep, spte); 304} 305 306static u64 __get_spte_lockless(u64 *sptep) 307{ 308 return READ_ONCE(*sptep); 309} 310#else 311union split_spte { 312 struct { 313 u32 spte_low; 314 u32 spte_high; 315 }; 316 u64 spte; 317}; 318 319static void count_spte_clear(u64 *sptep, u64 spte) 320{ 321 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 322 323 if (is_shadow_present_pte(spte)) 324 return; 325 326 /* Ensure the spte is completely set before we increase the count */ 327 smp_wmb(); 328 sp->clear_spte_count++; 329} 330 331static void __set_spte(u64 *sptep, u64 spte) 332{ 333 union split_spte *ssptep, sspte; 334 335 ssptep = (union split_spte *)sptep; 336 sspte = (union split_spte)spte; 337 338 ssptep->spte_high = sspte.spte_high; 339 340 /* 341 * If we map the spte from nonpresent to present, We should store 342 * the high bits firstly, then set present bit, so cpu can not 343 * fetch this spte while we are setting the spte. 344 */ 345 smp_wmb(); 346 347 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 348} 349 350static void __update_clear_spte_fast(u64 *sptep, u64 spte) 351{ 352 union split_spte *ssptep, sspte; 353 354 ssptep = (union split_spte *)sptep; 355 sspte = (union split_spte)spte; 356 357 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 358 359 /* 360 * If we map the spte from present to nonpresent, we should clear 361 * present bit firstly to avoid vcpu fetch the old high bits. 362 */ 363 smp_wmb(); 364 365 ssptep->spte_high = sspte.spte_high; 366 count_spte_clear(sptep, spte); 367} 368 369static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 370{ 371 union split_spte *ssptep, sspte, orig; 372 373 ssptep = (union split_spte *)sptep; 374 sspte = (union split_spte)spte; 375 376 /* xchg acts as a barrier before the setting of the high bits */ 377 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 378 orig.spte_high = ssptep->spte_high; 379 ssptep->spte_high = sspte.spte_high; 380 count_spte_clear(sptep, spte); 381 382 return orig.spte; 383} 384 385/* 386 * The idea using the light way get the spte on x86_32 guest is from 387 * gup_get_pte (mm/gup.c). 388 * 389 * An spte tlb flush may be pending, because kvm_set_pte_rmapp 390 * coalesces them and we are running out of the MMU lock. Therefore 391 * we need to protect against in-progress updates of the spte. 392 * 393 * Reading the spte while an update is in progress may get the old value 394 * for the high part of the spte. The race is fine for a present->non-present 395 * change (because the high part of the spte is ignored for non-present spte), 396 * but for a present->present change we must reread the spte. 397 * 398 * All such changes are done in two steps (present->non-present and 399 * non-present->present), hence it is enough to count the number of 400 * present->non-present updates: if it changed while reading the spte, 401 * we might have hit the race. This is done using clear_spte_count. 402 */ 403static u64 __get_spte_lockless(u64 *sptep) 404{ 405 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 406 union split_spte spte, *orig = (union split_spte *)sptep; 407 int count; 408 409retry: 410 count = sp->clear_spte_count; 411 smp_rmb(); 412 413 spte.spte_low = orig->spte_low; 414 smp_rmb(); 415 416 spte.spte_high = orig->spte_high; 417 smp_rmb(); 418 419 if (unlikely(spte.spte_low != orig->spte_low || 420 count != sp->clear_spte_count)) 421 goto retry; 422 423 return spte.spte; 424} 425#endif 426 427static bool spte_has_volatile_bits(u64 spte) 428{ 429 if (!is_shadow_present_pte(spte)) 430 return false; 431 432 /* 433 * Always atomically update spte if it can be updated 434 * out of mmu-lock, it can ensure dirty bit is not lost, 435 * also, it can help us to get a stable is_writable_pte() 436 * to ensure tlb flush is not missed. 437 */ 438 if (spte_can_locklessly_be_made_writable(spte) || 439 is_access_track_spte(spte)) 440 return true; 441 442 if (spte_ad_enabled(spte)) { 443 if ((spte & shadow_accessed_mask) == 0 || 444 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) 445 return true; 446 } 447 448 return false; 449} 450 451/* Rules for using mmu_spte_set: 452 * Set the sptep from nonpresent to present. 453 * Note: the sptep being assigned *must* be either not present 454 * or in a state where the hardware will not attempt to update 455 * the spte. 456 */ 457static void mmu_spte_set(u64 *sptep, u64 new_spte) 458{ 459 WARN_ON(is_shadow_present_pte(*sptep)); 460 __set_spte(sptep, new_spte); 461} 462 463/* 464 * Update the SPTE (excluding the PFN), but do not track changes in its 465 * accessed/dirty status. 466 */ 467static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 468{ 469 u64 old_spte = *sptep; 470 471 WARN_ON(!is_shadow_present_pte(new_spte)); 472 473 if (!is_shadow_present_pte(old_spte)) { 474 mmu_spte_set(sptep, new_spte); 475 return old_spte; 476 } 477 478 if (!spte_has_volatile_bits(old_spte)) 479 __update_clear_spte_fast(sptep, new_spte); 480 else 481 old_spte = __update_clear_spte_slow(sptep, new_spte); 482 483 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 484 485 return old_spte; 486} 487 488/* Rules for using mmu_spte_update: 489 * Update the state bits, it means the mapped pfn is not changed. 490 * 491 * Whenever we overwrite a writable spte with a read-only one we 492 * should flush remote TLBs. Otherwise rmap_write_protect 493 * will find a read-only spte, even though the writable spte 494 * might be cached on a CPU's TLB, the return value indicates this 495 * case. 496 * 497 * Returns true if the TLB needs to be flushed 498 */ 499static bool mmu_spte_update(u64 *sptep, u64 new_spte) 500{ 501 bool flush = false; 502 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 503 504 if (!is_shadow_present_pte(old_spte)) 505 return false; 506 507 /* 508 * For the spte updated out of mmu-lock is safe, since 509 * we always atomically update it, see the comments in 510 * spte_has_volatile_bits(). 511 */ 512 if (spte_can_locklessly_be_made_writable(old_spte) && 513 !is_writable_pte(new_spte)) 514 flush = true; 515 516 /* 517 * Flush TLB when accessed/dirty states are changed in the page tables, 518 * to guarantee consistency between TLB and page tables. 519 */ 520 521 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 522 flush = true; 523 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 524 } 525 526 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 527 flush = true; 528 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 529 } 530 531 return flush; 532} 533 534/* 535 * Rules for using mmu_spte_clear_track_bits: 536 * It sets the sptep from present to nonpresent, and track the 537 * state bits, it is used to clear the last level sptep. 538 * Returns non-zero if the PTE was previously valid. 539 */ 540static int mmu_spte_clear_track_bits(u64 *sptep) 541{ 542 kvm_pfn_t pfn; 543 u64 old_spte = *sptep; 544 545 if (!spte_has_volatile_bits(old_spte)) 546 __update_clear_spte_fast(sptep, 0ull); 547 else 548 old_spte = __update_clear_spte_slow(sptep, 0ull); 549 550 if (!is_shadow_present_pte(old_spte)) 551 return 0; 552 553 pfn = spte_to_pfn(old_spte); 554 555 /* 556 * KVM does not hold the refcount of the page used by 557 * kvm mmu, before reclaiming the page, we should 558 * unmap it from mmu first. 559 */ 560 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); 561 562 if (is_accessed_spte(old_spte)) 563 kvm_set_pfn_accessed(pfn); 564 565 if (is_dirty_spte(old_spte)) 566 kvm_set_pfn_dirty(pfn); 567 568 return 1; 569} 570 571/* 572 * Rules for using mmu_spte_clear_no_track: 573 * Directly clear spte without caring the state bits of sptep, 574 * it is used to set the upper level spte. 575 */ 576static void mmu_spte_clear_no_track(u64 *sptep) 577{ 578 __update_clear_spte_fast(sptep, 0ull); 579} 580 581static u64 mmu_spte_get_lockless(u64 *sptep) 582{ 583 return __get_spte_lockless(sptep); 584} 585 586/* Restore an acc-track PTE back to a regular PTE */ 587static u64 restore_acc_track_spte(u64 spte) 588{ 589 u64 new_spte = spte; 590 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) 591 & SHADOW_ACC_TRACK_SAVED_BITS_MASK; 592 593 WARN_ON_ONCE(spte_ad_enabled(spte)); 594 WARN_ON_ONCE(!is_access_track_spte(spte)); 595 596 new_spte &= ~shadow_acc_track_mask; 597 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK << 598 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT); 599 new_spte |= saved_bits; 600 601 return new_spte; 602} 603 604/* Returns the Accessed status of the PTE and resets it at the same time. */ 605static bool mmu_spte_age(u64 *sptep) 606{ 607 u64 spte = mmu_spte_get_lockless(sptep); 608 609 if (!is_accessed_spte(spte)) 610 return false; 611 612 if (spte_ad_enabled(spte)) { 613 clear_bit((ffs(shadow_accessed_mask) - 1), 614 (unsigned long *)sptep); 615 } else { 616 /* 617 * Capture the dirty status of the page, so that it doesn't get 618 * lost when the SPTE is marked for access tracking. 619 */ 620 if (is_writable_pte(spte)) 621 kvm_set_pfn_dirty(spte_to_pfn(spte)); 622 623 spte = mark_spte_for_access_track(spte); 624 mmu_spte_update_no_track(sptep, spte); 625 } 626 627 return true; 628} 629 630static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 631{ 632 /* 633 * Prevent page table teardown by making any free-er wait during 634 * kvm_flush_remote_tlbs() IPI to all active vcpus. 635 */ 636 local_irq_disable(); 637 638 /* 639 * Make sure a following spte read is not reordered ahead of the write 640 * to vcpu->mode. 641 */ 642 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 643} 644 645static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 646{ 647 /* 648 * Make sure the write to vcpu->mode is not reordered in front of 649 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 650 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 651 */ 652 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 653 local_irq_enable(); 654} 655 656static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 657{ 658 int r; 659 660 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 661 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 662 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 663 if (r) 664 return r; 665 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 666 PT64_ROOT_MAX_LEVEL); 667 if (r) 668 return r; 669 if (maybe_indirect) { 670 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache, 671 PT64_ROOT_MAX_LEVEL); 672 if (r) 673 return r; 674 } 675 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 676 PT64_ROOT_MAX_LEVEL); 677} 678 679static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 680{ 681 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 682 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 683 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache); 684 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 685} 686 687static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) 688{ 689 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); 690} 691 692static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 693{ 694 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 695} 696 697static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 698{ 699 if (!sp->role.direct) 700 return sp->gfns[index]; 701 702 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); 703} 704 705static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) 706{ 707 if (!sp->role.direct) { 708 sp->gfns[index] = gfn; 709 return; 710 } 711 712 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) 713 pr_err_ratelimited("gfn mismatch under direct page %llx " 714 "(expected %llx, got %llx)\n", 715 sp->gfn, 716 kvm_mmu_page_get_gfn(sp, index), gfn); 717} 718 719/* 720 * Return the pointer to the large page information for a given gfn, 721 * handling slots that are not large page aligned. 722 */ 723static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 724 struct kvm_memory_slot *slot, 725 int level) 726{ 727 unsigned long idx; 728 729 idx = gfn_to_index(gfn, slot->base_gfn, level); 730 return &slot->arch.lpage_info[level - 2][idx]; 731} 732 733static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot, 734 gfn_t gfn, int count) 735{ 736 struct kvm_lpage_info *linfo; 737 int i; 738 739 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 740 linfo = lpage_info_slot(gfn, slot, i); 741 linfo->disallow_lpage += count; 742 WARN_ON(linfo->disallow_lpage < 0); 743 } 744} 745 746void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 747{ 748 update_gfn_disallow_lpage_count(slot, gfn, 1); 749} 750 751void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 752{ 753 update_gfn_disallow_lpage_count(slot, gfn, -1); 754} 755 756static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 757{ 758 struct kvm_memslots *slots; 759 struct kvm_memory_slot *slot; 760 gfn_t gfn; 761 762 kvm->arch.indirect_shadow_pages++; 763 gfn = sp->gfn; 764 slots = kvm_memslots_for_spte_role(kvm, sp->role); 765 slot = __gfn_to_memslot(slots, gfn); 766 767 /* the non-leaf shadow pages are keeping readonly. */ 768 if (sp->role.level > PG_LEVEL_4K) 769 return kvm_slot_page_track_add_page(kvm, slot, gfn, 770 KVM_PAGE_TRACK_WRITE); 771 772 kvm_mmu_gfn_disallow_lpage(slot, gfn); 773} 774 775void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 776{ 777 if (sp->lpage_disallowed) 778 return; 779 780 ++kvm->stat.nx_lpage_splits; 781 list_add_tail(&sp->lpage_disallowed_link, 782 &kvm->arch.lpage_disallowed_mmu_pages); 783 sp->lpage_disallowed = true; 784} 785 786static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 787{ 788 struct kvm_memslots *slots; 789 struct kvm_memory_slot *slot; 790 gfn_t gfn; 791 792 kvm->arch.indirect_shadow_pages--; 793 gfn = sp->gfn; 794 slots = kvm_memslots_for_spte_role(kvm, sp->role); 795 slot = __gfn_to_memslot(slots, gfn); 796 if (sp->role.level > PG_LEVEL_4K) 797 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 798 KVM_PAGE_TRACK_WRITE); 799 800 kvm_mmu_gfn_allow_lpage(slot, gfn); 801} 802 803void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 804{ 805 --kvm->stat.nx_lpage_splits; 806 sp->lpage_disallowed = false; 807 list_del(&sp->lpage_disallowed_link); 808} 809 810static struct kvm_memory_slot * 811gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 812 bool no_dirty_log) 813{ 814 struct kvm_memory_slot *slot; 815 816 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 817 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 818 return NULL; 819 if (no_dirty_log && slot->dirty_bitmap) 820 return NULL; 821 822 return slot; 823} 824 825/* 826 * About rmap_head encoding: 827 * 828 * If the bit zero of rmap_head->val is clear, then it points to the only spte 829 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 830 * pte_list_desc containing more mappings. 831 */ 832 833/* 834 * Returns the number of pointers in the rmap chain, not counting the new one. 835 */ 836static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, 837 struct kvm_rmap_head *rmap_head) 838{ 839 struct pte_list_desc *desc; 840 int i, count = 0; 841 842 if (!rmap_head->val) { 843 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte); 844 rmap_head->val = (unsigned long)spte; 845 } else if (!(rmap_head->val & 1)) { 846 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte); 847 desc = mmu_alloc_pte_list_desc(vcpu); 848 desc->sptes[0] = (u64 *)rmap_head->val; 849 desc->sptes[1] = spte; 850 rmap_head->val = (unsigned long)desc | 1; 851 ++count; 852 } else { 853 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte); 854 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 855 while (desc->sptes[PTE_LIST_EXT-1]) { 856 count += PTE_LIST_EXT; 857 858 if (!desc->more) { 859 desc->more = mmu_alloc_pte_list_desc(vcpu); 860 desc = desc->more; 861 break; 862 } 863 desc = desc->more; 864 } 865 for (i = 0; desc->sptes[i]; ++i) 866 ++count; 867 desc->sptes[i] = spte; 868 } 869 return count; 870} 871 872static void 873pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 874 struct pte_list_desc *desc, int i, 875 struct pte_list_desc *prev_desc) 876{ 877 int j; 878 879 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j) 880 ; 881 desc->sptes[i] = desc->sptes[j]; 882 desc->sptes[j] = NULL; 883 if (j != 0) 884 return; 885 if (!prev_desc && !desc->more) 886 rmap_head->val = 0; 887 else 888 if (prev_desc) 889 prev_desc->more = desc->more; 890 else 891 rmap_head->val = (unsigned long)desc->more | 1; 892 mmu_free_pte_list_desc(desc); 893} 894 895static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 896{ 897 struct pte_list_desc *desc; 898 struct pte_list_desc *prev_desc; 899 int i; 900 901 if (!rmap_head->val) { 902 pr_err("%s: %p 0->BUG\n", __func__, spte); 903 BUG(); 904 } else if (!(rmap_head->val & 1)) { 905 rmap_printk("%s: %p 1->0\n", __func__, spte); 906 if ((u64 *)rmap_head->val != spte) { 907 pr_err("%s: %p 1->BUG\n", __func__, spte); 908 BUG(); 909 } 910 rmap_head->val = 0; 911 } else { 912 rmap_printk("%s: %p many->many\n", __func__, spte); 913 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 914 prev_desc = NULL; 915 while (desc) { 916 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) { 917 if (desc->sptes[i] == spte) { 918 pte_list_desc_remove_entry(rmap_head, 919 desc, i, prev_desc); 920 return; 921 } 922 } 923 prev_desc = desc; 924 desc = desc->more; 925 } 926 pr_err("%s: %p many->many\n", __func__, spte); 927 BUG(); 928 } 929} 930 931static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep) 932{ 933 mmu_spte_clear_track_bits(sptep); 934 __pte_list_remove(sptep, rmap_head); 935} 936 937static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level, 938 struct kvm_memory_slot *slot) 939{ 940 unsigned long idx; 941 942 idx = gfn_to_index(gfn, slot->base_gfn, level); 943 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 944} 945 946static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, 947 struct kvm_mmu_page *sp) 948{ 949 struct kvm_memslots *slots; 950 struct kvm_memory_slot *slot; 951 952 slots = kvm_memslots_for_spte_role(kvm, sp->role); 953 slot = __gfn_to_memslot(slots, gfn); 954 return __gfn_to_rmap(gfn, sp->role.level, slot); 955} 956 957static bool rmap_can_add(struct kvm_vcpu *vcpu) 958{ 959 struct kvm_mmu_memory_cache *mc; 960 961 mc = &vcpu->arch.mmu_pte_list_desc_cache; 962 return kvm_mmu_memory_cache_nr_free_objects(mc); 963} 964 965static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 966{ 967 struct kvm_mmu_page *sp; 968 struct kvm_rmap_head *rmap_head; 969 970 sp = sptep_to_sp(spte); 971 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); 972 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 973 return pte_list_add(vcpu, spte, rmap_head); 974} 975 976static void rmap_remove(struct kvm *kvm, u64 *spte) 977{ 978 struct kvm_mmu_page *sp; 979 gfn_t gfn; 980 struct kvm_rmap_head *rmap_head; 981 982 sp = sptep_to_sp(spte); 983 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); 984 rmap_head = gfn_to_rmap(kvm, gfn, sp); 985 __pte_list_remove(spte, rmap_head); 986} 987 988/* 989 * Used by the following functions to iterate through the sptes linked by a 990 * rmap. All fields are private and not assumed to be used outside. 991 */ 992struct rmap_iterator { 993 /* private fields */ 994 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 995 int pos; /* index of the sptep */ 996}; 997 998/* 999 * Iteration must be started by this function. This should also be used after 1000 * removing/dropping sptes from the rmap link because in such cases the 1001 * information in the iterator may not be valid. 1002 * 1003 * Returns sptep if found, NULL otherwise. 1004 */ 1005static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1006 struct rmap_iterator *iter) 1007{ 1008 u64 *sptep; 1009 1010 if (!rmap_head->val) 1011 return NULL; 1012 1013 if (!(rmap_head->val & 1)) { 1014 iter->desc = NULL; 1015 sptep = (u64 *)rmap_head->val; 1016 goto out; 1017 } 1018 1019 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1020 iter->pos = 0; 1021 sptep = iter->desc->sptes[iter->pos]; 1022out: 1023 BUG_ON(!is_shadow_present_pte(*sptep)); 1024 return sptep; 1025} 1026 1027/* 1028 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1029 * 1030 * Returns sptep if found, NULL otherwise. 1031 */ 1032static u64 *rmap_get_next(struct rmap_iterator *iter) 1033{ 1034 u64 *sptep; 1035 1036 if (iter->desc) { 1037 if (iter->pos < PTE_LIST_EXT - 1) { 1038 ++iter->pos; 1039 sptep = iter->desc->sptes[iter->pos]; 1040 if (sptep) 1041 goto out; 1042 } 1043 1044 iter->desc = iter->desc->more; 1045 1046 if (iter->desc) { 1047 iter->pos = 0; 1048 /* desc->sptes[0] cannot be NULL */ 1049 sptep = iter->desc->sptes[iter->pos]; 1050 goto out; 1051 } 1052 } 1053 1054 return NULL; 1055out: 1056 BUG_ON(!is_shadow_present_pte(*sptep)); 1057 return sptep; 1058} 1059 1060#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1061 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1062 _spte_; _spte_ = rmap_get_next(_iter_)) 1063 1064static void drop_spte(struct kvm *kvm, u64 *sptep) 1065{ 1066 if (mmu_spte_clear_track_bits(sptep)) 1067 rmap_remove(kvm, sptep); 1068} 1069 1070 1071static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) 1072{ 1073 if (is_large_pte(*sptep)) { 1074 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K); 1075 drop_spte(kvm, sptep); 1076 --kvm->stat.lpages; 1077 return true; 1078 } 1079 1080 return false; 1081} 1082 1083static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) 1084{ 1085 if (__drop_large_spte(vcpu->kvm, sptep)) { 1086 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 1087 1088 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1089 KVM_PAGES_PER_HPAGE(sp->role.level)); 1090 } 1091} 1092 1093/* 1094 * Write-protect on the specified @sptep, @pt_protect indicates whether 1095 * spte write-protection is caused by protecting shadow page table. 