1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_PERCPU_H
3#define _ASM_X86_PERCPU_H
4
5#ifdef CONFIG_X86_64
6#define __percpu_seg		gs
7#else
8#define __percpu_seg		fs
9#endif
10
11#ifdef __ASSEMBLY__
12
13#ifdef CONFIG_SMP
14#define PER_CPU_VAR(var)	%__percpu_seg:var
15#else /* ! SMP */
16#define PER_CPU_VAR(var)	var
17#endif	/* SMP */
18
19#ifdef CONFIG_X86_64_SMP
20#define INIT_PER_CPU_VAR(var)  init_per_cpu__##var
21#else
22#define INIT_PER_CPU_VAR(var)  var
23#endif
24
25#else /* ...!ASSEMBLY */
26
27#include <linux/kernel.h>
28#include <linux/stringify.h>
29
30#ifdef CONFIG_SMP
31#define __percpu_prefix		"%%"__stringify(__percpu_seg)":"
32#define __my_cpu_offset		this_cpu_read(this_cpu_off)
33
34/*
35 * Compared to the generic __my_cpu_offset version, the following
36 * saves one instruction and avoids clobbering a temp register.
37 */
38#define arch_raw_cpu_ptr(ptr)				\
39({							\
40	unsigned long tcp_ptr__;			\
41	asm volatile("add " __percpu_arg(1) ", %0"	\
42		     : "=r" (tcp_ptr__)			\
43		     : "m" (this_cpu_off), "0" (ptr));	\
44	(typeof(*(ptr)) __kernel __force *)tcp_ptr__;	\
45})
46#else
47#define __percpu_prefix		""
48#endif
49
50#define __percpu_arg(x)		__percpu_prefix "%" #x
51
52/*
53 * Initialized pointers to per-cpu variables needed for the boot
54 * processor need to use these macros to get the proper address
55 * offset from __per_cpu_load on SMP.
56 *
57 * There also must be an entry in vmlinux_64.lds.S
58 */
59#define DECLARE_INIT_PER_CPU(var) \
60       extern typeof(var) init_per_cpu_var(var)
61
62#ifdef CONFIG_X86_64_SMP
63#define init_per_cpu_var(var)  init_per_cpu__##var
64#else
65#define init_per_cpu_var(var)  var
66#endif
67
68/* For arch-specific code, we can use direct single-insn ops (they
69 * don't give an lvalue though). */
70
71#define __pcpu_type_1 u8
72#define __pcpu_type_2 u16
73#define __pcpu_type_4 u32
74#define __pcpu_type_8 u64
75
76#define __pcpu_cast_1(val) ((u8)(((unsigned long) val) & 0xff))
77#define __pcpu_cast_2(val) ((u16)(((unsigned long) val) & 0xffff))
78#define __pcpu_cast_4(val) ((u32)(((unsigned long) val) & 0xffffffff))
79#define __pcpu_cast_8(val) ((u64)(val))
80
81#define __pcpu_op1_1(op, dst) op "b " dst
82#define __pcpu_op1_2(op, dst) op "w " dst
83#define __pcpu_op1_4(op, dst) op "l " dst
84#define __pcpu_op1_8(op, dst) op "q " dst
85
86#define __pcpu_op2_1(op, src, dst) op "b " src ", " dst
87#define __pcpu_op2_2(op, src, dst) op "w " src ", " dst
88#define __pcpu_op2_4(op, src, dst) op "l " src ", " dst
89#define __pcpu_op2_8(op, src, dst) op "q " src ", " dst
90
91#define __pcpu_reg_1(mod, x) mod "q" (x)
92#define __pcpu_reg_2(mod, x) mod "r" (x)
93#define __pcpu_reg_4(mod, x) mod "r" (x)
94#define __pcpu_reg_8(mod, x) mod "r" (x)
95
96#define __pcpu_reg_imm_1(x) "qi" (x)
97#define __pcpu_reg_imm_2(x) "ri" (x)
98#define __pcpu_reg_imm_4(x) "ri" (x)
99#define __pcpu_reg_imm_8(x) "re" (x)
100
101#define percpu_to_op(size, qual, op, _var, _val)			\
102do {									\
103	__pcpu_type_##size pto_val__ = __pcpu_cast_##size(_val);	\
104	if (0) {		                                        \
105		typeof(_var) pto_tmp__;					\
106		pto_tmp__ = (_val);					\
107		(void)pto_tmp__;					\
108	}								\
109	asm qual(__pcpu_op2_##size(op, "%[val]", __percpu_arg([var]))	\
110	    : [var] "+m" (_var)						\
111	    : [val] __pcpu_reg_imm_##size(pto_val__));			\
112} while (0)
113
114#define percpu_unary_op(size, qual, op, _var)				\
115({									\
116	asm qual (__pcpu_op1_##size(op, __percpu_arg([var]))		\
117	    : [var] "+m" (_var));					\
118})
119
120/*
121 * Generate a percpu add to memory instruction and optimize code
122 * if one is added or subtracted.
