xref: /kernel/linux/linux-5.10/arch/x86/kvm/mmu/mmu.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 *   Yaniv Kamay  <yaniv@qumranet.com>
15 *   Avi Kivity   <avi@qumranet.com>
16 */
17
18#include "irq.h"
19#include "ioapic.h"
20#include "mmu.h"
21#include "mmu_internal.h"
22#include "tdp_mmu.h"
23#include "x86.h"
24#include "kvm_cache_regs.h"
25#include "kvm_emulate.h"
26#include "cpuid.h"
27#include "spte.h"
28
29#include <linux/kvm_host.h>
30#include <linux/types.h>
31#include <linux/string.h>
32#include <linux/mm.h>
33#include <linux/highmem.h>
34#include <linux/moduleparam.h>
35#include <linux/export.h>
36#include <linux/swap.h>
37#include <linux/hugetlb.h>
38#include <linux/compiler.h>
39#include <linux/srcu.h>
40#include <linux/slab.h>
41#include <linux/sched/signal.h>
42#include <linux/uaccess.h>
43#include <linux/hash.h>
44#include <linux/kern_levels.h>
45#include <linux/kthread.h>
46
47#include <asm/page.h>
48#include <asm/memtype.h>
49#include <asm/cmpxchg.h>
50#include <asm/io.h>
51#include <asm/vmx.h>
52#include <asm/kvm_page_track.h>
53#include "trace.h"
54
55#include "paging.h"
56
57extern bool itlb_multihit_kvm_mitigation;
58
59static int __read_mostly nx_huge_pages = -1;
60#ifdef CONFIG_PREEMPT_RT
61/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
62static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
63#else
64static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
65#endif
66
67static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
68static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
69
70static const struct kernel_param_ops nx_huge_pages_ops = {
71	.set = set_nx_huge_pages,
72	.get = param_get_bool,
73};
74
75static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
76	.set = set_nx_huge_pages_recovery_ratio,
77	.get = param_get_uint,
78};
79
80module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
81__MODULE_PARM_TYPE(nx_huge_pages, "bool");
82module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
83		&nx_huge_pages_recovery_ratio, 0644);
84__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
85
86static bool __read_mostly force_flush_and_sync_on_reuse;
87module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
88
89/*
90 * When setting this variable to true it enables Two-Dimensional-Paging
91 * where the hardware walks 2 page tables:
92 * 1. the guest-virtual to guest-physical
93 * 2. while doing 1. it walks guest-physical to host-physical
94 * If the hardware supports that we don't need to do shadow paging.
95 */
96bool tdp_enabled = false;
97
98static int max_huge_page_level __read_mostly;
99static int max_tdp_level __read_mostly;
100
101enum {
102	AUDIT_PRE_PAGE_FAULT,
103	AUDIT_POST_PAGE_FAULT,
104	AUDIT_PRE_PTE_WRITE,
105	AUDIT_POST_PTE_WRITE,
106	AUDIT_PRE_SYNC,
107	AUDIT_POST_SYNC
108};
109
110#ifdef MMU_DEBUG
111bool dbg = 0;
112module_param(dbg, bool, 0644);
113#endif
114
115#define PTE_PREFETCH_NUM		8
116
117#define PT32_LEVEL_BITS 10
118
119#define PT32_LEVEL_SHIFT(level) \
120		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
121
122#define PT32_LVL_OFFSET_MASK(level) \
123	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
124						* PT32_LEVEL_BITS))) - 1))
125
126#define PT32_INDEX(address, level)\
127	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
128
129
130#define PT32_BASE_ADDR_MASK PAGE_MASK
131#define PT32_DIR_BASE_ADDR_MASK \
132	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
133#define PT32_LVL_ADDR_MASK(level) \
134	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
135					    * PT32_LEVEL_BITS))) - 1))
136
137#include <trace/events/kvm.h>
138
139/* make pte_list_desc fit well in cache line */
140#define PTE_LIST_EXT 3
141
142struct pte_list_desc {
143	u64 *sptes[PTE_LIST_EXT];
144	struct pte_list_desc *more;
145};
146
147struct kvm_shadow_walk_iterator {
148	u64 addr;
149	hpa_t shadow_addr;
150	u64 *sptep;
151	int level;
152	unsigned index;
153};
154
155#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
156	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
157					 (_root), (_addr));                \
158	     shadow_walk_okay(&(_walker));			           \
159	     shadow_walk_next(&(_walker)))
160
161#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
162	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
163	     shadow_walk_okay(&(_walker));			\
164	     shadow_walk_next(&(_walker)))
165
166#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
167	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
168	     shadow_walk_okay(&(_walker)) &&				\
169		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
170	     __shadow_walk_next(&(_walker), spte))
171
172static struct kmem_cache *pte_list_desc_cache;
173struct kmem_cache *mmu_page_header_cache;
174static struct percpu_counter kvm_total_used_mmu_pages;
175
176static void mmu_spte_set(u64 *sptep, u64 spte);
177static union kvm_mmu_page_role
178kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
179
180#define CREATE_TRACE_POINTS
181#include "mmutrace.h"
182
183
184static inline bool kvm_available_flush_tlb_with_range(void)
185{
186	return kvm_x86_ops.tlb_remote_flush_with_range;
187}
188
189static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
190		struct kvm_tlb_range *range)
191{
192	int ret = -ENOTSUPP;
193
194	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
195		ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
196
197	if (ret)
198		kvm_flush_remote_tlbs(kvm);
199}
200
201void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
202		u64 start_gfn, u64 pages)
203{
204	struct kvm_tlb_range range;
205
206	range.start_gfn = start_gfn;
207	range.pages = pages;
208
209	kvm_flush_remote_tlbs_with_range(kvm, &range);
210}
211
212bool is_nx_huge_page_enabled(void)
213{
214	return READ_ONCE(nx_huge_pages);
215}
216
217static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
218			   unsigned int access)
219{
220	u64 mask = make_mmio_spte(vcpu, gfn, access);
221
222	trace_mark_mmio_spte(sptep, gfn, mask);
223	mmu_spte_set(sptep, mask);
224}
225
226static gfn_t get_mmio_spte_gfn(u64 spte)
227{
228	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
229
230	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
231	       & shadow_nonpresent_or_rsvd_mask;
232
233	return gpa >> PAGE_SHIFT;
234}
235
236static unsigned get_mmio_spte_access(u64 spte)
237{
238	return spte & shadow_mmio_access_mask;
239}
240
241static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
242			  kvm_pfn_t pfn, unsigned int access)
243{
244	if (unlikely(is_noslot_pfn(pfn))) {
245		mark_mmio_spte(vcpu, sptep, gfn, access);
246		return true;
247	}
248
249	return false;
250}
251
252static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
253{
254	u64 kvm_gen, spte_gen, gen;
255
256	gen = kvm_vcpu_memslots(vcpu)->generation;
257	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
258		return false;
259
260	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
261	spte_gen = get_mmio_spte_generation(spte);
262
263	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
264	return likely(kvm_gen == spte_gen);
265}
266
267static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
268                                  struct x86_exception *exception)
269{
270        return gpa;
271}
272
273static int is_cpuid_PSE36(void)
274{
275	return 1;
276}
277
278static int is_nx(struct kvm_vcpu *vcpu)
279{
280	return vcpu->arch.efer & EFER_NX;
281}
282
283static gfn_t pse36_gfn_delta(u32 gpte)
284{
285	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
286
287	return (gpte & PT32_DIR_PSE36_MASK) << shift;
288}
289
290#ifdef CONFIG_X86_64
291static void __set_spte(u64 *sptep, u64 spte)
292{
293	WRITE_ONCE(*sptep, spte);
294}
295
296static void __update_clear_spte_fast(u64 *sptep, u64 spte)
297{
298	WRITE_ONCE(*sptep, spte);
299}
300
301static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
302{
303	return xchg(sptep, spte);
304}
305
306static u64 __get_spte_lockless(u64 *sptep)
307{
308	return READ_ONCE(*sptep);
309}
310#else
311union split_spte {
312	struct {
313		u32 spte_low;
314		u32 spte_high;
315	};
316	u64 spte;
317};
318
319static void count_spte_clear(u64 *sptep, u64 spte)
320{
321	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
322
323	if (is_shadow_present_pte(spte))
324		return;
325
326	/* Ensure the spte is completely set before we increase the count */
327	smp_wmb();
328	sp->clear_spte_count++;
329}
330
331static void __set_spte(u64 *sptep, u64 spte)
332{
333	union split_spte *ssptep, sspte;
334
335	ssptep = (union split_spte *)sptep;
336	sspte = (union split_spte)spte;
337
338	ssptep->spte_high = sspte.spte_high;
339
340	/*
341	 * If we map the spte from nonpresent to present, We should store
342	 * the high bits firstly, then set present bit, so cpu can not
343	 * fetch this spte while we are setting the spte.
344	 */
345	smp_wmb();
346
347	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
348}
349
350static void __update_clear_spte_fast(u64 *sptep, u64 spte)
351{
352	union split_spte *ssptep, sspte;
353
354	ssptep = (union split_spte *)sptep;
355	sspte = (union split_spte)spte;
356
357	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
358
359	/*
360	 * If we map the spte from present to nonpresent, we should clear
361	 * present bit firstly to avoid vcpu fetch the old high bits.
362	 */
363	smp_wmb();
364
365	ssptep->spte_high = sspte.spte_high;
366	count_spte_clear(sptep, spte);
367}
368
369static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
370{
371	union split_spte *ssptep, sspte, orig;
372
373	ssptep = (union split_spte *)sptep;
374	sspte = (union split_spte)spte;
375
376	/* xchg acts as a barrier before the setting of the high bits */
377	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
378	orig.spte_high = ssptep->spte_high;
379	ssptep->spte_high = sspte.spte_high;
380	count_spte_clear(sptep, spte);
381
382	return orig.spte;
383}
384
385/*
386 * The idea using the light way get the spte on x86_32 guest is from
387 * gup_get_pte (mm/gup.c).
388 *
389 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
390 * coalesces them and we are running out of the MMU lock.  Therefore
391 * we need to protect against in-progress updates of the spte.
392 *
393 * Reading the spte while an update is in progress may get the old value
394 * for the high part of the spte.  The race is fine for a present->non-present
395 * change (because the high part of the spte is ignored for non-present spte),
396 * but for a present->present change we must reread the spte.
397 *
398 * All such changes are done in two steps (present->non-present and
399 * non-present->present), hence it is enough to count the number of
400 * present->non-present updates: if it changed while reading the spte,
401 * we might have hit the race.  This is done using clear_spte_count.
402 */
403static u64 __get_spte_lockless(u64 *sptep)
404{
405	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
406	union split_spte spte, *orig = (union split_spte *)sptep;
407	int count;
408
409retry:
410	count = sp->clear_spte_count;
411	smp_rmb();
412
413	spte.spte_low = orig->spte_low;
414	smp_rmb();
415
416	spte.spte_high = orig->spte_high;
417	smp_rmb();
418
419	if (unlikely(spte.spte_low != orig->spte_low ||
420	      count != sp->clear_spte_count))
421		goto retry;
422
423	return spte.spte;
424}
425#endif
426
427static bool spte_has_volatile_bits(u64 spte)
428{
429	if (!is_shadow_present_pte(spte))
430		return false;
431
432	/*
433	 * Always atomically update spte if it can be updated
434	 * out of mmu-lock, it can ensure dirty bit is not lost,
435	 * also, it can help us to get a stable is_writable_pte()
436	 * to ensure tlb flush is not missed.
437	 */
438	if (spte_can_locklessly_be_made_writable(spte) ||
439	    is_access_track_spte(spte))
440		return true;
441
442	if (spte_ad_enabled(spte)) {
443		if ((spte & shadow_accessed_mask) == 0 ||
444	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
445			return true;
446	}
447
448	return false;
449}
450
451/* Rules for using mmu_spte_set:
452 * Set the sptep from nonpresent to present.
453 * Note: the sptep being assigned *must* be either not present
454 * or in a state where the hardware will not attempt to update
455 * the spte.
456 */
457static void mmu_spte_set(u64 *sptep, u64 new_spte)
458{
459	WARN_ON(is_shadow_present_pte(*sptep));
460	__set_spte(sptep, new_spte);
461}
462
463/*
464 * Update the SPTE (excluding the PFN), but do not track changes in its
465 * accessed/dirty status.
466 */
467static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
468{
469	u64 old_spte = *sptep;
470
471	WARN_ON(!is_shadow_present_pte(new_spte));
472
473	if (!is_shadow_present_pte(old_spte)) {
474		mmu_spte_set(sptep, new_spte);
475		return old_spte;
476	}
477
478	if (!spte_has_volatile_bits(old_spte))
479		__update_clear_spte_fast(sptep, new_spte);
480	else
481		old_spte = __update_clear_spte_slow(sptep, new_spte);
482
483	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
484
485	return old_spte;
486}
487
488/* Rules for using mmu_spte_update:
489 * Update the state bits, it means the mapped pfn is not changed.
490 *
491 * Whenever we overwrite a writable spte with a read-only one we
492 * should flush remote TLBs. Otherwise rmap_write_protect
493 * will find a read-only spte, even though the writable spte
494 * might be cached on a CPU's TLB, the return value indicates this
495 * case.
496 *
497 * Returns true if the TLB needs to be flushed
498 */
499static bool mmu_spte_update(u64 *sptep, u64 new_spte)
500{
501	bool flush = false;
502	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
503
504	if (!is_shadow_present_pte(old_spte))
505		return false;
506
507	/*
508	 * For the spte updated out of mmu-lock is safe, since
509	 * we always atomically update it, see the comments in
510	 * spte_has_volatile_bits().
511	 */
512	if (spte_can_locklessly_be_made_writable(old_spte) &&
513	      !is_writable_pte(new_spte))
514		flush = true;
515
516	/*
517	 * Flush TLB when accessed/dirty states are changed in the page tables,
518	 * to guarantee consistency between TLB and page tables.
519	 */
520
521	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
522		flush = true;
523		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
524	}
525
526	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
527		flush = true;
528		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
529	}
530
531	return flush;
532}
533
534/*
535 * Rules for using mmu_spte_clear_track_bits:
536 * It sets the sptep from present to nonpresent, and track the
537 * state bits, it is used to clear the last level sptep.
538 * Returns non-zero if the PTE was previously valid.
539 */
540static int mmu_spte_clear_track_bits(u64 *sptep)
541{
542	kvm_pfn_t pfn;
543	u64 old_spte = *sptep;
544
545	if (!spte_has_volatile_bits(old_spte))
546		__update_clear_spte_fast(sptep, 0ull);
547	else
548		old_spte = __update_clear_spte_slow(sptep, 0ull);
549
550	if (!is_shadow_present_pte(old_spte))
551		return 0;
552
553	pfn = spte_to_pfn(old_spte);
554
555	/*
556	 * KVM does not hold the refcount of the page used by
557	 * kvm mmu, before reclaiming the page, we should
558	 * unmap it from mmu first.
559	 */
560	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
561
562	if (is_accessed_spte(old_spte))
563		kvm_set_pfn_accessed(pfn);
564
565	if (is_dirty_spte(old_spte))
566		kvm_set_pfn_dirty(pfn);
567
568	return 1;
569}
570
571/*
572 * Rules for using mmu_spte_clear_no_track:
573 * Directly clear spte without caring the state bits of sptep,
574 * it is used to set the upper level spte.
575 */
576static void mmu_spte_clear_no_track(u64 *sptep)
577{
578	__update_clear_spte_fast(sptep, 0ull);
579}
580
581static u64 mmu_spte_get_lockless(u64 *sptep)
582{
583	return __get_spte_lockless(sptep);
584}
585
586/* Restore an acc-track PTE back to a regular PTE */
587static u64 restore_acc_track_spte(u64 spte)
588{
589	u64 new_spte = spte;
590	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
591			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
592
593	WARN_ON_ONCE(spte_ad_enabled(spte));
594	WARN_ON_ONCE(!is_access_track_spte(spte));
595
596	new_spte &= ~shadow_acc_track_mask;
597	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
598		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
599	new_spte |= saved_bits;
600
601	return new_spte;
602}
603
604/* Returns the Accessed status of the PTE and resets it at the same time. */
605static bool mmu_spte_age(u64 *sptep)
606{
607	u64 spte = mmu_spte_get_lockless(sptep);
608
609	if (!is_accessed_spte(spte))
610		return false;
611
612	if (spte_ad_enabled(spte)) {
613		clear_bit((ffs(shadow_accessed_mask) - 1),
614			  (unsigned long *)sptep);
615	} else {
616		/*
617		 * Capture the dirty status of the page, so that it doesn't get
618		 * lost when the SPTE is marked for access tracking.
619		 */
620		if (is_writable_pte(spte))
621			kvm_set_pfn_dirty(spte_to_pfn(spte));
622
623		spte = mark_spte_for_access_track(spte);
624		mmu_spte_update_no_track(sptep, spte);
625	}
626
627	return true;
628}
629
630static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
631{
632	/*
633	 * Prevent page table teardown by making any free-er wait during
634	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
635	 */
636	local_irq_disable();
637
638	/*
639	 * Make sure a following spte read is not reordered ahead of the write
640	 * to vcpu->mode.
641	 */
642	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
643}
644
645static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
646{
647	/*
648	 * Make sure the write to vcpu->mode is not reordered in front of
649	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
650	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
651	 */
652	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
653	local_irq_enable();
654}
655
656static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
657{
658	int r;
659
660	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
661	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
662				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
663	if (r)
664		return r;
665	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
666				       PT64_ROOT_MAX_LEVEL);
667	if (r)
668		return r;
669	if (maybe_indirect) {
670		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
671					       PT64_ROOT_MAX_LEVEL);
672		if (r)
673			return r;
674	}
675	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
676					  PT64_ROOT_MAX_LEVEL);
677}
678
679static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
680{
681	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
682	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
683	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
684	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
685}
686
687static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
688{
689	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
690}
691
692static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
693{
694	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
695}
696
697static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
698{
699	if (!sp->role.direct)
700		return sp->gfns[index];
701
702	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
703}
704
705static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
706{
707	if (!sp->role.direct) {
708		sp->gfns[index] = gfn;
709		return;
710	}
711
712	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
713		pr_err_ratelimited("gfn mismatch under direct page %llx "
714				   "(expected %llx, got %llx)\n",
715				   sp->gfn,
716				   kvm_mmu_page_get_gfn(sp, index), gfn);
717}
718
719/*
720 * Return the pointer to the large page information for a given gfn,
721 * handling slots that are not large page aligned.
722 */
723static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
724					      struct kvm_memory_slot *slot,
725					      int level)
726{
727	unsigned long idx;
728
729	idx = gfn_to_index(gfn, slot->base_gfn, level);
730	return &slot->arch.lpage_info[level - 2][idx];
731}
732
733static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
734					    gfn_t gfn, int count)
735{
736	struct kvm_lpage_info *linfo;
737	int i;
738
739	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
740		linfo = lpage_info_slot(gfn, slot, i);
741		linfo->disallow_lpage += count;
742		WARN_ON(linfo->disallow_lpage < 0);
743	}
744}
745
746void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
747{
748	update_gfn_disallow_lpage_count(slot, gfn, 1);
749}
750
751void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
752{
753	update_gfn_disallow_lpage_count(slot, gfn, -1);
754}
755
756static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
757{
758	struct kvm_memslots *slots;
759	struct kvm_memory_slot *slot;
760	gfn_t gfn;
761
762	kvm->arch.indirect_shadow_pages++;
763	gfn = sp->gfn;
764	slots = kvm_memslots_for_spte_role(kvm, sp->role);
765	slot = __gfn_to_memslot(slots, gfn);
766
767	/* the non-leaf shadow pages are keeping readonly. */
768	if (sp->role.level > PG_LEVEL_4K)
769		return kvm_slot_page_track_add_page(kvm, slot, gfn,
770						    KVM_PAGE_TRACK_WRITE);
771
772	kvm_mmu_gfn_disallow_lpage(slot, gfn);
773}
774
775void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
776{
777	if (sp->lpage_disallowed)
778		return;
779
780	++kvm->stat.nx_lpage_splits;
781	list_add_tail(&sp->lpage_disallowed_link,
782		      &kvm->arch.lpage_disallowed_mmu_pages);
783	sp->lpage_disallowed = true;
784}
785
786static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
787{
788	struct kvm_memslots *slots;
789	struct kvm_memory_slot *slot;
790	gfn_t gfn;
791
792	kvm->arch.indirect_shadow_pages--;
793	gfn = sp->gfn;
794	slots = kvm_memslots_for_spte_role(kvm, sp->role);
795	slot = __gfn_to_memslot(slots, gfn);
796	if (sp->role.level > PG_LEVEL_4K)
797		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
798						       KVM_PAGE_TRACK_WRITE);
799
800	kvm_mmu_gfn_allow_lpage(slot, gfn);
801}
802
803void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
804{
805	--kvm->stat.nx_lpage_splits;
806	sp->lpage_disallowed = false;
807	list_del(&sp->lpage_disallowed_link);
808}
809
810static struct kvm_memory_slot *
811gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
812			    bool no_dirty_log)
813{
814	struct kvm_memory_slot *slot;
815
816	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
817	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
818		return NULL;
819	if (no_dirty_log && slot->dirty_bitmap)
820		return NULL;
821
822	return slot;
823}
824
825/*
826 * About rmap_head encoding:
827 *
828 * If the bit zero of rmap_head->val is clear, then it points to the only spte
829 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
830 * pte_list_desc containing more mappings.
