1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
8 * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
9 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
10 */
11
12#ifndef _ASM_X86_UV_UV_HUB_H
13#define _ASM_X86_UV_UV_HUB_H
14
15#ifdef CONFIG_X86_64
16#include <linux/numa.h>
17#include <linux/percpu.h>
18#include <linux/timer.h>
19#include <linux/io.h>
20#include <linux/topology.h>
21#include <asm/types.h>
22#include <asm/percpu.h>
23#include <asm/uv/uv.h>
24#include <asm/uv/uv_mmrs.h>
25#include <asm/uv/bios.h>
26#include <asm/irq_vectors.h>
27#include <asm/io_apic.h>
28
29
30/*
31 * Addressing Terminology
32 *
33 *	M       - The low M bits of a physical address represent the offset
34 *		  into the blade local memory. RAM memory on a blade is physically
35 *		  contiguous (although various IO spaces may punch holes in
36 *		  it)..
37 *
38 *	N	- Number of bits in the node portion of a socket physical
39 *		  address.
40 *
41 *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
42 *		  routers always have low bit of 1, C/MBricks have low bit
43 *		  equal to 0. Most addressing macros that target UV hub chips
44 *		  right shift the NASID by 1 to exclude the always-zero bit.
45 *		  NASIDs contain up to 15 bits.
46 *
47 *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
48 *		  of nasids.
49 *
50 *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
51 *		  of the nasid for socket usage.
52 *
53 *	GPA	- (global physical address) a socket physical address converted
54 *		  so that it can be used by the GRU as a global address. Socket
55 *		  physical addresses 1) need additional NASID (node) bits added
56 *		  to the high end of the address, and 2) unaliased if the
57 *		  partition does not have a physical address 0. In addition, on
58 *		  UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
59 *
60 *
61 *  NumaLink Global Physical Address Format:
62 *  +--------------------------------+---------------------+
63 *  |00..000|      GNODE             |      NodeOffset     |
64 *  +--------------------------------+---------------------+
65 *          |<-------53 - M bits --->|<--------M bits ----->
66 *
67 *	M - number of node offset bits (35 .. 40)
68 *
69 *
70 *  Memory/UV-HUB Processor Socket Address Format:
71 *  +----------------+---------------+---------------------+
72 *  |00..000000000000|   PNODE       |      NodeOffset     |
73 *  +----------------+---------------+---------------------+
74 *                   <--- N bits --->|<--------M bits ----->
75 *
76 *	M - number of node offset bits (35 .. 40)
77 *	N - number of PNODE bits (0 .. 10)
78 *
79 *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
80 *		The actual values are configuration dependent and are set at
81 *		boot time. M & N values are set by the hardware/BIOS at boot.
82 *
83 *
84 * APICID format
85 *	NOTE!!!!!! This is the current format of the APICID. However, code
86 *	should assume that this will change in the future. Use functions
87 *	in this file for all APICID bit manipulations and conversion.
88 *
89 *		1111110000000000
90 *		5432109876543210
91 *		pppppppppplc0cch	Nehalem-EX (12 bits in hdw reg)
92 *		ppppppppplcc0cch	Westmere-EX (12 bits in hdw reg)
93 *		pppppppppppcccch	SandyBridge (15 bits in hdw reg)
94 *		sssssssssss
95 *
96 *			p  = pnode bits
97 *			l =  socket number on board
98 *			c  = core
99 *			h  = hyperthread
100 *			s  = bits that are in the SOCKET_ID CSR
101 *
102 *	Note: Processor may support fewer bits in the APICID register. The ACPI
103 *	      tables hold all 16 bits. Software needs to be aware of this.
104 *
105 *	      Unless otherwise specified, all references to APICID refer to
106 *	      the FULL value contained in ACPI tables, not the subset in the
107 *	      processor APICID register.
108 */
109
110/*
111 * Maximum number of bricks in all partitions and in all coherency domains.
112 * This is the total number of bricks accessible in the numalink fabric. It
113 * includes all C & M bricks. Routers are NOT included.
114 *
115 * This value is also the value of the maximum number of non-router NASIDs
116 * in the numalink fabric.
117 *
118 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
119 */
120#define UV_MAX_NUMALINK_BLADES	16384
121
122/*
123 * Maximum number of C/Mbricks within a software SSI (hardware may support
124 * more).