123 */
124#define percpu_add_op(size, qual, var, val)				\
125do {									\
126	const int pao_ID__ = (__builtin_constant_p(val) &&		\
127			      ((val) == 1 || (val) == -1)) ?		\
128				(int)(val) : 0;				\
129	if (0) {							\
130		typeof(var) pao_tmp__;					\
131		pao_tmp__ = (val);					\
132		(void)pao_tmp__;					\
133	}								\
134	if (pao_ID__ == 1)						\
135		percpu_unary_op(size, qual, "inc", var);		\
136	else if (pao_ID__ == -1)					\
137		percpu_unary_op(size, qual, "dec", var);		\
138	else								\
139		percpu_to_op(size, qual, "add", var, val);		\
140} while (0)
141
142#define percpu_from_op(size, qual, op, _var)				\
143({									\
144	__pcpu_type_##size pfo_val__;					\
145	asm qual (__pcpu_op2_##size(op, __percpu_arg([var]), "%[val]")	\
146	    : [val] __pcpu_reg_##size("=", pfo_val__)			\
147	    : [var] "m" (_var));					\
148	(typeof(_var))(unsigned long) pfo_val__;			\
149})
150
151#define percpu_stable_op(size, op, _var)				\
152({									\
153	__pcpu_type_##size pfo_val__;					\
154	asm(__pcpu_op2_##size(op, __percpu_arg(P[var]), "%[val]")	\
155	    : [val] __pcpu_reg_##size("=", pfo_val__)			\
156	    : [var] "p" (&(_var)));					\
157	(typeof(_var))(unsigned long) pfo_val__;			\
158})
159
160/*
161 * Add return operation
162 */
163#define percpu_add_return_op(size, qual, _var, _val)			\
164({									\
165	__pcpu_type_##size paro_tmp__ = __pcpu_cast_##size(_val);	\
166	asm qual (__pcpu_op2_##size("xadd", "%[tmp]",			\
167				     __percpu_arg([var]))		\
168		  : [tmp] __pcpu_reg_##size("+", paro_tmp__),		\
169		    [var] "+m" (_var)					\
170		  : : "memory");					\
171	(typeof(_var))(unsigned long) (paro_tmp__ + _val);		\
172})
173
174/*
175 * xchg is implemented using cmpxchg without a lock prefix. xchg is
176 * expensive due to the implied lock prefix.  The processor cannot prefetch
177 * cachelines if xchg is used.
178 */
179#define percpu_xchg_op(size, qual, _var, _nval)				\
180({									\
181	__pcpu_type_##size pxo_old__;					\
182	__pcpu_type_##size pxo_new__ = __pcpu_cast_##size(_nval);	\
183	asm qual (__pcpu_op2_##size("mov", __percpu_arg([var]),		\
184				    "%[oval]")				\
185		  "\n1:\t"						\
186		  __pcpu_op2_##size("cmpxchg", "%[nval]",		\
187				    __percpu_arg([var]))		\
188		  "\n\tjnz 1b"						\
189		  : [oval] "=&a" (pxo_old__),				\
190		    [var] "+m" (_var)					\
191		  : [nval] __pcpu_reg_##size(, pxo_new__)		\
192		  : "memory");						\
193	(typeof(_var))(unsigned long) pxo_old__;			\
194})
195
196/*
197 * cmpxchg has no such implied lock semantics as a result it is much
198 * more efficient for cpu local operations.