831 */
832
833/*
834 * Returns the number of pointers in the rmap chain, not counting the new one.
835 */
836static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
837			struct kvm_rmap_head *rmap_head)
838{
839	struct pte_list_desc *desc;
840	int i, count = 0;
841
842	if (!rmap_head->val) {
843		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
844		rmap_head->val = (unsigned long)spte;
845	} else if (!(rmap_head->val & 1)) {
846		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
847		desc = mmu_alloc_pte_list_desc(vcpu);
848		desc->sptes[0] = (u64 *)rmap_head->val;
849		desc->sptes[1] = spte;
850		rmap_head->val = (unsigned long)desc | 1;
851		++count;
852	} else {
853		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
854		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
855		while (desc->sptes[PTE_LIST_EXT-1]) {
856			count += PTE_LIST_EXT;
857
858			if (!desc->more) {
859				desc->more = mmu_alloc_pte_list_desc(vcpu);
860				desc = desc->more;
861				break;
862			}
863			desc = desc->more;
864		}
865		for (i = 0; desc->sptes[i]; ++i)
866			++count;
867		desc->sptes[i] = spte;
868	}
869	return count;
870}
871
872static void
873pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
874			   struct pte_list_desc *desc, int i,
875			   struct pte_list_desc *prev_desc)
876{
877	int j;
878
879	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
880		;
881	desc->sptes[i] = desc->sptes[j];
882	desc->sptes[j] = NULL;
883	if (j != 0)
884		return;
885	if (!prev_desc && !desc->more)
886		rmap_head->val = 0;
887	else
888		if (prev_desc)
889			prev_desc->more = desc->more;
890		else
891			rmap_head->val = (unsigned long)desc->more | 1;
892	mmu_free_pte_list_desc(desc);
893}
894
895static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
896{
897	struct pte_list_desc *desc;
898	struct pte_list_desc *prev_desc;
899	int i;
900
901	if (!rmap_head->val) {
902		pr_err("%s: %p 0->BUG\n", __func__, spte);
903		BUG();
904	} else if (!(rmap_head->val & 1)) {
905		rmap_printk("%s:  %p 1->0\n", __func__, spte);
906		if ((u64 *)rmap_head->val != spte) {
907			pr_err("%s:  %p 1->BUG\n", __func__, spte);
908			BUG();
909		}
910		rmap_head->val = 0;
911	} else {
912		rmap_printk("%s:  %p many->many\n", __func__, spte);
913		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
914		prev_desc = NULL;
915		while (desc) {
916			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
917				if (desc->sptes[i] == spte) {
918					pte_list_desc_remove_entry(rmap_head,
919							desc, i, prev_desc);
920					return;
921				}
922			}
923			prev_desc = desc;
924			desc = desc->more;
925		}
926		pr_err("%s: %p many->many\n", __func__, spte);
927		BUG();
928	}
929}
930
931static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
932{
933	mmu_spte_clear_track_bits(sptep);
934	__pte_list_remove(sptep, rmap_head);
935}
936
937static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
938					   struct kvm_memory_slot *slot)
939{
940	unsigned long idx;
941
942	idx = gfn_to_index(gfn, slot->base_gfn, level);
943	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
944}
945
946static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
947					 struct kvm_mmu_page *sp)
948{
949	struct kvm_memslots *slots;
950	struct kvm_memory_slot *slot;
951
952	slots = kvm_memslots_for_spte_role(kvm, sp->role);
953	slot = __gfn_to_memslot(slots, gfn);
954	return __gfn_to_rmap(gfn, sp->role.level, slot);
955}
956
957static bool rmap_can_add(struct kvm_vcpu *vcpu)
958{
959	struct kvm_mmu_memory_cache *mc;
960
961	mc = &vcpu->arch.mmu_pte_list_desc_cache;
962	return kvm_mmu_memory_cache_nr_free_objects(mc);
963}
964
965static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
966{
967	struct kvm_mmu_page *sp;
968	struct kvm_rmap_head *rmap_head;
969
970	sp = sptep_to_sp(spte);
971	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
972	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
973	return pte_list_add(vcpu, spte, rmap_head);
974}
975
976static void rmap_remove(struct kvm *kvm, u64 *spte)
977{
978	struct kvm_mmu_page *sp;
979	gfn_t gfn;
980	struct kvm_rmap_head *rmap_head;
981
982	sp = sptep_to_sp(spte);
983	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
984	rmap_head = gfn_to_rmap(kvm, gfn, sp);
985	__pte_list_remove(spte, rmap_head);
986}
987
988/*
989 * Used by the following functions to iterate through the sptes linked by a
990 * rmap.  All fields are private and not assumed to be used outside.
991 */
992struct rmap_iterator {
993	/* private fields */
994	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
995	int pos;			/* index of the sptep */
996};
997
998/*
999 * Iteration must be started by this function.  This should also be used after
1000 * removing/dropping sptes from the rmap link because in such cases the
1001 * information in the iterator may not be valid.
1002 *
1003 * Returns sptep if found, NULL otherwise.
1004 */
1005static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1006			   struct rmap_iterator *iter)
1007{
1008	u64 *sptep;
1009
1010	if (!rmap_head->val)
1011		return NULL;
1012
1013	if (!(rmap_head->val & 1)) {
1014		iter->desc = NULL;
1015		sptep = (u64 *)rmap_head->val;
1016		goto out;
1017	}
1018
1019	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1020	iter->pos = 0;
1021	sptep = iter->desc->sptes[iter->pos];
1022out:
1023	BUG_ON(!is_shadow_present_pte(*sptep));
1024	return sptep;
1025}
1026
1027/*
1028 * Must be used with a valid iterator: e.g. after rmap_get_first().
1029 *
1030 * Returns sptep if found, NULL otherwise.
1031 */
1032static u64 *rmap_get_next(struct rmap_iterator *iter)
1033{
1034	u64 *sptep;
1035
1036	if (iter->desc) {
1037		if (iter->pos < PTE_LIST_EXT - 1) {
1038			++iter->pos;
1039			sptep = iter->desc->sptes[iter->pos];
1040			if (sptep)
1041				goto out;
1042		}
1043
1044		iter->desc = iter->desc->more;
1045
1046		if (iter->desc) {
1047			iter->pos = 0;
1048			/* desc->sptes[0] cannot be NULL */
1049			sptep = iter->desc->sptes[iter->pos];
1050			goto out;
1051		}
1052	}
1053
1054	return NULL;
1055out:
1056	BUG_ON(!is_shadow_present_pte(*sptep));
1057	return sptep;
1058}
1059
1060#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1061	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1062	     _spte_; _spte_ = rmap_get_next(_iter_))
1063
1064static void drop_spte(struct kvm *kvm, u64 *sptep)
1065{
1066	if (mmu_spte_clear_track_bits(sptep))
1067		rmap_remove(kvm, sptep);
1068}
1069
1070
1071static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1072{
1073	if (is_large_pte(*sptep)) {
1074		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1075		drop_spte(kvm, sptep);
1076		--kvm->stat.lpages;
1077		return true;
1078	}
1079
1080	return false;
1081}
1082
1083static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1084{
1085	if (__drop_large_spte(vcpu->kvm, sptep)) {
1086		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1087
1088		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1089			KVM_PAGES_PER_HPAGE(sp->role.level));
1090	}
1091}
1092
1093/*
1094 * Write-protect on the specified @sptep, @pt_protect indicates whether
1095 * spte write-protection is caused by protecting shadow page table.
1096 *
1097 * Note: write protection is difference between dirty logging and spte
1098 * protection:
1099 * - for dirty logging, the spte can be set to writable at anytime if
1100 *   its dirty bitmap is properly set.
1101 * - for spte protection, the spte can be writable only after unsync-ing
1102 *   shadow page.
1103 *
1104 * Return true if tlb need be flushed.
1105 */
1106static bool spte_write_protect(u64 *sptep, bool pt_protect)
1107{
1108	u64 spte = *sptep;
1109
1110	if (!is_writable_pte(spte) &&
1111	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1112		return false;
1113
1114	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1115
1116	if (pt_protect)
1117		spte &= ~SPTE_MMU_WRITEABLE;
1118	spte = spte & ~PT_WRITABLE_MASK;
1119
1120	return mmu_spte_update(sptep, spte);
1121}
1122
1123static bool __rmap_write_protect(struct kvm *kvm,
1124				 struct kvm_rmap_head *rmap_head,
1125				 bool pt_protect)
1126{
1127	u64 *sptep;
1128	struct rmap_iterator iter;
1129	bool flush = false;
1130
1131	for_each_rmap_spte(rmap_head, &iter, sptep)
1132		flush |= spte_write_protect(sptep, pt_protect);
1133
1134	return flush;
1135}
1136
1137static bool spte_clear_dirty(u64 *sptep)
1138{
1139	u64 spte = *sptep;
1140
1141	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1142
1143	MMU_WARN_ON(!spte_ad_enabled(spte));
1144	spte &= ~shadow_dirty_mask;
1145	return mmu_spte_update(sptep, spte);
1146}
1147
1148static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1149{
1150	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1151					       (unsigned long *)sptep);
1152	if (was_writable && !spte_ad_enabled(*sptep))
1153		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1154
1155	return was_writable;
1156}
1157
1158/*
1159 * Gets the GFN ready for another round of dirty logging by clearing the
1160 *	- D bit on ad-enabled SPTEs, and
1161 *	- W bit on ad-disabled SPTEs.
1162 * Returns true iff any D or W bits were cleared.
1163 */
1164static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1165{
1166	u64 *sptep;
1167	struct rmap_iterator iter;
1168	bool flush = false;
1169
1170	for_each_rmap_spte(rmap_head, &iter, sptep)
1171		if (spte_ad_need_write_protect(*sptep))
1172			flush |= spte_wrprot_for_clear_dirty(sptep);
1173		else
1174			flush |= spte_clear_dirty(sptep);
1175
1176	return flush;
1177}
1178
1179static bool spte_set_dirty(u64 *sptep)
1180{
1181	u64 spte = *sptep;
1182
1183	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1184
1185	/*
1186	 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1187	 * do not bother adding back write access to pages marked
1188	 * SPTE_AD_WRPROT_ONLY_MASK.
1189	 */
1190	spte |= shadow_dirty_mask;
1191
1192	return mmu_spte_update(sptep, spte);
1193}
1194
1195static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1196{
1197	u64 *sptep;
1198	struct rmap_iterator iter;
1199	bool flush = false;
1200
1201	for_each_rmap_spte(rmap_head, &iter, sptep)
1202		if (spte_ad_enabled(*sptep))
1203			flush |= spte_set_dirty(sptep);
1204
1205	return flush;
1206}
1207
1208/**
1209 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1210 * @kvm: kvm instance
1211 * @slot: slot to protect
1212 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1213 * @mask: indicates which pages we should protect
1214 *
1215 * Used when we do not need to care about huge page mappings: e.g. during dirty
1216 * logging we do not have any such mappings.
1217 */
1218static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1219				     struct kvm_memory_slot *slot,
1220				     gfn_t gfn_offset, unsigned long mask)
1221{
1222	struct kvm_rmap_head *rmap_head;
1223
1224	if (kvm->arch.tdp_mmu_enabled)
1225		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1226				slot->base_gfn + gfn_offset, mask, true);
1227	while (mask) {
1228		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1229					  PG_LEVEL_4K, slot);
1230		__rmap_write_protect(kvm, rmap_head, false);
1231
1232		/* clear the first set bit */
1233		mask &= mask - 1;
1234	}
1235}
1236
1237/**
1238 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1239 * protect the page if the D-bit isn't supported.
1240 * @kvm: kvm instance
1241 * @slot: slot to clear D-bit
1242 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1243 * @mask: indicates which pages we should clear D-bit
1244 *
1245 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1246 */
1247void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1248				     struct kvm_memory_slot *slot,
1249				     gfn_t gfn_offset, unsigned long mask)
1250{
1251	struct kvm_rmap_head *rmap_head;
1252
1253	if (kvm->arch.tdp_mmu_enabled)
1254		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1255				slot->base_gfn + gfn_offset, mask, false);
1256	while (mask) {
1257		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1258					  PG_LEVEL_4K, slot);
1259		__rmap_clear_dirty(kvm, rmap_head);
1260
1261		/* clear the first set bit */
1262		mask &= mask - 1;
1263	}
1264}
1265EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1266
1267/**
1268 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1269 * PT level pages.
1270 *
1271 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1272 * enable dirty logging for them.
1273 *
1274 * Used when we do not need to care about huge page mappings: e.g. during dirty
1275 * logging we do not have any such mappings.
1276 */
1277void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1278				struct kvm_memory_slot *slot,
1279				gfn_t gfn_offset, unsigned long mask)
1280{
1281	if (kvm_x86_ops.enable_log_dirty_pt_masked)
1282		kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1283				mask);
1284	else
1285		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1286}
1287
1288bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1289				    struct kvm_memory_slot *slot, u64 gfn)
1290{
1291	struct kvm_rmap_head *rmap_head;
1292	int i;
1293	bool write_protected = false;
1294
1295	for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1296		rmap_head = __gfn_to_rmap(gfn, i, slot);
1297		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1298	}
1299
1300	if (kvm->arch.tdp_mmu_enabled)
1301		write_protected |=
1302			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1303
1304	return write_protected;
1305}
1306
1307static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1308{
1309	struct kvm_memory_slot *slot;
1310
1311	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1312	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1313}
1314
1315static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1316{
1317	u64 *sptep;
1318	struct rmap_iterator iter;
1319	bool flush = false;
1320
1321	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1322		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1323
1324		pte_list_remove(rmap_head, sptep);
1325		flush = true;
1326	}
1327
1328	return flush;
1329}
1330
1331static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1332			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
1333			   unsigned long data)
1334{
1335	return kvm_zap_rmapp(kvm, rmap_head);
1336}
1337
1338static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1339			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
1340			     unsigned long data)
1341{
1342	u64 *sptep;
1343	struct rmap_iterator iter;
1344	int need_flush = 0;
1345	u64 new_spte;
1346	pte_t *ptep = (pte_t *)data;
1347	kvm_pfn_t new_pfn;
1348
1349	WARN_ON(pte_huge(*ptep));
1350	new_pfn = pte_pfn(*ptep);
1351
1352restart:
1353	for_each_rmap_spte(rmap_head, &iter, sptep) {
1354		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1355			    sptep, *sptep, gfn, level);
1356
1357		need_flush = 1;
1358
1359		if (pte_write(*ptep)) {
1360			pte_list_remove(rmap_head, sptep);
1361			goto restart;
1362		} else {
1363			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1364					*sptep, new_pfn);
1365
1366			mmu_spte_clear_track_bits(sptep);
1367			mmu_spte_set(sptep, new_spte);
1368		}
1369	}
1370
1371	if (need_flush && kvm_available_flush_tlb_with_range()) {
1372		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1373		return 0;
1374	}
1375
1376	return need_flush;
1377}
1378
1379struct slot_rmap_walk_iterator {
1380	/* input fields. */
1381	struct kvm_memory_slot *slot;
1382	gfn_t start_gfn;
1383	gfn_t end_gfn;
1384	int start_level;
1385	int end_level;
1386
1387	/* output fields. */
1388	gfn_t gfn;
1389	struct kvm_rmap_head *rmap;
1390	int level;
1391
1392	/* private field. */
1393	struct kvm_rmap_head *end_rmap;
1394};
1395
1396static void
1397rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1398{
1399	iterator->level = level;
1400	iterator->gfn = iterator->start_gfn;
1401	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1402	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1403					   iterator->slot);
1404}
1405
1406static void
1407slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1408		    struct kvm_memory_slot *slot, int start_level,
1409		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1410{
1411	iterator->slot = slot;
1412	iterator->start_level = start_level;
1413	iterator->end_level = end_level;
1414	iterator->start_gfn = start_gfn;
1415	iterator->end_gfn = end_gfn;
1416
1417	rmap_walk_init_level(iterator, iterator->start_level);
1418}
1419
1420static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1421{
1422	return !!iterator->rmap;
1423}
1424
1425static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1426{
1427	if (++iterator->rmap <= iterator->end_rmap) {
1428		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1429		return;
1430	}
1431
1432	if (++iterator->level > iterator->end_level) {
1433		iterator->rmap = NULL;
1434		return;
1435	}
1436
1437	rmap_walk_init_level(iterator, iterator->level);
1438}
1439
1440#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1441	   _start_gfn, _end_gfn, _iter_)				\
1442	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1443				 _end_level_, _start_gfn, _end_gfn);	\
1444	     slot_rmap_walk_okay(_iter_);				\
1445	     slot_rmap_walk_next(_iter_))
1446
1447static int kvm_handle_hva_range(struct kvm *kvm,
1448				unsigned long start,
1449				unsigned long end,
1450				unsigned long data,
1451				int (*handler)(struct kvm *kvm,
1452					       struct kvm_rmap_head *rmap_head,
1453					       struct kvm_memory_slot *slot,
1454					       gfn_t gfn,
1455					       int level,
1456					       unsigned long data))
1457{
1458	struct kvm_memslots *slots;
1459	struct kvm_memory_slot *memslot;
1460	struct slot_rmap_walk_iterator iterator;
1461	int ret = 0;
1462	int i;
1463
1464	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1465		slots = __kvm_memslots(kvm, i);
1466		kvm_for_each_memslot(memslot, slots) {
1467			unsigned long hva_start, hva_end;
1468			gfn_t gfn_start, gfn_end;
1469
1470			hva_start = max(start, memslot->userspace_addr);
1471			hva_end = min(end, memslot->userspace_addr +
1472				      (memslot->npages << PAGE_SHIFT));
1473			if (hva_start >= hva_end)
1474				continue;
1475			/*
1476			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1477			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1478			 */
1479			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1480			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1481
1482			for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1483						 KVM_MAX_HUGEPAGE_LEVEL,
1484						 gfn_start, gfn_end - 1,
1485						 &iterator)
1486				ret |= handler(kvm, iterator.rmap, memslot,
1487					       iterator.gfn, iterator.level, data);
1488		}
1489	}
1490
1491	return ret;
1492}
1493
1494static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1495			  unsigned long data,
1496			  int (*handler)(struct kvm *kvm,
1497					 struct kvm_rmap_head *rmap_head,
1498					 struct kvm_memory_slot *slot,
1499					 gfn_t gfn, int level,
1500					 unsigned long data))
1501{
1502	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1503}
1504
1505int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1506			unsigned flags)
1507{
1508	int r;
1509
1510	r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1511
1512	if (kvm->arch.tdp_mmu_enabled)
1513		r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1514
1515	return r;
1516}
1517
1518int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1519{
1520	int r;
1521
1522	r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1523
1524	if (kvm->arch.tdp_mmu_enabled)
1525		r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1526
1527	return r;
1528}
1529
1530static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1531			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1532			 unsigned long data)
1533{
1534	u64 *sptep;
1535	struct rmap_iterator iter;
1536	int young = 0;
1537
1538	for_each_rmap_spte(rmap_head, &iter, sptep)
1539		young |= mmu_spte_age(sptep);
1540
1541	trace_kvm_age_page(gfn, level, slot, young);
1542	return young;
1543}
1544
1545static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1546			      struct kvm_memory_slot *slot, gfn_t gfn,
1547			      int level, unsigned long data)
1548{
1549	u64 *sptep;
1550	struct rmap_iterator iter;
1551
1552	for_each_rmap_spte(rmap_head, &iter, sptep)
1553		if (is_accessed_spte(*sptep))
1554			return 1;
1555	return 0;
1556}
1557
1558#define RMAP_RECYCLE_THRESHOLD 1000
1559
1560static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1561{
1562	struct kvm_rmap_head *rmap_head;
1563	struct kvm_mmu_page *sp;
1564
1565	sp = sptep_to_sp(spte);
1566
1567	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1568
1569	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1570	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1571			KVM_PAGES_PER_HPAGE(sp->role.level));
1572}
1573
1574int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1575{
1576	int young = false;
1577
1578	young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1579	if (kvm->arch.tdp_mmu_enabled)
1580		young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1581
1582	return young;
1583}
1584
1585int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1586{
1587	int young = false;
1588
1589	young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1590	if (kvm->arch.tdp_mmu_enabled)
1591		young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1592
1593	return young;
1594}
1595
1596#ifdef MMU_DEBUG
1597static int is_empty_shadow_page(u64 *spt)
1598{
1599	u64 *pos;
1600	u64 *end;
1601
1602	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1603		if (is_shadow_present_pte(*pos)) {
1604			printk(KERN_ERR "%s: %p %llx\n", __func__,
1605			       pos, *pos);
1606			return 0;
1607		}
1608	return 1;
1609}
1610#endif
1611
1612/*
1613 * This value is the sum of all of the kvm instances's
1614 * kvm->arch.n_used_mmu_pages values.  We need a global,
1615 * aggregate version in order to make the slab shrinker
1616 * faster
1617 */
1618static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1619{
1620	kvm->arch.n_used_mmu_pages += nr;
1621	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1622}
1623
1624static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1625{
1626	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1627	hlist_del(&sp->hash_link);
1628	list_del(&sp->link);
1629	free_page((unsigned long)sp->spt);
1630	if (!sp->role.direct)
1631		free_page((unsigned long)sp->gfns);
1632	kmem_cache_free(mmu_page_header_cache, sp);
1633}
1634
1635static unsigned kvm_page_table_hashfn(gfn_t gfn)
1636{
1637	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1638}
1639
1640static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1641				    struct kvm_mmu_page *sp, u64 *parent_pte)
1642{
1643	if (!parent_pte)
1644		return;
1645
1646	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1647}
1648
1649static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1650				       u64 *parent_pte)
1651{
1652	__pte_list_remove(parent_pte, &sp->parent_ptes);
1653}
1654
1655static void drop_parent_pte(struct kvm_mmu_page *sp,
1656			    u64 *parent_pte)
1657{
1658	mmu_page_remove_parent_pte(sp, parent_pte);
1659	mmu_spte_clear_no_track(parent_pte);
1660}
1661
1662static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1663{
1664	struct kvm_mmu_page *sp;
1665
1666	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1667	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1668	if (!direct)
1669		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1670	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1671
1672	/*
1673	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1674	 * depends on valid pages being added to the head of the list.  See
1675	 * comments in kvm_zap_obsolete_pages().