125 */
126#define UV_MAX_SSI_BLADES	256
127
128/*
129 * The largest possible NASID of a C or M brick (+ 2)
130 */
131#define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)
132
133/* GAM (globally addressed memory) range table */
134struct uv_gam_range_s {
135	u32	limit;		/* PA bits 56:26 (GAM_RANGE_SHFT) */
136	u16	nasid;		/* node's global physical address */
137	s8	base;		/* entry index of node's base addr */
138	u8	reserved;
139};
140
141/*
142 * The following defines attributes of the HUB chip. These attributes are
143 * frequently referenced and are kept in a common per hub struct.
144 * After setup, the struct is read only, so it should be readily
145 * available in the L3 cache on the cpu socket for the node.
146 */
147struct uv_hub_info_s {
148	unsigned int		hub_type;
149	unsigned char		hub_revision;
150	unsigned long		global_mmr_base;
151	unsigned long		global_mmr_shift;
152	unsigned long		gpa_mask;
153	unsigned short		*socket_to_node;
154	unsigned short		*socket_to_pnode;
155	unsigned short		*pnode_to_socket;
156	struct uv_gam_range_s	*gr_table;
157	unsigned short		min_socket;
158	unsigned short		min_pnode;
159	unsigned char		m_val;
160	unsigned char		n_val;
161	unsigned char		gr_table_len;
162	unsigned char		apic_pnode_shift;
163	unsigned char		gpa_shift;
164	unsigned char		nasid_shift;
165	unsigned char		m_shift;
166	unsigned char		n_lshift;
167	unsigned int		gnode_extra;
168	unsigned long		gnode_upper;
169	unsigned long		lowmem_remap_top;
170	unsigned long		lowmem_remap_base;
171	unsigned long		global_gru_base;
172	unsigned long		global_gru_shift;
173	unsigned short		pnode;
174	unsigned short		pnode_mask;
175	unsigned short		coherency_domain_number;
176	unsigned short		numa_blade_id;
177	unsigned short		nr_possible_cpus;
178	unsigned short		nr_online_cpus;
179	short			memory_nid;
180};
181
182/* CPU specific info with a pointer to the hub common info struct */
183struct uv_cpu_info_s {
184	void			*p_uv_hub_info;
185	unsigned char		blade_cpu_id;
186	void			*reserved;
187};
188DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
189
190#define uv_cpu_info		this_cpu_ptr(&__uv_cpu_info)
191#define uv_cpu_info_per(cpu)	(&per_cpu(__uv_cpu_info, cpu))
192
193/* Node specific hub common info struct */
194extern void **__uv_hub_info_list;
195static inline struct uv_hub_info_s *uv_hub_info_list(int node)
196{
197	return (struct uv_hub_info_s *)__uv_hub_info_list[node];
198}
199
200static inline struct uv_hub_info_s *_uv_hub_info(void)
201{
202	return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
203}
204#define	uv_hub_info	_uv_hub_info()
205
206static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
207{
208	return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
209}
210
211static inline int uv_hub_type(void)
212{
213	return uv_hub_info->hub_type;
214}
215
216static inline __init void uv_hub_type_set(int uvmask)
217{
218	uv_hub_info->hub_type = uvmask;
219}
220
221
222/*
223 * HUB revision ranges for each UV HUB architecture.
224 * This is a software convention - NOT the hardware revision numbers in
225 * the hub chip.
226 */
227#define UV2_HUB_REVISION_BASE		3
228#define UV3_HUB_REVISION_BASE		5
229#define UV4_HUB_REVISION_BASE		7
230#define UV4A_HUB_REVISION_BASE		8	/* UV4 (fixed) rev 2 */
231#define UV5_HUB_REVISION_BASE		9
232
233static inline int is_uv(int uvmask) { return uv_hub_type() & uvmask; }
234static inline int is_uv1_hub(void) { return 0; }
235static inline int is_uv2_hub(void) { return is_uv(UV2); }
236static inline int is_uv3_hub(void) { return is_uv(UV3); }
237static inline int is_uv4a_hub(void) { return is_uv(UV4A); }
238static inline int is_uv4_hub(void) { return is_uv(UV4); }
239static inline int is_uv5_hub(void) { return is_uv(UV5); }
240
241/*
242 * UV4A is a revision of UV4.  So on UV4A, both is_uv4_hub() and
243 * is_uv4a_hub() return true, While on UV4, only is_uv4_hub()
244 * returns true.  So to get true results, first test if is UV4A,
245 * then test if is UV4.
