1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_X86_TLBFLUSH_H 3#define _ASM_X86_TLBFLUSH_H 4 5#include <linux/mm.h> 6#include <linux/sched.h> 7 8#include <asm/processor.h> 9#include <asm/cpufeature.h> 10#include <asm/special_insns.h> 11#include <asm/smp.h> 12#include <asm/invpcid.h> 13#include <asm/pti.h> 14#include <asm/processor-flags.h> 15 16void __flush_tlb_all(void); 17 18#define TLB_FLUSH_ALL -1UL 19 20void cr4_update_irqsoff(unsigned long set, unsigned long clear); 21unsigned long cr4_read_shadow(void); 22 23/* Set in this cpu's CR4. */ 24static inline void cr4_set_bits_irqsoff(unsigned long mask) 25{ 26 cr4_update_irqsoff(mask, 0); 27} 28 29/* Clear in this cpu's CR4. */ 30static inline void cr4_clear_bits_irqsoff(unsigned long mask) 31{ 32 cr4_update_irqsoff(0, mask); 33} 34 35/* Set in this cpu's CR4. */ 36static inline void cr4_set_bits(unsigned long mask) 37{ 38 unsigned long flags; 39 40 local_irq_save(flags); 41 cr4_set_bits_irqsoff(mask); 42 local_irq_restore(flags); 43} 44 45/* Clear in this cpu's CR4. */ 46static inline void cr4_clear_bits(unsigned long mask) 47{ 48 unsigned long flags; 49 50 local_irq_save(flags); 51 cr4_clear_bits_irqsoff(mask); 52 local_irq_restore(flags); 53} 54 55#ifndef MODULE 56/* 57 * 6 because 6 should be plenty and struct tlb_state will fit in two cache 58 * lines. 59 */ 60#define TLB_NR_DYN_ASIDS 6 61 62struct tlb_context { 63 u64 ctx_id; 64 u64 tlb_gen; 65}; 66 67struct tlb_state { 68 /* 69 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts 70 * are on. This means that it may not match current->active_mm, 71 * which will contain the previous user mm when we're in lazy TLB 72 * mode even if we've already switched back to swapper_pg_dir. 73 * 74 * During switch_mm_irqs_off(), loaded_mm will be set to 75 * LOADED_MM_SWITCHING during the brief interrupts-off window 76 * when CR3 and loaded_mm would otherwise be inconsistent. This 77 * is for nmi_uaccess_okay()'s benefit. 78 */ 79 struct mm_struct *loaded_mm; 80 81#define LOADED_MM_SWITCHING ((struct mm_struct *)1UL) 82 83 /* Last user mm for optimizing IBPB */ 84 union { 85 struct mm_struct *last_user_mm; 86 unsigned long last_user_mm_ibpb; 87 }; 88 89 u16 loaded_mm_asid; 90 u16 next_asid; 91 92 /* 93 * We can be in one of several states: 94 * 95 * - Actively using an mm. Our CPU's bit will be set in 96 * mm_cpumask(loaded_mm) and is_lazy == false; 97 * 98 * - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit 99 * will not be set in mm_cpumask(&init_mm) and is_lazy == false. 100 * 101 * - Lazily using a real mm. loaded_mm != &init_mm, our bit 102 * is set in mm_cpumask(loaded_mm), but is_lazy == true. 103 * We're heuristically guessing that the CR3 load we 104 * skipped more than makes up for the overhead added by 105 * lazy mode. 106 */ 107 bool is_lazy; 108 109 /* 110 * If set we changed the page tables in such a way that we 111 * needed an invalidation of all contexts (aka. PCIDs / ASIDs). 112 * This tells us to go invalidate all the non-loaded ctxs[] 113 * on the next context switch. 114 * 115 * The current ctx was kept up-to-date as it ran and does not 116 * need to be invalidated. 117 */ 118 bool invalidate_other; 119 120 /* 121 * Mask that contains TLB_NR_DYN_ASIDS+1 bits to indicate 122 * the corresponding user PCID needs a flush next time we 123 * switch to it; see SWITCH_TO_USER_CR3. 124 */ 125 unsigned short user_pcid_flush_mask; 126 127 /* 128 * Access to this CR4 shadow and to H/W CR4 is protected by 129 * disabling interrupts when modifying either one. 130 */ 131 unsigned long cr4; 132 133 /* 134 * This is a list of all contexts that might exist in the TLB. 135 * There is one per ASID that we use, and the ASID (what the 136 * CPU calls PCID) is the index into ctxts. 137 * 138 * For each context, ctx_id indicates which mm the TLB's user 139 * entries came from. As an invariant, the TLB will never 140 * contain entries that are out-of-date as when that mm reached 141 * the tlb_gen in the list. 142 * 143 * To be clear, this means that it's legal for the TLB code to 144 * flush the TLB without updating tlb_gen. This can happen 145 * (for now, at least) due to paravirt remote flushes. 