1676	 */
1677	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1678	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1679	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1680	return sp;
1681}
1682
1683static void mark_unsync(u64 *spte);
1684static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1685{
1686	u64 *sptep;
1687	struct rmap_iterator iter;
1688
1689	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1690		mark_unsync(sptep);
1691	}
1692}
1693
1694static void mark_unsync(u64 *spte)
1695{
1696	struct kvm_mmu_page *sp;
1697	unsigned int index;
1698
1699	sp = sptep_to_sp(spte);
1700	index = spte - sp->spt;
1701	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1702		return;
1703	if (sp->unsync_children++)
1704		return;
1705	kvm_mmu_mark_parents_unsync(sp);
1706}
1707
1708static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1709			       struct kvm_mmu_page *sp)
1710{
1711	return 0;
1712}
1713
1714#define KVM_PAGE_ARRAY_NR 16
1715
1716struct kvm_mmu_pages {
1717	struct mmu_page_and_offset {
1718		struct kvm_mmu_page *sp;
1719		unsigned int idx;
1720	} page[KVM_PAGE_ARRAY_NR];
1721	unsigned int nr;
1722};
1723
1724static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1725			 int idx)
1726{
1727	int i;
1728
1729	if (sp->unsync)
1730		for (i=0; i < pvec->nr; i++)
1731			if (pvec->page[i].sp == sp)
1732				return 0;
1733
1734	pvec->page[pvec->nr].sp = sp;
1735	pvec->page[pvec->nr].idx = idx;
1736	pvec->nr++;
1737	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1738}
1739
1740static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1741{
1742	--sp->unsync_children;
1743	WARN_ON((int)sp->unsync_children < 0);
1744	__clear_bit(idx, sp->unsync_child_bitmap);
1745}
1746
1747static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1748			   struct kvm_mmu_pages *pvec)
1749{
1750	int i, ret, nr_unsync_leaf = 0;
1751
1752	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1753		struct kvm_mmu_page *child;
1754		u64 ent = sp->spt[i];
1755
1756		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1757			clear_unsync_child_bit(sp, i);
1758			continue;
1759		}
1760
1761		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1762
1763		if (child->unsync_children) {
1764			if (mmu_pages_add(pvec, child, i))
1765				return -ENOSPC;
1766
1767			ret = __mmu_unsync_walk(child, pvec);
1768			if (!ret) {
1769				clear_unsync_child_bit(sp, i);
1770				continue;
1771			} else if (ret > 0) {
1772				nr_unsync_leaf += ret;
1773			} else
1774				return ret;
1775		} else if (child->unsync) {
1776			nr_unsync_leaf++;
1777			if (mmu_pages_add(pvec, child, i))
1778				return -ENOSPC;
1779		} else
1780			clear_unsync_child_bit(sp, i);
1781	}
1782
1783	return nr_unsync_leaf;
1784}
1785
1786#define INVALID_INDEX (-1)
1787
1788static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1789			   struct kvm_mmu_pages *pvec)
1790{
1791	pvec->nr = 0;
1792	if (!sp->unsync_children)
1793		return 0;
1794
1795	mmu_pages_add(pvec, sp, INVALID_INDEX);
1796	return __mmu_unsync_walk(sp, pvec);
1797}
1798
1799static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1800{
1801	WARN_ON(!sp->unsync);
1802	trace_kvm_mmu_sync_page(sp);
1803	sp->unsync = 0;
1804	--kvm->stat.mmu_unsync;
1805}
1806
1807static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1808				     struct list_head *invalid_list);
1809static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1810				    struct list_head *invalid_list);
1811
1812#define for_each_valid_sp(_kvm, _sp, _list)				\
1813	hlist_for_each_entry(_sp, _list, hash_link)			\
1814		if (is_obsolete_sp((_kvm), (_sp))) {			\
1815		} else
1816
1817#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1818	for_each_valid_sp(_kvm, _sp,					\
1819	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1820		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1821
1822static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1823{
1824	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1825}
1826
1827/* @sp->gfn should be write-protected at the call site */
1828static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1829			    struct list_head *invalid_list)
1830{
1831	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1832	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1833		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1834		return false;
1835	}
1836
1837	return true;
1838}
1839
1840static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1841					struct list_head *invalid_list,
1842					bool remote_flush)
1843{
1844	if (!remote_flush && list_empty(invalid_list))
1845		return false;
1846
1847	if (!list_empty(invalid_list))
1848		kvm_mmu_commit_zap_page(kvm, invalid_list);
1849	else
1850		kvm_flush_remote_tlbs(kvm);
1851	return true;
1852}
1853
1854static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1855				 struct list_head *invalid_list,
1856				 bool remote_flush, bool local_flush)
1857{
1858	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1859		return;
1860
1861	if (local_flush)
1862		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1863}
1864
1865#ifdef CONFIG_KVM_MMU_AUDIT
1866#include "mmu_audit.c"
1867#else
1868static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1869static void mmu_audit_disable(void) { }
1870#endif
1871
1872static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1873{
1874	return sp->role.invalid ||
1875	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1876}
1877
1878static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1879			 struct list_head *invalid_list)
1880{
1881	kvm_unlink_unsync_page(vcpu->kvm, sp);
1882	return __kvm_sync_page(vcpu, sp, invalid_list);
1883}
1884
1885/* @gfn should be write-protected at the call site */
1886static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1887			   struct list_head *invalid_list)
1888{
1889	struct kvm_mmu_page *s;
1890	bool ret = false;
1891
1892	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1893		if (!s->unsync)
1894			continue;
1895
1896		WARN_ON(s->role.level != PG_LEVEL_4K);
1897		ret |= kvm_sync_page(vcpu, s, invalid_list);
1898	}
1899
1900	return ret;
1901}
1902
1903struct mmu_page_path {
1904	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1905	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1906};
1907
1908#define for_each_sp(pvec, sp, parents, i)			\
1909		for (i = mmu_pages_first(&pvec, &parents);	\
1910			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1911			i = mmu_pages_next(&pvec, &parents, i))
1912
1913static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1914			  struct mmu_page_path *parents,
1915			  int i)
1916{
1917	int n;
1918
1919	for (n = i+1; n < pvec->nr; n++) {
1920		struct kvm_mmu_page *sp = pvec->page[n].sp;
1921		unsigned idx = pvec->page[n].idx;
1922		int level = sp->role.level;
1923
1924		parents->idx[level-1] = idx;
1925		if (level == PG_LEVEL_4K)
1926			break;
1927
1928		parents->parent[level-2] = sp;
1929	}
1930
1931	return n;
1932}
1933
1934static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1935			   struct mmu_page_path *parents)
1936{
1937	struct kvm_mmu_page *sp;
1938	int level;
1939
1940	if (pvec->nr == 0)
1941		return 0;
1942
1943	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1944
1945	sp = pvec->page[0].sp;
1946	level = sp->role.level;
1947	WARN_ON(level == PG_LEVEL_4K);
1948
1949	parents->parent[level-2] = sp;
1950
1951	/* Also set up a sentinel.  Further entries in pvec are all
1952	 * children of sp, so this element is never overwritten.
1953	 */
1954	parents->parent[level-1] = NULL;
1955	return mmu_pages_next(pvec, parents, 0);
1956}
1957
1958static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1959{
1960	struct kvm_mmu_page *sp;
1961	unsigned int level = 0;
1962
1963	do {
1964		unsigned int idx = parents->idx[level];
1965		sp = parents->parent[level];
1966		if (!sp)
1967			return;
1968
1969		WARN_ON(idx == INVALID_INDEX);
1970		clear_unsync_child_bit(sp, idx);
1971		level++;
1972	} while (!sp->unsync_children);
1973}
1974
1975static void mmu_sync_children(struct kvm_vcpu *vcpu,
1976			      struct kvm_mmu_page *parent)
1977{
1978	int i;
1979	struct kvm_mmu_page *sp;
1980	struct mmu_page_path parents;
1981	struct kvm_mmu_pages pages;
1982	LIST_HEAD(invalid_list);
1983	bool flush = false;
1984
1985	while (mmu_unsync_walk(parent, &pages)) {
1986		bool protected = false;
1987
1988		for_each_sp(pages, sp, parents, i)
1989			protected |= rmap_write_protect(vcpu, sp->gfn);
1990
1991		if (protected) {
1992			kvm_flush_remote_tlbs(vcpu->kvm);
1993			flush = false;
1994		}
1995
1996		for_each_sp(pages, sp, parents, i) {
1997			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1998			mmu_pages_clear_parents(&parents);
1999		}
2000		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2001			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2002			cond_resched_lock(&vcpu->kvm->mmu_lock);
2003			flush = false;
2004		}
2005	}
2006
2007	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2008}
2009
2010static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2011{
2012	atomic_set(&sp->write_flooding_count,  0);
2013}
2014
2015static void clear_sp_write_flooding_count(u64 *spte)
2016{
2017	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2018}
2019
2020static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2021					     gfn_t gfn,
2022					     gva_t gaddr,
2023					     unsigned level,
2024					     int direct,
2025					     unsigned int access)
2026{
2027	bool direct_mmu = vcpu->arch.mmu->direct_map;
2028	union kvm_mmu_page_role role;
2029	struct hlist_head *sp_list;
2030	unsigned quadrant;
2031	struct kvm_mmu_page *sp;
2032	bool need_sync = false;
2033	bool flush = false;
2034	int collisions = 0;
2035	LIST_HEAD(invalid_list);
2036
2037	role = vcpu->arch.mmu->mmu_role.base;
2038	role.level = level;
2039	role.direct = direct;
2040	if (role.direct)
2041		role.gpte_is_8_bytes = true;
2042	role.access = access;
2043	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2044		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2045		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2046		role.quadrant = quadrant;
2047	}
2048
2049	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2050	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2051		if (sp->gfn != gfn) {
2052			collisions++;
2053			continue;
2054		}
2055
2056		if (!need_sync && sp->unsync)
2057			need_sync = true;
2058
2059		if (sp->role.word != role.word)
2060			continue;
2061
2062		if (direct_mmu)
2063			goto trace_get_page;
2064
2065		if (sp->unsync) {
2066			/* The page is good, but __kvm_sync_page might still end
2067			 * up zapping it.  If so, break in order to rebuild it.
2068			 */
2069			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2070				break;
2071
2072			WARN_ON(!list_empty(&invalid_list));
2073			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2074		}
2075
2076		if (sp->unsync_children)
2077			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2078
2079		__clear_sp_write_flooding_count(sp);
2080
2081trace_get_page:
2082		trace_kvm_mmu_get_page(sp, false);
2083		goto out;
2084	}
2085
2086	++vcpu->kvm->stat.mmu_cache_miss;
2087
2088	sp = kvm_mmu_alloc_page(vcpu, direct);
2089
2090	sp->gfn = gfn;
2091	sp->role = role;
2092	hlist_add_head(&sp->hash_link, sp_list);
2093	if (!direct) {
2094		/*
2095		 * we should do write protection before syncing pages
2096		 * otherwise the content of the synced shadow page may
2097		 * be inconsistent with guest page table.
2098		 */
2099		account_shadowed(vcpu->kvm, sp);
2100		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2101			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2102
2103		if (level > PG_LEVEL_4K && need_sync)
2104			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2105	}
2106	trace_kvm_mmu_get_page(sp, true);
2107
2108	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2109out:
2110	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2111		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2112	return sp;
2113}
2114
2115static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2116					struct kvm_vcpu *vcpu, hpa_t root,
2117					u64 addr)
2118{
2119	iterator->addr = addr;
2120	iterator->shadow_addr = root;
2121	iterator->level = vcpu->arch.mmu->shadow_root_level;
2122
2123	if (iterator->level == PT64_ROOT_4LEVEL &&
2124	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2125	    !vcpu->arch.mmu->direct_map)
2126		--iterator->level;
2127
2128	if (iterator->level == PT32E_ROOT_LEVEL) {
2129		/*
2130		 * prev_root is currently only used for 64-bit hosts. So only
2131		 * the active root_hpa is valid here.
2132		 */
2133		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2134
2135		iterator->shadow_addr
2136			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2137		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2138		--iterator->level;
2139		if (!iterator->shadow_addr)
2140			iterator->level = 0;
2141	}
2142}
2143
2144static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2145			     struct kvm_vcpu *vcpu, u64 addr)
2146{
2147	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2148				    addr);
2149}
2150
2151static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2152{
2153	if (iterator->level < PG_LEVEL_4K)
2154		return false;
2155
2156	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2157	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2158	return true;
2159}
2160
2161static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2162			       u64 spte)
2163{
2164	if (is_last_spte(spte, iterator->level)) {
2165		iterator->level = 0;
2166		return;
2167	}
2168
2169	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2170	--iterator->level;
2171}
2172
2173static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2174{
2175	__shadow_walk_next(iterator, *iterator->sptep);
2176}
2177
2178static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2179			     struct kvm_mmu_page *sp)
2180{
2181	u64 spte;
2182
2183	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2184
2185	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2186
2187	mmu_spte_set(sptep, spte);
2188
2189	mmu_page_add_parent_pte(vcpu, sp, sptep);
2190
2191	if (sp->unsync_children || sp->unsync)
2192		mark_unsync(sptep);
2193}
2194
2195static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2196				   unsigned direct_access)
2197{
2198	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2199		struct kvm_mmu_page *child;
2200
2201		/*
2202		 * For the direct sp, if the guest pte's dirty bit
2203		 * changed form clean to dirty, it will corrupt the
2204		 * sp's access: allow writable in the read-only sp,
2205		 * so we should update the spte at this point to get
2206		 * a new sp with the correct access.
2207		 */
2208		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2209		if (child->role.access == direct_access)
2210			return;
2211
2212		drop_parent_pte(child, sptep);
2213		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2214	}
2215}
2216
2217/* Returns the number of zapped non-leaf child shadow pages. */
2218static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2219			    u64 *spte, struct list_head *invalid_list)
2220{
2221	u64 pte;
2222	struct kvm_mmu_page *child;
2223
2224	pte = *spte;
2225	if (is_shadow_present_pte(pte)) {
2226		if (is_last_spte(pte, sp->role.level)) {
2227			drop_spte(kvm, spte);
2228			if (is_large_pte(pte))
2229				--kvm->stat.lpages;
2230		} else {
2231			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2232			drop_parent_pte(child, spte);
2233
2234			/*
2235			 * Recursively zap nested TDP SPs, parentless SPs are
2236			 * unlikely to be used again in the near future.  This
2237			 * avoids retaining a large number of stale nested SPs.
2238			 */
2239			if (tdp_enabled && invalid_list &&
2240			    child->role.guest_mode && !child->parent_ptes.val)
2241				return kvm_mmu_prepare_zap_page(kvm, child,
2242								invalid_list);
2243		}
2244	} else if (is_mmio_spte(pte)) {
2245		mmu_spte_clear_no_track(spte);
2246	}
2247	return 0;
2248}
2249
2250static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2251					struct kvm_mmu_page *sp,
2252					struct list_head *invalid_list)
2253{
2254	int zapped = 0;
2255	unsigned i;
2256
2257	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2258		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2259
2260	return zapped;
2261}
2262
2263static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2264{
2265	u64 *sptep;
2266	struct rmap_iterator iter;
2267
2268	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2269		drop_parent_pte(sp, sptep);
2270}
2271
2272static int mmu_zap_unsync_children(struct kvm *kvm,
2273				   struct kvm_mmu_page *parent,
2274				   struct list_head *invalid_list)
2275{
2276	int i, zapped = 0;
2277	struct mmu_page_path parents;
2278	struct kvm_mmu_pages pages;
2279
2280	if (parent->role.level == PG_LEVEL_4K)
2281		return 0;
2282
2283	while (mmu_unsync_walk(parent, &pages)) {
2284		struct kvm_mmu_page *sp;
2285
2286		for_each_sp(pages, sp, parents, i) {
2287			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2288			mmu_pages_clear_parents(&parents);
2289			zapped++;
2290		}
2291	}
2292
2293	return zapped;
2294}
2295
2296static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2297				       struct kvm_mmu_page *sp,
2298				       struct list_head *invalid_list,
2299				       int *nr_zapped)
2300{
2301	bool list_unstable;
2302
2303	trace_kvm_mmu_prepare_zap_page(sp);
2304	++kvm->stat.mmu_shadow_zapped;
2305	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2306	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2307	kvm_mmu_unlink_parents(kvm, sp);
2308
2309	/* Zapping children means active_mmu_pages has become unstable. */
2310	list_unstable = *nr_zapped;
2311
2312	if (!sp->role.invalid && !sp->role.direct)
2313		unaccount_shadowed(kvm, sp);
2314
2315	if (sp->unsync)
2316		kvm_unlink_unsync_page(kvm, sp);
2317	if (!sp->root_count) {
2318		/* Count self */
2319		(*nr_zapped)++;
2320
2321		/*
2322		 * Already invalid pages (previously active roots) are not on
2323		 * the active page list.  See list_del() in the "else" case of
2324		 * !sp->root_count.
2325		 */
2326		if (sp->role.invalid)
2327			list_add(&sp->link, invalid_list);
2328		else
2329			list_move(&sp->link, invalid_list);
2330		kvm_mod_used_mmu_pages(kvm, -1);
2331	} else {
2332		/*
2333		 * Remove the active root from the active page list, the root
2334		 * will be explicitly freed when the root_count hits zero.
2335		 */
2336		list_del(&sp->link);
2337
2338		/*
2339		 * Obsolete pages cannot be used on any vCPUs, see the comment
2340		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2341		 * treats invalid shadow pages as being obsolete.
2342		 */
2343		if (!is_obsolete_sp(kvm, sp))
2344			kvm_reload_remote_mmus(kvm);
2345	}
2346
2347	if (sp->lpage_disallowed)
2348		unaccount_huge_nx_page(kvm, sp);
2349
2350	sp->role.invalid = 1;
2351	return list_unstable;
2352}
2353
2354static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2355				     struct list_head *invalid_list)
2356{
2357	int nr_zapped;
2358
2359	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2360	return nr_zapped;
2361}
2362
2363static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2364				    struct list_head *invalid_list)
2365{
2366	struct kvm_mmu_page *sp, *nsp;
2367
2368	if (list_empty(invalid_list))
2369		return;
2370
2371	/*
2372	 * We need to make sure everyone sees our modifications to
2373	 * the page tables and see changes to vcpu->mode here. The barrier
2374	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2375	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2376	 *
2377	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2378	 * guest mode and/or lockless shadow page table walks.
2379	 */
2380	kvm_flush_remote_tlbs(kvm);
2381
2382	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2383		WARN_ON(!sp->role.invalid || sp->root_count);
2384		kvm_mmu_free_page(sp);
2385	}
2386}
2387
2388static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2389						  unsigned long nr_to_zap)
2390{
2391	unsigned long total_zapped = 0;
2392	struct kvm_mmu_page *sp, *tmp;
2393	LIST_HEAD(invalid_list);
2394	bool unstable;
2395	int nr_zapped;
2396
2397	if (list_empty(&kvm->arch.active_mmu_pages))
2398		return 0;
2399
2400restart:
2401	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2402		/*
2403		 * Don't zap active root pages, the page itself can't be freed
2404		 * and zapping it will just force vCPUs to realloc and reload.