246 */
247
248/* UVX class: UV2,3,4 */
249static inline int is_uvx_hub(void) { return is_uv(UVX); }
250
251/* UVY class: UV5,..? */
252static inline int is_uvy_hub(void) { return is_uv(UVY); }
253
254/* Any UV Hubbed System */
255static inline int is_uv_hub(void) { return is_uv(UV_ANY); }
256
257union uvh_apicid {
258    unsigned long       v;
259    struct uvh_apicid_s {
260        unsigned long   local_apic_mask  : 24;
261        unsigned long   local_apic_shift :  5;
262        unsigned long   unused1          :  3;
263        unsigned long   pnode_mask       : 24;
264        unsigned long   pnode_shift      :  5;
265        unsigned long   unused2          :  3;
266    } s;
267};
268
269/*
270 * Local & Global MMR space macros.
271 *	Note: macros are intended to be used ONLY by inline functions
272 *	in this file - not by other kernel code.
273 *		n -  NASID (full 15-bit global nasid)
274 *		g -  GNODE (full 15-bit global nasid, right shifted 1)
275 *		p -  PNODE (local part of nsids, right shifted 1)
276 */
277#define UV_NASID_TO_PNODE(n)		\
278		(((n) >> uv_hub_info->nasid_shift) & uv_hub_info->pnode_mask)
279#define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
280#define UV_PNODE_TO_NASID(p)		\
281		(UV_PNODE_TO_GNODE(p) << uv_hub_info->nasid_shift)
282
283#define UV2_LOCAL_MMR_BASE		0xfa000000UL
284#define UV2_GLOBAL_MMR32_BASE		0xfc000000UL
285#define UV2_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
286#define UV2_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
287
288#define UV3_LOCAL_MMR_BASE		0xfa000000UL
289#define UV3_GLOBAL_MMR32_BASE		0xfc000000UL
290#define UV3_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
291#define UV3_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
292
293#define UV4_LOCAL_MMR_BASE		0xfa000000UL
294#define UV4_GLOBAL_MMR32_BASE		0
295#define UV4_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
296#define UV4_GLOBAL_MMR32_SIZE		0
297
298#define UV5_LOCAL_MMR_BASE		0xfa000000UL
299#define UV5_GLOBAL_MMR32_BASE		0
300#define UV5_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
301#define UV5_GLOBAL_MMR32_SIZE		0
302
303#define UV_LOCAL_MMR_BASE		(				\
304					is_uv(UV2) ? UV2_LOCAL_MMR_BASE : \
305					is_uv(UV3) ? UV3_LOCAL_MMR_BASE : \
306					is_uv(UV4) ? UV4_LOCAL_MMR_BASE : \
307					is_uv(UV5) ? UV5_LOCAL_MMR_BASE : \
308					0)
309
310#define UV_GLOBAL_MMR32_BASE		(				\
311					is_uv(UV2) ? UV2_GLOBAL_MMR32_BASE : \
312					is_uv(UV3) ? UV3_GLOBAL_MMR32_BASE : \
313					is_uv(UV4) ? UV4_GLOBAL_MMR32_BASE : \
314					is_uv(UV5) ? UV5_GLOBAL_MMR32_BASE : \
315					0)
316
317#define UV_LOCAL_MMR_SIZE		(				\
318					is_uv(UV2) ? UV2_LOCAL_MMR_SIZE : \
319					is_uv(UV3) ? UV3_LOCAL_MMR_SIZE : \
320					is_uv(UV4) ? UV4_LOCAL_MMR_SIZE : \
321					is_uv(UV5) ? UV5_LOCAL_MMR_SIZE : \
322					0)
323
324#define UV_GLOBAL_MMR32_SIZE		(				\
325					is_uv(UV2) ? UV2_GLOBAL_MMR32_SIZE : \
326					is_uv(UV3) ? UV3_GLOBAL_MMR32_SIZE : \
327					is_uv(UV4) ? UV4_GLOBAL_MMR32_SIZE : \
328					is_uv(UV5) ? UV5_GLOBAL_MMR32_SIZE : \
329					0)
330
331#define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
332
333#define UV_GLOBAL_GRU_MMR_BASE		0x4000000
334
335#define UV_GLOBAL_MMR32_PNODE_SHIFT	15
336#define _UV_GLOBAL_MMR64_PNODE_SHIFT	26
337#define UV_GLOBAL_MMR64_PNODE_SHIFT	(uv_hub_info->global_mmr_shift)
338
339#define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
340
341#define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
342	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
343
344#define UVH_APICID		0x002D0E00L
345#define UV_APIC_PNODE_SHIFT	6
346
347/* Local Bus from cpu's perspective */
348#define LOCAL_BUS_BASE		0x1c00000
349#define LOCAL_BUS_SIZE		(4 * 1024 * 1024)
350
351/*
352 * System Controller Interface Reg
353 *
354 * Note there are NO leds on a UV system.  This register is only
355 * used by the system controller to monitor system-wide operation.