1096 * 1097 * Note: write protection is difference between dirty logging and spte 1098 * protection: 1099 * - for dirty logging, the spte can be set to writable at anytime if 1100 * its dirty bitmap is properly set. 1101 * - for spte protection, the spte can be writable only after unsync-ing 1102 * shadow page. 1103 * 1104 * Return true if tlb need be flushed. 1105 */ 1106static bool spte_write_protect(u64 *sptep, bool pt_protect) 1107{ 1108 u64 spte = *sptep; 1109 1110 if (!is_writable_pte(spte) && 1111 !(pt_protect && spte_can_locklessly_be_made_writable(spte))) 1112 return false; 1113 1114 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep); 1115 1116 if (pt_protect) 1117 spte &= ~SPTE_MMU_WRITEABLE; 1118 spte = spte & ~PT_WRITABLE_MASK; 1119 1120 return mmu_spte_update(sptep, spte); 1121} 1122 1123static bool __rmap_write_protect(struct kvm *kvm, 1124 struct kvm_rmap_head *rmap_head, 1125 bool pt_protect) 1126{ 1127 u64 *sptep; 1128 struct rmap_iterator iter; 1129 bool flush = false; 1130 1131 for_each_rmap_spte(rmap_head, &iter, sptep) 1132 flush |= spte_write_protect(sptep, pt_protect); 1133 1134 return flush; 1135} 1136 1137static bool spte_clear_dirty(u64 *sptep) 1138{ 1139 u64 spte = *sptep; 1140 1141 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep); 1142 1143 MMU_WARN_ON(!spte_ad_enabled(spte)); 1144 spte &= ~shadow_dirty_mask; 1145 return mmu_spte_update(sptep, spte); 1146} 1147 1148static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1149{ 1150 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1151 (unsigned long *)sptep); 1152 if (was_writable && !spte_ad_enabled(*sptep)) 1153 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1154 1155 return was_writable; 1156} 1157 1158/* 1159 * Gets the GFN ready for another round of dirty logging by clearing the 1160 * - D bit on ad-enabled SPTEs, and 1161 * - W bit on ad-disabled SPTEs. 1162 * Returns true iff any D or W bits were cleared. 1163 */ 1164static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1165{ 1166 u64 *sptep; 1167 struct rmap_iterator iter; 1168 bool flush = false; 1169 1170 for_each_rmap_spte(rmap_head, &iter, sptep) 1171 if (spte_ad_need_write_protect(*sptep)) 1172 flush |= spte_wrprot_for_clear_dirty(sptep); 1173 else 1174 flush |= spte_clear_dirty(sptep); 1175 1176 return flush; 1177} 1178 1179static bool spte_set_dirty(u64 *sptep) 1180{ 1181 u64 spte = *sptep; 1182 1183 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep); 1184 1185 /* 1186 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case, 1187 * do not bother adding back write access to pages marked 1188 * SPTE_AD_WRPROT_ONLY_MASK. 1189 */ 1190 spte |= shadow_dirty_mask; 1191 1192 return mmu_spte_update(sptep, spte); 1193} 1194 1195static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1196{ 1197 u64 *sptep; 1198 struct rmap_iterator iter; 1199 bool flush = false; 1200 1201 for_each_rmap_spte(rmap_head, &iter, sptep) 1202 if (spte_ad_enabled(*sptep)) 1203 flush |= spte_set_dirty(sptep); 1204 1205 return flush; 1206} 1207 1208/** 1209 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1210 * @kvm: kvm instance 1211 * @slot: slot to protect 1212 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1213 * @mask: indicates which pages we should protect 1214 * 1215 * Used when we do not need to care about huge page mappings: e.g. during dirty 1216 * logging we do not have any such mappings. 1217 */ 1218static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1219 struct kvm_memory_slot *slot, 1220 gfn_t gfn_offset, unsigned long mask) 1221{ 1222 struct kvm_rmap_head *rmap_head; 1223 1224 if (kvm->arch.tdp_mmu_enabled) 1225 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1226 slot->base_gfn + gfn_offset, mask, true); 1227 while (mask) { 1228 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1229 PG_LEVEL_4K, slot); 1230 __rmap_write_protect(kvm, rmap_head, false); 1231 1232 /* clear the first set bit */ 1233 mask &= mask - 1; 1234 } 1235} 1236 1237/** 1238 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1239 * protect the page if the D-bit isn't supported. 1240 * @kvm: kvm instance 1241 * @slot: slot to clear D-bit 1242 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1243 * @mask: indicates which pages we should clear D-bit 1244 * 1245 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1246 */ 1247void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1248 struct kvm_memory_slot *slot, 1249 gfn_t gfn_offset, unsigned long mask) 1250{ 1251 struct kvm_rmap_head *rmap_head; 1252 1253 if (kvm->arch.tdp_mmu_enabled) 1254 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1255 slot->base_gfn + gfn_offset, mask, false); 1256 while (mask) { 1257 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1258 PG_LEVEL_4K, slot); 1259 __rmap_clear_dirty(kvm, rmap_head); 1260 1261 /* clear the first set bit */ 1262 mask &= mask - 1; 1263 } 1264} 1265EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked); 1266 1267/** 1268 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1269 * PT level pages. 1270 * 1271 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1272 * enable dirty logging for them. 1273 * 1274 * Used when we do not need to care about huge page mappings: e.g. during dirty 1275 * logging we do not have any such mappings. 1276 */ 1277void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1278 struct kvm_memory_slot *slot, 1279 gfn_t gfn_offset, unsigned long mask) 1280{ 1281 if (kvm_x86_ops.enable_log_dirty_pt_masked) 1282 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset, 1283 mask); 1284 else 1285 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1286} 1287 1288bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1289 struct kvm_memory_slot *slot, u64 gfn) 1290{ 1291 struct kvm_rmap_head *rmap_head; 1292 int i; 1293 bool write_protected = false; 1294 1295 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1296 rmap_head = __gfn_to_rmap(gfn, i, slot); 1297 write_protected |= __rmap_write_protect(kvm, rmap_head, true); 1298 } 1299 1300 if (kvm->arch.tdp_mmu_enabled) 1301 write_protected |= 1302 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn); 1303 1304 return write_protected; 1305} 1306 1307static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) 1308{ 1309 struct kvm_memory_slot *slot; 1310 1311 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1312 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn); 1313} 1314 1315static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1316{ 1317 u64 *sptep; 1318 struct rmap_iterator iter; 1319 bool flush = false; 1320 1321 while ((sptep = rmap_get_first(rmap_head, &iter))) { 1322 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep); 1323 1324 pte_list_remove(rmap_head, sptep); 1325 flush = true; 1326 } 1327 1328 return flush; 1329} 1330 1331static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1332 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1333 unsigned long data) 1334{ 1335 return kvm_zap_rmapp(kvm, rmap_head); 1336} 1337 1338static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1339 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1340 unsigned long data) 1341{ 1342 u64 *sptep; 1343 struct rmap_iterator iter; 1344 int need_flush = 0; 1345 u64 new_spte; 1346 pte_t *ptep = (pte_t *)data; 1347 kvm_pfn_t new_pfn; 1348 1349 WARN_ON(pte_huge(*ptep)); 1350 new_pfn = pte_pfn(*ptep); 1351 1352restart: 1353 for_each_rmap_spte(rmap_head, &iter, sptep) { 1354 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n", 1355 sptep, *sptep, gfn, level); 1356 1357 need_flush = 1; 1358 1359 if (pte_write(*ptep)) { 1360 pte_list_remove(rmap_head, sptep); 1361 goto restart; 1362 } else { 1363 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1364 *sptep, new_pfn); 1365 1366 mmu_spte_clear_track_bits(sptep); 1367 mmu_spte_set(sptep, new_spte); 1368 } 1369 } 1370 1371 if (need_flush && kvm_available_flush_tlb_with_range()) { 1372 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1373 return 0; 1374 } 1375 1376 return need_flush; 1377} 1378 1379struct slot_rmap_walk_iterator { 1380 /* input fields. */ 1381 struct kvm_memory_slot *slot; 1382 gfn_t start_gfn; 1383 gfn_t end_gfn; 1384 int start_level; 1385 int end_level; 1386 1387 /* output fields. */ 1388 gfn_t gfn; 1389 struct kvm_rmap_head *rmap; 1390 int level; 1391 1392 /* private field. */ 1393 struct kvm_rmap_head *end_rmap; 1394}; 1395 1396static void 1397rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1398{ 1399 iterator->level = level; 1400 iterator->gfn = iterator->start_gfn; 1401 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot); 1402 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level, 1403 iterator->slot); 1404} 1405 1406static void 1407slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1408 struct kvm_memory_slot *slot, int start_level, 1409 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1410{ 1411 iterator->slot = slot; 1412 iterator->start_level = start_level; 1413 iterator->end_level = end_level; 1414 iterator->start_gfn = start_gfn; 1415 iterator->end_gfn = end_gfn; 1416 1417 rmap_walk_init_level(iterator, iterator->start_level); 1418} 1419 1420static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1421{ 1422 return !!iterator->rmap; 1423} 1424 1425static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1426{ 1427 if (++iterator->rmap <= iterator->end_rmap) { 1428 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1429 return; 1430 } 1431 1432 if (++iterator->level > iterator->end_level) { 1433 iterator->rmap = NULL; 1434 return; 1435 } 1436 1437 rmap_walk_init_level(iterator, iterator->level); 1438} 1439 1440#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1441 _start_gfn, _end_gfn, _iter_) \ 1442 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1443 _end_level_, _start_gfn, _end_gfn); \ 1444 slot_rmap_walk_okay(_iter_); \ 1445 slot_rmap_walk_next(_iter_)) 1446 1447static int kvm_handle_hva_range(struct kvm *kvm, 1448 unsigned long start, 1449 unsigned long end, 1450 unsigned long data, 1451 int (*handler)(struct kvm *kvm, 1452 struct kvm_rmap_head *rmap_head, 1453 struct kvm_memory_slot *slot, 1454 gfn_t gfn, 1455 int level, 1456 unsigned long data)) 1457{ 1458 struct kvm_memslots *slots; 1459 struct kvm_memory_slot *memslot; 1460 struct slot_rmap_walk_iterator iterator; 1461 int ret = 0; 1462 int i; 1463 1464 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1465 slots = __kvm_memslots(kvm, i); 1466 kvm_for_each_memslot(memslot, slots) { 1467 unsigned long hva_start, hva_end; 1468 gfn_t gfn_start, gfn_end; 1469 1470 hva_start = max(start, memslot->userspace_addr); 1471 hva_end = min(end, memslot->userspace_addr + 1472 (memslot->npages << PAGE_SHIFT)); 1473 if (hva_start >= hva_end) 1474 continue; 1475 /* 1476 * {gfn(page) | page intersects with [hva_start, hva_end)} = 1477 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 1478 */ 1479 gfn_start = hva_to_gfn_memslot(hva_start, memslot); 1480 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 1481 1482 for_each_slot_rmap_range(memslot, PG_LEVEL_4K, 1483 KVM_MAX_HUGEPAGE_LEVEL, 1484 gfn_start, gfn_end - 1, 1485 &iterator) 1486 ret |= handler(kvm, iterator.rmap, memslot, 1487 iterator.gfn, iterator.level, data); 1488 } 1489 } 1490 1491 return ret; 1492} 1493 1494static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, 1495 unsigned long data, 1496 int (*handler)(struct kvm *kvm, 1497 struct kvm_rmap_head *rmap_head, 1498 struct kvm_memory_slot *slot, 1499 gfn_t gfn, int level, 1500 unsigned long data)) 1501{ 1502 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler); 1503} 1504 1505int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end, 1506 unsigned flags) 1507{ 1508 int r; 1509 1510 r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp); 1511 1512 if (kvm->arch.tdp_mmu_enabled) 1513 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end); 1514 1515 return r; 1516} 1517 1518int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 1519{ 1520 int r; 1521 1522 r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); 1523 1524 if (kvm->arch.tdp_mmu_enabled) 1525 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte); 1526 1527 return r; 1528} 1529 1530static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1531 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1532 unsigned long data) 1533{ 1534 u64 *sptep; 1535 struct rmap_iterator iter; 1536 int young = 0; 1537 1538 for_each_rmap_spte(rmap_head, &iter, sptep) 1539 young |= mmu_spte_age(sptep); 1540 1541 trace_kvm_age_page(gfn, level, slot, young); 1542 return young; 1543} 1544 1545static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1546 struct kvm_memory_slot *slot, gfn_t gfn, 1547 int level, unsigned long data) 1548{ 1549 u64 *sptep; 1550 struct rmap_iterator iter; 1551 1552 for_each_rmap_spte(rmap_head, &iter, sptep) 1553 if (is_accessed_spte(*sptep)) 1554 return 1; 1555 return 0; 1556} 1557 1558#define RMAP_RECYCLE_THRESHOLD 1000 1559 1560static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 1561{ 1562 struct kvm_rmap_head *rmap_head; 1563 struct kvm_mmu_page *sp; 1564 1565 sp = sptep_to_sp(spte); 1566 1567 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 1568 1569 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0); 1570 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1571 KVM_PAGES_PER_HPAGE(sp->role.level)); 1572} 1573 1574int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) 1575{ 1576 int young = false; 1577 1578 young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp); 1579 if (kvm->arch.tdp_mmu_enabled) 1580 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end); 1581 1582 return young; 1583} 1584 1585int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 1586{ 1587 int young = false; 1588 1589 young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp); 1590 if (kvm->arch.tdp_mmu_enabled) 1591 young |= kvm_tdp_mmu_test_age_hva(kvm, hva); 1592 1593 return young; 1594} 1595 1596#ifdef MMU_DEBUG 1597static int is_empty_shadow_page(u64 *spt) 1598{ 1599 u64 *pos; 1600 u64 *end; 1601 1602 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 1603 if (is_shadow_present_pte(*pos)) { 1604 printk(KERN_ERR "%s: %p %llx\n", __func__, 1605 pos, *pos); 1606 return 0; 1607 } 1608 return 1; 1609} 1610#endif 1611 1612/* 1613 * This value is the sum of all of the kvm instances's 1614 * kvm->arch.n_used_mmu_pages values. We need a global, 1615 * aggregate version in order to make the slab shrinker 1616 * faster 1617 */ 1618static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1619{ 1620 kvm->arch.n_used_mmu_pages += nr; 1621 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1622} 1623 1624static void kvm_mmu_free_page(struct kvm_mmu_page *sp) 1625{ 1626 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1627 hlist_del(&sp->hash_link); 1628 list_del(&sp->link); 1629 free_page((unsigned long)sp->spt); 1630 if (!sp->role.direct) 1631 free_page((unsigned long)sp->gfns); 1632 kmem_cache_free(mmu_page_header_cache, sp); 1633} 1634 1635static unsigned kvm_page_table_hashfn(gfn_t gfn) 1636{ 1637 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1638} 1639 1640static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, 1641 struct kvm_mmu_page *sp, u64 *parent_pte) 1642{ 1643 if (!parent_pte) 1644 return; 1645 1646 pte_list_add(vcpu, parent_pte, &sp->parent_ptes); 1647} 1648 1649static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1650 u64 *parent_pte) 1651{ 1652 __pte_list_remove(parent_pte, &sp->parent_ptes); 1653} 1654 1655static void drop_parent_pte(struct kvm_mmu_page *sp, 1656 u64 *parent_pte) 1657{ 1658 mmu_page_remove_parent_pte(sp, parent_pte); 1659 mmu_spte_clear_no_track(parent_pte); 1660} 1661 1662static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) 1663{ 1664 struct kvm_mmu_page *sp; 1665 1666 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 1667 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 1668 if (!direct) 1669 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache); 1670 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 1671 1672 /* 1673 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 1674 * depends on valid pages being added to the head of the list. See 1675 * comments in kvm_zap_obsolete_pages(). 1676 */ 1677 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; 1678 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); 1679 kvm_mod_used_mmu_pages(vcpu->kvm, +1); 1680 return sp; 1681} 1682 1683static void mark_unsync(u64 *spte); 1684static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1685{ 1686 u64 *sptep; 1687 struct rmap_iterator iter; 1688 1689 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1690 mark_unsync(sptep); 1691 } 1692} 1693 1694static void mark_unsync(u64 *spte) 1695{ 1696 struct kvm_mmu_page *sp; 1697 unsigned int index; 1698 1699 sp = sptep_to_sp(spte); 1700 index = spte - sp->spt; 1701 if (__test_and_set_bit(index, sp->unsync_child_bitmap)) 1702 return; 1703 if (sp->unsync_children++) 1704 return; 1705 kvm_mmu_mark_parents_unsync(sp); 1706} 1707 1708static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 1709 struct kvm_mmu_page *sp) 1710{ 1711 return 0; 1712} 1713 1714#define KVM_PAGE_ARRAY_NR 16 1715 1716struct kvm_mmu_pages { 1717 struct mmu_page_and_offset { 1718 struct kvm_mmu_page *sp; 1719 unsigned int idx; 1720 } page[KVM_PAGE_ARRAY_NR]; 1721 unsigned int nr; 1722}; 1723 1724static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1725 int idx) 1726{ 1727 int i; 1728 1729 if (sp->unsync) 1730 for (i=0; i < pvec->nr; i++) 1731 if (pvec->page[i].sp == sp) 1732 return 0; 1733 1734 pvec->page[pvec->nr].sp = sp; 1735 pvec->page[pvec->nr].idx = idx; 1736 pvec->nr++; 1737 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1738} 1739 1740static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1741{ 1742 --sp->unsync_children; 1743 WARN_ON((int)sp->unsync_children < 0); 1744 __clear_bit(idx, sp->unsync_child_bitmap); 1745} 1746 1747static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1748 struct kvm_mmu_pages *pvec) 1749{ 1750 int i, ret, nr_unsync_leaf = 0; 1751 1752 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1753 struct kvm_mmu_page *child; 1754 u64 ent = sp->spt[i]; 1755 1756 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1757 clear_unsync_child_bit(sp, i); 1758 continue; 1759 } 1760 1761 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK); 1762 1763 if (child->unsync_children) { 1764 if (mmu_pages_add(pvec, child, i)) 1765 return -ENOSPC; 1766 1767 ret = __mmu_unsync_walk(child, pvec); 1768 if (!ret) { 1769 clear_unsync_child_bit(sp, i); 1770 continue; 1771 } else if (ret > 0) { 1772 nr_unsync_leaf += ret; 1773 } else 1774 return ret; 1775 } else if (child->unsync) { 1776 nr_unsync_leaf++; 1777 if (mmu_pages_add(pvec, child, i)) 1778 return -ENOSPC; 1779 } else 1780 clear_unsync_child_bit(sp, i); 1781 } 1782 1783 return nr_unsync_leaf; 1784} 1785 1786#define INVALID_INDEX (-1) 1787 1788static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1789 struct kvm_mmu_pages *pvec) 1790{ 1791 pvec->nr = 0; 1792 if (!sp->unsync_children) 1793 return 0; 1794 1795 mmu_pages_add(pvec, sp, INVALID_INDEX); 1796 return __mmu_unsync_walk(sp, pvec); 1797} 1798 1799static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1800{ 1801 WARN_ON(!sp->unsync); 1802 trace_kvm_mmu_sync_page(sp); 1803 sp->unsync = 0; 1804 --kvm->stat.mmu_unsync; 1805} 1806 1807static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1808 struct list_head *invalid_list); 1809static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1810 struct list_head *invalid_list); 1811 1812#define for_each_valid_sp(_kvm, _sp, _list) \ 1813 hlist_for_each_entry(_sp, _list, hash_link) \ 1814 if (is_obsolete_sp((_kvm), (_sp))) { \ 1815 } else 1816 1817#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ 1818 for_each_valid_sp(_kvm, _sp, \ 1819 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1820 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else 1821 1822static inline bool is_ept_sp(struct kvm_mmu_page *sp) 1823{ 1824 return sp->role.cr0_wp && sp->role.smap_andnot_wp; 1825} 1826 1827/* @sp->gfn should be write-protected at the call site */ 1828static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1829 struct list_head *invalid_list) 1830{ 1831 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) || 1832 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) { 1833 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1834 return false; 1835 } 1836 1837 return true; 1838} 1839 1840static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1841 struct list_head *invalid_list, 1842 bool remote_flush) 1843{ 1844 if (!remote_flush && list_empty(invalid_list)) 1845 return false; 1846 1847 if (!list_empty(invalid_list)) 1848 kvm_mmu_commit_zap_page(kvm, invalid_list); 1849 else 1850 kvm_flush_remote_tlbs(kvm); 1851 return true; 1852} 1853 1854static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu, 1855 struct list_head *invalid_list, 1856 bool remote_flush, bool local_flush) 1857{ 1858 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush)) 1859 return; 1860 1861 if (local_flush) 1862 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1863} 1864 1865#ifdef CONFIG_KVM_MMU_AUDIT 1866#include "mmu_audit.c" 1867#else 1868static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } 1869static void mmu_audit_disable(void) { } 1870#endif 1871 1872static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1873{ 1874 return sp->role.invalid || 1875 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1876} 1877 1878static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1879 struct list_head *invalid_list) 1880{ 1881 kvm_unlink_unsync_page(vcpu->kvm, sp); 1882 return __kvm_sync_page(vcpu, sp, invalid_list); 1883} 1884 1885/* @gfn should be write-protected at the call site */ 1886static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, 1887 struct list_head *invalid_list) 1888{ 1889 struct kvm_mmu_page *s; 1890 bool ret = false; 1891 1892 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) { 1893 if (!s->unsync) 1894 continue; 1895 1896 WARN_ON(s->role.level != PG_LEVEL_4K); 1897 ret |= kvm_sync_page(vcpu, s, invalid_list); 1898 } 1899 1900 return ret; 1901} 1902 1903struct mmu_page_path { 1904 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1905 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1906}; 1907 1908#define for_each_sp(pvec, sp, parents, i) \ 1909 for (i = mmu_pages_first(&pvec, &parents); \ 1910 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1911 i = mmu_pages_next(&pvec, &parents, i)) 1912 1913static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1914 struct mmu_page_path *parents, 1915 int i) 1916{ 1917 int n; 1918 1919 for (n = i+1; n < pvec->nr; n++) { 1920 struct kvm_mmu_page *sp = pvec->page[n].sp; 1921 unsigned idx = pvec->page[n].idx; 1922 int level = sp->role.level; 1923 1924 parents->idx[level-1] = idx; 1925 if (level == PG_LEVEL_4K) 1926 break; 1927 1928 parents->parent[level-2] = sp; 1929 } 1930 1931 return n; 1932} 1933 1934static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1935 struct mmu_page_path *parents) 1936{ 1937 struct kvm_mmu_page *sp; 1938 int level; 1939 1940 if (pvec->nr == 0) 1941 return 0; 1942 1943 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 1944 1945 sp = pvec->page[0].sp; 1946 level = sp->role.level; 1947 WARN_ON(level == PG_LEVEL_4K); 1948 1949 parents->parent[level-2] = sp; 1950 1951 /* Also set up a sentinel. Further entries in pvec are all 1952 * children of sp, so this element is never overwritten. 