1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_X86_SEGMENT_H 3#define _ASM_X86_SEGMENT_H 4 5#include <linux/const.h> 6#include <asm/alternative.h> 7 8/* 9 * Constructor for a conventional segment GDT (or LDT) entry. 10 * This is a macro so it can be used in initializers. 11 */ 12#define GDT_ENTRY(flags, base, limit) \ 13 ((((base) & _AC(0xff000000,ULL)) << (56-24)) | \ 14 (((flags) & _AC(0x0000f0ff,ULL)) << 40) | \ 15 (((limit) & _AC(0x000f0000,ULL)) << (48-16)) | \ 16 (((base) & _AC(0x00ffffff,ULL)) << 16) | \ 17 (((limit) & _AC(0x0000ffff,ULL)))) 18 19/* Simple and small GDT entries for booting only: */ 20 21#define GDT_ENTRY_BOOT_CS 2 22#define GDT_ENTRY_BOOT_DS 3 23#define GDT_ENTRY_BOOT_TSS 4 24#define __BOOT_CS (GDT_ENTRY_BOOT_CS*8) 25#define __BOOT_DS (GDT_ENTRY_BOOT_DS*8) 26#define __BOOT_TSS (GDT_ENTRY_BOOT_TSS*8) 27 28/* 29 * Bottom two bits of selector give the ring 30 * privilege level 31 */ 32#define SEGMENT_RPL_MASK 0x3 33 34/* 35 * When running on Xen PV, the actual privilege level of the kernel is 1, 36 * not 0. Testing the Requested Privilege Level in a segment selector to 37 * determine whether the context is user mode or kernel mode with 38 * SEGMENT_RPL_MASK is wrong because the PV kernel's privilege level 39 * matches the 0x3 mask. 40 * 41 * Testing with USER_SEGMENT_RPL_MASK is valid for both native and Xen PV 42 * kernels because privilege level 2 is never used. 43 */ 44#define USER_SEGMENT_RPL_MASK 0x2 45 46/* User mode is privilege level 3: */ 47#define USER_RPL 0x3 48 49/* Bit 2 is Table Indicator (TI): selects between LDT or GDT */ 50#define SEGMENT_TI_MASK 0x4 51/* LDT segment has TI set ... */ 52#define SEGMENT_LDT 0x4 53/* ... GDT has it cleared */ 54#define SEGMENT_GDT 0x0 55 56#define GDT_ENTRY_INVALID_SEG 0 57 58#ifdef CONFIG_X86_32 59/* 60 * The layout of the per-CPU GDT under Linux: 61 * 62 * 0 - null <=== cacheline #1 63 * 1 - reserved 64 * 2 - reserved 65 * 3 - reserved 66 * 67 * 4 - unused <=== cacheline #2 68 * 5 - unused 69 * 70 * ------- start of TLS (Thread-Local Storage) segments: 71 * 72 * 6 - TLS segment #1 [ glibc's TLS segment ] 73 * 7 - TLS segment #2 [ Wine's %fs Win32 segment ] 74 * 8 - TLS segment #3 <=== cacheline #3 75 * 9 - reserved 76 * 10 - reserved 77 * 11 - reserved 78 * 79 * ------- start of kernel segments: 80 * 81 * 12 - kernel code segment <=== cacheline #4 82 * 13 - kernel data segment 83 * 14 - default user CS 84 * 15 - default user DS 85 * 16 - TSS <=== cacheline #5 86 * 17 - LDT 87 * 18 - PNPBIOS support (16->32 gate) 88 * 19 - PNPBIOS support 89 * 20 - PNPBIOS support <=== cacheline #6 90 * 21 - PNPBIOS support 91 * 22 - PNPBIOS support 92 * 23 - APM BIOS support 93 * 24 - APM BIOS support <=== cacheline #7 94 * 25 - APM BIOS support 95 * 96 * 26 - ESPFIX small SS 97 * 27 - per-cpu [ offset to per-cpu data area ] 98 * 28 - stack_canary-20 [ for stack protector ] <=== cacheline #8 99 * 29 - unused 100 * 30 - unused 101 * 31 - TSS for double fault handler 102 */ 103#define GDT_ENTRY_TLS_MIN 6 104#define GDT_ENTRY_TLS_MAX (GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1) 105 106#define GDT_ENTRY_KERNEL_CS 12 107#define GDT_ENTRY_KERNEL_DS 13 108#define GDT_ENTRY_DEFAULT_USER_CS 14 109#define GDT_ENTRY_DEFAULT_USER_DS 15 110#define GDT_ENTRY_TSS 16 111#define GDT_ENTRY_LDT 17 112#define GDT_ENTRY_PNPBIOS_CS32 18 113#define GDT_ENTRY_PNPBIOS_CS16 19 114#define GDT_ENTRY_PNPBIOS_DS 20 115#define GDT_ENTRY_PNPBIOS_TS1 21 116#define GDT_ENTRY_PNPBIOS_TS2 22 117#define GDT_ENTRY_APMBIOS_BASE 23 118 119#define GDT_ENTRY_ESPFIX_SS 26 120#define GDT_ENTRY_PERCPU 27 121#define GDT_ENTRY_STACK_CANARY 28 122 123#define GDT_ENTRY_DOUBLEFAULT_TSS 31 124 125/* 126 * Number of entries in the GDT table: 127 */ 128#define GDT_ENTRIES 32 129 130/* 131 * Segment selector values corresponding to the above entries: 132 */ 133 134#define __KERNEL_CS (GDT_ENTRY_KERNEL_CS*8) 135#define __KERNEL_DS (GDT_ENTRY_KERNEL_DS*8) 136#define __USER_DS (GDT_ENTRY_DEFAULT_USER_DS*8 + 3) 137#define __USER_CS (GDT_ENTRY_DEFAULT_USER_CS*8 + 3) 138#define __ESPFIX_SS (GDT_ENTRY_ESPFIX_SS*8) 139 140/* segment for calling fn: */ 141#define PNP_CS32 (GDT_ENTRY_PNPBIOS_CS32*8) 142/* code segment for BIOS: */ 143#define PNP_CS16 (GDT_ENTRY_PNPBIOS_CS16*8) 144 145/* "Is this PNP code selector (PNP_CS32 or PNP_CS16)?" */ 146#define SEGMENT_IS_PNP_CODE(x) (((x) & 0xf4) == PNP_CS32) 147 148/* data segment for BIOS: */ 149#define PNP_DS (GDT_ENTRY_PNPBIOS_DS*8) 150/* transfer data segment: */ 151#define PNP_TS1 (GDT_ENTRY_PNPBIOS_TS1*8) 152/* another data segment: */ 153#define PNP_TS2 (GDT_ENTRY_PNPBIOS_TS2*8) 154 155#ifdef CONFIG_SMP 156# define __KERNEL_PERCPU (GDT_ENTRY_PERCPU*8) 157#else 158# define __KERNEL_PERCPU 0 159#endif 160 161#ifdef CONFIG_STACKPROTECTOR 162# define __KERNEL_STACK_CANARY (GDT_ENTRY_STACK_CANARY*8) 163#else 164# define __KERNEL_STACK_CANARY 0 165#endif 166 167#else /* 64-bit: */ 168 169#include <asm/cache.h> 170 171#define GDT_ENTRY_KERNEL32_CS 1 172#define GDT_ENTRY_KERNEL_CS 2 173#define GDT_ENTRY_KERNEL_DS 3 174 175/* 176 * We cannot use the same code segment descriptor for user and kernel mode, 177 * not even in long flat mode, because of different DPL. 178 * 179 * GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes 180 * selectors: 181 * 182 * if returning to 32-bit userspace: cs = STAR.SYSRET_CS, 183 * if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16, 184 * 185 * ss = STAR.SYSRET_CS+8 (in either case) 186 * 187 * thus USER_DS should be between 32-bit and 64-bit code selectors: 188 */ 189#define GDT_ENTRY_DEFAULT_USER32_CS 4 190#define GDT_ENTRY_DEFAULT_USER_DS 5 191#define GDT_ENTRY_DEFAULT_USER_CS 6 192 193/* Needs two entries */ 194#define GDT_ENTRY_TSS 8 195/* Needs two entries */ 196#define GDT_ENTRY_LDT 10 197 198#define GDT_ENTRY_TLS_MIN 12 199#define GDT_ENTRY_TLS_MAX 14 200 