2405		 */
2406		if (sp->root_count)
2407			continue;
2408
2409		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2410						      &nr_zapped);
2411		total_zapped += nr_zapped;
2412		if (total_zapped >= nr_to_zap)
2413			break;
2414
2415		if (unstable)
2416			goto restart;
2417	}
2418
2419	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2420
2421	kvm->stat.mmu_recycled += total_zapped;
2422	return total_zapped;
2423}
2424
2425static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2426{
2427	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2428		return kvm->arch.n_max_mmu_pages -
2429			kvm->arch.n_used_mmu_pages;
2430
2431	return 0;
2432}
2433
2434static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2435{
2436	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2437
2438	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2439		return 0;
2440
2441	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2442
2443	if (!kvm_mmu_available_pages(vcpu->kvm))
2444		return -ENOSPC;
2445	return 0;
2446}
2447
2448/*
2449 * Changing the number of mmu pages allocated to the vm
2450 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2451 */
2452void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2453{
2454	spin_lock(&kvm->mmu_lock);
2455
2456	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2457		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2458						  goal_nr_mmu_pages);
2459
2460		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2461	}
2462
2463	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2464
2465	spin_unlock(&kvm->mmu_lock);
2466}
2467
2468int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2469{
2470	struct kvm_mmu_page *sp;
2471	LIST_HEAD(invalid_list);
2472	int r;
2473
2474	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2475	r = 0;
2476	spin_lock(&kvm->mmu_lock);
2477	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2478		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2479			 sp->role.word);
2480		r = 1;
2481		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2482	}
2483	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2484	spin_unlock(&kvm->mmu_lock);
2485
2486	return r;
2487}
2488EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2489
2490static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2491{
2492	trace_kvm_mmu_unsync_page(sp);
2493	++vcpu->kvm->stat.mmu_unsync;
2494	sp->unsync = 1;
2495
2496	kvm_mmu_mark_parents_unsync(sp);
2497}
2498
2499bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2500			    bool can_unsync)
2501{
2502	struct kvm_mmu_page *sp;
2503
2504	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2505		return true;
2506
2507	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2508		if (!can_unsync)
2509			return true;
2510
2511		if (sp->unsync)
2512			continue;
2513
2514		WARN_ON(sp->role.level != PG_LEVEL_4K);
2515		kvm_unsync_page(vcpu, sp);
2516	}
2517
2518	/*
2519	 * We need to ensure that the marking of unsync pages is visible
2520	 * before the SPTE is updated to allow writes because
2521	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2522	 * the MMU lock and so can race with this. If the SPTE was updated
2523	 * before the page had been marked as unsync-ed, something like the
2524	 * following could happen:
2525	 *
2526	 * CPU 1                    CPU 2
2527	 * ---------------------------------------------------------------------
2528	 * 1.2 Host updates SPTE
2529	 *     to be writable
2530	 *                      2.1 Guest writes a GPTE for GVA X.
2531	 *                          (GPTE being in the guest page table shadowed
2532	 *                           by the SP from CPU 1.)
2533	 *                          This reads SPTE during the page table walk.
2534	 *                          Since SPTE.W is read as 1, there is no
2535	 *                          fault.
2536	 *
2537	 *                      2.2 Guest issues TLB flush.
2538	 *                          That causes a VM Exit.
2539	 *
2540	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2541	 *                          Since it is false, so it just returns.
2542	 *
2543	 *                      2.4 Guest accesses GVA X.
2544	 *                          Since the mapping in the SP was not updated,
2545	 *                          so the old mapping for GVA X incorrectly
2546	 *                          gets used.
2547	 * 1.1 Host marks SP
2548	 *     as unsync
2549	 *     (sp->unsync = true)
2550	 *
2551	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2552	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2553	 * pairs with this write barrier.
2554	 */
2555	smp_wmb();
2556
2557	return false;
2558}
2559
2560static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2561		    unsigned int pte_access, int level,
2562		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2563		    bool can_unsync, bool host_writable)
2564{
2565	u64 spte;
2566	struct kvm_mmu_page *sp;
2567	int ret;
2568
2569	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2570		return 0;
2571
2572	sp = sptep_to_sp(sptep);
2573
2574	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2575			can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2576
2577	if (spte & PT_WRITABLE_MASK)
2578		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2579
2580	if (*sptep == spte)
2581		ret |= SET_SPTE_SPURIOUS;
2582	else if (mmu_spte_update(sptep, spte))
2583		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2584	return ret;
2585}
2586
2587static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2588			unsigned int pte_access, bool write_fault, int level,
2589			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2590			bool host_writable)
2591{
2592	int was_rmapped = 0;
2593	int rmap_count;
2594	int set_spte_ret;
2595	int ret = RET_PF_FIXED;
2596	bool flush = false;
2597
2598	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2599		 *sptep, write_fault, gfn);
2600
2601	if (is_shadow_present_pte(*sptep)) {
2602		/*
2603		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2604		 * the parent of the now unreachable PTE.
2605		 */
2606		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2607			struct kvm_mmu_page *child;
2608			u64 pte = *sptep;
2609
2610			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2611			drop_parent_pte(child, sptep);
2612			flush = true;
2613		} else if (pfn != spte_to_pfn(*sptep)) {
2614			pgprintk("hfn old %llx new %llx\n",
2615				 spte_to_pfn(*sptep), pfn);
2616			drop_spte(vcpu->kvm, sptep);
2617			flush = true;
2618		} else
2619			was_rmapped = 1;
2620	}
2621
2622	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2623				speculative, true, host_writable);
2624	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2625		if (write_fault)
2626			ret = RET_PF_EMULATE;
2627		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2628	}
2629
2630	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2631		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2632				KVM_PAGES_PER_HPAGE(level));
2633
2634	if (unlikely(is_mmio_spte(*sptep)))
2635		ret = RET_PF_EMULATE;
2636
2637	/*
2638	 * The fault is fully spurious if and only if the new SPTE and old SPTE
2639	 * are identical, and emulation is not required.
2640	 */
2641	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2642		WARN_ON_ONCE(!was_rmapped);
2643		return RET_PF_SPURIOUS;
2644	}
2645
2646	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2647	trace_kvm_mmu_set_spte(level, gfn, sptep);
2648	if (!was_rmapped && is_large_pte(*sptep))
2649		++vcpu->kvm->stat.lpages;
2650
2651	if (is_shadow_present_pte(*sptep)) {
2652		if (!was_rmapped) {
2653			rmap_count = rmap_add(vcpu, sptep, gfn);
2654			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2655				rmap_recycle(vcpu, sptep, gfn);
2656		}
2657	}
2658
2659	return ret;
2660}
2661
2662static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2663				     bool no_dirty_log)
2664{
2665	struct kvm_memory_slot *slot;
2666
2667	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2668	if (!slot)
2669		return KVM_PFN_ERR_FAULT;
2670
2671	return gfn_to_pfn_memslot_atomic(slot, gfn);
2672}
2673
2674static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2675				    struct kvm_mmu_page *sp,
2676				    u64 *start, u64 *end)
2677{
2678	struct page *pages[PTE_PREFETCH_NUM];
2679	struct kvm_memory_slot *slot;
2680	unsigned int access = sp->role.access;
2681	int i, ret;
2682	gfn_t gfn;
2683
2684	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2685	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2686	if (!slot)
2687		return -1;
2688
2689	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2690	if (ret <= 0)
2691		return -1;
2692
2693	for (i = 0; i < ret; i++, gfn++, start++) {
2694		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2695			     page_to_pfn(pages[i]), true, true);
2696		put_page(pages[i]);
2697	}
2698
2699	return 0;
2700}
2701
2702static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2703				  struct kvm_mmu_page *sp, u64 *sptep)
2704{
2705	u64 *spte, *start = NULL;
2706	int i;
2707
2708	WARN_ON(!sp->role.direct);
2709
2710	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2711	spte = sp->spt + i;
2712
2713	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2714		if (is_shadow_present_pte(*spte) || spte == sptep) {
2715			if (!start)
2716				continue;
2717			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2718				break;
2719			start = NULL;
2720		} else if (!start)
2721			start = spte;
2722	}
2723}
2724
2725static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2726{
2727	struct kvm_mmu_page *sp;
2728
2729	sp = sptep_to_sp(sptep);
2730
2731	/*
2732	 * Without accessed bits, there's no way to distinguish between
2733	 * actually accessed translations and prefetched, so disable pte
2734	 * prefetch if accessed bits aren't available.
2735	 */
2736	if (sp_ad_disabled(sp))
2737		return;
2738
2739	if (sp->role.level > PG_LEVEL_4K)
2740		return;
2741
2742	__direct_pte_prefetch(vcpu, sp, sptep);
2743}
2744
2745static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
2746				  kvm_pfn_t pfn, struct kvm_memory_slot *slot)
2747{
2748	unsigned long hva;
2749	pte_t *pte;
2750	int level;
2751
2752	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2753		return PG_LEVEL_4K;
2754
2755	/*
2756	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2757	 * is not solely for performance, it's also necessary to avoid the
2758	 * "writable" check in __gfn_to_hva_many(), which will always fail on
2759	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2760	 * page fault steps have already verified the guest isn't writing a
2761	 * read-only memslot.
2762	 */
2763	hva = __gfn_to_hva_memslot(slot, gfn);
2764
2765	pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2766	if (unlikely(!pte))
2767		return PG_LEVEL_4K;
2768
2769	return level;
2770}
2771
2772int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2773			    int max_level, kvm_pfn_t *pfnp,
2774			    bool huge_page_disallowed, int *req_level)
2775{
2776	struct kvm_memory_slot *slot;
2777	struct kvm_lpage_info *linfo;
2778	kvm_pfn_t pfn = *pfnp;
2779	kvm_pfn_t mask;
2780	int level;
2781
2782	*req_level = PG_LEVEL_4K;
2783
2784	if (unlikely(max_level == PG_LEVEL_4K))
2785		return PG_LEVEL_4K;
2786
2787	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2788		return PG_LEVEL_4K;
2789
2790	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2791	if (!slot)
2792		return PG_LEVEL_4K;
2793
2794	max_level = min(max_level, max_huge_page_level);
2795	for ( ; max_level > PG_LEVEL_4K; max_level--) {
2796		linfo = lpage_info_slot(gfn, slot, max_level);
2797		if (!linfo->disallow_lpage)
2798			break;
2799	}
2800
2801	if (max_level == PG_LEVEL_4K)
2802		return PG_LEVEL_4K;
2803
2804	level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
2805	if (level == PG_LEVEL_4K)
2806		return level;
2807
2808	*req_level = level = min(level, max_level);
2809
2810	/*
2811	 * Enforce the iTLB multihit workaround after capturing the requested
2812	 * level, which will be used to do precise, accurate accounting.
2813	 */
2814	if (huge_page_disallowed)
2815		return PG_LEVEL_4K;
2816
2817	/*
2818	 * mmu_notifier_retry() was successful and mmu_lock is held, so
2819	 * the pmd can't be split from under us.
2820	 */
2821	mask = KVM_PAGES_PER_HPAGE(level) - 1;
2822	VM_BUG_ON((gfn & mask) != (pfn & mask));
2823	*pfnp = pfn & ~mask;
2824
2825	return level;
2826}
2827
2828void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2829				kvm_pfn_t *pfnp, int *goal_levelp)
2830{
2831	int level = *goal_levelp;
2832
2833	if (cur_level == level && level > PG_LEVEL_4K &&
2834	    is_shadow_present_pte(spte) &&
2835	    !is_large_pte(spte)) {
2836		/*
2837		 * A small SPTE exists for this pfn, but FNAME(fetch)
2838		 * and __direct_map would like to create a large PTE
2839		 * instead: just force them to go down another level,
2840		 * patching back for them into pfn the next 9 bits of
2841		 * the address.
2842		 */
2843		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2844				KVM_PAGES_PER_HPAGE(level - 1);
2845		*pfnp |= gfn & page_mask;
2846		(*goal_levelp)--;
2847	}
2848}
2849
2850static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2851			int map_writable, int max_level, kvm_pfn_t pfn,
2852			bool prefault, bool is_tdp)
2853{
2854	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2855	bool write = error_code & PFERR_WRITE_MASK;
2856	bool exec = error_code & PFERR_FETCH_MASK;
2857	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2858	struct kvm_shadow_walk_iterator it;
2859	struct kvm_mmu_page *sp;
2860	int level, req_level, ret;
2861	gfn_t gfn = gpa >> PAGE_SHIFT;
2862	gfn_t base_gfn = gfn;
2863
2864	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2865		return RET_PF_RETRY;
2866
2867	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2868					huge_page_disallowed, &req_level);
2869
2870	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2871	for_each_shadow_entry(vcpu, gpa, it) {
2872		/*
2873		 * We cannot overwrite existing page tables with an NX
2874		 * large page, as the leaf could be executable.
2875		 */
2876		if (nx_huge_page_workaround_enabled)
2877			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2878						   &pfn, &level);
2879
2880		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2881		if (it.level == level)
2882			break;
2883
2884		drop_large_spte(vcpu, it.sptep);
2885		if (!is_shadow_present_pte(*it.sptep)) {
2886			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2887					      it.level - 1, true, ACC_ALL);
2888
2889			link_shadow_page(vcpu, it.sptep, sp);
2890			if (is_tdp && huge_page_disallowed &&
2891			    req_level >= it.level)
2892				account_huge_nx_page(vcpu->kvm, sp);
2893		}
2894	}
2895
2896	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2897			   write, level, base_gfn, pfn, prefault,
2898			   map_writable);
2899	if (ret == RET_PF_SPURIOUS)
2900		return ret;
2901
2902	direct_pte_prefetch(vcpu, it.sptep);
2903	++vcpu->stat.pf_fixed;
2904	return ret;
2905}
2906
2907static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2908{
2909	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2910}
2911
2912static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2913{
2914	/*
2915	 * Do not cache the mmio info caused by writing the readonly gfn
2916	 * into the spte otherwise read access on readonly gfn also can
2917	 * caused mmio page fault and treat it as mmio access.
2918	 */
2919	if (pfn == KVM_PFN_ERR_RO_FAULT)
2920		return RET_PF_EMULATE;
2921
2922	if (pfn == KVM_PFN_ERR_HWPOISON) {
2923		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2924		return RET_PF_RETRY;
2925	}
2926
2927	return -EFAULT;
2928}
2929
2930static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2931				kvm_pfn_t pfn, unsigned int access,
2932				int *ret_val)
2933{
2934	/* The pfn is invalid, report the error! */
2935	if (unlikely(is_error_pfn(pfn))) {
2936		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2937		return true;
2938	}
2939
2940	if (unlikely(is_noslot_pfn(pfn)))
2941		vcpu_cache_mmio_info(vcpu, gva, gfn,
2942				     access & shadow_mmio_access_mask);
2943
2944	return false;
2945}
2946
2947static bool page_fault_can_be_fast(u32 error_code)
2948{
2949	/*
2950	 * Do not fix the mmio spte with invalid generation number which
2951	 * need to be updated by slow page fault path.
2952	 */
2953	if (unlikely(error_code & PFERR_RSVD_MASK))
2954		return false;
2955
2956	/* See if the page fault is due to an NX violation */
2957	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2958		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2959		return false;
2960
2961	/*
2962	 * #PF can be fast if:
2963	 * 1. The shadow page table entry is not present, which could mean that
2964	 *    the fault is potentially caused by access tracking (if enabled).
2965	 * 2. The shadow page table entry is present and the fault
2966	 *    is caused by write-protect, that means we just need change the W
2967	 *    bit of the spte which can be done out of mmu-lock.
2968	 *
2969	 * However, if access tracking is disabled we know that a non-present
2970	 * page must be a genuine page fault where we have to create a new SPTE.
2971	 * So, if access tracking is disabled, we return true only for write
2972	 * accesses to a present page.
2973	 */
2974
2975	return shadow_acc_track_mask != 0 ||
2976	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2977		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2978}
2979
2980/*
2981 * Returns true if the SPTE was fixed successfully. Otherwise,
2982 * someone else modified the SPTE from its original value.
2983 */
2984static bool
2985fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2986			u64 *sptep, u64 old_spte, u64 new_spte)
2987{
2988	gfn_t gfn;
2989
2990	WARN_ON(!sp->role.direct);
2991
2992	/*
2993	 * Theoretically we could also set dirty bit (and flush TLB) here in
2994	 * order to eliminate unnecessary PML logging. See comments in
2995	 * set_spte. But fast_page_fault is very unlikely to happen with PML
2996	 * enabled, so we do not do this. This might result in the same GPA
2997	 * to be logged in PML buffer again when the write really happens, and
2998	 * eventually to be called by mark_page_dirty twice. But it's also no
2999	 * harm. This also avoids the TLB flush needed after setting dirty bit
3000	 * so non-PML cases won't be impacted.
3001	 *
3002	 * Compare with set_spte where instead shadow_dirty_mask is set.
3003	 */
3004	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3005		return false;
3006
3007	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3008		/*
3009		 * The gfn of direct spte is stable since it is
3010		 * calculated by sp->gfn.
3011		 */
3012		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3013		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3014	}
3015
3016	return true;
3017}
3018
3019static bool is_access_allowed(u32 fault_err_code, u64 spte)
3020{
3021	if (fault_err_code & PFERR_FETCH_MASK)
3022		return is_executable_pte(spte);
3023
3024	if (fault_err_code & PFERR_WRITE_MASK)
3025		return is_writable_pte(spte);
3026
3027	/* Fault was on Read access */
3028	return spte & PT_PRESENT_MASK;
3029}
3030
3031/*
3032 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3033 */
3034static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3035			   u32 error_code)
3036{
3037	struct kvm_shadow_walk_iterator iterator;
3038	struct kvm_mmu_page *sp;
3039	int ret = RET_PF_INVALID;
3040	u64 spte = 0ull;
3041	uint retry_count = 0;
3042
3043	if (!page_fault_can_be_fast(error_code))
3044		return ret;
3045
3046	walk_shadow_page_lockless_begin(vcpu);
3047
3048	do {
3049		u64 new_spte;
3050
3051		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3052			if (!is_shadow_present_pte(spte))
3053				break;
3054
3055		sp = sptep_to_sp(iterator.sptep);
3056		if (!is_last_spte(spte, sp->role.level))
3057			break;
3058
3059		/*
3060		 * Check whether the memory access that caused the fault would
3061		 * still cause it if it were to be performed right now. If not,
3062		 * then this is a spurious fault caused by TLB lazily flushed,
3063		 * or some other CPU has already fixed the PTE after the
3064		 * current CPU took the fault.
3065		 *
3066		 * Need not check the access of upper level table entries since
3067		 * they are always ACC_ALL.
3068		 */
3069		if (is_access_allowed(error_code, spte)) {
3070			ret = RET_PF_SPURIOUS;
3071			break;
3072		}
3073
3074		new_spte = spte;
3075
3076		if (is_access_track_spte(spte))
3077			new_spte = restore_acc_track_spte(new_spte);
3078
3079		/*
3080		 * Currently, to simplify the code, write-protection can
3081		 * be removed in the fast path only if the SPTE was
3082		 * write-protected for dirty-logging or access tracking.
3083		 */
3084		if ((error_code & PFERR_WRITE_MASK) &&
3085		    spte_can_locklessly_be_made_writable(spte)) {
3086			new_spte |= PT_WRITABLE_MASK;
3087
3088			/*
3089			 * Do not fix write-permission on the large spte.  Since
3090			 * we only dirty the first page into the dirty-bitmap in
3091			 * fast_pf_fix_direct_spte(), other pages are missed
3092			 * if its slot has dirty logging enabled.
3093			 *
3094			 * Instead, we let the slow page fault path create a
3095			 * normal spte to fix the access.
3096			 *
3097			 * See the comments in kvm_arch_commit_memory_region().
3098			 */
3099			if (sp->role.level > PG_LEVEL_4K)
3100				break;
3101		}
3102
3103		/* Verify that the fault can be handled in the fast path */
3104		if (new_spte == spte ||
3105		    !is_access_allowed(error_code, new_spte))
3106			break;
3107
3108		/*
3109		 * Currently, fast page fault only works for direct mapping
3110		 * since the gfn is not stable for indirect shadow page. See
3111		 * Documentation/virt/kvm/locking.rst to get more detail.