1953 */ 1954 parents->parent[level-1] = NULL; 1955 return mmu_pages_next(pvec, parents, 0); 1956} 1957 1958static void mmu_pages_clear_parents(struct mmu_page_path *parents) 1959{ 1960 struct kvm_mmu_page *sp; 1961 unsigned int level = 0; 1962 1963 do { 1964 unsigned int idx = parents->idx[level]; 1965 sp = parents->parent[level]; 1966 if (!sp) 1967 return; 1968 1969 WARN_ON(idx == INVALID_INDEX); 1970 clear_unsync_child_bit(sp, idx); 1971 level++; 1972 } while (!sp->unsync_children); 1973} 1974 1975static void mmu_sync_children(struct kvm_vcpu *vcpu, 1976 struct kvm_mmu_page *parent) 1977{ 1978 int i; 1979 struct kvm_mmu_page *sp; 1980 struct mmu_page_path parents; 1981 struct kvm_mmu_pages pages; 1982 LIST_HEAD(invalid_list); 1983 bool flush = false; 1984 1985 while (mmu_unsync_walk(parent, &pages)) { 1986 bool protected = false; 1987 1988 for_each_sp(pages, sp, parents, i) 1989 protected |= rmap_write_protect(vcpu, sp->gfn); 1990 1991 if (protected) { 1992 kvm_flush_remote_tlbs(vcpu->kvm); 1993 flush = false; 1994 } 1995 1996 for_each_sp(pages, sp, parents, i) { 1997 flush |= kvm_sync_page(vcpu, sp, &invalid_list); 1998 mmu_pages_clear_parents(&parents); 1999 } 2000 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) { 2001 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2002 cond_resched_lock(&vcpu->kvm->mmu_lock); 2003 flush = false; 2004 } 2005 } 2006 2007 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2008} 2009 2010static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2011{ 2012 atomic_set(&sp->write_flooding_count, 0); 2013} 2014 2015static void clear_sp_write_flooding_count(u64 *spte) 2016{ 2017 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2018} 2019 2020static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, 2021 gfn_t gfn, 2022 gva_t gaddr, 2023 unsigned level, 2024 int direct, 2025 unsigned int access) 2026{ 2027 bool direct_mmu = vcpu->arch.mmu->direct_map; 2028 union kvm_mmu_page_role role; 2029 struct hlist_head *sp_list; 2030 unsigned quadrant; 2031 struct kvm_mmu_page *sp; 2032 bool need_sync = false; 2033 bool flush = false; 2034 int collisions = 0; 2035 LIST_HEAD(invalid_list); 2036 2037 role = vcpu->arch.mmu->mmu_role.base; 2038 role.level = level; 2039 role.direct = direct; 2040 if (role.direct) 2041 role.gpte_is_8_bytes = true; 2042 role.access = access; 2043 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) { 2044 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); 2045 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; 2046 role.quadrant = quadrant; 2047 } 2048 2049 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2050 for_each_valid_sp(vcpu->kvm, sp, sp_list) { 2051 if (sp->gfn != gfn) { 2052 collisions++; 2053 continue; 2054 } 2055 2056 if (!need_sync && sp->unsync) 2057 need_sync = true; 2058 2059 if (sp->role.word != role.word) 2060 continue; 2061 2062 if (direct_mmu) 2063 goto trace_get_page; 2064 2065 if (sp->unsync) { 2066 /* The page is good, but __kvm_sync_page might still end 2067 * up zapping it. If so, break in order to rebuild it. 2068 */ 2069 if (!__kvm_sync_page(vcpu, sp, &invalid_list)) 2070 break; 2071 2072 WARN_ON(!list_empty(&invalid_list)); 2073 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2074 } 2075 2076 if (sp->unsync_children) 2077 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2078 2079 __clear_sp_write_flooding_count(sp); 2080 2081trace_get_page: 2082 trace_kvm_mmu_get_page(sp, false); 2083 goto out; 2084 } 2085 2086 ++vcpu->kvm->stat.mmu_cache_miss; 2087 2088 sp = kvm_mmu_alloc_page(vcpu, direct); 2089 2090 sp->gfn = gfn; 2091 sp->role = role; 2092 hlist_add_head(&sp->hash_link, sp_list); 2093 if (!direct) { 2094 /* 2095 * we should do write protection before syncing pages 2096 * otherwise the content of the synced shadow page may 2097 * be inconsistent with guest page table. 2098 */ 2099 account_shadowed(vcpu->kvm, sp); 2100 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn)) 2101 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); 2102 2103 if (level > PG_LEVEL_4K && need_sync) 2104 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list); 2105 } 2106 trace_kvm_mmu_get_page(sp, true); 2107 2108 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2109out: 2110 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) 2111 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; 2112 return sp; 2113} 2114 2115static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2116 struct kvm_vcpu *vcpu, hpa_t root, 2117 u64 addr) 2118{ 2119 iterator->addr = addr; 2120 iterator->shadow_addr = root; 2121 iterator->level = vcpu->arch.mmu->shadow_root_level; 2122 2123 if (iterator->level == PT64_ROOT_4LEVEL && 2124 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && 2125 !vcpu->arch.mmu->direct_map) 2126 --iterator->level; 2127 2128 if (iterator->level == PT32E_ROOT_LEVEL) { 2129 /* 2130 * prev_root is currently only used for 64-bit hosts. So only 2131 * the active root_hpa is valid here. 2132 */ 2133 BUG_ON(root != vcpu->arch.mmu->root_hpa); 2134 2135 iterator->shadow_addr 2136 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2137 iterator->shadow_addr &= PT64_BASE_ADDR_MASK; 2138 --iterator->level; 2139 if (!iterator->shadow_addr) 2140 iterator->level = 0; 2141 } 2142} 2143 2144static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2145 struct kvm_vcpu *vcpu, u64 addr) 2146{ 2147 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa, 2148 addr); 2149} 2150 2151static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2152{ 2153 if (iterator->level < PG_LEVEL_4K) 2154 return false; 2155 2156 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); 2157 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2158 return true; 2159} 2160 2161static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2162 u64 spte) 2163{ 2164 if (is_last_spte(spte, iterator->level)) { 2165 iterator->level = 0; 2166 return; 2167 } 2168 2169 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; 2170 --iterator->level; 2171} 2172 2173static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2174{ 2175 __shadow_walk_next(iterator, *iterator->sptep); 2176} 2177 2178static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2179 struct kvm_mmu_page *sp) 2180{ 2181 u64 spte; 2182 2183 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2184 2185 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2186 2187 mmu_spte_set(sptep, spte); 2188 2189 mmu_page_add_parent_pte(vcpu, sp, sptep); 2190 2191 if (sp->unsync_children || sp->unsync) 2192 mark_unsync(sptep); 2193} 2194 2195static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2196 unsigned direct_access) 2197{ 2198 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2199 struct kvm_mmu_page *child; 2200 2201 /* 2202 * For the direct sp, if the guest pte's dirty bit 2203 * changed form clean to dirty, it will corrupt the 2204 * sp's access: allow writable in the read-only sp, 2205 * so we should update the spte at this point to get 2206 * a new sp with the correct access. 2207 */ 2208 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK); 2209 if (child->role.access == direct_access) 2210 return; 2211 2212 drop_parent_pte(child, sptep); 2213 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2214 } 2215} 2216 2217/* Returns the number of zapped non-leaf child shadow pages. */ 2218static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2219 u64 *spte, struct list_head *invalid_list) 2220{ 2221 u64 pte; 2222 struct kvm_mmu_page *child; 2223 2224 pte = *spte; 2225 if (is_shadow_present_pte(pte)) { 2226 if (is_last_spte(pte, sp->role.level)) { 2227 drop_spte(kvm, spte); 2228 if (is_large_pte(pte)) 2229 --kvm->stat.lpages; 2230 } else { 2231 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2232 drop_parent_pte(child, spte); 2233 2234 /* 2235 * Recursively zap nested TDP SPs, parentless SPs are 2236 * unlikely to be used again in the near future. This 2237 * avoids retaining a large number of stale nested SPs. 2238 */ 2239 if (tdp_enabled && invalid_list && 2240 child->role.guest_mode && !child->parent_ptes.val) 2241 return kvm_mmu_prepare_zap_page(kvm, child, 2242 invalid_list); 2243 } 2244 } else if (is_mmio_spte(pte)) { 2245 mmu_spte_clear_no_track(spte); 2246 } 2247 return 0; 2248} 2249 2250static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2251 struct kvm_mmu_page *sp, 2252 struct list_head *invalid_list) 2253{ 2254 int zapped = 0; 2255 unsigned i; 2256 2257 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) 2258 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2259 2260 return zapped; 2261} 2262 2263static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2264{ 2265 u64 *sptep; 2266 struct rmap_iterator iter; 2267 2268 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2269 drop_parent_pte(sp, sptep); 2270} 2271 2272static int mmu_zap_unsync_children(struct kvm *kvm, 2273 struct kvm_mmu_page *parent, 2274 struct list_head *invalid_list) 2275{ 2276 int i, zapped = 0; 2277 struct mmu_page_path parents; 2278 struct kvm_mmu_pages pages; 2279 2280 if (parent->role.level == PG_LEVEL_4K) 2281 return 0; 2282 2283 while (mmu_unsync_walk(parent, &pages)) { 2284 struct kvm_mmu_page *sp; 2285 2286 for_each_sp(pages, sp, parents, i) { 2287 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2288 mmu_pages_clear_parents(&parents); 2289 zapped++; 2290 } 2291 } 2292 2293 return zapped; 2294} 2295 2296static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2297 struct kvm_mmu_page *sp, 2298 struct list_head *invalid_list, 2299 int *nr_zapped) 2300{ 2301 bool list_unstable; 2302 2303 trace_kvm_mmu_prepare_zap_page(sp); 2304 ++kvm->stat.mmu_shadow_zapped; 2305 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2306 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2307 kvm_mmu_unlink_parents(kvm, sp); 2308 2309 /* Zapping children means active_mmu_pages has become unstable. */ 2310 list_unstable = *nr_zapped; 2311 2312 if (!sp->role.invalid && !sp->role.direct) 2313 unaccount_shadowed(kvm, sp); 2314 2315 if (sp->unsync) 2316 kvm_unlink_unsync_page(kvm, sp); 2317 if (!sp->root_count) { 2318 /* Count self */ 2319 (*nr_zapped)++; 2320 2321 /* 2322 * Already invalid pages (previously active roots) are not on 2323 * the active page list. See list_del() in the "else" case of 2324 * !sp->root_count. 2325 */ 2326 if (sp->role.invalid) 2327 list_add(&sp->link, invalid_list); 2328 else 2329 list_move(&sp->link, invalid_list); 2330 kvm_mod_used_mmu_pages(kvm, -1); 2331 } else { 2332 /* 2333 * Remove the active root from the active page list, the root 2334 * will be explicitly freed when the root_count hits zero. 2335 */ 2336 list_del(&sp->link); 2337 2338 /* 2339 * Obsolete pages cannot be used on any vCPUs, see the comment 2340 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2341 * treats invalid shadow pages as being obsolete. 2342 */ 2343 if (!is_obsolete_sp(kvm, sp)) 2344 kvm_reload_remote_mmus(kvm); 2345 } 2346 2347 if (sp->lpage_disallowed) 2348 unaccount_huge_nx_page(kvm, sp); 2349 2350 sp->role.invalid = 1; 2351 return list_unstable; 2352} 2353 2354static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2355 struct list_head *invalid_list) 2356{ 2357 int nr_zapped; 2358 2359 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2360 return nr_zapped; 2361} 2362 2363static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2364 struct list_head *invalid_list) 2365{ 2366 struct kvm_mmu_page *sp, *nsp; 2367 2368 if (list_empty(invalid_list)) 2369 return; 2370 2371 /* 2372 * We need to make sure everyone sees our modifications to 2373 * the page tables and see changes to vcpu->mode here. The barrier 2374 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2375 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2376 * 2377 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2378 * guest mode and/or lockless shadow page table walks. 2379 */ 2380 kvm_flush_remote_tlbs(kvm); 2381 2382 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2383 WARN_ON(!sp->role.invalid || sp->root_count); 2384 kvm_mmu_free_page(sp); 2385 } 2386} 2387 2388static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2389 unsigned long nr_to_zap) 2390{ 2391 unsigned long total_zapped = 0; 2392 struct kvm_mmu_page *sp, *tmp; 2393 LIST_HEAD(invalid_list); 2394 bool unstable; 2395 int nr_zapped; 2396 2397 if (list_empty(&kvm->arch.active_mmu_pages)) 2398 return 0; 2399 2400restart: 2401 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2402 /* 2403 * Don't zap active root pages, the page itself can't be freed 2404 * and zapping it will just force vCPUs to realloc and reload. 2405 */ 2406 if (sp->root_count) 2407 continue; 2408 2409 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2410 &nr_zapped); 2411 total_zapped += nr_zapped; 2412 if (total_zapped >= nr_to_zap) 2413 break; 2414 2415 if (unstable) 2416 goto restart; 2417 } 2418 2419 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2420 2421 kvm->stat.mmu_recycled += total_zapped; 2422 return total_zapped; 2423} 2424 2425static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2426{ 2427 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2428 return kvm->arch.n_max_mmu_pages - 2429 kvm->arch.n_used_mmu_pages; 2430 2431 return 0; 2432} 2433 2434static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2435{ 2436 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2437 2438 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2439 return 0; 2440 2441 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2442 2443 if (!kvm_mmu_available_pages(vcpu->kvm)) 2444 return -ENOSPC; 2445 return 0; 2446} 2447 2448/* 2449 * Changing the number of mmu pages allocated to the vm 2450 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2451 */ 2452void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2453{ 2454 spin_lock(&kvm->mmu_lock); 2455 2456 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2457 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2458 goal_nr_mmu_pages); 2459 2460 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2461 } 2462 2463 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2464 2465 spin_unlock(&kvm->mmu_lock); 2466} 2467 2468int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2469{ 2470 struct kvm_mmu_page *sp; 2471 LIST_HEAD(invalid_list); 2472 int r; 2473 2474 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2475 r = 0; 2476 spin_lock(&kvm->mmu_lock); 2477 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { 2478 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2479 sp->role.word); 2480 r = 1; 2481 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2482 } 2483 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2484 spin_unlock(&kvm->mmu_lock); 2485 2486 return r; 2487} 2488EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page); 2489 2490static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2491{ 2492 trace_kvm_mmu_unsync_page(sp); 2493 ++vcpu->kvm->stat.mmu_unsync; 2494 sp->unsync = 1; 2495 2496 kvm_mmu_mark_parents_unsync(sp); 2497} 2498 2499bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, 2500 bool can_unsync) 2501{ 2502 struct kvm_mmu_page *sp; 2503 2504 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 2505 return true; 2506 2507 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 2508 if (!can_unsync) 2509 return true; 2510 2511 if (sp->unsync) 2512 continue; 2513 2514 WARN_ON(sp->role.level != PG_LEVEL_4K); 2515 kvm_unsync_page(vcpu, sp); 2516 } 2517 2518 /* 2519 * We need to ensure that the marking of unsync pages is visible 2520 * before the SPTE is updated to allow writes because 2521 * kvm_mmu_sync_roots() checks the unsync flags without holding 2522 * the MMU lock and so can race with this. If the SPTE was updated 2523 * before the page had been marked as unsync-ed, something like the 2524 * following could happen: 2525 * 2526 * CPU 1 CPU 2 2527 * --------------------------------------------------------------------- 2528 * 1.2 Host updates SPTE 2529 * to be writable 2530 * 2.1 Guest writes a GPTE for GVA X. 2531 * (GPTE being in the guest page table shadowed 2532 * by the SP from CPU 1.) 2533 * This reads SPTE during the page table walk. 2534 * Since SPTE.W is read as 1, there is no 2535 * fault. 2536 * 2537 * 2.2 Guest issues TLB flush. 2538 * That causes a VM Exit. 2539 * 2540 * 2.3 kvm_mmu_sync_pages() reads sp->unsync. 2541 * Since it is false, so it just returns. 2542 * 2543 * 2.4 Guest accesses GVA X. 2544 * Since the mapping in the SP was not updated, 2545 * so the old mapping for GVA X incorrectly 2546 * gets used. 2547 * 1.1 Host marks SP 2548 * as unsync 2549 * (sp->unsync = true) 2550 * 2551 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2552 * the situation in 2.4 does not arise. The implicit barrier in 2.2 2553 * pairs with this write barrier. 2554 */ 2555 smp_wmb(); 2556 2557 return false; 2558} 2559 2560static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2561 unsigned int pte_access, int level, 2562 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 2563 bool can_unsync, bool host_writable) 2564{ 2565 u64 spte; 2566 struct kvm_mmu_page *sp; 2567 int ret; 2568 2569 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access)) 2570 return 0; 2571 2572 sp = sptep_to_sp(sptep); 2573 2574 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative, 2575 can_unsync, host_writable, sp_ad_disabled(sp), &spte); 2576 2577 if (spte & PT_WRITABLE_MASK) 2578 kvm_vcpu_mark_page_dirty(vcpu, gfn); 2579 2580 if (*sptep == spte) 2581 ret |= SET_SPTE_SPURIOUS; 2582 else if (mmu_spte_update(sptep, spte)) 2583 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH; 2584 return ret; 2585} 2586 2587static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2588 unsigned int pte_access, bool write_fault, int level, 2589 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 2590 bool host_writable) 2591{ 2592 int was_rmapped = 0; 2593 int rmap_count; 2594 int set_spte_ret; 2595 int ret = RET_PF_FIXED; 2596 bool flush = false; 2597 2598 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2599 *sptep, write_fault, gfn); 2600 2601 if (is_shadow_present_pte(*sptep)) { 2602 /* 2603 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2604 * the parent of the now unreachable PTE. 2605 */ 2606 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2607 struct kvm_mmu_page *child; 2608 u64 pte = *sptep; 2609 2610 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2611 drop_parent_pte(child, sptep); 2612 flush = true; 2613 } else if (pfn != spte_to_pfn(*sptep)) { 2614 pgprintk("hfn old %llx new %llx\n", 2615 spte_to_pfn(*sptep), pfn); 2616 drop_spte(vcpu->kvm, sptep); 2617 flush = true; 2618 } else 2619 was_rmapped = 1; 2620 } 2621 2622 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn, 2623 speculative, true, host_writable); 2624 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) { 2625 if (write_fault) 2626 ret = RET_PF_EMULATE; 2627 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2628 } 2629 2630 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush) 2631 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 2632 KVM_PAGES_PER_HPAGE(level)); 2633 2634 if (unlikely(is_mmio_spte(*sptep))) 2635 ret = RET_PF_EMULATE; 2636 2637 /* 2638 * The fault is fully spurious if and only if the new SPTE and old SPTE 2639 * are identical, and emulation is not required. 