201#define GDT_ENTRY_CPUNODE 15 202 203/* 204 * Number of entries in the GDT table: 205 */ 206#define GDT_ENTRIES 16 207 208/* 209 * Segment selector values corresponding to the above entries: 210 * 211 * Note, selectors also need to have a correct RPL, 212 * expressed with the +3 value for user-space selectors: 213 */ 214#define __KERNEL32_CS (GDT_ENTRY_KERNEL32_CS*8) 215#define __KERNEL_CS (GDT_ENTRY_KERNEL_CS*8) 216#define __KERNEL_DS (GDT_ENTRY_KERNEL_DS*8) 217#define __USER32_CS (GDT_ENTRY_DEFAULT_USER32_CS*8 + 3) 218#define __USER_DS (GDT_ENTRY_DEFAULT_USER_DS*8 + 3) 219#define __USER32_DS __USER_DS 220#define __USER_CS (GDT_ENTRY_DEFAULT_USER_CS*8 + 3) 221#define __CPUNODE_SEG (GDT_ENTRY_CPUNODE*8 + 3) 222 223#endif 224 225#define IDT_ENTRIES 256 226#define NUM_EXCEPTION_VECTORS 32 227 228/* Bitmask of exception vectors which push an error code on the stack: */ 229#define EXCEPTION_ERRCODE_MASK 0x20027d00 230 231#define GDT_SIZE (GDT_ENTRIES*8) 232#define GDT_ENTRY_TLS_ENTRIES 3 233#define TLS_SIZE (GDT_ENTRY_TLS_ENTRIES* 8) 234 235#ifdef CONFIG_X86_64 236 237/* Bit size and mask of CPU number stored in the per CPU data (and TSC_AUX) */ 238#define VDSO_CPUNODE_BITS 12 239#define VDSO_CPUNODE_MASK 0xfff 240 241#ifndef __ASSEMBLY__ 242 243/* Helper functions to store/load CPU and node numbers */ 244 245static inline unsigned long vdso_encode_cpunode(int cpu, unsigned long node) 246{ 247 return (node << VDSO_CPUNODE_BITS) | cpu; 248} 249 250static inline void vdso_read_cpunode(unsigned *cpu, unsigned *node) 251{ 252 unsigned int p; 253 254 /* 255 * Load CPU and node number from the GDT. LSL is faster than RDTSCP 256 * and works on all CPUs. This is volatile so that it orders 257 * correctly with respect to barrier() and to keep GCC from cleverly 258 * hoisting it out of the calling function. 259 * 260 * If RDPID is available, use it. 261 */ 262 alternative_io ("lsl %[seg],%[p]", 263 ".byte 0xf3,0x0f,0xc7,0xf8", /* RDPID %eax/rax */ 264 X86_FEATURE_RDPID, 265 [p] "=a" (p), [seg] "r" (__CPUNODE_SEG)); 266 267 if (cpu) 268 *cpu = (p & VDSO_CPUNODE_MASK); 269 if (node) 270 *node = (p >> VDSO_CPUNODE_BITS); 271} 272 273#endif /* !__ASSEMBLY__ */ 274#endif /* CONFIG_X86_64 */ 275 276#ifdef __KERNEL__ 277 278/* 279 * early_idt_handler_array is an array of entry points referenced in the 280 * early IDT. For simplicity, it's a real array with one entry point 281 * every nine bytes. That leaves room for an optional 'push $0' if the 282 * vector has no error code (two bytes), a 'push $vector_number' (two 283 * bytes), and a jump to the common entry code (up to five bytes). 284 */ 285#define EARLY_IDT_HANDLER_SIZE 9 286 287/* 288 * xen_early_idt_handler_array is for Xen pv guests: for each entry in 289 * early_idt_handler_array it contains a prequel in the form of 290 * pop %rcx; pop %r11; jmp early_idt_handler_array[i]; summing up to 291 * max 8 bytes. 