356 * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
357 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
358 * a node.
359 *
360 * The window is located at top of ACPI MMR space
361 */
362#define SCIR_WINDOW_COUNT	64
363#define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
364				 LOCAL_BUS_SIZE - \
365				 SCIR_WINDOW_COUNT)
366
367#define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
368#define SCIR_CPU_ACTIVITY	0x02	/* not idle */
369#define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */
370
371/* Loop through all installed blades */
372#define for_each_possible_blade(bid)		\
373	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
374
375/*
376 * Macros for converting between kernel virtual addresses, socket local physical
377 * addresses, and UV global physical addresses.
378 *	Note: use the standard __pa() & __va() macros for converting
379 *	      between socket virtual and socket physical addresses.
380 */
381
382/* global bits offset - number of local address bits in gpa for this UV arch */
383static inline unsigned int uv_gpa_shift(void)
384{
385	return uv_hub_info->gpa_shift;
386}
387#define	_uv_gpa_shift
388
389/* Find node that has the address range that contains global address  */
390static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa)
391{
392	struct uv_gam_range_s *gr = uv_hub_info->gr_table;
393	unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT;
394	int i, num = uv_hub_info->gr_table_len;
395
396	if (gr) {
397		for (i = 0; i < num; i++, gr++) {
398			if (pal < gr->limit)
399				return gr;
400		}
401	}
402	pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr);
403	BUG();
404}
405
406/* Return base address of node that contains global address  */
407static inline unsigned long uv_gam_range_base(unsigned long pa)
408{
409	struct uv_gam_range_s *gr = uv_gam_range(pa);
410	int base = gr->base;
411
412	if (base < 0)
413		return 0UL;
414
415	return uv_hub_info->gr_table[base].limit;
416}
417
418/* socket phys RAM --> UV global NASID (UV4+) */
419static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr)
420{
421	return uv_gam_range(paddr)->nasid;
422}
423#define	_uv_soc_phys_ram_to_nasid
424
425/* socket virtual --> UV global NASID (UV4+) */
426static inline unsigned long uv_gpa_nasid(void *v)
427{
428	return uv_soc_phys_ram_to_nasid(__pa(v));
429}
430
431/* socket phys RAM --> UV global physical address */
432static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
433{
434	unsigned int m_val = uv_hub_info->m_val;
435
436	if (paddr < uv_hub_info->lowmem_remap_top)
437		paddr |= uv_hub_info->lowmem_remap_base;
438
439	if (m_val) {
440		paddr |= uv_hub_info->gnode_upper;
441		paddr = ((paddr << uv_hub_info->m_shift)
442						>> uv_hub_info->m_shift) |
443			((paddr >> uv_hub_info->m_val)
444						<< uv_hub_info->n_lshift);
445	} else {
446		paddr |= uv_soc_phys_ram_to_nasid(paddr)
447						<< uv_hub_info->gpa_shift;
448	}
449	return paddr;
450}
451
452/* socket virtual --> UV global physical address */
453static inline unsigned long uv_gpa(void *v)
454{
455	return uv_soc_phys_ram_to_gpa(__pa(v));
456}
457
458/* Top two bits indicate the requested address is in MMR space.  */
459static inline int
460uv_gpa_in_mmr_space(unsigned long gpa)
461{
462	return (gpa >> 62) == 0x3UL;
463}
464
465/* UV global physical address --> socket phys RAM */
466static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
467{
468	unsigned long paddr;
469	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
470	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
471	unsigned int m_val = uv_hub_info->m_val;
472
473	if (m_val)
474		gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
475			((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
476
477	paddr = gpa & uv_hub_info->gpa_mask;
478	if (paddr >= remap_base && paddr < remap_base + remap_top)
479		paddr -= remap_base;
480	return paddr;
481}
482
483/* gpa -> gnode */
484static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
485{
486	unsigned int n_lshift = uv_hub_info->n_lshift;
487
488	if (n_lshift)
489		return gpa >> n_lshift;
490
491	return uv_gam_range(gpa)->nasid >> 1;
492}
493
494/* gpa -> pnode */
495static inline int uv_gpa_to_pnode(unsigned long gpa)
496{
497	return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
498}
499
500/* gpa -> node offset */
501static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
502{
503	unsigned int m_shift = uv_hub_info->m_shift;
504
505	if (m_shift)