2640 */ 2641 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) { 2642 WARN_ON_ONCE(!was_rmapped); 2643 return RET_PF_SPURIOUS; 2644 } 2645 2646 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2647 trace_kvm_mmu_set_spte(level, gfn, sptep); 2648 if (!was_rmapped && is_large_pte(*sptep)) 2649 ++vcpu->kvm->stat.lpages; 2650 2651 if (is_shadow_present_pte(*sptep)) { 2652 if (!was_rmapped) { 2653 rmap_count = rmap_add(vcpu, sptep, gfn); 2654 if (rmap_count > RMAP_RECYCLE_THRESHOLD) 2655 rmap_recycle(vcpu, sptep, gfn); 2656 } 2657 } 2658 2659 return ret; 2660} 2661 2662static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 2663 bool no_dirty_log) 2664{ 2665 struct kvm_memory_slot *slot; 2666 2667 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); 2668 if (!slot) 2669 return KVM_PFN_ERR_FAULT; 2670 2671 return gfn_to_pfn_memslot_atomic(slot, gfn); 2672} 2673 2674static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2675 struct kvm_mmu_page *sp, 2676 u64 *start, u64 *end) 2677{ 2678 struct page *pages[PTE_PREFETCH_NUM]; 2679 struct kvm_memory_slot *slot; 2680 unsigned int access = sp->role.access; 2681 int i, ret; 2682 gfn_t gfn; 2683 2684 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); 2685 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2686 if (!slot) 2687 return -1; 2688 2689 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2690 if (ret <= 0) 2691 return -1; 2692 2693 for (i = 0; i < ret; i++, gfn++, start++) { 2694 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn, 2695 page_to_pfn(pages[i]), true, true); 2696 put_page(pages[i]); 2697 } 2698 2699 return 0; 2700} 2701 2702static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2703 struct kvm_mmu_page *sp, u64 *sptep) 2704{ 2705 u64 *spte, *start = NULL; 2706 int i; 2707 2708 WARN_ON(!sp->role.direct); 2709 2710 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 2711 spte = sp->spt + i; 2712 2713 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2714 if (is_shadow_present_pte(*spte) || spte == sptep) { 2715 if (!start) 2716 continue; 2717 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2718 break; 2719 start = NULL; 2720 } else if (!start) 2721 start = spte; 2722 } 2723} 2724 2725static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2726{ 2727 struct kvm_mmu_page *sp; 2728 2729 sp = sptep_to_sp(sptep); 2730 2731 /* 2732 * Without accessed bits, there's no way to distinguish between 2733 * actually accessed translations and prefetched, so disable pte 2734 * prefetch if accessed bits aren't available. 2735 */ 2736 if (sp_ad_disabled(sp)) 2737 return; 2738 2739 if (sp->role.level > PG_LEVEL_4K) 2740 return; 2741 2742 __direct_pte_prefetch(vcpu, sp, sptep); 2743} 2744 2745static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn, 2746 kvm_pfn_t pfn, struct kvm_memory_slot *slot) 2747{ 2748 unsigned long hva; 2749 pte_t *pte; 2750 int level; 2751 2752 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn)) 2753 return PG_LEVEL_4K; 2754 2755 /* 2756 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 2757 * is not solely for performance, it's also necessary to avoid the 2758 * "writable" check in __gfn_to_hva_many(), which will always fail on 2759 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 2760 * page fault steps have already verified the guest isn't writing a 2761 * read-only memslot. 2762 */ 2763 hva = __gfn_to_hva_memslot(slot, gfn); 2764 2765 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level); 2766 if (unlikely(!pte)) 2767 return PG_LEVEL_4K; 2768 2769 return level; 2770} 2771 2772int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn, 2773 int max_level, kvm_pfn_t *pfnp, 2774 bool huge_page_disallowed, int *req_level) 2775{ 2776 struct kvm_memory_slot *slot; 2777 struct kvm_lpage_info *linfo; 2778 kvm_pfn_t pfn = *pfnp; 2779 kvm_pfn_t mask; 2780 int level; 2781 2782 *req_level = PG_LEVEL_4K; 2783 2784 if (unlikely(max_level == PG_LEVEL_4K)) 2785 return PG_LEVEL_4K; 2786 2787 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn)) 2788 return PG_LEVEL_4K; 2789 2790 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true); 2791 if (!slot) 2792 return PG_LEVEL_4K; 2793 2794 max_level = min(max_level, max_huge_page_level); 2795 for ( ; max_level > PG_LEVEL_4K; max_level--) { 2796 linfo = lpage_info_slot(gfn, slot, max_level); 2797 if (!linfo->disallow_lpage) 2798 break; 2799 } 2800 2801 if (max_level == PG_LEVEL_4K) 2802 return PG_LEVEL_4K; 2803 2804 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot); 2805 if (level == PG_LEVEL_4K) 2806 return level; 2807 2808 *req_level = level = min(level, max_level); 2809 2810 /* 2811 * Enforce the iTLB multihit workaround after capturing the requested 2812 * level, which will be used to do precise, accurate accounting. 2813 */ 2814 if (huge_page_disallowed) 2815 return PG_LEVEL_4K; 2816 2817 /* 2818 * mmu_notifier_retry() was successful and mmu_lock is held, so 2819 * the pmd can't be split from under us. 2820 */ 2821 mask = KVM_PAGES_PER_HPAGE(level) - 1; 2822 VM_BUG_ON((gfn & mask) != (pfn & mask)); 2823 *pfnp = pfn & ~mask; 2824 2825 return level; 2826} 2827 2828void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level, 2829 kvm_pfn_t *pfnp, int *goal_levelp) 2830{ 2831 int level = *goal_levelp; 2832 2833 if (cur_level == level && level > PG_LEVEL_4K && 2834 is_shadow_present_pte(spte) && 2835 !is_large_pte(spte)) { 2836 /* 2837 * A small SPTE exists for this pfn, but FNAME(fetch) 2838 * and __direct_map would like to create a large PTE 2839 * instead: just force them to go down another level, 2840 * patching back for them into pfn the next 9 bits of 2841 * the address. 2842 */ 2843 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - 2844 KVM_PAGES_PER_HPAGE(level - 1); 2845 *pfnp |= gfn & page_mask; 2846 (*goal_levelp)--; 2847 } 2848} 2849 2850static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 2851 int map_writable, int max_level, kvm_pfn_t pfn, 2852 bool prefault, bool is_tdp) 2853{ 2854 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(); 2855 bool write = error_code & PFERR_WRITE_MASK; 2856 bool exec = error_code & PFERR_FETCH_MASK; 2857 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled; 2858 struct kvm_shadow_walk_iterator it; 2859 struct kvm_mmu_page *sp; 2860 int level, req_level, ret; 2861 gfn_t gfn = gpa >> PAGE_SHIFT; 2862 gfn_t base_gfn = gfn; 2863 2864 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 2865 return RET_PF_RETRY; 2866 2867 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn, 2868 huge_page_disallowed, &req_level); 2869 2870 trace_kvm_mmu_spte_requested(gpa, level, pfn); 2871 for_each_shadow_entry(vcpu, gpa, it) { 2872 /* 2873 * We cannot overwrite existing page tables with an NX 2874 * large page, as the leaf could be executable. 2875 */ 2876 if (nx_huge_page_workaround_enabled) 2877 disallowed_hugepage_adjust(*it.sptep, gfn, it.level, 2878 &pfn, &level); 2879 2880 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 2881 if (it.level == level) 2882 break; 2883 2884 drop_large_spte(vcpu, it.sptep); 2885 if (!is_shadow_present_pte(*it.sptep)) { 2886 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, 2887 it.level - 1, true, ACC_ALL); 2888 2889 link_shadow_page(vcpu, it.sptep, sp); 2890 if (is_tdp && huge_page_disallowed && 2891 req_level >= it.level) 2892 account_huge_nx_page(vcpu->kvm, sp); 2893 } 2894 } 2895 2896 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL, 2897 write, level, base_gfn, pfn, prefault, 2898 map_writable); 2899 if (ret == RET_PF_SPURIOUS) 2900 return ret; 2901 2902 direct_pte_prefetch(vcpu, it.sptep); 2903 ++vcpu->stat.pf_fixed; 2904 return ret; 2905} 2906 2907static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 2908{ 2909 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 2910} 2911 2912static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 2913{ 2914 /* 2915 * Do not cache the mmio info caused by writing the readonly gfn 2916 * into the spte otherwise read access on readonly gfn also can 2917 * caused mmio page fault and treat it as mmio access. 2918 */ 2919 if (pfn == KVM_PFN_ERR_RO_FAULT) 2920 return RET_PF_EMULATE; 2921 2922 if (pfn == KVM_PFN_ERR_HWPOISON) { 2923 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 2924 return RET_PF_RETRY; 2925 } 2926 2927 return -EFAULT; 2928} 2929 2930static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, 2931 kvm_pfn_t pfn, unsigned int access, 2932 int *ret_val) 2933{ 2934 /* The pfn is invalid, report the error! */ 2935 if (unlikely(is_error_pfn(pfn))) { 2936 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); 2937 return true; 2938 } 2939 2940 if (unlikely(is_noslot_pfn(pfn))) 2941 vcpu_cache_mmio_info(vcpu, gva, gfn, 2942 access & shadow_mmio_access_mask); 2943 2944 return false; 2945} 2946 2947static bool page_fault_can_be_fast(u32 error_code) 2948{ 2949 /* 2950 * Do not fix the mmio spte with invalid generation number which 2951 * need to be updated by slow page fault path. 2952 */ 2953 if (unlikely(error_code & PFERR_RSVD_MASK)) 2954 return false; 2955 2956 /* See if the page fault is due to an NX violation */ 2957 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)) 2958 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)))) 2959 return false; 2960 2961 /* 2962 * #PF can be fast if: 2963 * 1. The shadow page table entry is not present, which could mean that 2964 * the fault is potentially caused by access tracking (if enabled). 2965 * 2. The shadow page table entry is present and the fault 2966 * is caused by write-protect, that means we just need change the W 2967 * bit of the spte which can be done out of mmu-lock. 2968 * 2969 * However, if access tracking is disabled we know that a non-present 2970 * page must be a genuine page fault where we have to create a new SPTE. 2971 * So, if access tracking is disabled, we return true only for write 2972 * accesses to a present page. 2973 */ 2974 2975 return shadow_acc_track_mask != 0 || 2976 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)) 2977 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)); 2978} 2979 2980/* 2981 * Returns true if the SPTE was fixed successfully. Otherwise, 2982 * someone else modified the SPTE from its original value. 2983 */ 2984static bool 2985fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 2986 u64 *sptep, u64 old_spte, u64 new_spte) 2987{ 2988 gfn_t gfn; 2989 2990 WARN_ON(!sp->role.direct); 2991 2992 /* 2993 * Theoretically we could also set dirty bit (and flush TLB) here in 2994 * order to eliminate unnecessary PML logging. See comments in 2995 * set_spte. But fast_page_fault is very unlikely to happen with PML 2996 * enabled, so we do not do this. This might result in the same GPA 2997 * to be logged in PML buffer again when the write really happens, and 2998 * eventually to be called by mark_page_dirty twice. But it's also no 2999 * harm. This also avoids the TLB flush needed after setting dirty bit 3000 * so non-PML cases won't be impacted. 3001 * 3002 * Compare with set_spte where instead shadow_dirty_mask is set. 3003 */ 3004 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) 3005 return false; 3006 3007 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) { 3008 /* 3009 * The gfn of direct spte is stable since it is 3010 * calculated by sp->gfn. 3011 */ 3012 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); 3013 kvm_vcpu_mark_page_dirty(vcpu, gfn); 3014 } 3015 3016 return true; 3017} 3018 3019static bool is_access_allowed(u32 fault_err_code, u64 spte) 3020{ 3021 if (fault_err_code & PFERR_FETCH_MASK) 3022 return is_executable_pte(spte); 3023 3024 if (fault_err_code & PFERR_WRITE_MASK) 3025 return is_writable_pte(spte); 3026 3027 /* Fault was on Read access */ 3028 return spte & PT_PRESENT_MASK; 3029} 3030 3031/* 3032 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3033 */ 3034static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3035 u32 error_code) 3036{ 3037 struct kvm_shadow_walk_iterator iterator; 3038 struct kvm_mmu_page *sp; 3039 int ret = RET_PF_INVALID; 3040 u64 spte = 0ull; 3041 uint retry_count = 0; 3042 3043 if (!page_fault_can_be_fast(error_code)) 3044 return ret; 3045 3046 walk_shadow_page_lockless_begin(vcpu); 3047 3048 do { 3049 u64 new_spte; 3050 3051 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte) 3052 if (!is_shadow_present_pte(spte)) 3053 break; 3054 3055 sp = sptep_to_sp(iterator.sptep); 3056 if (!is_last_spte(spte, sp->role.level)) 3057 break; 3058 3059 /* 3060 * Check whether the memory access that caused the fault would 3061 * still cause it if it were to be performed right now. If not, 3062 * then this is a spurious fault caused by TLB lazily flushed, 3063 * or some other CPU has already fixed the PTE after the 3064 * current CPU took the fault. 3065 * 3066 * Need not check the access of upper level table entries since 3067 * they are always ACC_ALL. 3068 */ 3069 if (is_access_allowed(error_code, spte)) { 3070 ret = RET_PF_SPURIOUS; 3071 break; 3072 } 3073 3074 new_spte = spte; 3075 3076 if (is_access_track_spte(spte)) 3077 new_spte = restore_acc_track_spte(new_spte); 3078 3079 /* 3080 * Currently, to simplify the code, write-protection can 3081 * be removed in the fast path only if the SPTE was 3082 * write-protected for dirty-logging or access tracking. 3083 */ 3084 if ((error_code & PFERR_WRITE_MASK) && 3085 spte_can_locklessly_be_made_writable(spte)) { 3086 new_spte |= PT_WRITABLE_MASK; 3087 3088 /* 3089 * Do not fix write-permission on the large spte. Since 3090 * we only dirty the first page into the dirty-bitmap in 3091 * fast_pf_fix_direct_spte(), other pages are missed 3092 * if its slot has dirty logging enabled. 3093 * 3094 * Instead, we let the slow page fault path create a 3095 * normal spte to fix the access. 3096 * 3097 * See the comments in kvm_arch_commit_memory_region(). 3098 */ 3099 if (sp->role.level > PG_LEVEL_4K) 3100 break; 3101 } 3102 3103 /* Verify that the fault can be handled in the fast path */ 3104 if (new_spte == spte || 3105 !is_access_allowed(error_code, new_spte)) 3106 break; 3107 3108 /* 3109 * Currently, fast page fault only works for direct mapping 3110 * since the gfn is not stable for indirect shadow page. See 3111 * Documentation/virt/kvm/locking.rst to get more detail. 3112 */ 3113 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte, 3114 new_spte)) { 3115 ret = RET_PF_FIXED; 3116 break; 3117 } 3118 3119 if (++retry_count > 4) { 3120 printk_once(KERN_WARNING 3121 "kvm: Fast #PF retrying more than 4 times.\n"); 3122 break; 3123 } 3124 3125 } while (true); 3126 3127 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep, 3128 spte, ret); 3129 walk_shadow_page_lockless_end(vcpu); 3130 3131 return ret; 3132} 3133 3134static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3135 struct list_head *invalid_list) 3136{ 3137 struct kvm_mmu_page *sp; 3138 3139 if (!VALID_PAGE(*root_hpa)) 3140 return; 3141 3142 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK); 3143 if (WARN_ON(!sp)) 3144 return; 3145 3146 if (kvm_mmu_put_root(kvm, sp)) { 3147 if (sp->tdp_mmu_page) 3148 kvm_tdp_mmu_free_root(kvm, sp); 3149 else if (sp->role.invalid) 3150 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3151 } 3152 3153 *root_hpa = INVALID_PAGE; 3154} 3155 3156/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3157void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3158 ulong roots_to_free) 3159{ 3160 struct kvm *kvm = vcpu->kvm; 3161 int i; 3162 LIST_HEAD(invalid_list); 3163 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT; 3164 3165 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3166 3167 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3168 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) { 3169 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3170 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3171 VALID_PAGE(mmu->prev_roots[i].hpa)) 3172 break; 3173 3174 if (i == KVM_MMU_NUM_PREV_ROOTS) 3175 return; 3176 } 3177 3178 spin_lock(&kvm->mmu_lock); 3179 3180 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3181 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3182 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3183 &invalid_list); 3184 3185 if (free_active_root) { 3186 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 3187 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) { 3188 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list); 3189 } else if (mmu->pae_root) { 3190 for (i = 0; i < 4; ++i) 3191 if (mmu->pae_root[i] != 0) 3192 mmu_free_root_page(kvm, 3193 &mmu->pae_root[i], 3194 &invalid_list); 3195 } 3196 mmu->root_hpa = INVALID_PAGE; 3197 mmu->root_pgd = 0; 3198 } 3199 3200 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3201 spin_unlock(&kvm->mmu_lock); 3202} 3203EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3204 3205static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3206{ 3207 int ret = 0; 3208 3209 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3210 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3211 ret = 1; 3212 } 3213 3214 return ret; 3215} 3216 3217static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva, 3218 u8 level, bool direct) 3219{ 3220 struct kvm_mmu_page *sp; 3221 3222 spin_lock(&vcpu->kvm->mmu_lock); 3223 3224 if (make_mmu_pages_available(vcpu)) { 3225 spin_unlock(&vcpu->kvm->mmu_lock); 3226 return INVALID_PAGE; 3227 } 3228 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL); 3229 ++sp->root_count; 3230 3231 spin_unlock(&vcpu->kvm->mmu_lock); 3232 return __pa(sp->spt); 3233} 3234 3235static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3236{ 3237 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level; 3238 hpa_t root; 3239 unsigned i; 3240 3241 if (vcpu->kvm->arch.tdp_mmu_enabled) { 3242 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3243 3244 if (!VALID_PAGE(root)) 3245 return -ENOSPC; 3246 vcpu->arch.mmu->root_hpa = root; 3247 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3248 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, 3249 true); 3250 3251 if (!VALID_PAGE(root)) 3252 return -ENOSPC; 3253 vcpu->arch.mmu->root_hpa = root; 3254 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3255 for (i = 0; i < 4; ++i) { 3256 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i])); 3257 3258 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 3259 i << 30, PT32_ROOT_LEVEL, true); 3260 if (!VALID_PAGE(root)) 3261 return -ENOSPC; 3262 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK; 3263 } 3264 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); 3265 } else 3266 BUG(); 3267 3268 /* root_pgd is ignored for direct MMUs. */ 3269 vcpu->arch.mmu->root_pgd = 0; 3270 3271 return 0; 3272} 3273 3274static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3275{ 3276 u64 pdptr, pm_mask; 3277 gfn_t root_gfn, root_pgd; 3278 hpa_t root; 3279 int i; 3280 3281 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu); 3282 root_gfn = root_pgd >> PAGE_SHIFT; 3283 3284 if (mmu_check_root(vcpu, root_gfn)) 3285 return 1; 3286 3287 /* 3288 * Do we shadow a long mode page table? If so we need to 3289 * write-protect the guests page table root. 3290 */ 3291 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3292 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa)); 3293 3294 root = mmu_alloc_root(vcpu, root_gfn, 0, 3295 vcpu->arch.mmu->shadow_root_level, false); 3296 if (!VALID_PAGE(root)) 3297 return -ENOSPC; 3298 vcpu->arch.mmu->root_hpa = root; 3299 goto set_root_pgd; 3300 } 3301 3302 /* 3303 * We shadow a 32 bit page table. This may be a legacy 2-level 3304 * or a PAE 3-level page table. In either case we need to be aware that 3305 * the shadow page table may be a PAE or a long mode page table. 3306 */ 3307 pm_mask = PT_PRESENT_MASK; 3308 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) { 3309 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3310 3311 /* 3312 * Allocate the page for the PDPTEs when shadowing 32-bit NPT 3313 * with 64-bit only when needed. Unlike 32-bit NPT, it doesn't 3314 * need to be in low mem. See also lm_root below. 3315 */ 3316 if (!vcpu->arch.mmu->pae_root) { 3317 WARN_ON_ONCE(!tdp_enabled); 3318 3319 vcpu->arch.mmu->pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3320 if (!vcpu->arch.mmu->pae_root) 3321 return -ENOMEM; 3322 } 3323 } 3324 3325 for (i = 0; i < 4; ++i) { 3326 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i])); 3327 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) { 3328 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i); 3329 if (!