199 */
200#define percpu_cmpxchg_op(size, qual, _var, _oval, _nval)		\
201({									\
202	__pcpu_type_##size pco_old__ = __pcpu_cast_##size(_oval);	\
203	__pcpu_type_##size pco_new__ = __pcpu_cast_##size(_nval);	\
204	asm qual (__pcpu_op2_##size("cmpxchg", "%[nval]",		\
205				    __percpu_arg([var]))		\
206		  : [oval] "+a" (pco_old__),				\
207		    [var] "+m" (_var)					\
208		  : [nval] __pcpu_reg_##size(, pco_new__)		\
209		  : "memory");						\
210	(typeof(_var))(unsigned long) pco_old__;			\
211})
212
213/*
214 * this_cpu_read() makes gcc load the percpu variable every time it is
215 * accessed while this_cpu_read_stable() allows the value to be cached.
216 * this_cpu_read_stable() is more efficient and can be used if its value
217 * is guaranteed to be valid across cpus.  The current users include
218 * get_current() and get_thread_info() both of which are actually
219 * per-thread variables implemented as per-cpu variables and thus
220 * stable for the duration of the respective task.
221 */
222#define this_cpu_read_stable_1(pcp)	percpu_stable_op(1, "mov", pcp)
223#define this_cpu_read_stable_2(pcp)	percpu_stable_op(2, "mov", pcp)
224#define this_cpu_read_stable_4(pcp)	percpu_stable_op(4, "mov", pcp)
225#define this_cpu_read_stable_8(pcp)	percpu_stable_op(8, "mov", pcp)
226#define this_cpu_read_stable(pcp)	__pcpu_size_call_return(this_cpu_read_stable_, pcp)
227
228#define raw_cpu_read_1(pcp)		percpu_from_op(1, , "mov", pcp)
229#define raw_cpu_read_2(pcp)		percpu_from_op(2, , "mov", pcp)
230#define raw_cpu_read_4(pcp)		percpu_from_op(4, , "mov", pcp)
231
232#define raw_cpu_write_1(pcp, val)	percpu_to_op(1, , "mov", (pcp), val)
233#define raw_cpu_write_2(pcp, val)	percpu_to_op(2, , "mov", (pcp), val)
234#define raw_cpu_write_4(pcp, val)	percpu_to_op(4, , "mov", (pcp), val)
235#define raw_cpu_add_1(pcp, val)		percpu_add_op(1, , (pcp), val)
236#define raw_cpu_add_2(pcp, val)		percpu_add_op(2, , (pcp), val)
237#define raw_cpu_add_4(pcp, val)		percpu_add_op(4, , (pcp), val)
238#define raw_cpu_and_1(pcp, val)		percpu_to_op(1, , "and", (pcp), val)
239#define raw_cpu_and_2(pcp, val)		percpu_to_op(2, , "and", (pcp), val)
240#define raw_cpu_and_4(pcp, val)		percpu_to_op(4, , "and", (pcp), val)
241#define raw_cpu_or_1(pcp, val)		percpu_to_op(1, , "or", (pcp), val)
242#define raw_cpu_or_2(pcp, val)		percpu_to_op(2, , "or", (pcp), val)
243#define raw_cpu_or_4(pcp, val)		percpu_to_op(4, , "or", (pcp), val)
244
245/*
246 * raw_cpu_xchg() can use a load-store since it is not required to be
247 * IRQ-safe.