3112		 */
3113		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3114					    new_spte)) {
3115			ret = RET_PF_FIXED;
3116			break;
3117		}
3118
3119		if (++retry_count > 4) {
3120			printk_once(KERN_WARNING
3121				"kvm: Fast #PF retrying more than 4 times.\n");
3122			break;
3123		}
3124
3125	} while (true);
3126
3127	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3128			      spte, ret);
3129	walk_shadow_page_lockless_end(vcpu);
3130
3131	return ret;
3132}
3133
3134static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3135			       struct list_head *invalid_list)
3136{
3137	struct kvm_mmu_page *sp;
3138
3139	if (!VALID_PAGE(*root_hpa))
3140		return;
3141
3142	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3143	if (WARN_ON(!sp))
3144		return;
3145
3146	if (kvm_mmu_put_root(kvm, sp)) {
3147		if (sp->tdp_mmu_page)
3148			kvm_tdp_mmu_free_root(kvm, sp);
3149		else if (sp->role.invalid)
3150			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3151	}
3152
3153	*root_hpa = INVALID_PAGE;
3154}
3155
3156/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3157void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3158			ulong roots_to_free)
3159{
3160	struct kvm *kvm = vcpu->kvm;
3161	int i;
3162	LIST_HEAD(invalid_list);
3163	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3164
3165	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3166
3167	/* Before acquiring the MMU lock, see if we need to do any real work. */
3168	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3169		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3170			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3171			    VALID_PAGE(mmu->prev_roots[i].hpa))
3172				break;
3173
3174		if (i == KVM_MMU_NUM_PREV_ROOTS)
3175			return;
3176	}
3177
3178	spin_lock(&kvm->mmu_lock);
3179
3180	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3181		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3182			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3183					   &invalid_list);
3184
3185	if (free_active_root) {
3186		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3187		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3188			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3189		} else if (mmu->pae_root) {
3190			for (i = 0; i < 4; ++i)
3191				if (mmu->pae_root[i] != 0)
3192					mmu_free_root_page(kvm,
3193							   &mmu->pae_root[i],
3194							   &invalid_list);
3195		}
3196		mmu->root_hpa = INVALID_PAGE;
3197		mmu->root_pgd = 0;
3198	}
3199
3200	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3201	spin_unlock(&kvm->mmu_lock);
3202}
3203EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3204
3205static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3206{
3207	int ret = 0;
3208
3209	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3210		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3211		ret = 1;
3212	}
3213
3214	return ret;
3215}
3216
3217static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3218			    u8 level, bool direct)
3219{
3220	struct kvm_mmu_page *sp;
3221
3222	spin_lock(&vcpu->kvm->mmu_lock);
3223
3224	if (make_mmu_pages_available(vcpu)) {
3225		spin_unlock(&vcpu->kvm->mmu_lock);
3226		return INVALID_PAGE;
3227	}
3228	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3229	++sp->root_count;
3230
3231	spin_unlock(&vcpu->kvm->mmu_lock);
3232	return __pa(sp->spt);
3233}
3234
3235static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3236{
3237	u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3238	hpa_t root;
3239	unsigned i;
3240
3241	if (vcpu->kvm->arch.tdp_mmu_enabled) {
3242		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3243
3244		if (!VALID_PAGE(root))
3245			return -ENOSPC;
3246		vcpu->arch.mmu->root_hpa = root;
3247	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3248		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3249				      true);
3250
3251		if (!VALID_PAGE(root))
3252			return -ENOSPC;
3253		vcpu->arch.mmu->root_hpa = root;
3254	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3255		for (i = 0; i < 4; ++i) {
3256			MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3257
3258			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3259					      i << 30, PT32_ROOT_LEVEL, true);
3260			if (!VALID_PAGE(root))
3261				return -ENOSPC;
3262			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3263		}
3264		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3265	} else
3266		BUG();
3267
3268	/* root_pgd is ignored for direct MMUs. */
3269	vcpu->arch.mmu->root_pgd = 0;
3270
3271	return 0;
3272}
3273
3274static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3275{
3276	u64 pdptr, pm_mask;
3277	gfn_t root_gfn, root_pgd;
3278	hpa_t root;
3279	int i;
3280
3281	root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3282	root_gfn = root_pgd >> PAGE_SHIFT;
3283
3284	if (mmu_check_root(vcpu, root_gfn))
3285		return 1;
3286
3287	/*
3288	 * Do we shadow a long mode page table? If so we need to
3289	 * write-protect the guests page table root.
3290	 */
3291	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3292		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3293
3294		root = mmu_alloc_root(vcpu, root_gfn, 0,
3295				      vcpu->arch.mmu->shadow_root_level, false);
3296		if (!VALID_PAGE(root))
3297			return -ENOSPC;
3298		vcpu->arch.mmu->root_hpa = root;
3299		goto set_root_pgd;
3300	}
3301
3302	/*
3303	 * We shadow a 32 bit page table. This may be a legacy 2-level
3304	 * or a PAE 3-level page table. In either case we need to be aware that
3305	 * the shadow page table may be a PAE or a long mode page table.
3306	 */
3307	pm_mask = PT_PRESENT_MASK;
3308	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3309		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3310
3311		/*
3312		 * Allocate the page for the PDPTEs when shadowing 32-bit NPT
3313		 * with 64-bit only when needed.  Unlike 32-bit NPT, it doesn't
3314		 * need to be in low mem.  See also lm_root below.
3315		 */
3316		if (!vcpu->arch.mmu->pae_root) {
3317			WARN_ON_ONCE(!tdp_enabled);
3318
3319			vcpu->arch.mmu->pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3320			if (!vcpu->arch.mmu->pae_root)
3321				return -ENOMEM;
3322		}
3323	}
3324
3325	for (i = 0; i < 4; ++i) {
3326		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3327		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3328			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3329			if (!(pdptr & PT_PRESENT_MASK)) {
3330				vcpu->arch.mmu->pae_root[i] = 0;
3331				continue;
3332			}
3333			root_gfn = pdptr >> PAGE_SHIFT;
3334			if (mmu_check_root(vcpu, root_gfn))
3335				return 1;
3336		}
3337
3338		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3339				      PT32_ROOT_LEVEL, false);
3340		if (!VALID_PAGE(root))
3341			return -ENOSPC;
3342		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3343	}
3344	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3345
3346	/*
3347	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3348	 * tables are allocated and initialized at MMU creation as there is no
3349	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
3350	 * on demand, as running a 32-bit L1 VMM is very rare.  The PDP is
3351	 * handled above (to share logic with PAE), deal with the PML4 here.
3352	 */
3353	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3354		if (vcpu->arch.mmu->lm_root == NULL) {
3355			u64 *lm_root;
3356
3357			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3358			if (!lm_root)
3359				return -ENOMEM;
3360
3361			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3362
3363			vcpu->arch.mmu->lm_root = lm_root;
3364		}
3365
3366		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3367	}
3368
3369set_root_pgd:
3370	vcpu->arch.mmu->root_pgd = root_pgd;
3371
3372	return 0;
3373}
3374
3375static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3376{
3377	if (vcpu->arch.mmu->direct_map)
3378		return mmu_alloc_direct_roots(vcpu);
3379	else
3380		return mmu_alloc_shadow_roots(vcpu);
3381}
3382
3383void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3384{
3385	int i;
3386	struct kvm_mmu_page *sp;
3387
3388	if (vcpu->arch.mmu->direct_map)
3389		return;
3390
3391	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3392		return;
3393
3394	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3395
3396	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3397		hpa_t root = vcpu->arch.mmu->root_hpa;
3398		sp = to_shadow_page(root);
3399
3400		/*
3401		 * Even if another CPU was marking the SP as unsync-ed
3402		 * simultaneously, any guest page table changes are not
3403		 * guaranteed to be visible anyway until this VCPU issues a TLB
3404		 * flush strictly after those changes are made. We only need to
3405		 * ensure that the other CPU sets these flags before any actual
3406		 * changes to the page tables are made. The comments in
3407		 * mmu_need_write_protect() describe what could go wrong if this
3408		 * requirement isn't satisfied.
3409		 */
3410		if (!smp_load_acquire(&sp->unsync) &&
3411		    !smp_load_acquire(&sp->unsync_children))
3412			return;
3413
3414		spin_lock(&vcpu->kvm->mmu_lock);
3415		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3416
3417		mmu_sync_children(vcpu, sp);
3418
3419		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3420		spin_unlock(&vcpu->kvm->mmu_lock);
3421		return;
3422	}
3423
3424	spin_lock(&vcpu->kvm->mmu_lock);
3425	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3426
3427	for (i = 0; i < 4; ++i) {
3428		hpa_t root = vcpu->arch.mmu->pae_root[i];
3429
3430		if (root && VALID_PAGE(root)) {
3431			root &= PT64_BASE_ADDR_MASK;
3432			sp = to_shadow_page(root);
3433			mmu_sync_children(vcpu, sp);
3434		}
3435	}
3436
3437	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3438	spin_unlock(&vcpu->kvm->mmu_lock);
3439}
3440EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3441
3442static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3443				  u32 access, struct x86_exception *exception)
3444{
3445	if (exception)
3446		exception->error_code = 0;
3447	return vaddr;
3448}
3449
3450static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3451					 u32 access,
3452					 struct x86_exception *exception)
3453{
3454	if (exception)
3455		exception->error_code = 0;
3456	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3457}
3458
3459static bool
3460__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3461{
3462	int bit7 = (pte >> 7) & 1;
3463
3464	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3465}
3466
3467static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3468{
3469	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3470}
3471
3472static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3473{
3474	/*
3475	 * A nested guest cannot use the MMIO cache if it is using nested
3476	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3477	 */
3478	if (mmu_is_nested(vcpu))
3479		return false;
3480
3481	if (direct)
3482		return vcpu_match_mmio_gpa(vcpu, addr);
3483
3484	return vcpu_match_mmio_gva(vcpu, addr);
3485}
3486
3487/*
3488 * Return the level of the lowest level SPTE added to sptes.
3489 * That SPTE may be non-present.
3490 */
3491static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3492{
3493	struct kvm_shadow_walk_iterator iterator;
3494	int leaf = -1;
3495	u64 spte;
3496
3497	walk_shadow_page_lockless_begin(vcpu);
3498
3499	for (shadow_walk_init(&iterator, vcpu, addr),
3500	     *root_level = iterator.level;
3501	     shadow_walk_okay(&iterator);
3502	     __shadow_walk_next(&iterator, spte)) {
3503		leaf = iterator.level;
3504		spte = mmu_spte_get_lockless(iterator.sptep);
3505
3506		sptes[leaf - 1] = spte;
3507
3508		if (!is_shadow_present_pte(spte))
3509			break;
3510	}
3511
3512	walk_shadow_page_lockless_end(vcpu);
3513
3514	return leaf;
3515}
3516
3517/* return true if reserved bit is detected on spte. */
3518static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3519{
3520	u64 sptes[PT64_ROOT_MAX_LEVEL];
3521	struct rsvd_bits_validate *rsvd_check;
3522	int root, leaf, level;
3523	bool reserved = false;
3524
3525	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3526		*sptep = 0ull;
3527		return reserved;
3528	}
3529
3530	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3531		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3532	else
3533		leaf = get_walk(vcpu, addr, sptes, &root);
3534
3535	if (unlikely(leaf < 0)) {
3536		*sptep = 0ull;
3537		return reserved;
3538	}
3539
3540	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3541
3542	for (level = root; level >= leaf; level--) {
3543		if (!is_shadow_present_pte(sptes[level - 1]))
3544			break;
3545		/*
3546		 * Use a bitwise-OR instead of a logical-OR to aggregate the
3547		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3548		 * adding a Jcc in the loop.
3549		 */
3550		reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level - 1]) ||
3551			    __is_rsvd_bits_set(rsvd_check, sptes[level - 1],
3552					       level);
3553	}
3554
3555	if (reserved) {
3556		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3557		       __func__, addr);
3558		for (level = root; level >= leaf; level--)
3559			pr_err("------ spte 0x%llx level %d.\n",
3560			       sptes[level - 1], level);
3561	}
3562
3563	*sptep = sptes[leaf - 1];
3564
3565	return reserved;
3566}
3567
3568static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3569{
3570	u64 spte;
3571	bool reserved;
3572
3573	if (mmio_info_in_cache(vcpu, addr, direct))
3574		return RET_PF_EMULATE;
3575
3576	reserved = get_mmio_spte(vcpu, addr, &spte);
3577	if (WARN_ON(reserved))
3578		return -EINVAL;
3579
3580	if (is_mmio_spte(spte)) {
3581		gfn_t gfn = get_mmio_spte_gfn(spte);
3582		unsigned int access = get_mmio_spte_access(spte);
3583
3584		if (!check_mmio_spte(vcpu, spte))
3585			return RET_PF_INVALID;
3586
3587		if (direct)
3588			addr = 0;
3589
3590		trace_handle_mmio_page_fault(addr, gfn, access);
3591		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3592		return RET_PF_EMULATE;
3593	}
3594
3595	/*
3596	 * If the page table is zapped by other cpus, let CPU fault again on
3597	 * the address.
3598	 */
3599	return RET_PF_RETRY;
3600}
3601
3602static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3603					 u32 error_code, gfn_t gfn)
3604{
3605	if (unlikely(error_code & PFERR_RSVD_MASK))
3606		return false;
3607
3608	if (!(error_code & PFERR_PRESENT_MASK) ||
3609	      !(error_code & PFERR_WRITE_MASK))
3610		return false;
3611
3612	/*
3613	 * guest is writing the page which is write tracked which can
3614	 * not be fixed by page fault handler.
3615	 */
3616	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3617		return true;
3618
3619	return false;
3620}
3621
3622static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3623{
3624	struct kvm_shadow_walk_iterator iterator;
3625	u64 spte;
3626
3627	walk_shadow_page_lockless_begin(vcpu);
3628	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3629		clear_sp_write_flooding_count(iterator.sptep);
3630		if (!is_shadow_present_pte(spte))
3631			break;
3632	}
3633	walk_shadow_page_lockless_end(vcpu);
3634}
3635
3636static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
3637{
3638	/* make sure the token value is not 0 */
3639	u32 id = vcpu->arch.apf.id;
3640
3641	if (id << 12 == 0)
3642		vcpu->arch.apf.id = 1;
3643
3644	return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3645}
3646
3647static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3648				    gfn_t gfn)
3649{
3650	struct kvm_arch_async_pf arch;
3651
3652	arch.token = alloc_apf_token(vcpu);
3653	arch.gfn = gfn;
3654	arch.direct_map = vcpu->arch.mmu->direct_map;
3655	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3656
3657	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3658				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3659}
3660
3661static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3662			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3663			 bool *writable)
3664{
3665	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3666	bool async;
3667
3668	/*
3669	 * Retry the page fault if the gfn hit a memslot that is being deleted
3670	 * or moved.  This ensures any existing SPTEs for the old memslot will
3671	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3672	 */
3673	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3674		return true;
3675
3676	/* Don't expose private memslots to L2. */
3677	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3678		*pfn = KVM_PFN_NOSLOT;
3679		*writable = false;
3680		return false;
3681	}
3682
3683	async = false;
3684	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3685	if (!async)
3686		return false; /* *pfn has correct page already */
3687
3688	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3689		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3690		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3691			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3692			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3693			return true;
3694		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3695			return true;
3696	}
3697
3698	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3699	return false;
3700}
3701
3702static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3703			     bool prefault, int max_level, bool is_tdp)
3704{
3705	bool write = error_code & PFERR_WRITE_MASK;
3706	bool map_writable;
3707
3708	gfn_t gfn = gpa >> PAGE_SHIFT;
3709	unsigned long mmu_seq;
3710	kvm_pfn_t pfn;
3711	int r;
3712
3713	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3714		return RET_PF_EMULATE;
3715
3716	if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3717		r = fast_page_fault(vcpu, gpa, error_code);
3718		if (r != RET_PF_INVALID)
3719			return r;
3720	}
3721
3722	r = mmu_topup_memory_caches(vcpu, false);
3723	if (r)
3724		return r;
3725
3726	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3727	smp_rmb();
3728
3729	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3730		return RET_PF_RETRY;
3731
3732	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3733		return r;
3734
3735	r = RET_PF_RETRY;
3736	spin_lock(&vcpu->kvm->mmu_lock);
3737	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3738		goto out_unlock;
3739	r = make_mmu_pages_available(vcpu);
3740	if (r)
3741		goto out_unlock;
3742
3743	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3744		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3745				    pfn, prefault);
3746	else
3747		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3748				 prefault, is_tdp);
3749
3750out_unlock:
3751	spin_unlock(&vcpu->kvm->mmu_lock);
3752	kvm_release_pfn_clean(pfn);
3753	return r;
3754}
3755
3756static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3757				u32 error_code, bool prefault)
3758{
3759	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3760
3761	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3762	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3763				 PG_LEVEL_2M, false);
3764}
3765
3766int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3767				u64 fault_address, char *insn, int insn_len)
3768{
3769	int r = 1;
3770	u32 flags = vcpu->arch.apf.host_apf_flags;
3771
3772#ifndef CONFIG_X86_64
3773	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
3774	if (WARN_ON_ONCE(fault_address >> 32))
3775		return -EFAULT;
3776#endif
3777
3778	vcpu->arch.l1tf_flush_l1d = true;
3779	if (!flags) {
3780		trace_kvm_page_fault(fault_address, error_code);
3781
3782		if (kvm_event_needs_reinjection(vcpu))
3783			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3784		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3785				insn_len);
3786	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3787		vcpu->arch.apf.host_apf_flags = 0;
3788		local_irq_disable();
3789		kvm_async_pf_task_wait_schedule(fault_address);
3790		local_irq_enable();
3791	} else {
3792		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3793	}
3794
3795	return r;
3796}
3797EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3798
3799int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3800		       bool prefault)
3801{
3802	int max_level;
3803
3804	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3805	     max_level > PG_LEVEL_4K;
3806	     max_level--) {
3807		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3808		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3809
3810		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3811			break;
3812	}
3813
3814	return direct_page_fault(vcpu, gpa, error_code, prefault,
3815				 max_level, true);
3816}
3817
3818static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3819				   struct kvm_mmu *context)
3820{
3821	context->page_fault = nonpaging_page_fault;
3822	context->gva_to_gpa = nonpaging_gva_to_gpa;
3823	context->sync_page = nonpaging_sync_page;
3824	context->invlpg = NULL;
3825	context->root_level = 0;
3826	context->shadow_root_level = PT32E_ROOT_LEVEL;
3827	context->direct_map = true;
3828	context->nx = false;
3829}
3830
3831static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3832				  union kvm_mmu_page_role role)
3833{
3834	return (role.direct || pgd == root->pgd) &&
3835	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3836	       role.word == to_shadow_page(root->hpa)->role.word;
3837}
3838
3839/*
3840 * Find out if a previously cached root matching the new pgd/role is available.
3841 * The current root is also inserted into the cache.
3842 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3843 * returned.
3844 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3845 * false is returned. This root should now be freed by the caller.
3846 */
3847static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3848				  union kvm_mmu_page_role new_role)
3849{
3850	uint i;
3851	struct kvm_mmu_root_info root;
3852	struct kvm_mmu *mmu = vcpu->arch.mmu;
3853
3854	root.pgd = mmu->root_pgd;
3855	root.hpa = mmu->root_hpa;
3856
3857	if (is_root_usable(&root, new_pgd, new_role))
3858		return true;
3859
3860	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3861		swap(root, mmu->prev_roots[i]);
3862
3863		if (is_root_usable(&root, new_pgd, new_role))
3864			break;
3865	}
3866
3867	mmu->root_hpa = root.hpa;
3868	mmu->root_pgd = root.pgd;
3869
3870	return i < KVM_MMU_NUM_PREV_ROOTS;
3871}
3872
3873static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3874			    union kvm_mmu_page_role new_role)
3875{
3876	struct kvm_mmu *mmu = vcpu->arch.mmu;
3877
3878	/*
3879	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3880	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3881	 * later if necessary.
3882	 */
3883	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3884	    mmu->root_level >= PT64_ROOT_4LEVEL)
3885		return cached_root_available(vcpu, new_pgd, new_role);
3886
3887	return false;
3888}
3889
3890static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3891			      union kvm_mmu_page_role new_role,
3892			      bool skip_tlb_flush, bool skip_mmu_sync)
3893{
3894	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3895		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3896		return;
3897	}
3898
3899	/*
3900	 * It's possible that the cached previous root page is obsolete because
3901	 * of a change in the MMU generation number. However, changing the
3902	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3903	 * free the root set here and allocate a new one.
3904	 */
3905	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3906
3907	if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3908		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3909	if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3910		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3911
3912	/*
3913	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3914	 * switching to a new CR3, that GVA->GPA mapping may no longer be
3915	 * valid. So clear any cached MMIO info even when we don't need to sync
3916	 * the shadow page tables.
3917	 */
3918	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3919
3920	/*
3921	 * If this is a direct root page, it doesn't have a write flooding
3922	 * count. Otherwise, clear the write flooding count.