(pdptr & PT_PRESENT_MASK)) { 3330 vcpu->arch.mmu->pae_root[i] = 0; 3331 continue; 3332 } 3333 root_gfn = pdptr >> PAGE_SHIFT; 3334 if (mmu_check_root(vcpu, root_gfn)) 3335 return 1; 3336 } 3337 3338 root = mmu_alloc_root(vcpu, root_gfn, i << 30, 3339 PT32_ROOT_LEVEL, false); 3340 if (!VALID_PAGE(root)) 3341 return -ENOSPC; 3342 vcpu->arch.mmu->pae_root[i] = root | pm_mask; 3343 } 3344 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); 3345 3346 /* 3347 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3348 * tables are allocated and initialized at MMU creation as there is no 3349 * equivalent level in the guest's NPT to shadow. Allocate the tables 3350 * on demand, as running a 32-bit L1 VMM is very rare. The PDP is 3351 * handled above (to share logic with PAE), deal with the PML4 here. 3352 */ 3353 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) { 3354 if (vcpu->arch.mmu->lm_root == NULL) { 3355 u64 *lm_root; 3356 3357 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3358 if (!lm_root) 3359 return -ENOMEM; 3360 3361 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask; 3362 3363 vcpu->arch.mmu->lm_root = lm_root; 3364 } 3365 3366 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root); 3367 } 3368 3369set_root_pgd: 3370 vcpu->arch.mmu->root_pgd = root_pgd; 3371 3372 return 0; 3373} 3374 3375static int mmu_alloc_roots(struct kvm_vcpu *vcpu) 3376{ 3377 if (vcpu->arch.mmu->direct_map) 3378 return mmu_alloc_direct_roots(vcpu); 3379 else 3380 return mmu_alloc_shadow_roots(vcpu); 3381} 3382 3383void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3384{ 3385 int i; 3386 struct kvm_mmu_page *sp; 3387 3388 if (vcpu->arch.mmu->direct_map) 3389 return; 3390 3391 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) 3392 return; 3393 3394 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3395 3396 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3397 hpa_t root = vcpu->arch.mmu->root_hpa; 3398 sp = to_shadow_page(root); 3399 3400 /* 3401 * Even if another CPU was marking the SP as unsync-ed 3402 * simultaneously, any guest page table changes are not 3403 * guaranteed to be visible anyway until this VCPU issues a TLB 3404 * flush strictly after those changes are made. We only need to 3405 * ensure that the other CPU sets these flags before any actual 3406 * changes to the page tables are made. The comments in 3407 * mmu_need_write_protect() describe what could go wrong if this 3408 * requirement isn't satisfied. 3409 */ 3410 if (!smp_load_acquire(&sp->unsync) && 3411 !smp_load_acquire(&sp->unsync_children)) 3412 return; 3413 3414 spin_lock(&vcpu->kvm->mmu_lock); 3415 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3416 3417 mmu_sync_children(vcpu, sp); 3418 3419 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3420 spin_unlock(&vcpu->kvm->mmu_lock); 3421 return; 3422 } 3423 3424 spin_lock(&vcpu->kvm->mmu_lock); 3425 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3426 3427 for (i = 0; i < 4; ++i) { 3428 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3429 3430 if (root && VALID_PAGE(root)) { 3431 root &= PT64_BASE_ADDR_MASK; 3432 sp = to_shadow_page(root); 3433 mmu_sync_children(vcpu, sp); 3434 } 3435 } 3436 3437 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3438 spin_unlock(&vcpu->kvm->mmu_lock); 3439} 3440EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots); 3441 3442static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr, 3443 u32 access, struct x86_exception *exception) 3444{ 3445 if (exception) 3446 exception->error_code = 0; 3447 return vaddr; 3448} 3449 3450static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr, 3451 u32 access, 3452 struct x86_exception *exception) 3453{ 3454 if (exception) 3455 exception->error_code = 0; 3456 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); 3457} 3458 3459static bool 3460__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level) 3461{ 3462 int bit7 = (pte >> 7) & 1; 3463 3464 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1]; 3465} 3466 3467static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte) 3468{ 3469 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f); 3470} 3471 3472static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3473{ 3474 /* 3475 * A nested guest cannot use the MMIO cache if it is using nested 3476 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3477 */ 3478 if (mmu_is_nested(vcpu)) 3479 return false; 3480 3481 if (direct) 3482 return vcpu_match_mmio_gpa(vcpu, addr); 3483 3484 return vcpu_match_mmio_gva(vcpu, addr); 3485} 3486 3487/* 3488 * Return the level of the lowest level SPTE added to sptes. 3489 * That SPTE may be non-present. 3490 */ 3491static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 3492{ 3493 struct kvm_shadow_walk_iterator iterator; 3494 int leaf = -1; 3495 u64 spte; 3496 3497 walk_shadow_page_lockless_begin(vcpu); 3498 3499 for (shadow_walk_init(&iterator, vcpu, addr), 3500 *root_level = iterator.level; 3501 shadow_walk_okay(&iterator); 3502 __shadow_walk_next(&iterator, spte)) { 3503 leaf = iterator.level; 3504 spte = mmu_spte_get_lockless(iterator.sptep); 3505 3506 sptes[leaf - 1] = spte; 3507 3508 if (!is_shadow_present_pte(spte)) 3509 break; 3510 } 3511 3512 walk_shadow_page_lockless_end(vcpu); 3513 3514 return leaf; 3515} 3516 3517/* return true if reserved bit is detected on spte. */ 3518static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3519{ 3520 u64 sptes[PT64_ROOT_MAX_LEVEL]; 3521 struct rsvd_bits_validate *rsvd_check; 3522 int root, leaf, level; 3523 bool reserved = false; 3524 3525 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) { 3526 *sptep = 0ull; 3527 return reserved; 3528 } 3529 3530 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) 3531 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 3532 else 3533 leaf = get_walk(vcpu, addr, sptes, &root); 3534 3535 if (unlikely(leaf < 0)) { 3536 *sptep = 0ull; 3537 return reserved; 3538 } 3539 3540 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 3541 3542 for (level = root; level >= leaf; level--) { 3543 if (!is_shadow_present_pte(sptes[level - 1])) 3544 break; 3545 /* 3546 * Use a bitwise-OR instead of a logical-OR to aggregate the 3547 * reserved bit and EPT's invalid memtype/XWR checks to avoid 3548 * adding a Jcc in the loop. 3549 */ 3550 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level - 1]) || 3551 __is_rsvd_bits_set(rsvd_check, sptes[level - 1], 3552 level); 3553 } 3554 3555 if (reserved) { 3556 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n", 3557 __func__, addr); 3558 for (level = root; level >= leaf; level--) 3559 pr_err("------ spte 0x%llx level %d.\n", 3560 sptes[level - 1], level); 3561 } 3562 3563 *sptep = sptes[leaf - 1]; 3564 3565 return reserved; 3566} 3567 3568static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3569{ 3570 u64 spte; 3571 bool reserved; 3572 3573 if (mmio_info_in_cache(vcpu, addr, direct)) 3574 return RET_PF_EMULATE; 3575 3576 reserved = get_mmio_spte(vcpu, addr, &spte); 3577 if (WARN_ON(reserved)) 3578 return -EINVAL; 3579 3580 if (is_mmio_spte(spte)) { 3581 gfn_t gfn = get_mmio_spte_gfn(spte); 3582 unsigned int access = get_mmio_spte_access(spte); 3583 3584 if (!check_mmio_spte(vcpu, spte)) 3585 return RET_PF_INVALID; 3586 3587 if (direct) 3588 addr = 0; 3589 3590 trace_handle_mmio_page_fault(addr, gfn, access); 3591 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 3592 return RET_PF_EMULATE; 3593 } 3594 3595 /* 3596 * If the page table is zapped by other cpus, let CPU fault again on 3597 * the address. 3598 */ 3599 return RET_PF_RETRY; 3600} 3601 3602static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 3603 u32 error_code, gfn_t gfn) 3604{ 3605 if (unlikely(error_code & PFERR_RSVD_MASK)) 3606 return false; 3607 3608 if (!(error_code & PFERR_PRESENT_MASK) || 3609 !(error_code & PFERR_WRITE_MASK)) 3610 return false; 3611 3612 /* 3613 * guest is writing the page which is write tracked which can 3614 * not be fixed by page fault handler. 3615 */ 3616 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 3617 return true; 3618 3619 return false; 3620} 3621 3622static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 3623{ 3624 struct kvm_shadow_walk_iterator iterator; 3625 u64 spte; 3626 3627 walk_shadow_page_lockless_begin(vcpu); 3628 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { 3629 clear_sp_write_flooding_count(iterator.sptep); 3630 if (!is_shadow_present_pte(spte)) 3631 break; 3632 } 3633 walk_shadow_page_lockless_end(vcpu); 3634} 3635 3636static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 3637{ 3638 /* make sure the token value is not 0 */ 3639 u32 id = vcpu->arch.apf.id; 3640 3641 if (id << 12 == 0) 3642 vcpu->arch.apf.id = 1; 3643 3644 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 3645} 3646 3647static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3648 gfn_t gfn) 3649{ 3650 struct kvm_arch_async_pf arch; 3651 3652 arch.token = alloc_apf_token(vcpu); 3653 arch.gfn = gfn; 3654 arch.direct_map = vcpu->arch.mmu->direct_map; 3655 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 3656 3657 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 3658 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 3659} 3660 3661static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, 3662 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write, 3663 bool *writable) 3664{ 3665 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3666 bool async; 3667 3668 /* 3669 * Retry the page fault if the gfn hit a memslot that is being deleted 3670 * or moved. This ensures any existing SPTEs for the old memslot will 3671 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 3672 */ 3673 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 3674 return true; 3675 3676 /* Don't expose private memslots to L2. */ 3677 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) { 3678 *pfn = KVM_PFN_NOSLOT; 3679 *writable = false; 3680 return false; 3681 } 3682 3683 async = false; 3684 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable); 3685 if (!async) 3686 return false; /* *pfn has correct page already */ 3687 3688 if (!prefault && kvm_can_do_async_pf(vcpu)) { 3689 trace_kvm_try_async_get_page(cr2_or_gpa, gfn); 3690 if (kvm_find_async_pf_gfn(vcpu, gfn)) { 3691 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn); 3692 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 3693 return true; 3694 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn)) 3695 return true; 3696 } 3697 3698 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable); 3699 return false; 3700} 3701 3702static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 3703 bool prefault, int max_level, bool is_tdp) 3704{ 3705 bool write = error_code & PFERR_WRITE_MASK; 3706 bool map_writable; 3707 3708 gfn_t gfn = gpa >> PAGE_SHIFT; 3709 unsigned long mmu_seq; 3710 kvm_pfn_t pfn; 3711 int r; 3712 3713 if (page_fault_handle_page_track(vcpu, error_code, gfn)) 3714 return RET_PF_EMULATE; 3715 3716 if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) { 3717 r = fast_page_fault(vcpu, gpa, error_code); 3718 if (r != RET_PF_INVALID) 3719 return r; 3720 } 3721 3722 r = mmu_topup_memory_caches(vcpu, false); 3723 if (r) 3724 return r; 3725 3726 mmu_seq = vcpu->kvm->mmu_notifier_seq; 3727 smp_rmb(); 3728 3729 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable)) 3730 return RET_PF_RETRY; 3731 3732 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r)) 3733 return r; 3734 3735 r = RET_PF_RETRY; 3736 spin_lock(&vcpu->kvm->mmu_lock); 3737 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) 3738 goto out_unlock; 3739 r = make_mmu_pages_available(vcpu); 3740 if (r) 3741 goto out_unlock; 3742 3743 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) 3744 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level, 3745 pfn, prefault); 3746 else 3747 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn, 3748 prefault, is_tdp); 3749 3750out_unlock: 3751 spin_unlock(&vcpu->kvm->mmu_lock); 3752 kvm_release_pfn_clean(pfn); 3753 return r; 3754} 3755 3756static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, 3757 u32 error_code, bool prefault) 3758{ 3759 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code); 3760 3761 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 3762 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault, 3763 PG_LEVEL_2M, false); 3764} 3765 3766int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 3767 u64 fault_address, char *insn, int insn_len) 3768{ 3769 int r = 1; 3770 u32 flags = vcpu->arch.apf.host_apf_flags; 3771 3772#ifndef CONFIG_X86_64 3773 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 3774 if (WARN_ON_ONCE(fault_address >> 32)) 3775 return -EFAULT; 3776#endif 3777 3778 vcpu->arch.l1tf_flush_l1d = true; 3779 if (!flags) { 3780 trace_kvm_page_fault(fault_address, error_code); 3781 3782 if (kvm_event_needs_reinjection(vcpu)) 3783 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 3784 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 3785 insn_len); 3786 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 3787 vcpu->arch.apf.host_apf_flags = 0; 3788 local_irq_disable(); 3789 kvm_async_pf_task_wait_schedule(fault_address); 3790 local_irq_enable(); 3791 } else { 3792 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 3793 } 3794 3795 return r; 3796} 3797EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 3798 3799int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 3800 bool prefault) 3801{ 3802 int max_level; 3803 3804 for (max_level = KVM_MAX_HUGEPAGE_LEVEL; 3805 max_level > PG_LEVEL_4K; 3806 max_level--) { 3807 int page_num = KVM_PAGES_PER_HPAGE(max_level); 3808 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1); 3809 3810 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 3811 break; 3812 } 3813 3814 return direct_page_fault(vcpu, gpa, error_code, prefault, 3815 max_level, true); 3816} 3817 3818static void nonpaging_init_context(struct kvm_vcpu *vcpu, 3819 struct kvm_mmu *context) 3820{ 3821 context->page_fault = nonpaging_page_fault; 3822 context->gva_to_gpa = nonpaging_gva_to_gpa; 3823 context->sync_page = nonpaging_sync_page; 3824 context->invlpg = NULL; 3825 context->root_level = 0; 3826 context->shadow_root_level = PT32E_ROOT_LEVEL; 3827 context->direct_map = true; 3828 context->nx = false; 3829} 3830 3831static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 3832 union kvm_mmu_page_role role) 3833{ 3834 return (role.direct || pgd == root->pgd) && 3835 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) && 3836 role.word == to_shadow_page(root->hpa)->role.word; 3837} 3838 3839/* 3840 * Find out if a previously cached root matching the new pgd/role is available. 3841 * The current root is also inserted into the cache. 3842 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is 3843 * returned. 3844 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and 3845 * false is returned. This root should now be freed by the caller. 3846 */ 3847static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd, 3848 union kvm_mmu_page_role new_role) 3849{ 3850 uint i; 3851 struct kvm_mmu_root_info root; 3852 struct kvm_mmu *mmu = vcpu->arch.mmu; 3853 3854 root.pgd = mmu->root_pgd; 3855 root.hpa = mmu->root_hpa; 3856 3857 if (is_root_usable(&root, new_pgd, new_role)) 3858 return true; 3859 3860 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3861 swap(root, mmu->prev_roots[i]); 3862 3863 if (is_root_usable(&root, new_pgd, new_role)) 3864 break; 3865 } 3866 3867 mmu->root_hpa = root.hpa; 3868 mmu->root_pgd = root.pgd; 3869 3870 return i < KVM_MMU_NUM_PREV_ROOTS; 3871} 3872 3873static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd, 3874 union kvm_mmu_page_role new_role) 3875{ 3876 struct kvm_mmu *mmu = vcpu->arch.mmu; 3877 3878 /* 3879 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid 3880 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 3881 * later if necessary. 3882 */ 3883 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 3884 mmu->root_level >= PT64_ROOT_4LEVEL) 3885 return cached_root_available(vcpu, new_pgd, new_role); 3886 3887 return false; 3888} 3889 3890static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, 3891 union kvm_mmu_page_role new_role, 3892 bool skip_tlb_flush, bool skip_mmu_sync) 3893{ 3894 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) { 3895 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT); 3896 return; 3897 } 3898 3899 /* 3900 * It's possible that the cached previous root page is obsolete because 3901 * of a change in the MMU generation number. However, changing the 3902 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will 3903 * free the root set here and allocate a new one. 3904 */ 3905 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 3906 3907 if (!skip_mmu_sync || force_flush_and_sync_on_reuse) 3908 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 3909 if (!skip_tlb_flush || force_flush_and_sync_on_reuse) 3910 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3911 3912 /* 3913 * The last MMIO access's GVA and GPA are cached in the VCPU. When 3914 * switching to a new CR3, that GVA->GPA mapping may no longer be 3915 * valid. So clear any cached MMIO info even when we don't need to sync 3916 * the shadow page tables. 3917 */ 3918 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3919 3920 /* 3921 * If this is a direct root page, it doesn't have a write flooding 3922 * count. Otherwise, clear the write flooding count. 3923 */ 3924 if (!new_role.direct) 3925 __clear_sp_write_flooding_count( 3926 to_shadow_page(vcpu->arch.mmu->root_hpa)); 3927} 3928 3929void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush, 3930 bool skip_mmu_sync) 3931{ 3932 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu), 3933 skip_tlb_flush, skip_mmu_sync); 3934} 3935EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 3936 3937static unsigned long get_cr3(struct kvm_vcpu *vcpu) 3938{ 3939 return kvm_read_cr3(vcpu); 3940} 3941 3942static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 3943 unsigned int access, int *nr_present) 3944{ 3945 if (unlikely(is_mmio_spte(*sptep))) { 3946 if (gfn != get_mmio_spte_gfn(*sptep)) { 3947 mmu_spte_clear_no_track(sptep); 3948 return true; 3949 } 3950 3951 (*nr_present)++; 3952 mark_mmio_spte(vcpu, sptep, gfn, access); 3953 return true; 3954 } 3955 3956 return false; 3957} 3958 3959static inline bool is_last_gpte(struct kvm_mmu *mmu, 3960 unsigned level, unsigned gpte) 3961{ 3962 /* 3963 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level. 