506		return (gpa << m_shift) >> m_shift;
507
508	return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa);
509}
510
511/* Convert socket to node */
512static inline int _uv_socket_to_node(int socket, unsigned short *s2nid)
513{
514	return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket;
515}
516
517static inline int uv_socket_to_node(int socket)
518{
519	return _uv_socket_to_node(socket, uv_hub_info->socket_to_node);
520}
521
522/* pnode, offset --> socket virtual */
523static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
524{
525	unsigned int m_val = uv_hub_info->m_val;
526	unsigned long base;
527	unsigned short sockid, node, *p2s;
528
529	if (m_val)
530		return __va(((unsigned long)pnode << m_val) | offset);
531
532	p2s = uv_hub_info->pnode_to_socket;
533	sockid = p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode;
534	node = uv_socket_to_node(sockid);
535
536	/* limit address of previous socket is our base, except node 0 is 0 */
537	if (!node)
538		return __va((unsigned long)offset);
539
540	base = (unsigned long)(uv_hub_info->gr_table[node - 1].limit);
541	return __va(base << UV_GAM_RANGE_SHFT | offset);
542}
543
544/* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
545static inline int uv_apicid_to_pnode(int apicid)
546{
547	int pnode = apicid >> uv_hub_info->apic_pnode_shift;
548	unsigned short *s2pn = uv_hub_info->socket_to_pnode;
549
550	return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode;
551}
552
553/*
554 * Access global MMRs using the low memory MMR32 space. This region supports
555 * faster MMR access but not all MMRs are accessible in this space.
556 */
557static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
558{
559	return __va(UV_GLOBAL_MMR32_BASE |
560		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
561}
562
563static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
564{
565	writeq(val, uv_global_mmr32_address(pnode, offset));
566}
567
568static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
569{
570	return readq(uv_global_mmr32_address(pnode, offset));
571}
572
573/*
574 * Access Global MMR space using the MMR space located at the top of physical
575 * memory.
576 */
577static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
578{
579	return __va(UV_GLOBAL_MMR64_BASE |
580		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
581}
582
583static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
584{
585	writeq(val, uv_global_mmr64_address(pnode, offset));
586}
587
588static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
589{
590	return readq(uv_global_mmr64_address(pnode, offset));
591}
592
593static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
594{
595	writeb(val, uv_global_mmr64_address(pnode, offset));
596}
597
598static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
599{
600	return readb(uv_global_mmr64_address(pnode, offset));
601}
602
603/*
604 * Access hub local MMRs. Faster than using global space but only local MMRs
605 * are accessible.
606 */
607static inline unsigned long *uv_local_mmr_address(unsigned long offset)
608{
609	return __va(UV_LOCAL_MMR_BASE | offset);
610}
611
612static inline unsigned long uv_read_local_mmr(unsigned long offset)
613{
614	return readq(uv_local_mmr_address(offset));
615}
616
617static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
618{
619	writeq(val, uv_local_mmr_address(offset));
620}
621
622static inline unsigned char uv_read_local_mmr8(unsigned long offset)
623{
624	return readb(uv_local_mmr_address(offset));
625}
626
627static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
628{
629	writeb(val, uv_local_mmr_address(offset));
630}
631
632/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
633static inline int uv_blade_processor_id(void)
634{
635	return uv_cpu_info->blade_cpu_id;
636}
637
638/* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
639static inline int uv_cpu_blade_processor_id(int cpu)
640{
641	return uv_cpu_info_per(cpu)->blade_cpu_id;
642}
643
644/* Blade number to Node number (UV2..UV4 is 1:1) */
645static inline int uv_blade_to_node(int blade)
646{
647	return blade;
648}
649
650/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
651static inline int uv_numa_blade_id(void)
652{
653	return uv_hub_info->numa_blade_id;
654}
655
656/*
657 * Convert linux node number to the UV blade number.
658 * .. Currently for UV2 thru UV4 the node and the blade are identical.
659 * .. If this changes then you MUST check references to this function!