3923	 */
3924	if (!new_role.direct)
3925		__clear_sp_write_flooding_count(
3926				to_shadow_page(vcpu->arch.mmu->root_hpa));
3927}
3928
3929void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3930		     bool skip_mmu_sync)
3931{
3932	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3933			  skip_tlb_flush, skip_mmu_sync);
3934}
3935EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3936
3937static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3938{
3939	return kvm_read_cr3(vcpu);
3940}
3941
3942static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3943			   unsigned int access, int *nr_present)
3944{
3945	if (unlikely(is_mmio_spte(*sptep))) {
3946		if (gfn != get_mmio_spte_gfn(*sptep)) {
3947			mmu_spte_clear_no_track(sptep);
3948			return true;
3949		}
3950
3951		(*nr_present)++;
3952		mark_mmio_spte(vcpu, sptep, gfn, access);
3953		return true;
3954	}
3955
3956	return false;
3957}
3958
3959static inline bool is_last_gpte(struct kvm_mmu *mmu,
3960				unsigned level, unsigned gpte)
3961{
3962	/*
3963	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3964	 * If it is clear, there are no large pages at this level, so clear
3965	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3966	 */
3967	gpte &= level - mmu->last_nonleaf_level;
3968
3969	/*
3970	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
3971	 * iff level <= PG_LEVEL_4K, which for our purpose means
3972	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3973	 */
3974	gpte |= level - PG_LEVEL_4K - 1;
3975
3976	return gpte & PT_PAGE_SIZE_MASK;
3977}
3978
3979#define PTTYPE_EPT 18 /* arbitrary */
3980#define PTTYPE PTTYPE_EPT
3981#include "paging_tmpl.h"
3982#undef PTTYPE
3983
3984#define PTTYPE 64
3985#include "paging_tmpl.h"
3986#undef PTTYPE
3987
3988#define PTTYPE 32
3989#include "paging_tmpl.h"
3990#undef PTTYPE
3991
3992static void
3993__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3994			struct rsvd_bits_validate *rsvd_check,
3995			int maxphyaddr, int level, bool nx, bool gbpages,
3996			bool pse, bool amd)
3997{
3998	u64 exb_bit_rsvd = 0;
3999	u64 gbpages_bit_rsvd = 0;
4000	u64 nonleaf_bit8_rsvd = 0;
4001
4002	rsvd_check->bad_mt_xwr = 0;
4003
4004	if (!nx)
4005		exb_bit_rsvd = rsvd_bits(63, 63);
4006	if (!gbpages)
4007		gbpages_bit_rsvd = rsvd_bits(7, 7);
4008
4009	/*
4010	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4011	 * leaf entries) on AMD CPUs only.
4012	 */
4013	if (amd)
4014		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4015
4016	switch (level) {
4017	case PT32_ROOT_LEVEL:
4018		/* no rsvd bits for 2 level 4K page table entries */
4019		rsvd_check->rsvd_bits_mask[0][1] = 0;
4020		rsvd_check->rsvd_bits_mask[0][0] = 0;
4021		rsvd_check->rsvd_bits_mask[1][0] =
4022			rsvd_check->rsvd_bits_mask[0][0];
4023
4024		if (!pse) {
4025			rsvd_check->rsvd_bits_mask[1][1] = 0;
4026			break;
4027		}
4028
4029		if (is_cpuid_PSE36())
4030			/* 36bits PSE 4MB page */
4031			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4032		else
4033			/* 32 bits PSE 4MB page */
4034			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4035		break;
4036	case PT32E_ROOT_LEVEL:
4037		rsvd_check->rsvd_bits_mask[0][2] =
4038			rsvd_bits(maxphyaddr, 63) |
4039			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4040		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4041			rsvd_bits(maxphyaddr, 62);	/* PDE */
4042		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4043			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4044		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4045			rsvd_bits(maxphyaddr, 62) |
4046			rsvd_bits(13, 20);		/* large page */
4047		rsvd_check->rsvd_bits_mask[1][0] =
4048			rsvd_check->rsvd_bits_mask[0][0];
4049		break;
4050	case PT64_ROOT_5LEVEL:
4051		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4052			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4053			rsvd_bits(maxphyaddr, 51);
4054		rsvd_check->rsvd_bits_mask[1][4] =
4055			rsvd_check->rsvd_bits_mask[0][4];
4056		fallthrough;
4057	case PT64_ROOT_4LEVEL:
4058		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4059			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4060			rsvd_bits(maxphyaddr, 51);
4061		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4062			gbpages_bit_rsvd |
4063			rsvd_bits(maxphyaddr, 51);
4064		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4065			rsvd_bits(maxphyaddr, 51);
4066		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4067			rsvd_bits(maxphyaddr, 51);
4068		rsvd_check->rsvd_bits_mask[1][3] =
4069			rsvd_check->rsvd_bits_mask[0][3];
4070		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4071			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4072			rsvd_bits(13, 29);
4073		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4074			rsvd_bits(maxphyaddr, 51) |
4075			rsvd_bits(13, 20);		/* large page */
4076		rsvd_check->rsvd_bits_mask[1][0] =
4077			rsvd_check->rsvd_bits_mask[0][0];
4078		break;
4079	}
4080}
4081
4082static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4083				  struct kvm_mmu *context)
4084{
4085	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4086				cpuid_maxphyaddr(vcpu), context->root_level,
4087				context->nx,
4088				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4089				is_pse(vcpu),
4090				guest_cpuid_is_amd_or_hygon(vcpu));
4091}
4092
4093static void
4094__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4095			    int maxphyaddr, bool execonly)
4096{
4097	u64 bad_mt_xwr;
4098
4099	rsvd_check->rsvd_bits_mask[0][4] =
4100		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4101	rsvd_check->rsvd_bits_mask[0][3] =
4102		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4103	rsvd_check->rsvd_bits_mask[0][2] =
4104		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4105	rsvd_check->rsvd_bits_mask[0][1] =
4106		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4107	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4108
4109	/* large page */
4110	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4111	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4112	rsvd_check->rsvd_bits_mask[1][2] =
4113		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4114	rsvd_check->rsvd_bits_mask[1][1] =
4115		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4116	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4117
4118	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4119	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4120	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4121	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4122	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4123	if (!execonly) {
4124		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4125		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4126	}
4127	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4128}
4129
4130static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4131		struct kvm_mmu *context, bool execonly)
4132{
4133	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4134				    cpuid_maxphyaddr(vcpu), execonly);
4135}
4136
4137/*
4138 * the page table on host is the shadow page table for the page
4139 * table in guest or amd nested guest, its mmu features completely
4140 * follow the features in guest.
4141 */
4142void
4143reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4144{
4145	/*
4146	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4147	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4148	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4149	 * The iTLB multi-hit workaround can be toggled at any time, so assume
4150	 * NX can be used by any non-nested shadow MMU to avoid having to reset
4151	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
4152	 */
4153	bool uses_nx = context->nx || !tdp_enabled ||
4154		context->mmu_role.base.smep_andnot_wp;
4155	struct rsvd_bits_validate *shadow_zero_check;
4156	int i;
4157
4158	/*
4159	 * Passing "true" to the last argument is okay; it adds a check
4160	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4161	 */
4162	shadow_zero_check = &context->shadow_zero_check;
4163	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4164				shadow_phys_bits,
4165				context->shadow_root_level, uses_nx,
4166				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4167				is_pse(vcpu), true);
4168
4169	if (!shadow_me_mask)
4170		return;
4171
4172	for (i = context->shadow_root_level; --i >= 0;) {
4173		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4174		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4175	}
4176
4177}
4178EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4179
4180static inline bool boot_cpu_is_amd(void)
4181{
4182	WARN_ON_ONCE(!tdp_enabled);
4183	return shadow_x_mask == 0;
4184}
4185
4186/*
4187 * the direct page table on host, use as much mmu features as
4188 * possible, however, kvm currently does not do execution-protection.
4189 */
4190static void
4191reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4192				struct kvm_mmu *context)
4193{
4194	struct rsvd_bits_validate *shadow_zero_check;
4195	int i;
4196
4197	shadow_zero_check = &context->shadow_zero_check;
4198
4199	if (boot_cpu_is_amd())
4200		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4201					shadow_phys_bits,
4202					context->shadow_root_level, false,
4203					boot_cpu_has(X86_FEATURE_GBPAGES),
4204					true, true);
4205	else
4206		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4207					    shadow_phys_bits,
4208					    false);
4209
4210	if (!shadow_me_mask)
4211		return;
4212
4213	for (i = context->shadow_root_level; --i >= 0;) {
4214		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4215		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4216	}
4217}
4218
4219/*
4220 * as the comments in reset_shadow_zero_bits_mask() except it
4221 * is the shadow page table for intel nested guest.
4222 */
4223static void
4224reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4225				struct kvm_mmu *context, bool execonly)
4226{
4227	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4228				    shadow_phys_bits, execonly);
4229}
4230
4231#define BYTE_MASK(access) \
4232	((1 & (access) ? 2 : 0) | \
4233	 (2 & (access) ? 4 : 0) | \
4234	 (3 & (access) ? 8 : 0) | \
4235	 (4 & (access) ? 16 : 0) | \
4236	 (5 & (access) ? 32 : 0) | \
4237	 (6 & (access) ? 64 : 0) | \
4238	 (7 & (access) ? 128 : 0))
4239
4240
4241static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4242				      struct kvm_mmu *mmu, bool ept)
4243{
4244	unsigned byte;
4245
4246	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4247	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4248	const u8 u = BYTE_MASK(ACC_USER_MASK);
4249
4250	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4251	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4252	bool cr0_wp = is_write_protection(vcpu);
4253
4254	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4255		unsigned pfec = byte << 1;
4256
4257		/*
4258		 * Each "*f" variable has a 1 bit for each UWX value
4259		 * that causes a fault with the given PFEC.
4260		 */
4261
4262		/* Faults from writes to non-writable pages */
4263		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4264		/* Faults from user mode accesses to supervisor pages */
4265		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4266		/* Faults from fetches of non-executable pages*/
4267		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4268		/* Faults from kernel mode fetches of user pages */
4269		u8 smepf = 0;
4270		/* Faults from kernel mode accesses of user pages */
4271		u8 smapf = 0;
4272
4273		if (!ept) {
4274			/* Faults from kernel mode accesses to user pages */
4275			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4276
4277			/* Not really needed: !nx will cause pte.nx to fault */
4278			if (!mmu->nx)
4279				ff = 0;
4280
4281			/* Allow supervisor writes if !cr0.wp */
4282			if (!cr0_wp)
4283				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4284
4285			/* Disallow supervisor fetches of user code if cr4.smep */
4286			if (cr4_smep)
4287				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4288
4289			/*
4290			 * SMAP:kernel-mode data accesses from user-mode
4291			 * mappings should fault. A fault is considered
4292			 * as a SMAP violation if all of the following
4293			 * conditions are true:
4294			 *   - X86_CR4_SMAP is set in CR4
4295			 *   - A user page is accessed
4296			 *   - The access is not a fetch
4297			 *   - Page fault in kernel mode
4298			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
4299			 *
4300			 * Here, we cover the first three conditions.
4301			 * The fourth is computed dynamically in permission_fault();
4302			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4303			 * *not* subject to SMAP restrictions.
4304			 */
4305			if (cr4_smap)
4306				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4307		}
4308
4309		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4310	}
4311}
4312
4313/*
4314* PKU is an additional mechanism by which the paging controls access to
4315* user-mode addresses based on the value in the PKRU register.  Protection
4316* key violations are reported through a bit in the page fault error code.
4317* Unlike other bits of the error code, the PK bit is not known at the
4318* call site of e.g. gva_to_gpa; it must be computed directly in
4319* permission_fault based on two bits of PKRU, on some machine state (CR4,
4320* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4321*
4322* In particular the following conditions come from the error code, the
4323* page tables and the machine state:
4324* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4325* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4326* - PK is always zero if U=0 in the page tables
4327* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4328*
4329* The PKRU bitmask caches the result of these four conditions.  The error
4330* code (minus the P bit) and the page table's U bit form an index into the
4331* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4332* with the two bits of the PKRU register corresponding to the protection key.
4333* For the first three conditions above the bits will be 00, thus masking
4334* away both AD and WD.  For all reads or if the last condition holds, WD
4335* only will be masked away.
4336*/
4337static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4338				bool ept)
4339{
4340	unsigned bit;
4341	bool wp;
4342
4343	if (ept) {
4344		mmu->pkru_mask = 0;
4345		return;
4346	}
4347
4348	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4349	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4350		mmu->pkru_mask = 0;
4351		return;
4352	}
4353
4354	wp = is_write_protection(vcpu);
4355
4356	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4357		unsigned pfec, pkey_bits;
4358		bool check_pkey, check_write, ff, uf, wf, pte_user;
4359
4360		pfec = bit << 1;
4361		ff = pfec & PFERR_FETCH_MASK;
4362		uf = pfec & PFERR_USER_MASK;
4363		wf = pfec & PFERR_WRITE_MASK;
4364
4365		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4366		pte_user = pfec & PFERR_RSVD_MASK;
4367
4368		/*
4369		 * Only need to check the access which is not an
4370		 * instruction fetch and is to a user page.
4371		 */
4372		check_pkey = (!ff && pte_user);
4373		/*
4374		 * write access is controlled by PKRU if it is a
4375		 * user access or CR0.WP = 1.
4376		 */
4377		check_write = check_pkey && wf && (uf || wp);
4378
4379		/* PKRU.AD stops both read and write access. */
4380		pkey_bits = !!check_pkey;
4381		/* PKRU.WD stops write access. */
4382		pkey_bits |= (!!check_write) << 1;
4383
4384		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4385	}
4386}
4387
4388static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4389{
4390	unsigned root_level = mmu->root_level;
4391
4392	mmu->last_nonleaf_level = root_level;
4393	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4394		mmu->last_nonleaf_level++;
4395}
4396
4397static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4398					 struct kvm_mmu *context,
4399					 int level)
4400{
4401	context->nx = is_nx(vcpu);
4402	context->root_level = level;
4403
4404	reset_rsvds_bits_mask(vcpu, context);
4405	update_permission_bitmask(vcpu, context, false);
4406	update_pkru_bitmask(vcpu, context, false);
4407	update_last_nonleaf_level(vcpu, context);
4408
4409	MMU_WARN_ON(!is_pae(vcpu));
4410	context->page_fault = paging64_page_fault;
4411	context->gva_to_gpa = paging64_gva_to_gpa;
4412	context->sync_page = paging64_sync_page;
4413	context->invlpg = paging64_invlpg;
4414	context->shadow_root_level = level;
4415	context->direct_map = false;
4416}
4417
4418static void paging64_init_context(struct kvm_vcpu *vcpu,
4419				  struct kvm_mmu *context)
4420{
4421	int root_level = is_la57_mode(vcpu) ?
4422			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4423
4424	paging64_init_context_common(vcpu, context, root_level);
4425}
4426
4427static void paging32_init_context(struct kvm_vcpu *vcpu,
4428				  struct kvm_mmu *context)
4429{
4430	context->nx = false;
4431	context->root_level = PT32_ROOT_LEVEL;
4432
4433	reset_rsvds_bits_mask(vcpu, context);
4434	update_permission_bitmask(vcpu, context, false);
4435	update_pkru_bitmask(vcpu, context, false);
4436	update_last_nonleaf_level(vcpu, context);
4437
4438	context->page_fault = paging32_page_fault;
4439	context->gva_to_gpa = paging32_gva_to_gpa;
4440	context->sync_page = paging32_sync_page;
4441	context->invlpg = paging32_invlpg;
4442	context->shadow_root_level = PT32E_ROOT_LEVEL;
4443	context->direct_map = false;
4444}
4445
4446static void paging32E_init_context(struct kvm_vcpu *vcpu,
4447				   struct kvm_mmu *context)
4448{
4449	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4450}
4451
4452static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4453{
4454	union kvm_mmu_extended_role ext = {0};
4455
4456	ext.cr0_pg = !!is_paging(vcpu);
4457	ext.cr4_pae = !!is_pae(vcpu);
4458	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4459	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4460	ext.cr4_pse = !!is_pse(vcpu);
4461	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4462	ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4463	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4464
4465	ext.valid = 1;
4466
4467	return ext;
4468}
4469
4470static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4471						   bool base_only)
4472{
4473	union kvm_mmu_role role = {0};
4474
4475	role.base.access = ACC_ALL;
4476	role.base.nxe = !!is_nx(vcpu);
4477	role.base.cr0_wp = is_write_protection(vcpu);
4478	role.base.smm = is_smm(vcpu);
4479	role.base.guest_mode = is_guest_mode(vcpu);
4480
4481	if (base_only)
4482		return role;
4483
4484	role.ext = kvm_calc_mmu_role_ext(vcpu);
4485
4486	return role;
4487}
4488
4489static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4490{
4491	/* Use 5-level TDP if and only if it's useful/necessary. */
4492	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4493		return 4;
4494
4495	return max_tdp_level;
4496}
4497
4498static union kvm_mmu_role
4499kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4500{
4501	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4502
4503	role.base.ad_disabled = (shadow_accessed_mask == 0);
4504	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4505	role.base.direct = true;
4506	role.base.gpte_is_8_bytes = true;
4507
4508	return role;
4509}
4510
4511static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4512{
4513	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4514	union kvm_mmu_role new_role =
4515		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4516
4517	if (new_role.as_u64 == context->mmu_role.as_u64)
4518		return;
4519
4520	context->mmu_role.as_u64 = new_role.as_u64;
4521	context->page_fault = kvm_tdp_page_fault;
4522	context->sync_page = nonpaging_sync_page;
4523	context->invlpg = NULL;
4524	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4525	context->direct_map = true;
4526	context->get_guest_pgd = get_cr3;
4527	context->get_pdptr = kvm_pdptr_read;
4528	context->inject_page_fault = kvm_inject_page_fault;
4529
4530	if (!is_paging(vcpu)) {
4531		context->nx = false;
4532		context->gva_to_gpa = nonpaging_gva_to_gpa;
4533		context->root_level = 0;
4534	} else if (is_long_mode(vcpu)) {
4535		context->nx = is_nx(vcpu);
4536		context->root_level = is_la57_mode(vcpu) ?
4537				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4538		reset_rsvds_bits_mask(vcpu, context);
4539		context->gva_to_gpa = paging64_gva_to_gpa;
4540	} else if (is_pae(vcpu)) {
4541		context->nx = is_nx(vcpu);
4542		context->root_level = PT32E_ROOT_LEVEL;
4543		reset_rsvds_bits_mask(vcpu, context);
4544		context->gva_to_gpa = paging64_gva_to_gpa;
4545	} else {
4546		context->nx = false;
4547		context->root_level = PT32_ROOT_LEVEL;
4548		reset_rsvds_bits_mask(vcpu, context);
4549		context->gva_to_gpa = paging32_gva_to_gpa;
4550	}
4551
4552	update_permission_bitmask(vcpu, context, false);
4553	update_pkru_bitmask(vcpu, context, false);
4554	update_last_nonleaf_level(vcpu, context);
4555	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4556}
4557
4558static union kvm_mmu_role
4559kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4560{
4561	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4562
4563	role.base.smep_andnot_wp = role.ext.cr4_smep &&
4564		!is_write_protection(vcpu);
4565	role.base.smap_andnot_wp = role.ext.cr4_smap &&
4566		!is_write_protection(vcpu);
4567	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4568
4569	return role;
4570}
4571
4572static union kvm_mmu_role
4573kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4574{
4575	union kvm_mmu_role role =
4576		kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4577
4578	role.base.direct = !is_paging(vcpu);
4579
4580	if (!is_long_mode(vcpu))
4581		role.base.level = PT32E_ROOT_LEVEL;
4582	else if (is_la57_mode(vcpu))
4583		role.base.level = PT64_ROOT_5LEVEL;
4584	else
4585		role.base.level = PT64_ROOT_4LEVEL;
4586
4587	return role;
4588}
4589
4590static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4591				    u32 cr0, u32 cr4, u32 efer,
4592				    union kvm_mmu_role new_role)
4593{
4594	if (!(cr0 & X86_CR0_PG))
4595		nonpaging_init_context(vcpu, context);
4596	else if (efer & EFER_LMA)
4597		paging64_init_context(vcpu, context);
4598	else if (cr4 & X86_CR4_PAE)
4599		paging32E_init_context(vcpu, context);
4600	else
4601		paging32_init_context(vcpu, context);
4602
4603	context->mmu_role.as_u64 = new_role.as_u64;
4604	reset_shadow_zero_bits_mask(vcpu, context);
4605}
4606
4607static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4608{
4609	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4610	union kvm_mmu_role new_role =
4611		kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4612
4613	if (new_role.as_u64 != context->mmu_role.as_u64)
4614		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4615}
4616
4617static union kvm_mmu_role
4618kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4619{
4620	union kvm_mmu_role role =
4621		kvm_calc_shadow_root_page_role_common(vcpu, false);
4622
4623	role.base.direct = false;
4624	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4625
4626	return role;
4627}
4628
4629void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4630			     gpa_t nested_cr3)
4631{
4632	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4633	union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4634
4635	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4636
4637	if (new_role.as_u64 != context->mmu_role.as_u64) {
4638		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4639
4640		/*
4641		 * Override the level set by the common init helper, nested TDP
4642		 * always uses the host's TDP configuration.
