1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_SEGMENT_H
3#define _ASM_X86_SEGMENT_H
4
5#include <linux/const.h>
6#include <asm/alternative.h>
7
8/*
9 * Constructor for a conventional segment GDT (or LDT) entry.
10 * This is a macro so it can be used in initializers.
11 */
12#define GDT_ENTRY(flags, base, limit)			\
13	((((base)  & _AC(0xff000000,ULL)) << (56-24)) |	\
14	 (((flags) & _AC(0x0000f0ff,ULL)) << 40) |	\
15	 (((limit) & _AC(0x000f0000,ULL)) << (48-16)) |	\
16	 (((base)  & _AC(0x00ffffff,ULL)) << 16) |	\
17	 (((limit) & _AC(0x0000ffff,ULL))))
18
19/* Simple and small GDT entries for booting only: */
20
21#define GDT_ENTRY_BOOT_CS	2
22#define GDT_ENTRY_BOOT_DS	3
23#define GDT_ENTRY_BOOT_TSS	4
24#define __BOOT_CS		(GDT_ENTRY_BOOT_CS*8)
25#define __BOOT_DS		(GDT_ENTRY_BOOT_DS*8)
26#define __BOOT_TSS		(GDT_ENTRY_BOOT_TSS*8)
27
28/*
29 * Bottom two bits of selector give the ring
30 * privilege level
31 */
32#define SEGMENT_RPL_MASK	0x3
33
34/*
35 * When running on Xen PV, the actual privilege level of the kernel is 1,
36 * not 0. Testing the Requested Privilege Level in a segment selector to
37 * determine whether the context is user mode or kernel mode with
38 * SEGMENT_RPL_MASK is wrong because the PV kernel's privilege level
39 * matches the 0x3 mask.
40 *
41 * Testing with USER_SEGMENT_RPL_MASK is valid for both native and Xen PV
42 * kernels because privilege level 2 is never used.
43 */
44#define USER_SEGMENT_RPL_MASK	0x2
45
46/* User mode is privilege level 3: */
47#define USER_RPL		0x3
48
49/* Bit 2 is Table Indicator (TI): selects between LDT or GDT */
50#define SEGMENT_TI_MASK		0x4
51/* LDT segment has TI set ... */
52#define SEGMENT_LDT		0x4
53/* ... GDT has it cleared */
54#define SEGMENT_GDT		0x0
55
56#define GDT_ENTRY_INVALID_SEG	0
57
58#ifdef CONFIG_X86_32
59/*
60 * The layout of the per-CPU GDT under Linux:
61 *
62 *   0 - null								<=== cacheline #1
63 *   1 - reserved
64 *   2 - reserved
65 *   3 - reserved
66 *
67 *   4 - unused								<=== cacheline #2
68 *   5 - unused
69 *
70 *  ------- start of TLS (Thread-Local Storage) segments:
71 *
72 *   6 - TLS segment #1			[ glibc's TLS segment ]
73 *   7 - TLS segment #2			[ Wine's %fs Win32 segment ]
74 *   8 - TLS segment #3							<=== cacheline #3
75 *   9 - reserved
76 *  10 - reserved
77 *  11 - reserved
78 *
79 *  ------- start of kernel segments:
80 *
81 *  12 - kernel code segment						<=== cacheline #4
82 *  13 - kernel data segment
83 *  14 - default user CS
84 *  15 - default user DS
85 *  16 - TSS								<=== cacheline #5
86 *  17 - LDT
87 *  18 - PNPBIOS support (16->32 gate)
88 *  19 - PNPBIOS support
89 *  20 - PNPBIOS support						<=== cacheline #6
90 *  21 - PNPBIOS support
