xref: /kernel/linux/linux-5.10/arch/x86/include/asm/insn.h (revision 8c2ecf20)
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2#ifndef _ASM_X86_INSN_H
3#define _ASM_X86_INSN_H
4/*
5 * x86 instruction analysis
6 *
7 * Copyright (C) IBM Corporation, 2009
8 */
9
10/* insn_attr_t is defined in inat.h */
11#include <asm/inat.h> /* __ignore_sync_check__ */
12
13struct insn_field {
14	union {
15		insn_value_t value;
16		insn_byte_t bytes[4];
17	};
18	/* !0 if we've run insn_get_xxx() for this field */
19	unsigned char got;
20	unsigned char nbytes;
21};
22
23struct insn {
24	struct insn_field prefixes;	/*
25					 * Prefixes
26					 * prefixes.bytes[3]: last prefix
27					 */
28	struct insn_field rex_prefix;	/* REX prefix */
29	struct insn_field vex_prefix;	/* VEX prefix */
30	struct insn_field opcode;	/*
31					 * opcode.bytes[0]: opcode1
32					 * opcode.bytes[1]: opcode2
33					 * opcode.bytes[2]: opcode3
34					 */
35	struct insn_field modrm;
36	struct insn_field sib;
37	struct insn_field displacement;
38	union {
39		struct insn_field immediate;
40		struct insn_field moffset1;	/* for 64bit MOV */
41		struct insn_field immediate1;	/* for 64bit imm or off16/32 */
42	};
43	union {
44		struct insn_field moffset2;	/* for 64bit MOV */
45		struct insn_field immediate2;	/* for 64bit imm or seg16 */
46	};
47
48	int	emulate_prefix_size;
49	insn_attr_t attr;
50	unsigned char opnd_bytes;
51	unsigned char addr_bytes;
52	unsigned char length;
53	unsigned char x86_64;
54
55	const insn_byte_t *kaddr;	/* kernel address of insn to analyze */
56	const insn_byte_t *end_kaddr;	/* kernel address of last insn in buffer */
57	const insn_byte_t *next_byte;
58};
59
60#define MAX_INSN_SIZE	15
61
62#define X86_MODRM_MOD(modrm) (((modrm) & 0xc0) >> 6)
63#define X86_MODRM_REG(modrm) (((modrm) & 0x38) >> 3)
64#define X86_MODRM_RM(modrm) ((modrm) & 0x07)
65
66#define X86_SIB_SCALE(sib) (((sib) & 0xc0) >> 6)
67#define X86_SIB_INDEX(sib) (((sib) & 0x38) >> 3)
68#define X86_SIB_BASE(sib) ((sib) & 0x07)
69
70#define X86_REX_W(rex) ((rex) & 8)
71#define X86_REX_R(rex) ((rex) & 4)
72#define X86_REX_X(rex) ((rex) & 2)
73#define X86_REX_B(rex) ((rex) & 1)
74
75/* VEX bit flags  */
76#define X86_VEX_W(vex)	((vex) & 0x80)	/* VEX3 Byte2 */
77#define X86_VEX_R(vex)	((vex) & 0x80)	/* VEX2/3 Byte1 */
78#define X86_VEX_X(vex)	((vex) & 0x40)	/* VEX3 Byte1 */
79#define X86_VEX_B(vex)	((vex) & 0x20)	/* VEX3 Byte1 */
80#define X86_VEX_L(vex)	((vex) & 0x04)	/* VEX3 Byte2, VEX2 Byte1 */
81/* VEX bit fields */
82#define X86_EVEX_M(vex)	((vex) & 0x03)		/* EVEX Byte1 */
83#define X86_VEX3_M(vex)	((vex) & 0x1f)		/* VEX3 Byte1 */
84#define X86_VEX2_M	1			/* VEX2.M always 1 */
85#define X86_VEX_V(vex)	(((vex) & 0x78) >> 3)	/* VEX3 Byte2, VEX2 Byte1 */
86#define X86_VEX_P(vex)	((vex) & 0x03)		/* VEX3 Byte2, VEX2 Byte1 */
87#define X86_VEX_M_MAX	0x1f			/* VEX3.M Maximum value */
88
89extern void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64);
90extern int insn_get_prefixes(struct insn *insn);
91extern int insn_get_opcode(struct insn *insn);
92extern int insn_get_modrm(struct insn *insn);
93extern int insn_get_sib(struct insn *insn);
94extern int insn_get_displacement(struct insn *insn);
95extern int insn_get_immediate(struct insn *insn);
96extern int insn_get_length(struct insn *insn);
97
98enum insn_mode {
99	INSN_MODE_32,
100	INSN_MODE_64,
101	/* Mode is determined by the current kernel build. */
102	INSN_MODE_KERN,
103	INSN_NUM_MODES,
104};
105
106extern int insn_decode(struct insn *insn, const void *kaddr, int buf_len, enum insn_mode m);
107
108#define insn_decode_kernel(_insn, _ptr) insn_decode((_insn), (_ptr), MAX_INSN_SIZE, INSN_MODE_KERN)
109
110/* Attribute will be determined after getting ModRM (for opcode groups) */
111static inline void insn_get_attribute(struct insn *insn)
112{
113	insn_get_modrm(insn);
114}
115
116/* Instruction uses RIP-relative addressing */
117extern int insn_rip_relative(struct insn *insn);
118
119/* Init insn for kernel text */
120static inline void kernel_insn_init(struct insn *insn,
121				    const void *kaddr, int buf_len)