4643		 */
4644		context->shadow_root_level = new_role.base.level;
4645	}
4646}
4647EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4648
4649static union kvm_mmu_role
4650kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4651				   bool execonly, u8 level)
4652{
4653	union kvm_mmu_role role = {0};
4654
4655	/* SMM flag is inherited from root_mmu */
4656	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4657
4658	role.base.level = level;
4659	role.base.gpte_is_8_bytes = true;
4660	role.base.direct = false;
4661	role.base.ad_disabled = !accessed_dirty;
4662	role.base.guest_mode = true;
4663	role.base.access = ACC_ALL;
4664
4665	/*
4666	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4667	 * SMAP variation to denote shadow EPT entries.
4668	 */
4669	role.base.cr0_wp = true;
4670	role.base.smap_andnot_wp = true;
4671
4672	role.ext = kvm_calc_mmu_role_ext(vcpu);
4673	role.ext.execonly = execonly;
4674
4675	return role;
4676}
4677
4678void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4679			     bool accessed_dirty, gpa_t new_eptp)
4680{
4681	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4682	u8 level = vmx_eptp_page_walk_level(new_eptp);
4683	union kvm_mmu_role new_role =
4684		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4685						   execonly, level);
4686
4687	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4688
4689	if (new_role.as_u64 == context->mmu_role.as_u64)
4690		return;
4691
4692	context->shadow_root_level = level;
4693
4694	context->nx = true;
4695	context->ept_ad = accessed_dirty;
4696	context->page_fault = ept_page_fault;
4697	context->gva_to_gpa = ept_gva_to_gpa;
4698	context->sync_page = ept_sync_page;
4699	context->invlpg = ept_invlpg;
4700	context->root_level = level;
4701	context->direct_map = false;
4702	context->mmu_role.as_u64 = new_role.as_u64;
4703
4704	update_permission_bitmask(vcpu, context, true);
4705	update_pkru_bitmask(vcpu, context, true);
4706	update_last_nonleaf_level(vcpu, context);
4707	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4708	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4709}
4710EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4711
4712static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4713{
4714	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4715
4716	kvm_init_shadow_mmu(vcpu,
4717			    kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4718			    kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4719			    vcpu->arch.efer);
4720
4721	context->get_guest_pgd     = get_cr3;
4722	context->get_pdptr         = kvm_pdptr_read;
4723	context->inject_page_fault = kvm_inject_page_fault;
4724}
4725
4726static union kvm_mmu_role kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu)
4727{
4728	union kvm_mmu_role role = kvm_calc_shadow_root_page_role_common(vcpu, false);
4729
4730	/*
4731	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
4732	 * shadow pages of their own and so "direct" has no meaning.   Set it
4733	 * to "true" to try to detect bogus usage of the nested MMU.
4734	 */
4735	role.base.direct = true;
4736
4737	if (!is_paging(vcpu))
4738		role.base.level = 0;
4739	else if (is_long_mode(vcpu))
4740		role.base.level = is_la57_mode(vcpu) ? PT64_ROOT_5LEVEL :
4741						       PT64_ROOT_4LEVEL;
4742	else if (is_pae(vcpu))
4743		role.base.level = PT32E_ROOT_LEVEL;
4744	else
4745		role.base.level = PT32_ROOT_LEVEL;
4746
4747	return role;
4748}
4749
4750static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4751{
4752	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu);
4753	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4754
4755	if (new_role.as_u64 == g_context->mmu_role.as_u64)
4756		return;
4757
4758	g_context->mmu_role.as_u64 = new_role.as_u64;
4759	g_context->get_guest_pgd     = get_cr3;
4760	g_context->get_pdptr         = kvm_pdptr_read;
4761	g_context->inject_page_fault = kvm_inject_page_fault;
4762
4763	/*
4764	 * L2 page tables are never shadowed, so there is no need to sync
4765	 * SPTEs.
4766	 */
4767	g_context->invlpg            = NULL;
4768
4769	/*
4770	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4771	 * L1's nested page tables (e.g. EPT12). The nested translation
4772	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4773	 * L2's page tables as the first level of translation and L1's
4774	 * nested page tables as the second level of translation. Basically
4775	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4776	 */
4777	if (!is_paging(vcpu)) {
4778		g_context->nx = false;
4779		g_context->root_level = 0;
4780		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4781	} else if (is_long_mode(vcpu)) {
4782		g_context->nx = is_nx(vcpu);
4783		g_context->root_level = is_la57_mode(vcpu) ?
4784					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4785		reset_rsvds_bits_mask(vcpu, g_context);
4786		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4787	} else if (is_pae(vcpu)) {
4788		g_context->nx = is_nx(vcpu);
4789		g_context->root_level = PT32E_ROOT_LEVEL;
4790		reset_rsvds_bits_mask(vcpu, g_context);
4791		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4792	} else {
4793		g_context->nx = false;
4794		g_context->root_level = PT32_ROOT_LEVEL;
4795		reset_rsvds_bits_mask(vcpu, g_context);
4796		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4797	}
4798
4799	update_permission_bitmask(vcpu, g_context, false);
4800	update_pkru_bitmask(vcpu, g_context, false);
4801	update_last_nonleaf_level(vcpu, g_context);
4802}
4803
4804void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4805{
4806	if (reset_roots) {
4807		uint i;
4808
4809		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4810
4811		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4812			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4813	}
4814
4815	if (mmu_is_nested(vcpu))
4816		init_kvm_nested_mmu(vcpu);
4817	else if (tdp_enabled)
4818		init_kvm_tdp_mmu(vcpu);
4819	else
4820		init_kvm_softmmu(vcpu);
4821}
4822EXPORT_SYMBOL_GPL(kvm_init_mmu);
4823
4824static union kvm_mmu_page_role
4825kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4826{
4827	union kvm_mmu_role role;
4828
4829	if (tdp_enabled)
4830		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4831	else
4832		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4833
4834	return role.base;
4835}
4836
4837void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4838{
4839	kvm_mmu_unload(vcpu);
4840	kvm_init_mmu(vcpu, true);
4841}
4842EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4843
4844int kvm_mmu_load(struct kvm_vcpu *vcpu)
4845{
4846	int r;
4847
4848	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4849	if (r)
4850		goto out;
4851	r = mmu_alloc_roots(vcpu);
4852	kvm_mmu_sync_roots(vcpu);
4853	if (r)
4854		goto out;
4855	kvm_mmu_load_pgd(vcpu);
4856	kvm_x86_ops.tlb_flush_current(vcpu);
4857out:
4858	return r;
4859}
4860EXPORT_SYMBOL_GPL(kvm_mmu_load);
4861
4862void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4863{
4864	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4865	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4866	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4867	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4868}
4869EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4870
4871static bool need_remote_flush(u64 old, u64 new)
4872{
4873	if (!is_shadow_present_pte(old))
4874		return false;
4875	if (!is_shadow_present_pte(new))
4876		return true;
4877	if ((old ^ new) & PT64_BASE_ADDR_MASK)
4878		return true;
4879	old ^= shadow_nx_mask;
4880	new ^= shadow_nx_mask;
4881	return (old & ~new & PT64_PERM_MASK) != 0;
4882}
4883
4884static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4885				    int *bytes)
4886{
4887	u64 gentry = 0;
4888	int r;
4889
4890	/*
4891	 * Assume that the pte write on a page table of the same type
4892	 * as the current vcpu paging mode since we update the sptes only
4893	 * when they have the same mode.
4894	 */
4895	if (is_pae(vcpu) && *bytes == 4) {
4896		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4897		*gpa &= ~(gpa_t)7;
4898		*bytes = 8;
4899	}
4900
4901	if (*bytes == 4 || *bytes == 8) {
4902		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4903		if (r)
4904			gentry = 0;
4905	}
4906
4907	return gentry;
4908}
4909
4910/*
4911 * If we're seeing too many writes to a page, it may no longer be a page table,
4912 * or we may be forking, in which case it is better to unmap the page.
4913 */
4914static bool detect_write_flooding(struct kvm_mmu_page *sp)
4915{
4916	/*
4917	 * Skip write-flooding detected for the sp whose level is 1, because
4918	 * it can become unsync, then the guest page is not write-protected.
4919	 */
4920	if (sp->role.level == PG_LEVEL_4K)
4921		return false;
4922
4923	atomic_inc(&sp->write_flooding_count);
4924	return atomic_read(&sp->write_flooding_count) >= 3;
4925}
4926
4927/*
4928 * Misaligned accesses are too much trouble to fix up; also, they usually
4929 * indicate a page is not used as a page table.
4930 */
4931static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4932				    int bytes)
4933{
4934	unsigned offset, pte_size, misaligned;
4935
4936	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4937		 gpa, bytes, sp->role.word);
4938
4939	offset = offset_in_page(gpa);
4940	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4941
4942	/*
4943	 * Sometimes, the OS only writes the last one bytes to update status
4944	 * bits, for example, in linux, andb instruction is used in clear_bit().
4945	 */
4946	if (!(offset & (pte_size - 1)) && bytes == 1)
4947		return false;
4948
4949	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4950	misaligned |= bytes < 4;
4951
4952	return misaligned;
4953}
4954
4955static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4956{
4957	unsigned page_offset, quadrant;
4958	u64 *spte;
4959	int level;
4960
4961	page_offset = offset_in_page(gpa);
4962	level = sp->role.level;
4963	*nspte = 1;
4964	if (!sp->role.gpte_is_8_bytes) {
4965		page_offset <<= 1;	/* 32->64 */
4966		/*
4967		 * A 32-bit pde maps 4MB while the shadow pdes map
4968		 * only 2MB.  So we need to double the offset again
4969		 * and zap two pdes instead of one.
4970		 */
4971		if (level == PT32_ROOT_LEVEL) {
4972			page_offset &= ~7; /* kill rounding error */
4973			page_offset <<= 1;
4974			*nspte = 2;
4975		}
4976		quadrant = page_offset >> PAGE_SHIFT;
4977		page_offset &= ~PAGE_MASK;
4978		if (quadrant != sp->role.quadrant)
4979			return NULL;
4980	}
4981
4982	spte = &sp->spt[page_offset / sizeof(*spte)];
4983	return spte;
4984}
4985
4986static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4987			      const u8 *new, int bytes,
4988			      struct kvm_page_track_notifier_node *node)
4989{
4990	gfn_t gfn = gpa >> PAGE_SHIFT;
4991	struct kvm_mmu_page *sp;
4992	LIST_HEAD(invalid_list);
4993	u64 entry, gentry, *spte;
4994	int npte;
4995	bool remote_flush, local_flush;
4996
4997	/*
4998	 * If we don't have indirect shadow pages, it means no page is
4999	 * write-protected, so we can exit simply.
5000	 */
5001	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5002		return;
5003
5004	remote_flush = local_flush = false;
5005
5006	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5007
5008	/*
5009	 * No need to care whether allocation memory is successful
5010	 * or not since pte prefetch is skiped if it does not have
5011	 * enough objects in the cache.
5012	 */
5013	mmu_topup_memory_caches(vcpu, true);
5014
5015	spin_lock(&vcpu->kvm->mmu_lock);
5016
5017	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5018
5019	++vcpu->kvm->stat.mmu_pte_write;
5020	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5021
5022	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5023		if (detect_write_misaligned(sp, gpa, bytes) ||
5024		      detect_write_flooding(sp)) {
5025			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5026			++vcpu->kvm->stat.mmu_flooded;
5027			continue;
5028		}
5029
5030		spte = get_written_sptes(sp, gpa, &npte);
5031		if (!spte)
5032			continue;
5033
5034		local_flush = true;
5035		while (npte--) {
5036			entry = *spte;
5037			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5038			if (gentry && sp->role.level != PG_LEVEL_4K)
5039				++vcpu->kvm->stat.mmu_pde_zapped;
5040			if (need_remote_flush(entry, *spte))
5041				remote_flush = true;
5042			++spte;
5043		}
5044	}
5045	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5046	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5047	spin_unlock(&vcpu->kvm->mmu_lock);
5048}
5049
5050int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5051{
5052	gpa_t gpa;
5053	int r;
5054
5055	if (vcpu->arch.mmu->direct_map)
5056		return 0;
5057
5058	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5059
5060	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5061
5062	return r;
5063}
5064EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5065
5066int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5067		       void *insn, int insn_len)
5068{
5069	int r, emulation_type = EMULTYPE_PF;
5070	bool direct = vcpu->arch.mmu->direct_map;
5071
5072	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5073		return RET_PF_RETRY;
5074
5075	r = RET_PF_INVALID;
5076	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5077		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5078		if (r == RET_PF_EMULATE)
5079			goto emulate;
5080	}
5081
5082	if (r == RET_PF_INVALID) {
5083		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5084					  lower_32_bits(error_code), false);
5085		if (WARN_ON_ONCE(r == RET_PF_INVALID))
5086			return -EIO;
5087	}
5088
5089	if (r < 0)
5090		return r;
5091	if (r != RET_PF_EMULATE)
5092		return 1;
5093
5094	/*
5095	 * Before emulating the instruction, check if the error code
5096	 * was due to a RO violation while translating the guest page.
5097	 * This can occur when using nested virtualization with nested
5098	 * paging in both guests. If true, we simply unprotect the page
5099	 * and resume the guest.
5100	 */
5101	if (vcpu->arch.mmu->direct_map &&
5102	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5103		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5104		return 1;
5105	}
5106
5107	/*
5108	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5109	 * optimistically try to just unprotect the page and let the processor
5110	 * re-execute the instruction that caused the page fault.  Do not allow
5111	 * retrying MMIO emulation, as it's not only pointless but could also
5112	 * cause us to enter an infinite loop because the processor will keep
5113	 * faulting on the non-existent MMIO address.  Retrying an instruction
5114	 * from a nested guest is also pointless and dangerous as we are only
5115	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5116	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5117	 */
5118	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5119		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5120emulate:
5121	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5122				       insn_len);
5123}
5124EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5125
5126void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5127			    gva_t gva, hpa_t root_hpa)
5128{
5129	int i;
5130
5131	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
5132	if (mmu != &vcpu->arch.guest_mmu) {
5133		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5134		if (is_noncanonical_address(gva, vcpu))
5135			return;
5136
5137		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5138	}
5139
5140	if (!mmu->invlpg)
5141		return;
5142
5143	if (root_hpa == INVALID_PAGE) {
5144		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5145
5146		/*
5147		 * INVLPG is required to invalidate any global mappings for the VA,
5148		 * irrespective of PCID. Since it would take us roughly similar amount
5149		 * of work to determine whether any of the prev_root mappings of the VA
5150		 * is marked global, or to just sync it blindly, so we might as well
5151		 * just always sync it.
5152		 *
5153		 * Mappings not reachable via the current cr3 or the prev_roots will be
5154		 * synced when switching to that cr3, so nothing needs to be done here
5155		 * for them.
5156		 */
5157		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5158			if (VALID_PAGE(mmu->prev_roots[i].hpa))
5159				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5160	} else {
5161		mmu->invlpg(vcpu, gva, root_hpa);
5162	}
5163}
5164EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5165
5166void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5167{
5168	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
5169	++vcpu->stat.invlpg;
5170}
5171EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5172
5173
5174void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5175{
5176	struct kvm_mmu *mmu = vcpu->arch.mmu;
5177	bool tlb_flush = false;
5178	uint i;
5179
5180	if (pcid == kvm_get_active_pcid(vcpu)) {
5181		if (mmu->invlpg)
5182			mmu->invlpg(vcpu, gva, mmu->root_hpa);
5183		tlb_flush = true;
5184	}
5185
5186	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5187		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5188		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5189			if (mmu->invlpg)
5190				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5191			tlb_flush = true;
5192		}
5193	}
5194
5195	if (tlb_flush)
5196		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5197
5198	++vcpu->stat.invlpg;
5199
5200	/*
5201	 * Mappings not reachable via the current cr3 or the prev_roots will be
5202	 * synced when switching to that cr3, so nothing needs to be done here
5203	 * for them.
5204	 */
5205}
5206EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5207
5208void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5209		       int tdp_huge_page_level)
5210{
5211	tdp_enabled = enable_tdp;
5212	max_tdp_level = tdp_max_root_level;
5213
5214	/*
5215	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5216	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5217	 * the kernel is not.  But, KVM never creates a page size greater than
5218	 * what is used by the kernel for any given HVA, i.e. the kernel's
5219	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5220	 */
5221	if (tdp_enabled)
5222		max_huge_page_level = tdp_huge_page_level;
5223	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5224		max_huge_page_level = PG_LEVEL_1G;
5225	else
5226		max_huge_page_level = PG_LEVEL_2M;
5227}
5228EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5229
5230/* The return value indicates if tlb flush on all vcpus is needed. */
5231typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5232
5233/* The caller should hold mmu-lock before calling this function. */
5234static __always_inline bool
5235slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5236			slot_level_handler fn, int start_level, int end_level,
5237			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5238{
5239	struct slot_rmap_walk_iterator iterator;
5240	bool flush = false;
5241
5242	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5243			end_gfn, &iterator) {
5244		if (iterator.rmap)
5245			flush |= fn(kvm, iterator.rmap);
5246
5247		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5248			if (flush && lock_flush_tlb) {
5249				kvm_flush_remote_tlbs_with_address(kvm,
5250						start_gfn,
5251						iterator.gfn - start_gfn + 1);
5252				flush = false;
5253			}
5254			cond_resched_lock(&kvm->mmu_lock);
5255		}
5256	}
5257
5258	if (flush && lock_flush_tlb) {
5259		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5260						   end_gfn - start_gfn + 1);
5261		flush = false;
5262	}
5263
5264	return flush;
5265}
5266
5267static __always_inline bool
5268slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5269		  slot_level_handler fn, int start_level, int end_level,
5270		  bool lock_flush_tlb)
5271{
5272	return slot_handle_level_range(kvm, memslot, fn, start_level,
5273			end_level, memslot->base_gfn,
5274			memslot->base_gfn + memslot->npages - 1,
5275			lock_flush_tlb);
5276}
5277
5278static __always_inline bool
5279slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5280		      slot_level_handler fn, bool lock_flush_tlb)
5281{
5282	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5283				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5284}
5285
5286static __always_inline bool
5287slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5288			slot_level_handler fn, bool lock_flush_tlb)
5289{
5290	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5291				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5292}
5293
5294static __always_inline bool
5295slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5296		 slot_level_handler fn, bool lock_flush_tlb)
5297{
5298	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5299				 PG_LEVEL_4K, lock_flush_tlb);
5300}
5301
5302static void free_mmu_pages(struct kvm_mmu *mmu)
5303{
5304	free_page((unsigned long)mmu->pae_root);
5305	free_page((unsigned long)mmu->lm_root);
5306}
5307
5308static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5309{
5310	struct page *page;
5311	int i;
5312
5313	mmu->root_hpa = INVALID_PAGE;
5314	mmu->root_pgd = 0;
5315	mmu->translate_gpa = translate_gpa;
5316	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5317		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5318
5319	/*
5320	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5321	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5322	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5323	 * x86_64.  Therefore we need to allocate the PDP table in the first
5324	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5325	 * generally doesn't use PAE paging and can skip allocating the PDP
5326	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5327	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5328	 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5329	 */
5330	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5331		return 0;
5332
5333	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5334	if (!page)
5335		return -ENOMEM;
5336
5337	mmu->pae_root = page_address(page);
5338	for (i = 0; i < 4; ++i)
5339		mmu->pae_root[i] = INVALID_PAGE;
5340
5341	return 0;
5342}
5343
5344int kvm_mmu_create(struct kvm_vcpu *vcpu)
5345{
5346	int ret;
5347
5348	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5349	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5350
5351	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5352	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5353
5354	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5355
5356	vcpu->arch.mmu = &vcpu->arch.root_mmu;
5357	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5358
5359	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5360
5361	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5362	if (ret)
5363		return ret;
5364
5365	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5366	if (ret)
5367		goto fail_allocate_root;
5368
5369	return ret;
5370 fail_allocate_root:
5371	free_mmu_pages(&vcpu->arch.guest_mmu);
5372	return ret;
5373}
5374
5375#define BATCH_ZAP_PAGES	10
5376static void kvm_zap_obsolete_pages(struct kvm *kvm)
5377{
5378	struct kvm_mmu_page *sp, *node;
5379	int nr_zapped, batch = 0;
5380	bool unstable;
5381
5382restart:
5383	list_for_each_entry_safe_reverse(sp, node,
5384	      &kvm->arch.active_mmu_pages, link) {
5385		/*
5386		 * No obsolete valid page exists before a newly created page
5387		 * since active_mmu_pages is a FIFO list.