91 *  22 - PNPBIOS support
92 *  23 - APM BIOS support
93 *  24 - APM BIOS support						<=== cacheline #7
94 *  25 - APM BIOS support
95 *
96 *  26 - ESPFIX small SS
97 *  27 - per-cpu			[ offset to per-cpu data area ]
98 *  28 - stack_canary-20		[ for stack protector ]		<=== cacheline #8
99 *  29 - unused
100 *  30 - unused
101 *  31 - TSS for double fault handler
102 */
103#define GDT_ENTRY_TLS_MIN		6
104#define GDT_ENTRY_TLS_MAX 		(GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1)
105
106#define GDT_ENTRY_KERNEL_CS		12
107#define GDT_ENTRY_KERNEL_DS		13
108#define GDT_ENTRY_DEFAULT_USER_CS	14
109#define GDT_ENTRY_DEFAULT_USER_DS	15
110#define GDT_ENTRY_TSS			16
111#define GDT_ENTRY_LDT			17
112#define GDT_ENTRY_PNPBIOS_CS32		18
113#define GDT_ENTRY_PNPBIOS_CS16		19
114#define GDT_ENTRY_PNPBIOS_DS		20
115#define GDT_ENTRY_PNPBIOS_TS1		21
116#define GDT_ENTRY_PNPBIOS_TS2		22
117#define GDT_ENTRY_APMBIOS_BASE		23
118
119#define GDT_ENTRY_ESPFIX_SS		26
120#define GDT_ENTRY_PERCPU		27
121#define GDT_ENTRY_STACK_CANARY		28
122
123#define GDT_ENTRY_DOUBLEFAULT_TSS	31
124
125/*
126 * Number of entries in the GDT table:
127 */
128#define GDT_ENTRIES			32
129
130/*
131 * Segment selector values corresponding to the above entries:
132 */
133
134#define __KERNEL_CS			(GDT_ENTRY_KERNEL_CS*8)
135#define __KERNEL_DS			(GDT_ENTRY_KERNEL_DS*8)
136#define __USER_DS			(GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
137#define __USER_CS			(GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
138#define __ESPFIX_SS			(GDT_ENTRY_ESPFIX_SS*8)
139
140/* segment for calling fn: */
141#define PNP_CS32			(GDT_ENTRY_PNPBIOS_CS32*8)
142/* code segment for BIOS: */
143#define PNP_CS16			(GDT_ENTRY_PNPBIOS_CS16*8)
144
145/* "Is this PNP code selector (PNP_CS32 or PNP_CS16)?" */
146#define SEGMENT_IS_PNP_CODE(x)		(((x) & 0xf4) == PNP_CS32)
147
148/* data segment for BIOS: */
149#define PNP_DS				(GDT_ENTRY_PNPBIOS_DS*8)
150/* transfer data segment: */
151#define PNP_TS1				(GDT_ENTRY_PNPBIOS_TS1*8)
152/* another data segment: */
153#define PNP_TS2				(GDT_ENTRY_PNPBIOS_TS2*8)
154
155#ifdef CONFIG_SMP
156# define __KERNEL_PERCPU		(GDT_ENTRY_PERCPU*8)
157#else
158# define __KERNEL_PERCPU		0
159#endif
160
161#ifdef CONFIG_STACKPROTECTOR
162# define __KERNEL_STACK_CANARY		(GDT_ENTRY_STACK_CANARY*8)
163#else
164# define __KERNEL_STACK_CANARY		0
165#endif
166
167#else /* 64-bit: */
168
169#include <asm/cache.h>
170
171#define GDT_ENTRY_KERNEL32_CS		1
172#define GDT_ENTRY_KERNEL_CS		2
173#define GDT_ENTRY_KERNEL_DS		3
174
175/*
176 * We cannot use the same code segment descriptor for user and kernel mode,
177 * not even in long flat mode, because of different DPL.