146 * 147 * NB: context 0 is a bit special, since it's also used by 148 * various bits of init code. This is fine -- code that 149 * isn't aware of PCID will end up harmlessly flushing 150 * context 0. 151 */ 152 struct tlb_context ctxs[TLB_NR_DYN_ASIDS]; 153}; 154DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate); 155 156bool nmi_uaccess_okay(void); 157#define nmi_uaccess_okay nmi_uaccess_okay 158 159/* Initialize cr4 shadow for this CPU. */ 160static inline void cr4_init_shadow(void) 161{ 162 this_cpu_write(cpu_tlbstate.cr4, __read_cr4()); 163} 164 165extern unsigned long mmu_cr4_features; 166extern u32 *trampoline_cr4_features; 167 168extern void initialize_tlbstate_and_flush(void); 169 170/* 171 * TLB flushing: 172 * 173 * - flush_tlb_all() flushes all processes TLBs 174 * - flush_tlb_mm(mm) flushes the specified mm context TLB's 175 * - flush_tlb_page(vma, vmaddr) flushes one page 176 * - flush_tlb_range(vma, start, end) flushes a range of pages 177 * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages 178 * - flush_tlb_others(cpumask, info) flushes TLBs on other cpus 179 * 180 * ..but the i386 has somewhat limited tlb flushing capabilities, 181 * and page-granular flushes are available only on i486 and up. 182 */ 183struct flush_tlb_info { 184 /* 185 * We support several kinds of flushes. 186 * 187 * - Fully flush a single mm. .mm will be set, .end will be 188 * TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to 189 * which the IPI sender is trying to catch us up. 190 * 191 * - Partially flush a single mm. .mm will be set, .start and 192 * .end will indicate the range, and .new_tlb_gen will be set 193 * such that the changes between generation .new_tlb_gen-1 and 194 * .new_tlb_gen are entirely contained in the indicated range. 195 * 196 * - Fully flush all mms whose tlb_gens have been updated. .mm 197 * will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen 198 * will be zero. 199 */ 200 struct mm_struct *mm; 201 unsigned long start; 202 unsigned long end; 203 u64 new_tlb_gen; 204 unsigned int stride_shift; 205 bool freed_tables; 206}; 207 208void flush_tlb_local(void); 209void flush_tlb_one_user(unsigned long addr); 210void flush_tlb_one_kernel(unsigned long addr); 211void flush_tlb_others(const struct cpumask *cpumask, 212 const struct flush_tlb_info *info); 213 214#ifdef CONFIG_PARAVIRT 215#include <asm/paravirt.h> 216#endif 217 218#define flush_tlb_mm(mm) \ 219 flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL, true) 220 221#define flush_tlb_range(vma, start, end) \ 222 flush_tlb_mm_range((vma)->vm_mm, start, end, \ 223 ((vma)->vm_flags & VM_HUGETLB) \ 224 ? huge_page_shift(hstate_vma(vma)) \ 225 : PAGE_SHIFT, false) 226 227extern void flush_tlb_all(void); 228extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 229 unsigned long end, unsigned int stride_shift, 230 bool freed_tables); 231extern void flush_tlb_kernel_range(unsigned long start, unsigned long end); 232 233static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a) 234{ 235 flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, PAGE_SHIFT, false); 236} 237 238static inline u64 inc_mm_tlb_gen(struct mm_struct *mm) 239{ 240 /* 241 * Bump the generation count. This also serves as a full barrier 242 * that synchronizes with switch_mm(): callers are required to order 243 * their read of mm_cpumask after their writes to the paging 244 * structures. 245 */ 246 return atomic64_inc_return(&mm->context.tlb_gen); 247} 248 249static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch, 250 struct mm_struct *mm) 251{ 252 inc_mm_tlb_gen(mm); 253 cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm)); 254} 255 256extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch); 257 258#endif /* !MODULE */ 259 260#endif /* _ASM_X86_TLBFLUSH_H */ 261