292 */ 293#define XEN_EARLY_IDT_HANDLER_SIZE 8 294 295#ifndef __ASSEMBLY__ 296 297extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE]; 298extern void early_ignore_irq(void); 299 300#ifdef CONFIG_XEN_PV 301extern const char xen_early_idt_handler_array[NUM_EXCEPTION_VECTORS][XEN_EARLY_IDT_HANDLER_SIZE]; 302#endif 303 304/* 305 * Load a segment. Fall back on loading the zero segment if something goes 306 * wrong. This variant assumes that loading zero fully clears the segment. 307 * This is always the case on Intel CPUs and, even on 64-bit AMD CPUs, any 308 * failure to fully clear the cached descriptor is only observable for 309 * FS and GS. 310 */ 311#define __loadsegment_simple(seg, value) \ 312do { \ 313 unsigned short __val = (value); \ 314 \ 315 asm volatile(" \n" \ 316 "1: movl %k0,%%" #seg " \n" \ 317 \ 318 ".section .fixup,\"ax\" \n" \ 319 "2: xorl %k0,%k0 \n" \ 320 " jmp 1b \n" \ 321 ".previous \n" \ 322 \ 323 _ASM_EXTABLE(1b, 2b) \ 324 \ 325 : "+r" (__val) : : "memory"); \ 326} while (0) 327 328#define __loadsegment_ss(value) __loadsegment_simple(ss, (value)) 329#define __loadsegment_ds(value) __loadsegment_simple(ds, (value)) 330#define __loadsegment_es(value) __loadsegment_simple(es, (value)) 331 332#ifdef CONFIG_X86_32 333 334/* 335 * On 32-bit systems, the hidden parts of FS and GS are unobservable if 336 * the selector is NULL, so there's no funny business here. 337 */ 338#define __loadsegment_fs(value) __loadsegment_simple(fs, (value)) 339#define __loadsegment_gs(value) __loadsegment_simple(gs, (value)) 340 341#else 342 343static inline void __loadsegment_fs(unsigned short value) 344{ 345 asm volatile(" \n" 346 "1: movw %0, %%fs \n" 347 "2: \n" 348 349 _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_clear_fs) 350 351 : : "rm" (value) : "memory"); 352} 353 354/* __loadsegment_gs is intentionally undefined. Use load_gs_index instead. */ 355 356#endif 357 358#define loadsegment(seg, value) __loadsegment_ ## seg (value) 359 360/* 361 * Save a segment register away: 362 */ 363#define savesegment(seg, value) \ 364 asm("mov %%" #seg ",%0":"=r" (value) : : "memory") 365 366/* 367 * x86-32 user GS accessors: 368 */ 369#ifdef CONFIG_X86_32 370# ifdef CONFIG_X86_32_LAZY_GS 371# define get_user_gs(regs) (u16)({ unsigned long v; savesegment(gs, v); v; }) 372# define set_user_gs(regs, v) loadsegment(gs, (unsigned long)(v)) 373# define task_user_gs(tsk) ((tsk)->thread.gs) 374# define lazy_save_gs(v) savesegment(gs, (v)) 375# define lazy_load_gs(v) loadsegment(gs, (v)) 376# else /* X86_32_LAZY_GS */ 377# define get_user_gs(regs) (u16)((regs)->gs) 378# define set_user_gs(regs, v) do { (regs)->gs = (v); } while (0) 379# define task_user_gs(tsk) (task_pt_regs(tsk)->gs) 380# define lazy_save_gs(v) do { } while (0) 381# define lazy_load_gs(v) do { } while (0) 382# endif /* X86_32_LAZY_GS */ 383#endif /* X86_32 */ 384 385#endif /* !__ASSEMBLY__ */ 386#endif /* __KERNEL__ */ 387 388#endif /* _ASM_X86_SEGMENT_H */ 389