178 *
179 * GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes
180 * selectors:
181 *
182 *   if returning to 32-bit userspace: cs = STAR.SYSRET_CS,
183 *   if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16,
184 *
185 * ss = STAR.SYSRET_CS+8 (in either case)
186 *
187 * thus USER_DS should be between 32-bit and 64-bit code selectors:
188 */
189#define GDT_ENTRY_DEFAULT_USER32_CS	4
190#define GDT_ENTRY_DEFAULT_USER_DS	5
191#define GDT_ENTRY_DEFAULT_USER_CS	6
192
193/* Needs two entries */
194#define GDT_ENTRY_TSS			8
195/* Needs two entries */
196#define GDT_ENTRY_LDT			10
197
198#define GDT_ENTRY_TLS_MIN		12
199#define GDT_ENTRY_TLS_MAX		14
200
201#define GDT_ENTRY_CPUNODE		15
202
203/*
204 * Number of entries in the GDT table:
205 */
206#define GDT_ENTRIES			16
207
208/*
209 * Segment selector values corresponding to the above entries:
210 *
211 * Note, selectors also need to have a correct RPL,
212 * expressed with the +3 value for user-space selectors:
213 */
214#define __KERNEL32_CS			(GDT_ENTRY_KERNEL32_CS*8)
215#define __KERNEL_CS			(GDT_ENTRY_KERNEL_CS*8)
216#define __KERNEL_DS			(GDT_ENTRY_KERNEL_DS*8)
217#define __USER32_CS			(GDT_ENTRY_DEFAULT_USER32_CS*8 + 3)
218#define __USER_DS			(GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
219#define __USER32_DS			__USER_DS
220#define __USER_CS			(GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
221#define __CPUNODE_SEG			(GDT_ENTRY_CPUNODE*8 + 3)
222
223#endif
224
225#define IDT_ENTRIES			256
226#define NUM_EXCEPTION_VECTORS		32
227
228/* Bitmask of exception vectors which push an error code on the stack: */
229#define EXCEPTION_ERRCODE_MASK		0x20027d00
230
231#define GDT_SIZE			(GDT_ENTRIES*8)
232#define GDT_ENTRY_TLS_ENTRIES		3
233#define TLS_SIZE			(GDT_ENTRY_TLS_ENTRIES* 8)
234
235#ifdef CONFIG_X86_64
236
237/* Bit size and mask of CPU number stored in the per CPU data (and TSC_AUX) */
238#define VDSO_CPUNODE_BITS		12
239#define VDSO_CPUNODE_MASK		0xfff
240
241#ifndef __ASSEMBLY__
242
243/* Helper functions to store/load CPU and node numbers */
244
245static inline unsigned long vdso_encode_cpunode(int cpu, unsigned long node)
246{
247	return (node << VDSO_CPUNODE_BITS) | cpu;
248}
249
250static inline void vdso_read_cpunode(unsigned *cpu, unsigned *node)
251{
252	unsigned int p;
253
254	/*
255	 * Load CPU and node number from the GDT.  LSL is faster than RDTSCP
256	 * and works on all CPUs.  This is volatile so that it orders
257	 * correctly with respect to barrier() and to keep GCC from cleverly
258	 * hoisting it out of the calling function.
259	 *
260	 * If RDPID is available, use it.
261	 */
262	alternative_io ("lsl %[seg],%[p]",
263			".byte 0xf3,0x0f,0xc7,0xf8", /* RDPID %eax/rax */
264			X86_FEATURE_RDPID,
265			[p] "=a" (p), [seg] "r" (__CPUNODE_SEG));
266
267	if (cpu)
268		*cpu = (p & VDSO_CPUNODE_MASK);
269	if (node)
270		*node = (p >> VDSO_CPUNODE_BITS);
271}
272
273#endif /* !__ASSEMBLY__ */
274#endif /* CONFIG_X86_64 */
275
276#ifdef __KERNEL__
277
278/*
279 * early_idt_handler_array is an array of entry points referenced in the
280 * early IDT.  For simplicity, it's a real array with one entry point
281 * every nine bytes.  That leaves room for an optional 'push $0' if the
282 * vector has no error code (two bytes), a 'push $vector_number' (two
283 * bytes), and a jump to the common entry code (up to five bytes).