122{
123#ifdef CONFIG_X86_64
124	insn_init(insn, kaddr, buf_len, 1);
125#else /* CONFIG_X86_32 */
126	insn_init(insn, kaddr, buf_len, 0);
127#endif
128}
129
130static inline int insn_is_avx(struct insn *insn)
131{
132	if (!insn->prefixes.got)
133		insn_get_prefixes(insn);
134	return (insn->vex_prefix.value != 0);
135}
136
137static inline int insn_is_evex(struct insn *insn)
138{
139	if (!insn->prefixes.got)
140		insn_get_prefixes(insn);
141	return (insn->vex_prefix.nbytes == 4);
142}
143
144static inline int insn_has_emulate_prefix(struct insn *insn)
145{
146	return !!insn->emulate_prefix_size;
147}
148
149/* Ensure this instruction is decoded completely */
150static inline int insn_complete(struct insn *insn)
151{
152	return insn->opcode.got && insn->modrm.got && insn->sib.got &&
153		insn->displacement.got && insn->immediate.got;
154}
155
156static inline insn_byte_t insn_vex_m_bits(struct insn *insn)
157{
158	if (insn->vex_prefix.nbytes == 2)	/* 2 bytes VEX */
159		return X86_VEX2_M;
160	else if (insn->vex_prefix.nbytes == 3)	/* 3 bytes VEX */
161		return X86_VEX3_M(insn->vex_prefix.bytes[1]);
162	else					/* EVEX */
163		return X86_EVEX_M(insn->vex_prefix.bytes[1]);
164}
165
166static inline insn_byte_t insn_vex_p_bits(struct insn *insn)
167{
168	if (insn->vex_prefix.nbytes == 2)	/* 2 bytes VEX */
169		return X86_VEX_P(insn->vex_prefix.bytes[1]);
170	else
171		return X86_VEX_P(insn->vex_prefix.bytes[2]);
172}
173
174/* Get the last prefix id from last prefix or VEX prefix */
175static inline int insn_last_prefix_id(struct insn *insn)
176{
177	if (insn_is_avx(insn))
178		return insn_vex_p_bits(insn);	/* VEX_p is a SIMD prefix id */
179
180	if (insn->prefixes.bytes[3])
181		return inat_get_last_prefix_id(insn->prefixes.bytes[3]);
182
183	return 0;
184}
185
186/* Offset of each field from kaddr */
187static inline int insn_offset_rex_prefix(struct insn *insn)
188{
189	return insn->prefixes.nbytes;
190}
191static inline int insn_offset_vex_prefix(struct insn *insn)
192{
193	return insn_offset_rex_prefix(insn) + insn->rex_prefix.nbytes;
194}
195static inline int insn_offset_opcode(struct insn *insn)
196{
197	return insn_offset_vex_prefix(insn) + insn->vex_prefix.nbytes;
198}
199static inline int insn_offset_modrm(struct insn *insn)
200{
201	return insn_offset_opcode(insn) + insn->opcode.nbytes;
202}
203static inline int insn_offset_sib(struct insn *insn)
204{
205	return insn_offset_modrm(insn) + insn->modrm.nbytes;
206}
207static inline int insn_offset_displacement(struct insn *insn)
208{
209	return insn_offset_sib(insn) + insn->sib.nbytes;
210}
211static inline int insn_offset_immediate(struct insn *insn)
212{
213	return insn_offset_displacement(insn) + insn->displacement.nbytes;
214}
215
216/**
217 * for_each_insn_prefix() -- Iterate prefixes in the instruction
218 * @insn: Pointer to struct insn.
219 * @idx:  Index storage.
220 * @prefix: Prefix byte.
221 *
222 * Iterate prefix bytes of given @insn. Each prefix byte is stored in @prefix
223 * and the index is stored in @idx (note that this @idx is just for a cursor,
224 * do not change it.)
225 * Since prefixes.nbytes can be bigger than 4 if some prefixes
226 * are repeated, it cannot be used for looping over the prefixes.
227 */
228#define for_each_insn_prefix(insn, idx, prefix)	\
229	for (idx = 0; idx < ARRAY_SIZE(insn->prefixes.bytes) && (prefix = insn->prefixes.bytes[idx]) != 0; idx++)
230
231#define POP_SS_OPCODE 0x1f
232#define MOV_SREG_OPCODE 0x8e
233
234/*
235 * Intel SDM Vol.3A 6.8.3 states;
236 * "Any single-step trap that would be delivered following the MOV to SS
237 * instruction or POP to SS instruction (because EFLAGS.TF is 1) is
238 * suppressed."
239 * This function returns true if @insn is MOV SS or POP SS. On these
240 * instructions, single stepping is suppressed.
241 */
242static inline int insn_masking_exception(struct insn *insn)
243{
244	return insn->opcode.bytes[0] == POP_SS_OPCODE ||
245		(insn->opcode.bytes[0] == MOV_SREG_OPCODE &&
246		 X86_MODRM_REG(insn->modrm.bytes[0]) == 2);
247}
248
249#endif /* _ASM_X86_INSN_H */
250