248 */
249#define raw_percpu_xchg_op(var, nval)					\
250({									\
251	typeof(var) pxo_ret__ = raw_cpu_read(var);			\
252	raw_cpu_write(var, (nval));					\
253	pxo_ret__;							\
254})
255
256#define raw_cpu_xchg_1(pcp, val)	raw_percpu_xchg_op(pcp, val)
257#define raw_cpu_xchg_2(pcp, val)	raw_percpu_xchg_op(pcp, val)
258#define raw_cpu_xchg_4(pcp, val)	raw_percpu_xchg_op(pcp, val)
259
260#define this_cpu_read_1(pcp)		percpu_from_op(1, volatile, "mov", pcp)
261#define this_cpu_read_2(pcp)		percpu_from_op(2, volatile, "mov", pcp)
262#define this_cpu_read_4(pcp)		percpu_from_op(4, volatile, "mov", pcp)
263#define this_cpu_write_1(pcp, val)	percpu_to_op(1, volatile, "mov", (pcp), val)
264#define this_cpu_write_2(pcp, val)	percpu_to_op(2, volatile, "mov", (pcp), val)
265#define this_cpu_write_4(pcp, val)	percpu_to_op(4, volatile, "mov", (pcp), val)
266#define this_cpu_add_1(pcp, val)	percpu_add_op(1, volatile, (pcp), val)
267#define this_cpu_add_2(pcp, val)	percpu_add_op(2, volatile, (pcp), val)
268#define this_cpu_add_4(pcp, val)	percpu_add_op(4, volatile, (pcp), val)
269#define this_cpu_and_1(pcp, val)	percpu_to_op(1, volatile, "and", (pcp), val)
270#define this_cpu_and_2(pcp, val)	percpu_to_op(2, volatile, "and", (pcp), val)
271#define this_cpu_and_4(pcp, val)	percpu_to_op(4, volatile, "and", (pcp), val)
272#define this_cpu_or_1(pcp, val)		percpu_to_op(1, volatile, "or", (pcp), val)
273#define this_cpu_or_2(pcp, val)		percpu_to_op(2, volatile, "or", (pcp), val)
274#define this_cpu_or_4(pcp, val)		percpu_to_op(4, volatile, "or", (pcp), val)
275#define this_cpu_xchg_1(pcp, nval)	percpu_xchg_op(1, volatile, pcp, nval)
276#define this_cpu_xchg_2(pcp, nval)	percpu_xchg_op(2, volatile, pcp, nval)
277#define this_cpu_xchg_4(pcp, nval)	percpu_xchg_op(4, volatile, pcp, nval)
278
279#define raw_cpu_add_return_1(pcp, val)		percpu_add_return_op(1, , pcp, val)
280#define raw_cpu_add_return_2(pcp, val)		percpu_add_return_op(2, , pcp, val)
281#define raw_cpu_add_return_4(pcp, val)		percpu_add_return_op(4, , pcp, val)
282#define raw_cpu_cmpxchg_1(pcp, oval, nval)	percpu_cmpxchg_op(1, , pcp, oval, nval)
283#define raw_cpu_cmpxchg_2(pcp, oval, nval)	percpu_cmpxchg_op(2, , pcp, oval, nval)
284#define raw_cpu_cmpxchg_4(pcp, oval, nval)	percpu_cmpxchg_op(4, , pcp, oval, nval)
285
286#define this_cpu_add_return_1(pcp, val)		percpu_add_return_op(1, volatile, pcp, val)
287#define this_cpu_add_return_2(pcp, val)		percpu_add_return_op(2, volatile, pcp, val)
288#define this_cpu_add_return_4(pcp, val)		percpu_add_return_op(4, volatile, pcp, val)
289#define this_cpu_cmpxchg_1(pcp, oval, nval)	percpu_cmpxchg_op(1, volatile, pcp, oval, nval)
290#define this_cpu_cmpxchg_2(pcp, oval, nval)	percpu_cmpxchg_op(2, volatile, pcp, oval, nval)
291#define this_cpu_cmpxchg_4(pcp, oval, nval)	percpu_cmpxchg_op(4, volatile, pcp, oval, nval)
292
293#ifdef CONFIG_X86_CMPXCHG64
294#define percpu_cmpxchg8b_double(pcp1, pcp2, o1, o2, n1, n2)		\
295({									\
296	bool __ret;							\
297	typeof(pcp1) __o1 = (o1), __n1 = (n1);				\
298	typeof(pcp2) __o2 = (o2), __n2 = (n2);				\
299	asm volatile("cmpxchg8b "__percpu_arg(1)			\
300		     CC_SET(z)						\
301		     : CC_OUT(z) (__ret), "+m" (pcp1), "+m" (pcp2), "+a" (__o1), "+d" (__o2) \
302		     : "b" (__n1), "c" (__n2));				\
303	__ret;								\
304})
305
306#define raw_cpu_cmpxchg_double_4	percpu_cmpxchg8b_double
307#define this_cpu_cmpxchg_double_4	percpu_cmpxchg8b_double
308#endif /* CONFIG_X86_CMPXCHG64 */
309
310/*
311 * Per cpu atomic 64 bit operations are only available under 64 bit.