284 */
285#define EARLY_IDT_HANDLER_SIZE 9
286
287/*
288 * xen_early_idt_handler_array is for Xen pv guests: for each entry in
289 * early_idt_handler_array it contains a prequel in the form of
290 * pop %rcx; pop %r11; jmp early_idt_handler_array[i]; summing up to
291 * max 8 bytes.
292 */
293#define XEN_EARLY_IDT_HANDLER_SIZE 8
294
295#ifndef __ASSEMBLY__
296
297extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE];
298extern void early_ignore_irq(void);
299
300#ifdef CONFIG_XEN_PV
301extern const char xen_early_idt_handler_array[NUM_EXCEPTION_VECTORS][XEN_EARLY_IDT_HANDLER_SIZE];
302#endif
303
304/*
305 * Load a segment. Fall back on loading the zero segment if something goes
306 * wrong.  This variant assumes that loading zero fully clears the segment.
307 * This is always the case on Intel CPUs and, even on 64-bit AMD CPUs, any
308 * failure to fully clear the cached descriptor is only observable for
309 * FS and GS.
310 */
311#define __loadsegment_simple(seg, value)				\
312do {									\
313	unsigned short __val = (value);					\
314									\
315	asm volatile("						\n"	\
316		     "1:	movl %k0,%%" #seg "		\n"	\
317									\
318		     ".section .fixup,\"ax\"			\n"	\
319		     "2:	xorl %k0,%k0			\n"	\
320		     "		jmp 1b				\n"	\
321		     ".previous					\n"	\
322									\
323		     _ASM_EXTABLE(1b, 2b)				\
324									\
325		     : "+r" (__val) : : "memory");			\
326} while (0)
327
328#define __loadsegment_ss(value) __loadsegment_simple(ss, (value))
329#define __loadsegment_ds(value) __loadsegment_simple(ds, (value))
330#define __loadsegment_es(value) __loadsegment_simple(es, (value))
331
332#ifdef CONFIG_X86_32
333
334/*
335 * On 32-bit systems, the hidden parts of FS and GS are unobservable if
336 * the selector is NULL, so there's no funny business here.
337 */
338#define __loadsegment_fs(value) __loadsegment_simple(fs, (value))
339#define __loadsegment_gs(value) __loadsegment_simple(gs, (value))
340
341#else
342
343static inline void __loadsegment_fs(unsigned short value)
344{
345	asm volatile("						\n"
346		     "1:	movw %0, %%fs			\n"
347		     "2:					\n"
348
349		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_clear_fs)
350
351		     : : "rm" (value) : "memory");
352}
353
354/* __loadsegment_gs is intentionally undefined.  Use load_gs_index instead. */
355
356#endif
357
358#define loadsegment(seg, value) __loadsegment_ ## seg (value)
359
360/*
361 * Save a segment register away:
362 */
363#define savesegment(seg, value)				\
364	asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
365
366/*
367 * x86-32 user GS accessors:
368 */
369#ifdef CONFIG_X86_32
370# ifdef CONFIG_X86_32_LAZY_GS
371#  define get_user_gs(regs)		(u16)({ unsigned long v; savesegment(gs, v); v; })
372#  define set_user_gs(regs, v)		loadsegment(gs, (unsigned long)(v))
373#  define task_user_gs(tsk)		((tsk)->thread.gs)
374#  define lazy_save_gs(v)		savesegment(gs, (v))
375#  define lazy_load_gs(v)		loadsegment(gs, (v))
376# else	/* X86_32_LAZY_GS */
377#  define get_user_gs(regs)		(u16)((regs)->gs)
378#  define set_user_gs(regs, v)		do { (regs)->gs = (v); } while (0)
379#  define task_user_gs(tsk)		(task_pt_regs(tsk)->gs)
380#  define lazy_save_gs(v)		do { } while (0)
381#  define lazy_load_gs(v)		do { } while (0)
382# endif	/* X86_32_LAZY_GS */
383#endif	/* X86_32 */
384
385#endif /* !__ASSEMBLY__ */
386#endif /* __KERNEL__ */
387
388#endif /* _ASM_X86_SEGMENT_H */
389