3964 * If it is clear, there are no large pages at this level, so clear 3965 * PT_PAGE_SIZE_MASK in gpte if that is the case. 3966 */ 3967 gpte &= level - mmu->last_nonleaf_level; 3968 3969 /* 3970 * PG_LEVEL_4K always terminates. The RHS has bit 7 set 3971 * iff level <= PG_LEVEL_4K, which for our purpose means 3972 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then. 3973 */ 3974 gpte |= level - PG_LEVEL_4K - 1; 3975 3976 return gpte & PT_PAGE_SIZE_MASK; 3977} 3978 3979#define PTTYPE_EPT 18 /* arbitrary */ 3980#define PTTYPE PTTYPE_EPT 3981#include "paging_tmpl.h" 3982#undef PTTYPE 3983 3984#define PTTYPE 64 3985#include "paging_tmpl.h" 3986#undef PTTYPE 3987 3988#define PTTYPE 32 3989#include "paging_tmpl.h" 3990#undef PTTYPE 3991 3992static void 3993__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 3994 struct rsvd_bits_validate *rsvd_check, 3995 int maxphyaddr, int level, bool nx, bool gbpages, 3996 bool pse, bool amd) 3997{ 3998 u64 exb_bit_rsvd = 0; 3999 u64 gbpages_bit_rsvd = 0; 4000 u64 nonleaf_bit8_rsvd = 0; 4001 4002 rsvd_check->bad_mt_xwr = 0; 4003 4004 if (!nx) 4005 exb_bit_rsvd = rsvd_bits(63, 63); 4006 if (!gbpages) 4007 gbpages_bit_rsvd = rsvd_bits(7, 7); 4008 4009 /* 4010 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4011 * leaf entries) on AMD CPUs only. 4012 */ 4013 if (amd) 4014 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4015 4016 switch (level) { 4017 case PT32_ROOT_LEVEL: 4018 /* no rsvd bits for 2 level 4K page table entries */ 4019 rsvd_check->rsvd_bits_mask[0][1] = 0; 4020 rsvd_check->rsvd_bits_mask[0][0] = 0; 4021 rsvd_check->rsvd_bits_mask[1][0] = 4022 rsvd_check->rsvd_bits_mask[0][0]; 4023 4024 if (!pse) { 4025 rsvd_check->rsvd_bits_mask[1][1] = 0; 4026 break; 4027 } 4028 4029 if (is_cpuid_PSE36()) 4030 /* 36bits PSE 4MB page */ 4031 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4032 else 4033 /* 32 bits PSE 4MB page */ 4034 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4035 break; 4036 case PT32E_ROOT_LEVEL: 4037 rsvd_check->rsvd_bits_mask[0][2] = 4038 rsvd_bits(maxphyaddr, 63) | 4039 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */ 4040 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | 4041 rsvd_bits(maxphyaddr, 62); /* PDE */ 4042 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | 4043 rsvd_bits(maxphyaddr, 62); /* PTE */ 4044 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | 4045 rsvd_bits(maxphyaddr, 62) | 4046 rsvd_bits(13, 20); /* large page */ 4047 rsvd_check->rsvd_bits_mask[1][0] = 4048 rsvd_check->rsvd_bits_mask[0][0]; 4049 break; 4050 case PT64_ROOT_5LEVEL: 4051 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd | 4052 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | 4053 rsvd_bits(maxphyaddr, 51); 4054 rsvd_check->rsvd_bits_mask[1][4] = 4055 rsvd_check->rsvd_bits_mask[0][4]; 4056 fallthrough; 4057 case PT64_ROOT_4LEVEL: 4058 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd | 4059 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | 4060 rsvd_bits(maxphyaddr, 51); 4061 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd | 4062 gbpages_bit_rsvd | 4063 rsvd_bits(maxphyaddr, 51); 4064 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | 4065 rsvd_bits(maxphyaddr, 51); 4066 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | 4067 rsvd_bits(maxphyaddr, 51); 4068 rsvd_check->rsvd_bits_mask[1][3] = 4069 rsvd_check->rsvd_bits_mask[0][3]; 4070 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd | 4071 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) | 4072 rsvd_bits(13, 29); 4073 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | 4074 rsvd_bits(maxphyaddr, 51) | 4075 rsvd_bits(13, 20); /* large page */ 4076 rsvd_check->rsvd_bits_mask[1][0] = 4077 rsvd_check->rsvd_bits_mask[0][0]; 4078 break; 4079 } 4080} 4081 4082static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4083 struct kvm_mmu *context) 4084{ 4085 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check, 4086 cpuid_maxphyaddr(vcpu), context->root_level, 4087 context->nx, 4088 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), 4089 is_pse(vcpu), 4090 guest_cpuid_is_amd_or_hygon(vcpu)); 4091} 4092 4093static void 4094__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4095 int maxphyaddr, bool execonly) 4096{ 4097 u64 bad_mt_xwr; 4098 4099 rsvd_check->rsvd_bits_mask[0][4] = 4100 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); 4101 rsvd_check->rsvd_bits_mask[0][3] = 4102 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); 4103 rsvd_check->rsvd_bits_mask[0][2] = 4104 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); 4105 rsvd_check->rsvd_bits_mask[0][1] = 4106 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); 4107 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51); 4108 4109 /* large page */ 4110 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4111 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4112 rsvd_check->rsvd_bits_mask[1][2] = 4113 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29); 4114 rsvd_check->rsvd_bits_mask[1][1] = 4115 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20); 4116 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4117 4118 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4119 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4120 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4121 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4122 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4123 if (!execonly) { 4124 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4125 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4126 } 4127 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4128} 4129 4130static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4131 struct kvm_mmu *context, bool execonly) 4132{ 4133 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4134 cpuid_maxphyaddr(vcpu), execonly); 4135} 4136 4137/* 4138 * the page table on host is the shadow page table for the page 4139 * table in guest or amd nested guest, its mmu features completely 4140 * follow the features in guest. 4141 */ 4142void 4143reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context) 4144{ 4145 /* 4146 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 4147 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 4148 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 4149 * The iTLB multi-hit workaround can be toggled at any time, so assume 4150 * NX can be used by any non-nested shadow MMU to avoid having to reset 4151 * MMU contexts. Note, KVM forces EFER.NX=1 when TDP is disabled. 4152 */ 4153 bool uses_nx = context->nx || !tdp_enabled || 4154 context->mmu_role.base.smep_andnot_wp; 4155 struct rsvd_bits_validate *shadow_zero_check; 4156 int i; 4157 4158 /* 4159 * Passing "true" to the last argument is okay; it adds a check 4160 * on bit 8 of the SPTEs which KVM doesn't use anyway. 4161 */ 4162 shadow_zero_check = &context->shadow_zero_check; 4163 __reset_rsvds_bits_mask(vcpu, shadow_zero_check, 4164 shadow_phys_bits, 4165 context->shadow_root_level, uses_nx, 4166 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), 4167 is_pse(vcpu), true); 4168 4169 if (!shadow_me_mask) 4170 return; 4171 4172 for (i = context->shadow_root_level; --i >= 0;) { 4173 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4174 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4175 } 4176 4177} 4178EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask); 4179 4180static inline bool boot_cpu_is_amd(void) 4181{ 4182 WARN_ON_ONCE(!tdp_enabled); 4183 return shadow_x_mask == 0; 4184} 4185 4186/* 4187 * the direct page table on host, use as much mmu features as 4188 * possible, however, kvm currently does not do execution-protection. 4189 */ 4190static void 4191reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4192 struct kvm_mmu *context) 4193{ 4194 struct rsvd_bits_validate *shadow_zero_check; 4195 int i; 4196 4197 shadow_zero_check = &context->shadow_zero_check; 4198 4199 if (boot_cpu_is_amd()) 4200 __reset_rsvds_bits_mask(vcpu, shadow_zero_check, 4201 shadow_phys_bits, 4202 context->shadow_root_level, false, 4203 boot_cpu_has(X86_FEATURE_GBPAGES), 4204 true, true); 4205 else 4206 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4207 shadow_phys_bits, 4208 false); 4209 4210 if (!shadow_me_mask) 4211 return; 4212 4213 for (i = context->shadow_root_level; --i >= 0;) { 4214 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4215 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4216 } 4217} 4218 4219/* 4220 * as the comments in reset_shadow_zero_bits_mask() except it 4221 * is the shadow page table for intel nested guest. 4222 */ 4223static void 4224reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4225 struct kvm_mmu *context, bool execonly) 4226{ 4227 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4228 shadow_phys_bits, execonly); 4229} 4230 4231#define BYTE_MASK(access) \ 4232 ((1 & (access) ? 2 : 0) | \ 4233 (2 & (access) ? 4 : 0) | \ 4234 (3 & (access) ? 8 : 0) | \ 4235 (4 & (access) ? 16 : 0) | \ 4236 (5 & (access) ? 32 : 0) | \ 4237 (6 & (access) ? 64 : 0) | \ 4238 (7 & (access) ? 128 : 0)) 4239 4240 4241static void update_permission_bitmask(struct kvm_vcpu *vcpu, 4242 struct kvm_mmu *mmu, bool ept) 4243{ 4244 unsigned byte; 4245 4246 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4247 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4248 const u8 u = BYTE_MASK(ACC_USER_MASK); 4249 4250 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0; 4251 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0; 4252 bool cr0_wp = is_write_protection(vcpu); 4253 4254 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4255 unsigned pfec = byte << 1; 4256 4257 /* 4258 * Each "*f" variable has a 1 bit for each UWX value 4259 * that causes a fault with the given PFEC. 4260 */ 4261 4262 /* Faults from writes to non-writable pages */ 4263 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4264 /* Faults from user mode accesses to supervisor pages */ 4265 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4266 /* Faults from fetches of non-executable pages*/ 4267 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4268 /* Faults from kernel mode fetches of user pages */ 4269 u8 smepf = 0; 4270 /* Faults from kernel mode accesses of user pages */ 4271 u8 smapf = 0; 4272 4273 if (!ept) { 4274 /* Faults from kernel mode accesses to user pages */ 4275 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4276 4277 /* Not really needed: !nx will cause pte.nx to fault */ 4278 if (!mmu->nx) 4279 ff = 0; 4280 4281 /* Allow supervisor writes if !cr0.wp */ 4282 if (!cr0_wp) 4283 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4284 4285 /* Disallow supervisor fetches of user code if cr4.smep */ 4286 if (cr4_smep) 4287 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4288 4289 /* 4290 * SMAP:kernel-mode data accesses from user-mode 4291 * mappings should fault. A fault is considered 4292 * as a SMAP violation if all of the following 4293 * conditions are true: 4294 * - X86_CR4_SMAP is set in CR4 4295 * - A user page is accessed 4296 * - The access is not a fetch 4297 * - Page fault in kernel mode 4298 * - if CPL = 3 or X86_EFLAGS_AC is clear 4299 * 4300 * Here, we cover the first three conditions. 4301 * The fourth is computed dynamically in permission_fault(); 4302 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4303 * *not* subject to SMAP restrictions. 4304 */ 4305 if (cr4_smap) 4306 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4307 } 4308 4309 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4310 } 4311} 4312 4313/* 4314* PKU is an additional mechanism by which the paging controls access to 4315* user-mode addresses based on the value in the PKRU register. Protection 4316* key violations are reported through a bit in the page fault error code. 4317* Unlike other bits of the error code, the PK bit is not known at the 4318* call site of e.g. gva_to_gpa; it must be computed directly in 4319* permission_fault based on two bits of PKRU, on some machine state (CR4, 4320* CR0, EFER, CPL), and on other bits of the error code and the page tables. 4321* 4322* In particular the following conditions come from the error code, the 4323* page tables and the machine state: 4324* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4325* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4326* - PK is always zero if U=0 in the page tables 4327* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4328* 4329* The PKRU bitmask caches the result of these four conditions. The error 4330* code (minus the P bit) and the page table's U bit form an index into the 4331* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4332* with the two bits of the PKRU register corresponding to the protection key. 4333* For the first three conditions above the bits will be 00, thus masking 4334* away both AD and WD. For all reads or if the last condition holds, WD 4335* only will be masked away. 4336*/ 4337static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4338 bool ept) 4339{ 4340 unsigned bit; 4341 bool wp; 4342 4343 if (ept) { 4344 mmu->pkru_mask = 0; 4345 return; 4346 } 4347 4348 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */ 4349 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) { 4350 mmu->pkru_mask = 0; 4351 return; 4352 } 4353 4354 wp = is_write_protection(vcpu); 4355 4356 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4357 unsigned pfec, pkey_bits; 4358 bool check_pkey, check_write, ff, uf, wf, pte_user; 4359 4360 pfec = bit << 1; 4361 ff = pfec & PFERR_FETCH_MASK; 4362 uf = pfec & PFERR_USER_MASK; 4363 wf = pfec & PFERR_WRITE_MASK; 4364 4365 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4366 pte_user = pfec & PFERR_RSVD_MASK; 4367 4368 /* 4369 * Only need to check the access which is not an 4370 * instruction fetch and is to a user page. 4371 */ 4372 check_pkey = (!ff && pte_user); 4373 /* 4374 * write access is controlled by PKRU if it is a 4375 * user access or CR0.WP = 1. 4376 */ 4377 check_write = check_pkey && wf && (uf || wp); 4378 4379 /* PKRU.AD stops both read and write access. */ 4380 pkey_bits = !!check_pkey; 4381 /* PKRU.WD stops write access. */ 4382 pkey_bits |= (!!check_write) << 1; 4383 4384 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4385 } 4386} 4387 4388static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 4389{ 4390 unsigned root_level = mmu->root_level; 4391 4392 mmu->last_nonleaf_level = root_level; 4393 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu)) 4394 mmu->last_nonleaf_level++; 4395} 4396 4397static void paging64_init_context_common(struct kvm_vcpu *vcpu, 4398 struct kvm_mmu *context, 4399 int level) 4400{ 4401 context->nx = is_nx(vcpu); 4402 context->root_level = level; 4403 4404 reset_rsvds_bits_mask(vcpu, context); 4405 update_permission_bitmask(vcpu, context, false); 4406 update_pkru_bitmask(vcpu, context, false); 4407 update_last_nonleaf_level(vcpu, context); 4408 4409 MMU_WARN_ON(!is_pae(vcpu)); 4410 context->page_fault = paging64_page_fault; 4411 context->gva_to_gpa = paging64_gva_to_gpa; 4412 context->sync_page = paging64_sync_page; 4413 context->invlpg = paging64_invlpg; 4414 context->shadow_root_level = level; 4415 context->direct_map = false; 4416} 4417 4418static void paging64_init_context(struct kvm_vcpu *vcpu, 4419 struct kvm_mmu *context) 4420{ 4421 int root_level = is_la57_mode(vcpu) ? 4422 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4423 4424 paging64_init_context_common(vcpu, context, root_level); 4425} 4426 4427static void paging32_init_context(struct kvm_vcpu *vcpu, 4428 struct kvm_mmu *context) 4429{ 4430 context->nx = false; 4431 context->root_level = PT32_ROOT_LEVEL; 4432 4433 reset_rsvds_bits_mask(vcpu, context); 4434 update_permission_bitmask(vcpu, context, false); 4435 update_pkru_bitmask(vcpu, context, false); 4436 update_last_nonleaf_level(vcpu, context); 4437 4438 context->page_fault = paging32_page_fault; 4439 context->gva_to_gpa = paging32_gva_to_gpa; 4440 context->sync_page = paging32_sync_page; 4441 context->invlpg = paging32_invlpg; 4442 context->shadow_root_level = PT32E_ROOT_LEVEL; 4443 context->direct_map = false; 4444} 4445 4446static void paging32E_init_context(struct kvm_vcpu *vcpu, 4447 struct kvm_mmu *context) 4448{ 4449 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); 4450} 4451 4452static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu) 4453{ 4454 union kvm_mmu_extended_role ext = {0}; 4455 4456 ext.cr0_pg = !!is_paging(vcpu); 4457 ext.cr4_pae = !!is_pae(vcpu); 4458 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP); 4459 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP); 4460 ext.cr4_pse = !!is_pse(vcpu); 4461 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE); 4462 ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57); 4463 ext.maxphyaddr = cpuid_maxphyaddr(vcpu); 4464 4465 ext.valid = 1; 4466 4467 return ext; 4468} 4469 4470static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu, 4471 bool base_only) 4472{ 4473 union kvm_mmu_role role = {0}; 4474 4475 role.base.access = ACC_ALL; 4476 role.base.nxe = !!is_nx(vcpu); 4477 role.base.cr0_wp = is_write_protection(vcpu); 4478 role.base.smm = is_smm(vcpu); 4479 role.base.guest_mode = is_guest_mode(vcpu); 4480 4481 if (base_only) 4482 return role; 4483 4484 role.ext = kvm_calc_mmu_role_ext(vcpu); 4485 4486 return role; 4487} 4488 4489static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 4490{ 4491 /* Use 5-level TDP if and only if it's useful/necessary. */ 4492 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 4493 return 4; 4494 4495 return max_tdp_level; 4496} 4497 4498static union kvm_mmu_role 4499kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) 4500{ 4501 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); 4502 4503 role.base.ad_disabled = (shadow_accessed_mask == 0); 4504 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4505 role.base.direct = true; 4506 role.base.gpte_is_8_bytes = true; 4507 4508 return role; 4509} 4510 4511static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) 4512{ 4513 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4514 union kvm_mmu_role new_role = 4515 kvm_calc_tdp_mmu_root_page_role(vcpu, false); 4516 4517 if (new_role.as_u64 == context->mmu_role.as_u64) 4518 return; 4519 4520 context->mmu_role.as_u64 = new_role.as_u64; 4521 context->page_fault = kvm_tdp_page_fault; 4522 context->sync_page = nonpaging_sync_page; 4523 context->invlpg = NULL; 4524 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu); 4525 context->direct_map = true; 4526 context->get_guest_pgd = get_cr3; 4527 context->get_pdptr = kvm_pdptr_read; 4528 context->inject_page_fault = kvm_inject_page_fault; 4529 4530 if (!is_paging(vcpu)) { 4531 context->nx = false; 4532 context->gva_to_gpa = nonpaging_gva_to_gpa; 4533 context->root_level = 0; 4534 } else if (is_long_mode(vcpu)) { 4535 context->nx = is_nx(vcpu); 4536 context->root_level = is_la57_mode(vcpu) ? 4537 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4538 reset_rsvds_bits_mask(vcpu, context); 4539 context->gva_to_gpa = paging64_gva_to_gpa; 4540 } else if (is_pae(vcpu)) { 4541 context->nx = is_nx(vcpu); 4542 context->root_level = PT32E_ROOT_LEVEL; 4543 reset_rsvds_bits_mask(vcpu, context); 4544 context->gva_to_gpa = paging64_gva_to_gpa; 4545 } else { 4546 context->nx = false; 4547 context->root_level = PT32_ROOT_LEVEL; 4548 reset_rsvds_bits_mask(vcpu, context); 4549 context->gva_to_gpa = paging32_gva_to_gpa; 4550 } 4551 4552 update_permission_bitmask(vcpu, context, false); 4553 update_pkru_bitmask(vcpu, context, false); 4554 update_last_nonleaf_level(vcpu, context); 4555 reset_tdp_shadow_zero_bits_mask(vcpu, context); 4556} 4557 4558static union kvm_mmu_role 4559kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only) 4560{ 4561 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); 4562 4563 role.base.smep_andnot_wp = role.ext.cr4_smep && 4564 !is_write_protection(vcpu); 4565 role.base.smap_andnot_wp = role.ext.cr4_smap && 4566 !is_write_protection(vcpu); 4567 role.base.gpte_is_8_bytes = !!is_pae(vcpu); 4568 4569 return role; 4570} 4571 4572static union kvm_mmu_role 4573kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) 4574{ 4575 union kvm_mmu_role role = 4576 kvm_calc_shadow_root_page_role_common(vcpu, base_only); 4577 4578 role.base.direct = !is_paging(vcpu); 4579 4580 if (!is_long_mode(vcpu)) 4581 role.base.level = PT32E_ROOT_LEVEL; 4582 else if (is_la57_mode(vcpu)) 4583 role.base.level = PT64_ROOT_5LEVEL; 4584 else 4585 role.base.level = PT64_ROOT_4LEVEL; 4586 4587 return role; 4588} 4589 4590static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 4591 u32 cr0, u32 cr4, u32 efer, 4592 union kvm_mmu_role new_role) 4593{ 4594 if (!(cr0 & X86_CR0_PG)) 4595 nonpaging_init_context(vcpu, context); 4596 else if (efer & EFER_LMA) 4597 paging64_init_context(vcpu, context); 4598 else if (cr4 & X86_CR4_PAE) 4599 paging32E_init_context(vcpu, context); 4600 else 4601 paging32_init_context(vcpu, context); 4602 4603 context->mmu_role.as_u64 = new_role.as_u64; 4604 reset_shadow_zero_bits_mask(vcpu, context); 4605} 4606 4607static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer) 4608{ 4609 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4610 union kvm_mmu_role new_role = 4611 kvm_calc_shadow_mmu_root_page_role(vcpu, false); 4612 4613 if (new_role.as_u64 != context->mmu_role.as_u64) 4614 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role); 4615} 4616 4617static union kvm_mmu_role 4618kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu) 4619{ 4620 union kvm_mmu_role role = 4621 kvm_calc_shadow_root_page_role_common(vcpu, false); 4622 4623 role.base.direct = false; 4624 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4625 4626 return role; 4627} 4628 4629void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer, 4630 gpa_t nested_cr3) 4631{ 4632 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4633 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu); 4634 4635 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false); 4636 4637 if (new_role.as_u64 != context->mmu_role.as_u64) { 4638 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role); 4639 4640 /* 4641 * Override the level set by the common init helper, nested TDP 4642 * always uses the host's TDP configuration. 4643 */ 4644 context->shadow_root_level = new_role.base.level; 4645 } 4646} 4647EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 4648 4649static union kvm_mmu_role 4650kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 4651 bool execonly, u8 level) 4652{ 4653 union kvm_mmu_role role = {0}; 4654 4655 /* SMM flag is inherited from root_mmu */ 4656 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm; 4657 4658 role.base.level = level; 4659 role.base.gpte_is_8_bytes = true; 4660 role.base.direct = false; 4661 role.base.ad_disabled = !accessed_dirty; 4662 role.base.guest_mode = true; 4663 role.base.access = ACC_ALL; 4664 4665 /* 4666 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the 4667 * SMAP variation to denote shadow EPT entries. 