312 * 32 bit must fall back to generic operations.
313 */
314#ifdef CONFIG_X86_64
315#define raw_cpu_read_8(pcp)			percpu_from_op(8, , "mov", pcp)
316#define raw_cpu_write_8(pcp, val)		percpu_to_op(8, , "mov", (pcp), val)
317#define raw_cpu_add_8(pcp, val)			percpu_add_op(8, , (pcp), val)
318#define raw_cpu_and_8(pcp, val)			percpu_to_op(8, , "and", (pcp), val)
319#define raw_cpu_or_8(pcp, val)			percpu_to_op(8, , "or", (pcp), val)
320#define raw_cpu_add_return_8(pcp, val)		percpu_add_return_op(8, , pcp, val)
321#define raw_cpu_xchg_8(pcp, nval)		raw_percpu_xchg_op(pcp, nval)
322#define raw_cpu_cmpxchg_8(pcp, oval, nval)	percpu_cmpxchg_op(8, , pcp, oval, nval)
323
324#define this_cpu_read_8(pcp)			percpu_from_op(8, volatile, "mov", pcp)
325#define this_cpu_write_8(pcp, val)		percpu_to_op(8, volatile, "mov", (pcp), val)
326#define this_cpu_add_8(pcp, val)		percpu_add_op(8, volatile, (pcp), val)
327#define this_cpu_and_8(pcp, val)		percpu_to_op(8, volatile, "and", (pcp), val)
328#define this_cpu_or_8(pcp, val)			percpu_to_op(8, volatile, "or", (pcp), val)
329#define this_cpu_add_return_8(pcp, val)		percpu_add_return_op(8, volatile, pcp, val)
330#define this_cpu_xchg_8(pcp, nval)		percpu_xchg_op(8, volatile, pcp, nval)
331#define this_cpu_cmpxchg_8(pcp, oval, nval)	percpu_cmpxchg_op(8, volatile, pcp, oval, nval)
332
333/*
334 * Pretty complex macro to generate cmpxchg16 instruction.  The instruction
335 * is not supported on early AMD64 processors so we must be able to emulate
336 * it in software.  The address used in the cmpxchg16 instruction must be
337 * aligned to a 16 byte boundary.
338 */
339#define percpu_cmpxchg16b_double(pcp1, pcp2, o1, o2, n1, n2)		\
340({									\
341	bool __ret;							\
342	typeof(pcp1) __o1 = (o1), __n1 = (n1);				\
343	typeof(pcp2) __o2 = (o2), __n2 = (n2);				\
344	alternative_io("leaq %P1,%%rsi\n\tcall this_cpu_cmpxchg16b_emu\n\t", \
345		       "cmpxchg16b " __percpu_arg(1) "\n\tsetz %0\n\t",	\
346		       X86_FEATURE_CX16,				\
347		       ASM_OUTPUT2("=a" (__ret), "+m" (pcp1),		\
348				   "+m" (pcp2), "+d" (__o2)),		\
349		       "b" (__n1), "c" (__n2), "a" (__o1) : "rsi");	\
350	__ret;								\
351})
352
353#define raw_cpu_cmpxchg_double_8	percpu_cmpxchg16b_double
354#define this_cpu_cmpxchg_double_8	percpu_cmpxchg16b_double
355
356#endif
357
358static __always_inline bool x86_this_cpu_constant_test_bit(unsigned int nr,
359                        const unsigned long __percpu *addr)
360{
361	unsigned long __percpu *a =
362		(unsigned long __percpu *)addr + nr / BITS_PER_LONG;
363
364#ifdef CONFIG_X86_64
365	return ((1UL << (nr % BITS_PER_LONG)) & raw_cpu_read_8(*a)) != 0;
366#else
367	return ((1UL << (nr % BITS_PER_LONG)) & raw_cpu_read_4(*a)) != 0;
368#endif
369}
370
371static inline bool x86_this_cpu_variable_test_bit(int nr,
372                        const unsigned long __percpu *addr)
373{
374	bool oldbit;
375
376	asm volatile("btl "__percpu_arg(2)",%1"
377			CC_SET(c)
378			: CC_OUT(c) (oldbit)
379			: "m" (*(unsigned long __percpu *)addr), "Ir" (nr));
380
381	return oldbit;
382}
383
384#define x86_this_cpu_test_bit(nr, addr)			\
385	(__builtin_constant_p((nr))			\
386	 ? x86_this_cpu_constant_test_bit((nr), (addr))	\
387	 : x86_this_cpu_variable_test_bit((nr), (addr)))
388
389
390#include <asm-generic/percpu.h>
391
392/* We can use this directly for local CPU (faster). */
393DECLARE_PER_CPU_READ_MOSTLY(unsigned long, this_cpu_off);
394
395#endif /* !__ASSEMBLY__ */
396
397#ifdef CONFIG_SMP
398
399/*
400 * Define the "EARLY_PER_CPU" macros.  These are used for some per_cpu
401 * variables that are initialized and accessed before there are per_cpu
402 * areas allocated.