5388		 */
5389		if (!is_obsolete_sp(kvm, sp))
5390			break;
5391
5392		/*
5393		 * Invalid pages should never land back on the list of active
5394		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
5395		 * infinite loop if the page gets put back on the list (again).
5396		 */
5397		if (WARN_ON(sp->role.invalid))
5398			continue;
5399
5400		/*
5401		 * No need to flush the TLB since we're only zapping shadow
5402		 * pages with an obsolete generation number and all vCPUS have
5403		 * loaded a new root, i.e. the shadow pages being zapped cannot
5404		 * be in active use by the guest.
5405		 */
5406		if (batch >= BATCH_ZAP_PAGES &&
5407		    cond_resched_lock(&kvm->mmu_lock)) {
5408			batch = 0;
5409			goto restart;
5410		}
5411
5412		unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
5413				&kvm->arch.zapped_obsolete_pages, &nr_zapped);
5414		batch += nr_zapped;
5415
5416		if (unstable)
5417			goto restart;
5418	}
5419
5420	/*
5421	 * Trigger a remote TLB flush before freeing the page tables to ensure
5422	 * KVM is not in the middle of a lockless shadow page table walk, which
5423	 * may reference the pages.
5424	 */
5425	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5426}
5427
5428/*
5429 * Fast invalidate all shadow pages and use lock-break technique
5430 * to zap obsolete pages.
5431 *
5432 * It's required when memslot is being deleted or VM is being
5433 * destroyed, in these cases, we should ensure that KVM MMU does
5434 * not use any resource of the being-deleted slot or all slots
5435 * after calling the function.
5436 */
5437static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5438{
5439	lockdep_assert_held(&kvm->slots_lock);
5440
5441	spin_lock(&kvm->mmu_lock);
5442	trace_kvm_mmu_zap_all_fast(kvm);
5443
5444	/*
5445	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5446	 * held for the entire duration of zapping obsolete pages, it's
5447	 * impossible for there to be multiple invalid generations associated
5448	 * with *valid* shadow pages at any given time, i.e. there is exactly
5449	 * one valid generation and (at most) one invalid generation.
5450	 */
5451	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5452
5453	/*
5454	 * Notify all vcpus to reload its shadow page table and flush TLB.
5455	 * Then all vcpus will switch to new shadow page table with the new
5456	 * mmu_valid_gen.
5457	 *
5458	 * Note: we need to do this under the protection of mmu_lock,
5459	 * otherwise, vcpu would purge shadow page but miss tlb flush.
5460	 */
5461	kvm_reload_remote_mmus(kvm);
5462
5463	kvm_zap_obsolete_pages(kvm);
5464
5465	if (kvm->arch.tdp_mmu_enabled)
5466		kvm_tdp_mmu_zap_all(kvm);
5467
5468	spin_unlock(&kvm->mmu_lock);
5469}
5470
5471static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5472{
5473	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5474}
5475
5476static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5477			struct kvm_memory_slot *slot,
5478			struct kvm_page_track_notifier_node *node)
5479{
5480	kvm_mmu_zap_all_fast(kvm);
5481}
5482
5483void kvm_mmu_init_vm(struct kvm *kvm)
5484{
5485	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5486
5487	kvm_mmu_init_tdp_mmu(kvm);
5488
5489	node->track_write = kvm_mmu_pte_write;
5490	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5491	kvm_page_track_register_notifier(kvm, node);
5492}
5493
5494void kvm_mmu_uninit_vm(struct kvm *kvm)
5495{
5496	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5497
5498	kvm_page_track_unregister_notifier(kvm, node);
5499
5500	kvm_mmu_uninit_tdp_mmu(kvm);
5501}
5502
5503void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5504{
5505	struct kvm_memslots *slots;
5506	struct kvm_memory_slot *memslot;
5507	int i;
5508	bool flush;
5509
5510	spin_lock(&kvm->mmu_lock);
5511	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5512		slots = __kvm_memslots(kvm, i);
5513		kvm_for_each_memslot(memslot, slots) {
5514			gfn_t start, end;
5515
5516			start = max(gfn_start, memslot->base_gfn);
5517			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5518			if (start >= end)
5519				continue;
5520
5521			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5522						PG_LEVEL_4K,
5523						KVM_MAX_HUGEPAGE_LEVEL,
5524						start, end - 1, true);
5525		}
5526	}
5527
5528	if (kvm->arch.tdp_mmu_enabled) {
5529		flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5530		if (flush)
5531			kvm_flush_remote_tlbs(kvm);
5532	}
5533
5534	spin_unlock(&kvm->mmu_lock);
5535}
5536
5537static bool slot_rmap_write_protect(struct kvm *kvm,
5538				    struct kvm_rmap_head *rmap_head)
5539{
5540	return __rmap_write_protect(kvm, rmap_head, false);
5541}
5542
5543void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5544				      struct kvm_memory_slot *memslot,
5545				      int start_level)
5546{
5547	bool flush;
5548
5549	spin_lock(&kvm->mmu_lock);
5550	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5551				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5552	if (kvm->arch.tdp_mmu_enabled)
5553		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5554	spin_unlock(&kvm->mmu_lock);
5555
5556	/*
5557	 * We can flush all the TLBs out of the mmu lock without TLB
5558	 * corruption since we just change the spte from writable to
5559	 * readonly so that we only need to care the case of changing
5560	 * spte from present to present (changing the spte from present
5561	 * to nonpresent will flush all the TLBs immediately), in other
5562	 * words, the only case we care is mmu_spte_update() where we
5563	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5564	 * instead of PT_WRITABLE_MASK, that means it does not depend
5565	 * on PT_WRITABLE_MASK anymore.
5566	 */
5567	if (flush)
5568		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5569}
5570
5571static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5572					 struct kvm_rmap_head *rmap_head)
5573{
5574	u64 *sptep;
5575	struct rmap_iterator iter;
5576	int need_tlb_flush = 0;
5577	kvm_pfn_t pfn;
5578	struct kvm_mmu_page *sp;
5579
5580restart:
5581	for_each_rmap_spte(rmap_head, &iter, sptep) {
5582		sp = sptep_to_sp(sptep);
5583		pfn = spte_to_pfn(*sptep);
5584
5585		/*
5586		 * We cannot do huge page mapping for indirect shadow pages,
5587		 * which are found on the last rmap (level = 1) when not using
5588		 * tdp; such shadow pages are synced with the page table in
5589		 * the guest, and the guest page table is using 4K page size
5590		 * mapping if the indirect sp has level = 1.
5591		 */
5592		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5593		    (kvm_is_zone_device_pfn(pfn) ||
5594		     PageCompound(pfn_to_page(pfn)))) {
5595			pte_list_remove(rmap_head, sptep);
5596
5597			if (kvm_available_flush_tlb_with_range())
5598				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5599					KVM_PAGES_PER_HPAGE(sp->role.level));
5600			else
5601				need_tlb_flush = 1;
5602
5603			goto restart;
5604		}
5605	}
5606
5607	return need_tlb_flush;
5608}
5609
5610void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5611				   const struct kvm_memory_slot *memslot)
5612{
5613	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5614	spin_lock(&kvm->mmu_lock);
5615	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5616			 kvm_mmu_zap_collapsible_spte, true);
5617
5618	if (kvm->arch.tdp_mmu_enabled)
5619		kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
5620	spin_unlock(&kvm->mmu_lock);
5621}
5622
5623void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5624					struct kvm_memory_slot *memslot)
5625{
5626	/*
5627	 * All current use cases for flushing the TLBs for a specific memslot
5628	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5629	 * The interaction between the various operations on memslot must be
5630	 * serialized by slots_locks to ensure the TLB flush from one operation
5631	 * is observed by any other operation on the same memslot.
5632	 */
5633	lockdep_assert_held(&kvm->slots_lock);
5634	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5635					   memslot->npages);
5636}
5637
5638void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5639				   struct kvm_memory_slot *memslot)
5640{
5641	bool flush;
5642
5643	spin_lock(&kvm->mmu_lock);
5644	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5645	if (kvm->arch.tdp_mmu_enabled)
5646		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5647	spin_unlock(&kvm->mmu_lock);
5648
5649	/*
5650	 * It's also safe to flush TLBs out of mmu lock here as currently this
5651	 * function is only used for dirty logging, in which case flushing TLB
5652	 * out of mmu lock also guarantees no dirty pages will be lost in
5653	 * dirty_bitmap.
5654	 */
5655	if (flush)
5656		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5657}
5658EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5659
5660void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5661					struct kvm_memory_slot *memslot)
5662{
5663	bool flush;
5664
5665	spin_lock(&kvm->mmu_lock);
5666	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5667					false);
5668	if (kvm->arch.tdp_mmu_enabled)
5669		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
5670	spin_unlock(&kvm->mmu_lock);
5671
5672	if (flush)
5673		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5674}
5675EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5676
5677void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5678			    struct kvm_memory_slot *memslot)
5679{
5680	bool flush;
5681
5682	spin_lock(&kvm->mmu_lock);
5683	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5684	if (kvm->arch.tdp_mmu_enabled)
5685		flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
5686	spin_unlock(&kvm->mmu_lock);
5687
5688	if (flush)
5689		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5690}
5691EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5692
5693void kvm_mmu_zap_all(struct kvm *kvm)
5694{
5695	struct kvm_mmu_page *sp, *node;
5696	LIST_HEAD(invalid_list);
5697	int ign;
5698
5699	spin_lock(&kvm->mmu_lock);
5700restart:
5701	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5702		if (WARN_ON(sp->role.invalid))
5703			continue;
5704		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5705			goto restart;
5706		if (cond_resched_lock(&kvm->mmu_lock))
5707			goto restart;
5708	}
5709
5710	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5711
5712	if (kvm->arch.tdp_mmu_enabled)
5713		kvm_tdp_mmu_zap_all(kvm);
5714
5715	spin_unlock(&kvm->mmu_lock);
5716}
5717
5718void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5719{
5720	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5721
5722	gen &= MMIO_SPTE_GEN_MASK;
5723
5724	/*
5725	 * Generation numbers are incremented in multiples of the number of
5726	 * address spaces in order to provide unique generations across all
5727	 * address spaces.  Strip what is effectively the address space
5728	 * modifier prior to checking for a wrap of the MMIO generation so
5729	 * that a wrap in any address space is detected.
5730	 */
5731	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5732
5733	/*
5734	 * The very rare case: if the MMIO generation number has wrapped,
5735	 * zap all shadow pages.
5736	 */
5737	if (unlikely(gen == 0)) {
5738		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5739		kvm_mmu_zap_all_fast(kvm);
5740	}
5741}
5742
5743static unsigned long
5744mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5745{
5746	struct kvm *kvm;
5747	int nr_to_scan = sc->nr_to_scan;
5748	unsigned long freed = 0;
5749
5750	mutex_lock(&kvm_lock);
5751
5752	list_for_each_entry(kvm, &vm_list, vm_list) {
5753		int idx;
5754		LIST_HEAD(invalid_list);
5755
5756		/*
5757		 * Never scan more than sc->nr_to_scan VM instances.
5758		 * Will not hit this condition practically since we do not try
5759		 * to shrink more than one VM and it is very unlikely to see
5760		 * !n_used_mmu_pages so many times.
5761		 */
5762		if (!nr_to_scan--)
5763			break;
5764		/*
5765		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5766		 * here. We may skip a VM instance errorneosly, but we do not
5767		 * want to shrink a VM that only started to populate its MMU
5768		 * anyway.
5769		 */
5770		if (!kvm->arch.n_used_mmu_pages &&
5771		    !kvm_has_zapped_obsolete_pages(kvm))
5772			continue;
5773
5774		idx = srcu_read_lock(&kvm->srcu);
5775		spin_lock(&kvm->mmu_lock);
5776
5777		if (kvm_has_zapped_obsolete_pages(kvm)) {
5778			kvm_mmu_commit_zap_page(kvm,
5779			      &kvm->arch.zapped_obsolete_pages);
5780			goto unlock;
5781		}
5782
5783		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5784
5785unlock:
5786		spin_unlock(&kvm->mmu_lock);
5787		srcu_read_unlock(&kvm->srcu, idx);
5788
5789		/*
5790		 * unfair on small ones
5791		 * per-vm shrinkers cry out
5792		 * sadness comes quickly
5793		 */
5794		list_move_tail(&kvm->vm_list, &vm_list);
5795		break;
5796	}
5797
5798	mutex_unlock(&kvm_lock);
5799	return freed;
5800}
5801
5802static unsigned long
5803mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5804{
5805	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5806}
5807
5808static struct shrinker mmu_shrinker = {
5809	.count_objects = mmu_shrink_count,
5810	.scan_objects = mmu_shrink_scan,
5811	.seeks = DEFAULT_SEEKS * 10,
5812};
5813
5814static void mmu_destroy_caches(void)
5815{
5816	kmem_cache_destroy(pte_list_desc_cache);
5817	kmem_cache_destroy(mmu_page_header_cache);
5818}
5819
5820static void kvm_set_mmio_spte_mask(void)
5821{
5822	u64 mask;
5823
5824	/*
5825	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5826	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
5827	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5828	 * 52-bit physical addresses then there are no reserved PA bits in the
5829	 * PTEs and so the reserved PA approach must be disabled.
5830	 */
5831	if (shadow_phys_bits < 52)
5832		mask = BIT_ULL(51) | PT_PRESENT_MASK;
5833	else
5834		mask = 0;
5835
5836	kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5837}
5838
5839static bool get_nx_auto_mode(void)
5840{
5841	/* Return true when CPU has the bug, and mitigations are ON */
5842	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5843}
5844
5845static void __set_nx_huge_pages(bool val)
5846{
5847	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5848}
5849
5850static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5851{
5852	bool old_val = nx_huge_pages;
5853	bool new_val;
5854
5855	/* In "auto" mode deploy workaround only if CPU has the bug. */
5856	if (sysfs_streq(val, "off"))
5857		new_val = 0;
5858	else if (sysfs_streq(val, "force"))
5859		new_val = 1;
5860	else if (sysfs_streq(val, "auto"))
5861		new_val = get_nx_auto_mode();
5862	else if (strtobool(val, &new_val) < 0)
5863		return -EINVAL;
5864
5865	__set_nx_huge_pages(new_val);
5866
5867	if (new_val != old_val) {
5868		struct kvm *kvm;
5869
5870		mutex_lock(&kvm_lock);
5871
5872		list_for_each_entry(kvm, &vm_list, vm_list) {
5873			mutex_lock(&kvm->slots_lock);
5874			kvm_mmu_zap_all_fast(kvm);
5875			mutex_unlock(&kvm->slots_lock);
5876
5877			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5878		}
5879		mutex_unlock(&kvm_lock);
5880	}
5881
5882	return 0;
5883}
5884
5885/*
5886 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
5887 * its default value of -1 is technically undefined behavior for a boolean.
5888 */
5889void __init kvm_mmu_x86_module_init(void)
5890{
5891	if (nx_huge_pages == -1)
5892		__set_nx_huge_pages(get_nx_auto_mode());
5893}
5894
5895/*
5896 * The bulk of the MMU initialization is deferred until the vendor module is
5897 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
5898 * to be reset when a potentially different vendor module is loaded.
5899 */
5900int kvm_mmu_vendor_module_init(void)
5901{
5902	int ret = -ENOMEM;
5903
5904	/*
5905	 * MMU roles use union aliasing which is, generally speaking, an
5906	 * undefined behavior. However, we supposedly know how compilers behave
5907	 * and the current status quo is unlikely to change. Guardians below are
5908	 * supposed to let us know if the assumption becomes false.
5909	 */
5910	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5911	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5912	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5913
5914	kvm_mmu_reset_all_pte_masks();
5915
5916	kvm_set_mmio_spte_mask();
5917
5918	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5919					    sizeof(struct pte_list_desc),
5920					    0, SLAB_ACCOUNT, NULL);
5921	if (!pte_list_desc_cache)
5922		goto out;
5923
5924	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5925						  sizeof(struct kvm_mmu_page),
5926						  0, SLAB_ACCOUNT, NULL);
5927	if (!mmu_page_header_cache)
5928		goto out;
5929
5930	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5931		goto out;
5932
5933	ret = register_shrinker(&mmu_shrinker);
5934	if (ret)
5935		goto out;
5936
5937	return 0;
5938
5939out:
5940	mmu_destroy_caches();
5941	return ret;
5942}
5943
5944/*
5945 * Calculate mmu pages needed for kvm.
5946 */
5947unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5948{
5949	unsigned long nr_mmu_pages;
5950	unsigned long nr_pages = 0;
5951	struct kvm_memslots *slots;
5952	struct kvm_memory_slot *memslot;
5953	int i;
5954
5955	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5956		slots = __kvm_memslots(kvm, i);
5957
5958		kvm_for_each_memslot(memslot, slots)
5959			nr_pages += memslot->npages;
5960	}
5961
5962	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5963	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5964
5965	return nr_mmu_pages;
5966}
5967
5968void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5969{
5970	kvm_mmu_unload(vcpu);
5971	free_mmu_pages(&vcpu->arch.root_mmu);
5972	free_mmu_pages(&vcpu->arch.guest_mmu);
5973	mmu_free_memory_caches(vcpu);
5974}
5975
5976void kvm_mmu_vendor_module_exit(void)
5977{
5978	mmu_destroy_caches();
5979	percpu_counter_destroy(&kvm_total_used_mmu_pages);
5980	unregister_shrinker(&mmu_shrinker);
5981	mmu_audit_disable();
5982}
5983
5984static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5985{
5986	unsigned int old_val;
5987	int err;
5988
5989	old_val = nx_huge_pages_recovery_ratio;
5990	err = param_set_uint(val, kp);
5991	if (err)
5992		return err;
5993
5994	if (READ_ONCE(nx_huge_pages) &&
5995	    !old_val && nx_huge_pages_recovery_ratio) {
5996		struct kvm *kvm;
5997
5998		mutex_lock(&kvm_lock);
5999
6000		list_for_each_entry(kvm, &vm_list, vm_list)
6001			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6002
6003		mutex_unlock(&kvm_lock);
6004	}
6005
6006	return err;
6007}
6008
6009static void kvm_recover_nx_lpages(struct kvm *kvm)
6010{
6011	int rcu_idx;
6012	struct kvm_mmu_page *sp;
6013	unsigned int ratio;
6014	LIST_HEAD(invalid_list);
6015	bool flush = false;
6016	ulong to_zap;
6017
6018	rcu_idx = srcu_read_lock(&kvm->srcu);
6019	spin_lock(&kvm->mmu_lock);
6020
6021	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6022	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6023	for ( ; to_zap; --to_zap) {
6024		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6025			break;
6026
6027		/*
6028		 * We use a separate list instead of just using active_mmu_pages
6029		 * because the number of lpage_disallowed pages is expected to
6030		 * be relatively small compared to the total.
6031		 */
6032		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6033				      struct kvm_mmu_page,
6034				      lpage_disallowed_link);
6035		WARN_ON_ONCE(!sp->lpage_disallowed);
6036		if (sp->tdp_mmu_page) {
6037			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6038		} else {
6039			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6040			WARN_ON_ONCE(sp->lpage_disallowed);
6041		}
6042
6043		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6044			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6045			cond_resched_lock(&kvm->mmu_lock);
6046			flush = false;
6047		}
6048	}
6049	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6050
6051	spin_unlock(&kvm->mmu_lock);
6052	srcu_read_unlock(&kvm->srcu, rcu_idx);
6053}
6054
6055static long get_nx_lpage_recovery_timeout(u64 start_time)
6056{
6057	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6058		? start_time + 60 * HZ - get_jiffies_64()
6059		: MAX_SCHEDULE_TIMEOUT;
6060}
6061
6062static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6063{
6064	u64 start_time;
6065	long remaining_time;
6066
6067	while (true) {
6068		start_time = get_jiffies_64();
6069		remaining_time = get_nx_lpage_recovery_timeout(start_time);
6070
6071		set_current_state(TASK_INTERRUPTIBLE);
6072		while (!kthread_should_stop() && remaining_time > 0) {
6073			schedule_timeout(remaining_time);
6074			remaining_time = get_nx_lpage_recovery_timeout(start_time);
6075			set_current_state(TASK_INTERRUPTIBLE);
6076		}
6077
6078		set_current_state(TASK_RUNNING);
6079
6080		if (kthread_should_stop())
6081			return 0;
6082
6083		kvm_recover_nx_lpages(kvm);
6084	}
6085}
6086
6087int kvm_mmu_post_init_vm(struct kvm *kvm)
6088{
6089	int err;
6090
6091	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6092					  "kvm-nx-lpage-recovery",
6093					  &kvm->arch.nx_lpage_recovery_thread);
6094	if (!err)
6095		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6096
6097	return err;
6098}
6099
6100void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6101{
6102	if (kvm->arch.nx_lpage_recovery_thread)
6103		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6104}
6105