4668 */ 4669 role.base.cr0_wp = true; 4670 role.base.smap_andnot_wp = true; 4671 4672 role.ext = kvm_calc_mmu_role_ext(vcpu); 4673 role.ext.execonly = execonly; 4674 4675 return role; 4676} 4677 4678void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 4679 bool accessed_dirty, gpa_t new_eptp) 4680{ 4681 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4682 u8 level = vmx_eptp_page_walk_level(new_eptp); 4683 union kvm_mmu_role new_role = 4684 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 4685 execonly, level); 4686 4687 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true); 4688 4689 if (new_role.as_u64 == context->mmu_role.as_u64) 4690 return; 4691 4692 context->shadow_root_level = level; 4693 4694 context->nx = true; 4695 context->ept_ad = accessed_dirty; 4696 context->page_fault = ept_page_fault; 4697 context->gva_to_gpa = ept_gva_to_gpa; 4698 context->sync_page = ept_sync_page; 4699 context->invlpg = ept_invlpg; 4700 context->root_level = level; 4701 context->direct_map = false; 4702 context->mmu_role.as_u64 = new_role.as_u64; 4703 4704 update_permission_bitmask(vcpu, context, true); 4705 update_pkru_bitmask(vcpu, context, true); 4706 update_last_nonleaf_level(vcpu, context); 4707 reset_rsvds_bits_mask_ept(vcpu, context, execonly); 4708 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly); 4709} 4710EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 4711 4712static void init_kvm_softmmu(struct kvm_vcpu *vcpu) 4713{ 4714 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4715 4716 kvm_init_shadow_mmu(vcpu, 4717 kvm_read_cr0_bits(vcpu, X86_CR0_PG), 4718 kvm_read_cr4_bits(vcpu, X86_CR4_PAE), 4719 vcpu->arch.efer); 4720 4721 context->get_guest_pgd = get_cr3; 4722 context->get_pdptr = kvm_pdptr_read; 4723 context->inject_page_fault = kvm_inject_page_fault; 4724} 4725 4726static union kvm_mmu_role kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu) 4727{ 4728 union kvm_mmu_role role = kvm_calc_shadow_root_page_role_common(vcpu, false); 4729 4730 /* 4731 * Nested MMUs are used only for walking L2's gva->gpa, they never have 4732 * shadow pages of their own and so "direct" has no meaning. Set it 4733 * to "true" to try to detect bogus usage of the nested MMU. 4734 */ 4735 role.base.direct = true; 4736 4737 if (!is_paging(vcpu)) 4738 role.base.level = 0; 4739 else if (is_long_mode(vcpu)) 4740 role.base.level = is_la57_mode(vcpu) ? PT64_ROOT_5LEVEL : 4741 PT64_ROOT_4LEVEL; 4742 else if (is_pae(vcpu)) 4743 role.base.level = PT32E_ROOT_LEVEL; 4744 else 4745 role.base.level = PT32_ROOT_LEVEL; 4746 4747 return role; 4748} 4749 4750static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) 4751{ 4752 union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu); 4753 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 4754 4755 if (new_role.as_u64 == g_context->mmu_role.as_u64) 4756 return; 4757 4758 g_context->mmu_role.as_u64 = new_role.as_u64; 4759 g_context->get_guest_pgd = get_cr3; 4760 g_context->get_pdptr = kvm_pdptr_read; 4761 g_context->inject_page_fault = kvm_inject_page_fault; 4762 4763 /* 4764 * L2 page tables are never shadowed, so there is no need to sync 4765 * SPTEs. 4766 */ 4767 g_context->invlpg = NULL; 4768 4769 /* 4770 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 4771 * L1's nested page tables (e.g. EPT12). The nested translation 4772 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 4773 * L2's page tables as the first level of translation and L1's 4774 * nested page tables as the second level of translation. Basically 4775 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 4776 */ 4777 if (!is_paging(vcpu)) { 4778 g_context->nx = false; 4779 g_context->root_level = 0; 4780 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; 4781 } else if (is_long_mode(vcpu)) { 4782 g_context->nx = is_nx(vcpu); 4783 g_context->root_level = is_la57_mode(vcpu) ? 4784 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4785 reset_rsvds_bits_mask(vcpu, g_context); 4786 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 4787 } else if (is_pae(vcpu)) { 4788 g_context->nx = is_nx(vcpu); 4789 g_context->root_level = PT32E_ROOT_LEVEL; 4790 reset_rsvds_bits_mask(vcpu, g_context); 4791 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 4792 } else { 4793 g_context->nx = false; 4794 g_context->root_level = PT32_ROOT_LEVEL; 4795 reset_rsvds_bits_mask(vcpu, g_context); 4796 g_context->gva_to_gpa = paging32_gva_to_gpa_nested; 4797 } 4798 4799 update_permission_bitmask(vcpu, g_context, false); 4800 update_pkru_bitmask(vcpu, g_context, false); 4801 update_last_nonleaf_level(vcpu, g_context); 4802} 4803 4804void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots) 4805{ 4806 if (reset_roots) { 4807 uint i; 4808 4809 vcpu->arch.mmu->root_hpa = INVALID_PAGE; 4810 4811 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4812 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 4813 } 4814 4815 if (mmu_is_nested(vcpu)) 4816 init_kvm_nested_mmu(vcpu); 4817 else if (tdp_enabled) 4818 init_kvm_tdp_mmu(vcpu); 4819 else 4820 init_kvm_softmmu(vcpu); 4821} 4822EXPORT_SYMBOL_GPL(kvm_init_mmu); 4823 4824static union kvm_mmu_page_role 4825kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu) 4826{ 4827 union kvm_mmu_role role; 4828 4829 if (tdp_enabled) 4830 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true); 4831 else 4832 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true); 4833 4834 return role.base; 4835} 4836 4837void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 4838{ 4839 kvm_mmu_unload(vcpu); 4840 kvm_init_mmu(vcpu, true); 4841} 4842EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 4843 4844int kvm_mmu_load(struct kvm_vcpu *vcpu) 4845{ 4846 int r; 4847 4848 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map); 4849 if (r) 4850 goto out; 4851 r = mmu_alloc_roots(vcpu); 4852 kvm_mmu_sync_roots(vcpu); 4853 if (r) 4854 goto out; 4855 kvm_mmu_load_pgd(vcpu); 4856 kvm_x86_ops.tlb_flush_current(vcpu); 4857out: 4858 return r; 4859} 4860EXPORT_SYMBOL_GPL(kvm_mmu_load); 4861 4862void kvm_mmu_unload(struct kvm_vcpu *vcpu) 4863{ 4864 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 4865 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa)); 4866 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 4867 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa)); 4868} 4869EXPORT_SYMBOL_GPL(kvm_mmu_unload); 4870 4871static bool need_remote_flush(u64 old, u64 new) 4872{ 4873 if (!is_shadow_present_pte(old)) 4874 return false; 4875 if (!is_shadow_present_pte(new)) 4876 return true; 4877 if ((old ^ new) & PT64_BASE_ADDR_MASK) 4878 return true; 4879 old ^= shadow_nx_mask; 4880 new ^= shadow_nx_mask; 4881 return (old & ~new & PT64_PERM_MASK) != 0; 4882} 4883 4884static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 4885 int *bytes) 4886{ 4887 u64 gentry = 0; 4888 int r; 4889 4890 /* 4891 * Assume that the pte write on a page table of the same type 4892 * as the current vcpu paging mode since we update the sptes only 4893 * when they have the same mode. 4894 */ 4895 if (is_pae(vcpu) && *bytes == 4) { 4896 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 4897 *gpa &= ~(gpa_t)7; 4898 *bytes = 8; 4899 } 4900 4901 if (*bytes == 4 || *bytes == 8) { 4902 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 4903 if (r) 4904 gentry = 0; 4905 } 4906 4907 return gentry; 4908} 4909 4910/* 4911 * If we're seeing too many writes to a page, it may no longer be a page table, 4912 * or we may be forking, in which case it is better to unmap the page. 4913 */ 4914static bool detect_write_flooding(struct kvm_mmu_page *sp) 4915{ 4916 /* 4917 * Skip write-flooding detected for the sp whose level is 1, because 4918 * it can become unsync, then the guest page is not write-protected. 4919 */ 4920 if (sp->role.level == PG_LEVEL_4K) 4921 return false; 4922 4923 atomic_inc(&sp->write_flooding_count); 4924 return atomic_read(&sp->write_flooding_count) >= 3; 4925} 4926 4927/* 4928 * Misaligned accesses are too much trouble to fix up; also, they usually 4929 * indicate a page is not used as a page table. 4930 */ 4931static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 4932 int bytes) 4933{ 4934 unsigned offset, pte_size, misaligned; 4935 4936 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 4937 gpa, bytes, sp->role.word); 4938 4939 offset = offset_in_page(gpa); 4940 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4; 4941 4942 /* 4943 * Sometimes, the OS only writes the last one bytes to update status 4944 * bits, for example, in linux, andb instruction is used in clear_bit(). 4945 */ 4946 if (!(offset & (pte_size - 1)) && bytes == 1) 4947 return false; 4948 4949 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 4950 misaligned |= bytes < 4; 4951 4952 return misaligned; 4953} 4954 4955static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 4956{ 4957 unsigned page_offset, quadrant; 4958 u64 *spte; 4959 int level; 4960 4961 page_offset = offset_in_page(gpa); 4962 level = sp->role.level; 4963 *nspte = 1; 4964 if (!sp->role.gpte_is_8_bytes) { 4965 page_offset <<= 1; /* 32->64 */ 4966 /* 4967 * A 32-bit pde maps 4MB while the shadow pdes map 4968 * only 2MB. So we need to double the offset again 4969 * and zap two pdes instead of one. 4970 */ 4971 if (level == PT32_ROOT_LEVEL) { 4972 page_offset &= ~7; /* kill rounding error */ 4973 page_offset <<= 1; 4974 *nspte = 2; 4975 } 4976 quadrant = page_offset >> PAGE_SHIFT; 4977 page_offset &= ~PAGE_MASK; 4978 if (quadrant != sp->role.quadrant) 4979 return NULL; 4980 } 4981 4982 spte = &sp->spt[page_offset / sizeof(*spte)]; 4983 return spte; 4984} 4985 4986static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 4987 const u8 *new, int bytes, 4988 struct kvm_page_track_notifier_node *node) 4989{ 4990 gfn_t gfn = gpa >> PAGE_SHIFT; 4991 struct kvm_mmu_page *sp; 4992 LIST_HEAD(invalid_list); 4993 u64 entry, gentry, *spte; 4994 int npte; 4995 bool remote_flush, local_flush; 4996 4997 /* 4998 * If we don't have indirect shadow pages, it means no page is 4999 * write-protected, so we can exit simply. 5000 */ 5001 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5002 return; 5003 5004 remote_flush = local_flush = false; 5005 5006 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5007 5008 /* 5009 * No need to care whether allocation memory is successful 5010 * or not since pte prefetch is skiped if it does not have 5011 * enough objects in the cache. 5012 */ 5013 mmu_topup_memory_caches(vcpu, true); 5014 5015 spin_lock(&vcpu->kvm->mmu_lock); 5016 5017 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5018 5019 ++vcpu->kvm->stat.mmu_pte_write; 5020 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); 5021 5022 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 5023 if (detect_write_misaligned(sp, gpa, bytes) || 5024 detect_write_flooding(sp)) { 5025 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5026 ++vcpu->kvm->stat.mmu_flooded; 5027 continue; 5028 } 5029 5030 spte = get_written_sptes(sp, gpa, &npte); 5031 if (!spte) 5032 continue; 5033 5034 local_flush = true; 5035 while (npte--) { 5036 entry = *spte; 5037 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5038 if (gentry && sp->role.level != PG_LEVEL_4K) 5039 ++vcpu->kvm->stat.mmu_pde_zapped; 5040 if (need_remote_flush(entry, *spte)) 5041 remote_flush = true; 5042 ++spte; 5043 } 5044 } 5045 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush); 5046 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); 5047 spin_unlock(&vcpu->kvm->mmu_lock); 5048} 5049 5050int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 5051{ 5052 gpa_t gpa; 5053 int r; 5054 5055 if (vcpu->arch.mmu->direct_map) 5056 return 0; 5057 5058 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 5059 5060 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 5061 5062 return r; 5063} 5064EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt); 5065 5066int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5067 void *insn, int insn_len) 5068{ 5069 int r, emulation_type = EMULTYPE_PF; 5070 bool direct = vcpu->arch.mmu->direct_map; 5071 5072 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 5073 return RET_PF_RETRY; 5074 5075 r = RET_PF_INVALID; 5076 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5077 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5078 if (r == RET_PF_EMULATE) 5079 goto emulate; 5080 } 5081 5082 if (r == RET_PF_INVALID) { 5083 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5084 lower_32_bits(error_code), false); 5085 if (WARN_ON_ONCE(r == RET_PF_INVALID)) 5086 return -EIO; 5087 } 5088 5089 if (r < 0) 5090 return r; 5091 if (r != RET_PF_EMULATE) 5092 return 1; 5093 5094 /* 5095 * Before emulating the instruction, check if the error code 5096 * was due to a RO violation while translating the guest page. 5097 * This can occur when using nested virtualization with nested 5098 * paging in both guests. If true, we simply unprotect the page 5099 * and resume the guest. 5100 */ 5101 if (vcpu->arch.mmu->direct_map && 5102 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5103 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5104 return 1; 5105 } 5106 5107 /* 5108 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5109 * optimistically try to just unprotect the page and let the processor 5110 * re-execute the instruction that caused the page fault. Do not allow 5111 * retrying MMIO emulation, as it's not only pointless but could also 5112 * cause us to enter an infinite loop because the processor will keep 5113 * faulting on the non-existent MMIO address. Retrying an instruction 5114 * from a nested guest is also pointless and dangerous as we are only 5115 * explicitly shadowing L1's page tables, i.e. unprotecting something 5116 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5117 */ 5118 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5119 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5120emulate: 5121 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5122 insn_len); 5123} 5124EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5125 5126void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5127 gva_t gva, hpa_t root_hpa) 5128{ 5129 int i; 5130 5131 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5132 if (mmu != &vcpu->arch.guest_mmu) { 5133 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5134 if (is_noncanonical_address(gva, vcpu)) 5135 return; 5136 5137 kvm_x86_ops.tlb_flush_gva(vcpu, gva); 5138 } 5139 5140 if (!mmu->invlpg) 5141 return; 5142 5143 if (root_hpa == INVALID_PAGE) { 5144 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5145 5146 /* 5147 * INVLPG is required to invalidate any global mappings for the VA, 5148 * irrespective of PCID. Since it would take us roughly similar amount 5149 * of work to determine whether any of the prev_root mappings of the VA 5150 * is marked global, or to just sync it blindly, so we might as well 5151 * just always sync it. 5152 * 5153 * Mappings not reachable via the current cr3 or the prev_roots will be 5154 * synced when switching to that cr3, so nothing needs to be done here 5155 * for them. 5156 */ 5157 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5158 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5159 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5160 } else { 5161 mmu->invlpg(vcpu, gva, root_hpa); 5162 } 5163} 5164EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva); 5165 5166void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5167{ 5168 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE); 5169 ++vcpu->stat.invlpg; 5170} 5171EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5172 5173 5174void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5175{ 5176 struct kvm_mmu *mmu = vcpu->arch.mmu; 5177 bool tlb_flush = false; 5178 uint i; 5179 5180 if (pcid == kvm_get_active_pcid(vcpu)) { 5181 if (mmu->invlpg) 5182 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5183 tlb_flush = true; 5184 } 5185 5186 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5187 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5188 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5189 if (mmu->invlpg) 5190 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5191 tlb_flush = true; 5192 } 5193 } 5194 5195 if (tlb_flush) 5196 kvm_x86_ops.tlb_flush_gva(vcpu, gva); 5197 5198 ++vcpu->stat.invlpg; 5199 5200 /* 5201 * Mappings not reachable via the current cr3 or the prev_roots will be 5202 * synced when switching to that cr3, so nothing needs to be done here 5203 * for them. 5204 */ 5205} 5206EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva); 5207 5208void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level, 5209 int tdp_huge_page_level) 5210{ 5211 tdp_enabled = enable_tdp; 5212 max_tdp_level = tdp_max_root_level; 5213 5214 /* 5215 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5216 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5217 * the kernel is not. But, KVM never creates a page size greater than 5218 * what is used by the kernel for any given HVA, i.e. the kernel's 5219 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5220 */ 5221 if (tdp_enabled) 5222 max_huge_page_level = tdp_huge_page_level; 5223 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5224 max_huge_page_level = PG_LEVEL_1G; 5225 else 5226 max_huge_page_level = PG_LEVEL_2M; 5227} 5228EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5229 5230/* The return value indicates if tlb flush on all vcpus is needed. */ 5231typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head); 5232 5233/* The caller should hold mmu-lock before calling this function. */ 5234static __always_inline bool 5235slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot, 5236 slot_level_handler fn, int start_level, int end_level, 5237 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb) 5238{ 5239 struct slot_rmap_walk_iterator iterator; 5240 bool flush = false; 5241 5242 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5243 end_gfn, &iterator) { 5244 if (iterator.rmap) 5245 flush |= fn(kvm, iterator.rmap); 5246 5247 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { 5248 if (flush && lock_flush_tlb) { 5249 kvm_flush_remote_tlbs_with_address(kvm, 5250 start_gfn, 5251 iterator.gfn - start_gfn + 1); 5252 flush = false; 5253 } 5254 cond_resched_lock(&kvm->mmu_lock); 5255 } 5256 } 5257 5258 if (flush && lock_flush_tlb) { 5259 kvm_flush_remote_tlbs_with_address(kvm, start_gfn, 5260 end_gfn - start_gfn + 1); 5261 flush = false; 5262 } 5263 5264 return flush; 5265} 5266 5267static __always_inline bool 5268slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5269 slot_level_handler fn, int start_level, int end_level, 5270 bool lock_flush_tlb) 5271{ 5272 return slot_handle_level_range(kvm, memslot, fn, start_level, 5273 end_level, memslot->base_gfn, 5274 memslot->base_gfn + memslot->npages - 1, 5275 lock_flush_tlb); 5276} 5277 5278static __always_inline bool 5279slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5280 slot_level_handler fn, bool lock_flush_tlb) 5281{ 5282 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5283 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); 5284} 5285 5286static __always_inline bool 5287slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5288 slot_level_handler fn, bool lock_flush_tlb) 5289{ 5290 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1, 5291 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); 5292} 5293 5294static __always_inline bool 5295slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot, 5296 slot_level_handler fn, bool lock_flush_tlb) 5297{ 5298 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5299 PG_LEVEL_4K, lock_flush_tlb); 5300} 5301 5302static void free_mmu_pages(struct kvm_mmu *mmu) 5303{ 5304 free_page((unsigned long)mmu->pae_root); 5305 free_page((unsigned long)mmu->lm_root); 5306} 5307 5308static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5309{ 5310 struct page *page; 5311 int i; 5312 5313 mmu->root_hpa = INVALID_PAGE; 5314 mmu->root_pgd = 0; 5315 mmu->translate_gpa = translate_gpa; 5316 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5317 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5318 5319 /* 5320 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5321 * while the PDP table is a per-vCPU construct that's allocated at MMU 5322 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5323 * x86_64. Therefore we need to allocate the PDP table in the first 5324 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 5325 * generally doesn't use PAE paging and can skip allocating the PDP 5326 * table. The main exception, handled here, is SVM's 32-bit NPT. The 5327 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 5328 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots(). 5329 */ 5330 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5331 return 0; 5332 5333 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5334 if (!page) 5335 return -ENOMEM; 5336 5337 mmu->pae_root = page_address(page); 5338 for (i = 0; i < 4; ++i) 5339 mmu->pae_root[i] = INVALID_PAGE; 5340 5341 return 0; 5342} 5343 5344int kvm_mmu_create(struct kvm_vcpu *vcpu) 5345{ 5346 int ret; 5347 5348 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5349 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5350 5351 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5352 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5353 5354 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5355 5356 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5357 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5358 5359 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; 5360 5361 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 5362 if (ret) 5363 return ret; 5364 5365 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 5366 if (ret) 5367 goto fail_allocate_root; 5368 5369 return ret; 5370 fail_allocate_root: 5371 free_mmu_pages(&vcpu->arch.guest_mmu); 5372 return ret; 5373} 5374 5375#define BATCH_ZAP_PAGES 10 5376static void kvm_zap_obsolete_pages(struct kvm *kvm) 5377{ 5378 struct kvm_mmu_page *sp, *node; 5379 int nr_zapped, batch = 0; 5380 bool unstable; 5381 5382restart: 5383 list_for_each_entry_safe_reverse(sp, node, 5384 &kvm->arch.active_mmu_pages, link) { 5385 /* 5386 * No obsolete valid page exists before a newly created page 5387 * since active_mmu_pages is a FIFO list. 5388 */ 5389 if (!is_obsolete_sp(kvm, sp)) 5390 break; 5391 5392 /* 5393 * Invalid pages should never land back on the list of active 5394 * pages. Skip the bogus page, otherwise we'll get stuck in an 5395 * infinite loop if the page gets put back on the list (again). 