403 */
404
405#define	DEFINE_EARLY_PER_CPU(_type, _name, _initvalue)			\
406	DEFINE_PER_CPU(_type, _name) = _initvalue;			\
407	__typeof__(_type) _name##_early_map[NR_CPUS] __initdata =	\
408				{ [0 ... NR_CPUS-1] = _initvalue };	\
409	__typeof__(_type) *_name##_early_ptr __refdata = _name##_early_map
410
411#define DEFINE_EARLY_PER_CPU_READ_MOSTLY(_type, _name, _initvalue)	\
412	DEFINE_PER_CPU_READ_MOSTLY(_type, _name) = _initvalue;		\
413	__typeof__(_type) _name##_early_map[NR_CPUS] __initdata =	\
414				{ [0 ... NR_CPUS-1] = _initvalue };	\
415	__typeof__(_type) *_name##_early_ptr __refdata = _name##_early_map
416
417#define EXPORT_EARLY_PER_CPU_SYMBOL(_name)			\
418	EXPORT_PER_CPU_SYMBOL(_name)
419
420#define DECLARE_EARLY_PER_CPU(_type, _name)			\
421	DECLARE_PER_CPU(_type, _name);				\
422	extern __typeof__(_type) *_name##_early_ptr;		\
423	extern __typeof__(_type)  _name##_early_map[]
424
425#define DECLARE_EARLY_PER_CPU_READ_MOSTLY(_type, _name)		\
426	DECLARE_PER_CPU_READ_MOSTLY(_type, _name);		\
427	extern __typeof__(_type) *_name##_early_ptr;		\
428	extern __typeof__(_type)  _name##_early_map[]
429
430#define	early_per_cpu_ptr(_name) (_name##_early_ptr)
431#define	early_per_cpu_map(_name, _idx) (_name##_early_map[_idx])
432#define	early_per_cpu(_name, _cpu) 				\
433	*(early_per_cpu_ptr(_name) ?				\
434		&early_per_cpu_ptr(_name)[_cpu] :		\
435		&per_cpu(_name, _cpu))
436
437#else	/* !CONFIG_SMP */
438#define	DEFINE_EARLY_PER_CPU(_type, _name, _initvalue)		\
439	DEFINE_PER_CPU(_type, _name) = _initvalue
440
441#define DEFINE_EARLY_PER_CPU_READ_MOSTLY(_type, _name, _initvalue)	\
442	DEFINE_PER_CPU_READ_MOSTLY(_type, _name) = _initvalue
443
444#define EXPORT_EARLY_PER_CPU_SYMBOL(_name)			\
445	EXPORT_PER_CPU_SYMBOL(_name)
446
447#define DECLARE_EARLY_PER_CPU(_type, _name)			\
448	DECLARE_PER_CPU(_type, _name)
449
450#define DECLARE_EARLY_PER_CPU_READ_MOSTLY(_type, _name)		\
451	DECLARE_PER_CPU_READ_MOSTLY(_type, _name)
452
453#define	early_per_cpu(_name, _cpu) per_cpu(_name, _cpu)
454#define	early_per_cpu_ptr(_name) NULL
455/* no early_per_cpu_map() */
456
457#endif	/* !CONFIG_SMP */
458
459#endif /* _ASM_X86_PERCPU_H */
460