660 */
661static inline int uv_node_to_blade_id(int nid)
662{
663	return nid;
664}
665
666/* Convert a CPU number to the UV blade number */
667static inline int uv_cpu_to_blade_id(int cpu)
668{
669	return uv_node_to_blade_id(cpu_to_node(cpu));
670}
671
672/* Convert a blade id to the PNODE of the blade */
673static inline int uv_blade_to_pnode(int bid)
674{
675	return uv_hub_info_list(uv_blade_to_node(bid))->pnode;
676}
677
678/* Nid of memory node on blade. -1 if no blade-local memory */
679static inline int uv_blade_to_memory_nid(int bid)
680{
681	return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
682}
683
684/* Determine the number of possible cpus on a blade */
685static inline int uv_blade_nr_possible_cpus(int bid)
686{
687	return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
688}
689
690/* Determine the number of online cpus on a blade */
691static inline int uv_blade_nr_online_cpus(int bid)
692{
693	return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
694}
695
696/* Convert a cpu id to the PNODE of the blade containing the cpu */
697static inline int uv_cpu_to_pnode(int cpu)
698{
699	return uv_cpu_hub_info(cpu)->pnode;
700}
701
702/* Convert a linux node number to the PNODE of the blade */
703static inline int uv_node_to_pnode(int nid)
704{
705	return uv_hub_info_list(nid)->pnode;
706}
707
708/* Maximum possible number of blades */
709extern short uv_possible_blades;
710static inline int uv_num_possible_blades(void)
711{
712	return uv_possible_blades;
713}
714
715/* Per Hub NMI support */
716extern void uv_nmi_setup(void);
717extern void uv_nmi_setup_hubless(void);
718
719/* BIOS/Kernel flags exchange MMR */
720#define UVH_BIOS_KERNEL_MMR		UVH_SCRATCH5
721#define UVH_BIOS_KERNEL_MMR_ALIAS	UVH_SCRATCH5_ALIAS
722#define UVH_BIOS_KERNEL_MMR_ALIAS_2	UVH_SCRATCH5_ALIAS_2
723
724/* TSC sync valid, set by BIOS */
725#define UVH_TSC_SYNC_MMR	UVH_BIOS_KERNEL_MMR
726#define UVH_TSC_SYNC_SHIFT	10
727#define UVH_TSC_SYNC_SHIFT_UV2K	16	/* UV2/3k have different bits */
728#define UVH_TSC_SYNC_MASK	3	/* 0011 */
729#define UVH_TSC_SYNC_VALID	3	/* 0011 */
730#define UVH_TSC_SYNC_UNKNOWN	0	/* 0000 */
731
732/* BMC sets a bit this MMR non-zero before sending an NMI */
733#define UVH_NMI_MMR		UVH_BIOS_KERNEL_MMR
734#define UVH_NMI_MMR_CLEAR	UVH_BIOS_KERNEL_MMR_ALIAS
735#define UVH_NMI_MMR_SHIFT	63
736#define UVH_NMI_MMR_TYPE	"SCRATCH5"
737
738struct uv_hub_nmi_s {
739	raw_spinlock_t	nmi_lock;
740	atomic_t	in_nmi;		/* flag this node in UV NMI IRQ */
741	atomic_t	cpu_owner;	/* last locker of this struct */
742	atomic_t	read_mmr_count;	/* count of MMR reads */
743	atomic_t	nmi_count;	/* count of true UV NMIs */
744	unsigned long	nmi_value;	/* last value read from NMI MMR */
745	bool		hub_present;	/* false means UV hubless system */
746	bool		pch_owner;	/* indicates this hub owns PCH */
747};
748
749struct uv_cpu_nmi_s {
750	struct uv_hub_nmi_s	*hub;
751	int			state;
752	int			pinging;
753	int			queries;
754	int			pings;
755};
756
757DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
758
759#define uv_hub_nmi			this_cpu_read(uv_cpu_nmi.hub)
760#define uv_cpu_nmi_per(cpu)		(per_cpu(uv_cpu_nmi, cpu))
761#define uv_hub_nmi_per(cpu)		(uv_cpu_nmi_per(cpu).hub)
762
763/* uv_cpu_nmi_states */
764#define	UV_NMI_STATE_OUT		0
765#define	UV_NMI_STATE_IN			1
766#define	UV_NMI_STATE_DUMP		2
767#define	UV_NMI_STATE_DUMP_DONE		3
768
769/*
770 * Get the minimum revision number of the hub chips within the partition.
771 * (See UVx_HUB_REVISION_BASE above for specific values.)
772 */
773static inline int uv_get_min_hub_revision_id(void)
774{
775	return uv_hub_info->hub_revision;
776}
777
778#endif /* CONFIG_X86_64 */
779#endif /* _ASM_X86_UV_UV_HUB_H */
780