5396 */ 5397 if (WARN_ON(sp->role.invalid)) 5398 continue; 5399 5400 /* 5401 * No need to flush the TLB since we're only zapping shadow 5402 * pages with an obsolete generation number and all vCPUS have 5403 * loaded a new root, i.e. the shadow pages being zapped cannot 5404 * be in active use by the guest. 5405 */ 5406 if (batch >= BATCH_ZAP_PAGES && 5407 cond_resched_lock(&kvm->mmu_lock)) { 5408 batch = 0; 5409 goto restart; 5410 } 5411 5412 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 5413 &kvm->arch.zapped_obsolete_pages, &nr_zapped); 5414 batch += nr_zapped; 5415 5416 if (unstable) 5417 goto restart; 5418 } 5419 5420 /* 5421 * Trigger a remote TLB flush before freeing the page tables to ensure 5422 * KVM is not in the middle of a lockless shadow page table walk, which 5423 * may reference the pages. 5424 */ 5425 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5426} 5427 5428/* 5429 * Fast invalidate all shadow pages and use lock-break technique 5430 * to zap obsolete pages. 5431 * 5432 * It's required when memslot is being deleted or VM is being 5433 * destroyed, in these cases, we should ensure that KVM MMU does 5434 * not use any resource of the being-deleted slot or all slots 5435 * after calling the function. 5436 */ 5437static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5438{ 5439 lockdep_assert_held(&kvm->slots_lock); 5440 5441 spin_lock(&kvm->mmu_lock); 5442 trace_kvm_mmu_zap_all_fast(kvm); 5443 5444 /* 5445 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5446 * held for the entire duration of zapping obsolete pages, it's 5447 * impossible for there to be multiple invalid generations associated 5448 * with *valid* shadow pages at any given time, i.e. there is exactly 5449 * one valid generation and (at most) one invalid generation. 5450 */ 5451 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5452 5453 /* 5454 * Notify all vcpus to reload its shadow page table and flush TLB. 5455 * Then all vcpus will switch to new shadow page table with the new 5456 * mmu_valid_gen. 5457 * 5458 * Note: we need to do this under the protection of mmu_lock, 5459 * otherwise, vcpu would purge shadow page but miss tlb flush. 5460 */ 5461 kvm_reload_remote_mmus(kvm); 5462 5463 kvm_zap_obsolete_pages(kvm); 5464 5465 if (kvm->arch.tdp_mmu_enabled) 5466 kvm_tdp_mmu_zap_all(kvm); 5467 5468 spin_unlock(&kvm->mmu_lock); 5469} 5470 5471static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5472{ 5473 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5474} 5475 5476static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5477 struct kvm_memory_slot *slot, 5478 struct kvm_page_track_notifier_node *node) 5479{ 5480 kvm_mmu_zap_all_fast(kvm); 5481} 5482 5483void kvm_mmu_init_vm(struct kvm *kvm) 5484{ 5485 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5486 5487 kvm_mmu_init_tdp_mmu(kvm); 5488 5489 node->track_write = kvm_mmu_pte_write; 5490 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5491 kvm_page_track_register_notifier(kvm, node); 5492} 5493 5494void kvm_mmu_uninit_vm(struct kvm *kvm) 5495{ 5496 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5497 5498 kvm_page_track_unregister_notifier(kvm, node); 5499 5500 kvm_mmu_uninit_tdp_mmu(kvm); 5501} 5502 5503void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5504{ 5505 struct kvm_memslots *slots; 5506 struct kvm_memory_slot *memslot; 5507 int i; 5508 bool flush; 5509 5510 spin_lock(&kvm->mmu_lock); 5511 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5512 slots = __kvm_memslots(kvm, i); 5513 kvm_for_each_memslot(memslot, slots) { 5514 gfn_t start, end; 5515 5516 start = max(gfn_start, memslot->base_gfn); 5517 end = min(gfn_end, memslot->base_gfn + memslot->npages); 5518 if (start >= end) 5519 continue; 5520 5521 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, 5522 PG_LEVEL_4K, 5523 KVM_MAX_HUGEPAGE_LEVEL, 5524 start, end - 1, true); 5525 } 5526 } 5527 5528 if (kvm->arch.tdp_mmu_enabled) { 5529 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end); 5530 if (flush) 5531 kvm_flush_remote_tlbs(kvm); 5532 } 5533 5534 spin_unlock(&kvm->mmu_lock); 5535} 5536 5537static bool slot_rmap_write_protect(struct kvm *kvm, 5538 struct kvm_rmap_head *rmap_head) 5539{ 5540 return __rmap_write_protect(kvm, rmap_head, false); 5541} 5542 5543void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 5544 struct kvm_memory_slot *memslot, 5545 int start_level) 5546{ 5547 bool flush; 5548 5549 spin_lock(&kvm->mmu_lock); 5550 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, 5551 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 5552 if (kvm->arch.tdp_mmu_enabled) 5553 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K); 5554 spin_unlock(&kvm->mmu_lock); 5555 5556 /* 5557 * We can flush all the TLBs out of the mmu lock without TLB 5558 * corruption since we just change the spte from writable to 5559 * readonly so that we only need to care the case of changing 5560 * spte from present to present (changing the spte from present 5561 * to nonpresent will flush all the TLBs immediately), in other 5562 * words, the only case we care is mmu_spte_update() where we 5563 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE 5564 * instead of PT_WRITABLE_MASK, that means it does not depend 5565 * on PT_WRITABLE_MASK anymore. 5566 */ 5567 if (flush) 5568 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5569} 5570 5571static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 5572 struct kvm_rmap_head *rmap_head) 5573{ 5574 u64 *sptep; 5575 struct rmap_iterator iter; 5576 int need_tlb_flush = 0; 5577 kvm_pfn_t pfn; 5578 struct kvm_mmu_page *sp; 5579 5580restart: 5581 for_each_rmap_spte(rmap_head, &iter, sptep) { 5582 sp = sptep_to_sp(sptep); 5583 pfn = spte_to_pfn(*sptep); 5584 5585 /* 5586 * We cannot do huge page mapping for indirect shadow pages, 5587 * which are found on the last rmap (level = 1) when not using 5588 * tdp; such shadow pages are synced with the page table in 5589 * the guest, and the guest page table is using 4K page size 5590 * mapping if the indirect sp has level = 1. 5591 */ 5592 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && 5593 (kvm_is_zone_device_pfn(pfn) || 5594 PageCompound(pfn_to_page(pfn)))) { 5595 pte_list_remove(rmap_head, sptep); 5596 5597 if (kvm_available_flush_tlb_with_range()) 5598 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 5599 KVM_PAGES_PER_HPAGE(sp->role.level)); 5600 else 5601 need_tlb_flush = 1; 5602 5603 goto restart; 5604 } 5605 } 5606 5607 return need_tlb_flush; 5608} 5609 5610void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 5611 const struct kvm_memory_slot *memslot) 5612{ 5613 /* FIXME: const-ify all uses of struct kvm_memory_slot. */ 5614 spin_lock(&kvm->mmu_lock); 5615 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot, 5616 kvm_mmu_zap_collapsible_spte, true); 5617 5618 if (kvm->arch.tdp_mmu_enabled) 5619 kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot); 5620 spin_unlock(&kvm->mmu_lock); 5621} 5622 5623void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 5624 struct kvm_memory_slot *memslot) 5625{ 5626 /* 5627 * All current use cases for flushing the TLBs for a specific memslot 5628 * are related to dirty logging, and do the TLB flush out of mmu_lock. 5629 * The interaction between the various operations on memslot must be 5630 * serialized by slots_locks to ensure the TLB flush from one operation 5631 * is observed by any other operation on the same memslot. 5632 */ 5633 lockdep_assert_held(&kvm->slots_lock); 5634 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 5635 memslot->npages); 5636} 5637 5638void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 5639 struct kvm_memory_slot *memslot) 5640{ 5641 bool flush; 5642 5643 spin_lock(&kvm->mmu_lock); 5644 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false); 5645 if (kvm->arch.tdp_mmu_enabled) 5646 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 5647 spin_unlock(&kvm->mmu_lock); 5648 5649 /* 5650 * It's also safe to flush TLBs out of mmu lock here as currently this 5651 * function is only used for dirty logging, in which case flushing TLB 5652 * out of mmu lock also guarantees no dirty pages will be lost in 5653 * dirty_bitmap. 5654 */ 5655 if (flush) 5656 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5657} 5658EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty); 5659 5660void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, 5661 struct kvm_memory_slot *memslot) 5662{ 5663 bool flush; 5664 5665 spin_lock(&kvm->mmu_lock); 5666 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect, 5667 false); 5668 if (kvm->arch.tdp_mmu_enabled) 5669 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M); 5670 spin_unlock(&kvm->mmu_lock); 5671 5672 if (flush) 5673 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5674} 5675EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access); 5676 5677void kvm_mmu_slot_set_dirty(struct kvm *kvm, 5678 struct kvm_memory_slot *memslot) 5679{ 5680 bool flush; 5681 5682 spin_lock(&kvm->mmu_lock); 5683 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false); 5684 if (kvm->arch.tdp_mmu_enabled) 5685 flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot); 5686 spin_unlock(&kvm->mmu_lock); 5687 5688 if (flush) 5689 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5690} 5691EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty); 5692 5693void kvm_mmu_zap_all(struct kvm *kvm) 5694{ 5695 struct kvm_mmu_page *sp, *node; 5696 LIST_HEAD(invalid_list); 5697 int ign; 5698 5699 spin_lock(&kvm->mmu_lock); 5700restart: 5701 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 5702 if (WARN_ON(sp->role.invalid)) 5703 continue; 5704 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 5705 goto restart; 5706 if (cond_resched_lock(&kvm->mmu_lock)) 5707 goto restart; 5708 } 5709 5710 kvm_mmu_commit_zap_page(kvm, &invalid_list); 5711 5712 if (kvm->arch.tdp_mmu_enabled) 5713 kvm_tdp_mmu_zap_all(kvm); 5714 5715 spin_unlock(&kvm->mmu_lock); 5716} 5717 5718void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 5719{ 5720 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 5721 5722 gen &= MMIO_SPTE_GEN_MASK; 5723 5724 /* 5725 * Generation numbers are incremented in multiples of the number of 5726 * address spaces in order to provide unique generations across all 5727 * address spaces. Strip what is effectively the address space 5728 * modifier prior to checking for a wrap of the MMIO generation so 5729 * that a wrap in any address space is detected. 5730 */ 5731 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 5732 5733 /* 5734 * The very rare case: if the MMIO generation number has wrapped, 5735 * zap all shadow pages. 5736 */ 5737 if (unlikely(gen == 0)) { 5738 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 5739 kvm_mmu_zap_all_fast(kvm); 5740 } 5741} 5742 5743static unsigned long 5744mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 5745{ 5746 struct kvm *kvm; 5747 int nr_to_scan = sc->nr_to_scan; 5748 unsigned long freed = 0; 5749 5750 mutex_lock(&kvm_lock); 5751 5752 list_for_each_entry(kvm, &vm_list, vm_list) { 5753 int idx; 5754 LIST_HEAD(invalid_list); 5755 5756 /* 5757 * Never scan more than sc->nr_to_scan VM instances. 5758 * Will not hit this condition practically since we do not try 5759 * to shrink more than one VM and it is very unlikely to see 5760 * !n_used_mmu_pages so many times. 5761 */ 5762 if (!nr_to_scan--) 5763 break; 5764 /* 5765 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 5766 * here. We may skip a VM instance errorneosly, but we do not 5767 * want to shrink a VM that only started to populate its MMU 5768 * anyway. 5769 */ 5770 if (!kvm->arch.n_used_mmu_pages && 5771 !kvm_has_zapped_obsolete_pages(kvm)) 5772 continue; 5773 5774 idx = srcu_read_lock(&kvm->srcu); 5775 spin_lock(&kvm->mmu_lock); 5776 5777 if (kvm_has_zapped_obsolete_pages(kvm)) { 5778 kvm_mmu_commit_zap_page(kvm, 5779 &kvm->arch.zapped_obsolete_pages); 5780 goto unlock; 5781 } 5782 5783 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 5784 5785unlock: 5786 spin_unlock(&kvm->mmu_lock); 5787 srcu_read_unlock(&kvm->srcu, idx); 5788 5789 /* 5790 * unfair on small ones 5791 * per-vm shrinkers cry out 5792 * sadness comes quickly 5793 */ 5794 list_move_tail(&kvm->vm_list, &vm_list); 5795 break; 5796 } 5797 5798 mutex_unlock(&kvm_lock); 5799 return freed; 5800} 5801 5802static unsigned long 5803mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 5804{ 5805 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 5806} 5807 5808static struct shrinker mmu_shrinker = { 5809 .count_objects = mmu_shrink_count, 5810 .scan_objects = mmu_shrink_scan, 5811 .seeks = DEFAULT_SEEKS * 10, 5812}; 5813 5814static void mmu_destroy_caches(void) 5815{ 5816 kmem_cache_destroy(pte_list_desc_cache); 5817 kmem_cache_destroy(mmu_page_header_cache); 5818} 5819 5820static void kvm_set_mmio_spte_mask(void) 5821{ 5822 u64 mask; 5823 5824 /* 5825 * Set a reserved PA bit in MMIO SPTEs to generate page faults with 5826 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT 5827 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports 5828 * 52-bit physical addresses then there are no reserved PA bits in the 5829 * PTEs and so the reserved PA approach must be disabled. 5830 */ 5831 if (shadow_phys_bits < 52) 5832 mask = BIT_ULL(51) | PT_PRESENT_MASK; 5833 else 5834 mask = 0; 5835 5836 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK); 5837} 5838 5839static bool get_nx_auto_mode(void) 5840{ 5841 /* Return true when CPU has the bug, and mitigations are ON */ 5842 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 5843} 5844 5845static void __set_nx_huge_pages(bool val) 5846{ 5847 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 5848} 5849 5850static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 5851{ 5852 bool old_val = nx_huge_pages; 5853 bool new_val; 5854 5855 /* In "auto" mode deploy workaround only if CPU has the bug. */ 5856 if (sysfs_streq(val, "off")) 5857 new_val = 0; 5858 else if (sysfs_streq(val, "force")) 5859 new_val = 1; 5860 else if (sysfs_streq(val, "auto")) 5861 new_val = get_nx_auto_mode(); 5862 else if (strtobool(val, &new_val) < 0) 5863 return -EINVAL; 5864 5865 __set_nx_huge_pages(new_val); 5866 5867 if (new_val != old_val) { 5868 struct kvm *kvm; 5869 5870 mutex_lock(&kvm_lock); 5871 5872 list_for_each_entry(kvm, &vm_list, vm_list) { 5873 mutex_lock(&kvm->slots_lock); 5874 kvm_mmu_zap_all_fast(kvm); 5875 mutex_unlock(&kvm->slots_lock); 5876 5877 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 5878 } 5879 mutex_unlock(&kvm_lock); 5880 } 5881 5882 return 0; 5883} 5884 5885/* 5886 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 5887 * its default value of -1 is technically undefined behavior for a boolean. 5888 */ 5889void __init kvm_mmu_x86_module_init(void) 5890{ 5891 if (nx_huge_pages == -1) 5892 __set_nx_huge_pages(get_nx_auto_mode()); 5893} 5894 5895/* 5896 * The bulk of the MMU initialization is deferred until the vendor module is 5897 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 5898 * to be reset when a potentially different vendor module is loaded. 5899 */ 5900int kvm_mmu_vendor_module_init(void) 5901{ 5902 int ret = -ENOMEM; 5903 5904 /* 5905 * MMU roles use union aliasing which is, generally speaking, an 5906 * undefined behavior. However, we supposedly know how compilers behave 5907 * and the current status quo is unlikely to change. Guardians below are 5908 * supposed to let us know if the assumption becomes false. 5909 */ 5910 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 5911 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 5912 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64)); 5913 5914 kvm_mmu_reset_all_pte_masks(); 5915 5916 kvm_set_mmio_spte_mask(); 5917 5918 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 5919 sizeof(struct pte_list_desc), 5920 0, SLAB_ACCOUNT, NULL); 5921 if (!pte_list_desc_cache) 5922 goto out; 5923 5924 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 5925 sizeof(struct kvm_mmu_page), 5926 0, SLAB_ACCOUNT, NULL); 5927 if (!mmu_page_header_cache) 5928 goto out; 5929 5930 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 5931 goto out; 5932 5933 ret = register_shrinker(&mmu_shrinker); 5934 if (ret) 5935 goto out; 5936 5937 return 0; 5938 5939out: 5940 mmu_destroy_caches(); 5941 return ret; 5942} 5943 5944/* 5945 * Calculate mmu pages needed for kvm. 5946 */ 5947unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm) 5948{ 5949 unsigned long nr_mmu_pages; 5950 unsigned long nr_pages = 0; 5951 struct kvm_memslots *slots; 5952 struct kvm_memory_slot *memslot; 5953 int i; 5954 5955 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5956 slots = __kvm_memslots(kvm, i); 5957 5958 kvm_for_each_memslot(memslot, slots) 5959 nr_pages += memslot->npages; 5960 } 5961 5962 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; 5963 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 5964 5965 return nr_mmu_pages; 5966} 5967 5968void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 5969{ 5970 kvm_mmu_unload(vcpu); 5971 free_mmu_pages(&vcpu->arch.root_mmu); 5972 free_mmu_pages(&vcpu->arch.guest_mmu); 5973 mmu_free_memory_caches(vcpu); 5974} 5975 5976void kvm_mmu_vendor_module_exit(void) 5977{ 5978 mmu_destroy_caches(); 5979 percpu_counter_destroy(&kvm_total_used_mmu_pages); 5980 unregister_shrinker(&mmu_shrinker); 5981 mmu_audit_disable(); 5982} 5983 5984static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp) 5985{ 5986 unsigned int old_val; 5987 int err; 5988 5989 old_val = nx_huge_pages_recovery_ratio; 5990 err = param_set_uint(val, kp); 5991 if (err) 5992 return err; 5993 5994 if (READ_ONCE(nx_huge_pages) && 5995 !old_val && nx_huge_pages_recovery_ratio) { 5996 struct kvm *kvm; 5997 5998 mutex_lock(&kvm_lock); 5999 6000 list_for_each_entry(kvm, &vm_list, vm_list) 6001 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6002 6003 mutex_unlock(&kvm_lock); 6004 } 6005 6006 return err; 6007} 6008 6009static void kvm_recover_nx_lpages(struct kvm *kvm) 6010{ 6011 int rcu_idx; 6012 struct kvm_mmu_page *sp; 6013 unsigned int ratio; 6014 LIST_HEAD(invalid_list); 6015 bool flush = false; 6016 ulong to_zap; 6017 6018 rcu_idx = srcu_read_lock(&kvm->srcu); 6019 spin_lock(&kvm->mmu_lock); 6020 6021 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6022 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0; 6023 for ( ; to_zap; --to_zap) { 6024 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) 6025 break; 6026 6027 /* 6028 * We use a separate list instead of just using active_mmu_pages 6029 * because the number of lpage_disallowed pages is expected to 6030 * be relatively small compared to the total. 6031 */ 6032 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 6033 struct kvm_mmu_page, 6034 lpage_disallowed_link); 6035 WARN_ON_ONCE(!sp->lpage_disallowed); 6036 if (sp->tdp_mmu_page) { 6037 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 6038 } else { 6039 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 6040 WARN_ON_ONCE(sp->lpage_disallowed); 6041 } 6042 6043 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { 6044 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6045 cond_resched_lock(&kvm->mmu_lock); 6046 flush = false; 6047 } 6048 } 6049 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6050 6051 spin_unlock(&kvm->mmu_lock); 6052 srcu_read_unlock(&kvm->srcu, rcu_idx); 6053} 6054 6055static long get_nx_lpage_recovery_timeout(u64 start_time) 6056{ 6057 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio) 6058 ? start_time + 60 * HZ - get_jiffies_64() 6059 : MAX_SCHEDULE_TIMEOUT; 6060} 6061 6062static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 6063{ 6064 u64 start_time; 6065 long remaining_time; 6066 6067 while (true) { 6068 start_time = get_jiffies_64(); 6069 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6070 6071 set_current_state(TASK_INTERRUPTIBLE); 6072 while (!kthread_should_stop() && remaining_time > 0) { 6073 schedule_timeout(remaining_time); 6074 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6075 set_current_state(TASK_INTERRUPTIBLE); 6076 } 6077 6078 set_current_state(TASK_RUNNING); 6079 6080 if (kthread_should_stop()) 6081 return 0; 6082 6083 kvm_recover_nx_lpages(kvm); 6084 } 6085} 6086 6087int kvm_mmu_post_init_vm(struct kvm *kvm) 6088{ 6089 int err; 6090 6091 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 6092 "kvm-nx-lpage-recovery", 6093 &kvm->arch.nx_lpage_recovery_thread); 6094 if (!err) 6095 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 6096 6097 return err; 6098} 6099 6100void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6101{ 6102 if (kvm->arch.nx_lpage_recovery_thread) 6103 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 6104} 6105