xref: /kernel/linux/linux-5.10/arch/x86/events/intel/ds.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/bitops.h>
3#include <linux/types.h>
4#include <linux/slab.h>
5
6#include <asm/cpu_entry_area.h>
7#include <asm/perf_event.h>
8#include <asm/tlbflush.h>
9#include <asm/insn.h>
10#include <asm/io.h>
11
12#include "../perf_event.h"
13
14/* Waste a full page so it can be mapped into the cpu_entry_area */
15DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
16
17/* The size of a BTS record in bytes: */
18#define BTS_RECORD_SIZE		24
19
20#define PEBS_FIXUP_SIZE		PAGE_SIZE
21
22/*
23 * pebs_record_32 for p4 and core not supported
24
25struct pebs_record_32 {
26	u32 flags, ip;
27	u32 ax, bc, cx, dx;
28	u32 si, di, bp, sp;
29};
30
31 */
32
33union intel_x86_pebs_dse {
34	u64 val;
35	struct {
36		unsigned int ld_dse:4;
37		unsigned int ld_stlb_miss:1;
38		unsigned int ld_locked:1;
39		unsigned int ld_reserved:26;
40	};
41	struct {
42		unsigned int st_l1d_hit:1;
43		unsigned int st_reserved1:3;
44		unsigned int st_stlb_miss:1;
45		unsigned int st_locked:1;
46		unsigned int st_reserved2:26;
47	};
48};
49
50
51/*
52 * Map PEBS Load Latency Data Source encodings to generic
53 * memory data source information
54 */
55#define P(a, b) PERF_MEM_S(a, b)
56#define OP_LH (P(OP, LOAD) | P(LVL, HIT))
57#define LEVEL(x) P(LVLNUM, x)
58#define REM P(REMOTE, REMOTE)
59#define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
60
61/* Version for Sandy Bridge and later */
62static u64 pebs_data_source[] = {
63	P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
64	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
65	OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
66	OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
67	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
68	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
69	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
70	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
71	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
72	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
73	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
74	OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
75	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
76	OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
77	OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
78	OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
79};
80
81/* Patch up minor differences in the bits */
82void __init intel_pmu_pebs_data_source_nhm(void)
83{
84	pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
85	pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
86	pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
87}
88
89void __init intel_pmu_pebs_data_source_skl(bool pmem)
90{
91	u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
92
93	pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
94	pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
95	pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
96	pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
97	pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
98}
99
100static u64 precise_store_data(u64 status)
101{
102	union intel_x86_pebs_dse dse;
103	u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
104
105	dse.val = status;
106
107	/*
108	 * bit 4: TLB access
109	 * 1 = stored missed 2nd level TLB
110	 *
111	 * so it either hit the walker or the OS
112	 * otherwise hit 2nd level TLB
113	 */
114	if (dse.st_stlb_miss)
115		val |= P(TLB, MISS);
116	else
117		val |= P(TLB, HIT);
118
119	/*
120	 * bit 0: hit L1 data cache
121	 * if not set, then all we know is that
122	 * it missed L1D
123	 */
124	if (dse.st_l1d_hit)
125		val |= P(LVL, HIT);
126	else
127		val |= P(LVL, MISS);
128
129	/*
130	 * bit 5: Locked prefix
131	 */
132	if (dse.st_locked)
133		val |= P(LOCK, LOCKED);
134
135	return val;
136}
137
138static u64 precise_datala_hsw(struct perf_event *event, u64 status)
139{
140	union perf_mem_data_src dse;
141
142	dse.val = PERF_MEM_NA;
143
144	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
145		dse.mem_op = PERF_MEM_OP_STORE;
146	else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
147		dse.mem_op = PERF_MEM_OP_LOAD;
148
149	/*
150	 * L1 info only valid for following events:
151	 *
152	 * MEM_UOPS_RETIRED.STLB_MISS_STORES
153	 * MEM_UOPS_RETIRED.LOCK_STORES
154	 * MEM_UOPS_RETIRED.SPLIT_STORES
155	 * MEM_UOPS_RETIRED.ALL_STORES
156	 */
157	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
158		if (status & 1)
159			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
160		else
161			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
162	}
163	return dse.val;
164}
165
166static u64 load_latency_data(u64 status)
167{
168	union intel_x86_pebs_dse dse;
169	u64 val;
170
171	dse.val = status;
172
173	/*
174	 * use the mapping table for bit 0-3
175	 */
176	val = pebs_data_source[dse.ld_dse];
177
178	/*
179	 * Nehalem models do not support TLB, Lock infos
180	 */
181	if (x86_pmu.pebs_no_tlb) {
182		val |= P(TLB, NA) | P(LOCK, NA);
183		return val;
184	}
185	/*
186	 * bit 4: TLB access
187	 * 0 = did not miss 2nd level TLB
188	 * 1 = missed 2nd level TLB
189	 */
190	if (dse.ld_stlb_miss)
191		val |= P(TLB, MISS) | P(TLB, L2);
192	else
193		val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
194
195	/*
196	 * bit 5: locked prefix
197	 */
198	if (dse.ld_locked)
199		val |= P(LOCK, LOCKED);
200
201	return val;
202}
203
204struct pebs_record_core {
205	u64 flags, ip;
206	u64 ax, bx, cx, dx;
207	u64 si, di, bp, sp;
208	u64 r8,  r9,  r10, r11;
209	u64 r12, r13, r14, r15;
210};
211
212struct pebs_record_nhm {
213	u64 flags, ip;
214	u64 ax, bx, cx, dx;
215	u64 si, di, bp, sp;
216	u64 r8,  r9,  r10, r11;
217	u64 r12, r13, r14, r15;
218	u64 status, dla, dse, lat;
219};
220
221/*
222 * Same as pebs_record_nhm, with two additional fields.
223 */
224struct pebs_record_hsw {
225	u64 flags, ip;
226	u64 ax, bx, cx, dx;
227	u64 si, di, bp, sp;
228	u64 r8,  r9,  r10, r11;
229	u64 r12, r13, r14, r15;
230	u64 status, dla, dse, lat;
231	u64 real_ip, tsx_tuning;
232};
233
234union hsw_tsx_tuning {
235	struct {
236		u32 cycles_last_block     : 32,
237		    hle_abort		  : 1,
238		    rtm_abort		  : 1,
239		    instruction_abort     : 1,
240		    non_instruction_abort : 1,
241		    retry		  : 1,
242		    data_conflict	  : 1,
243		    capacity_writes	  : 1,
244		    capacity_reads	  : 1;
245	};
246	u64	    value;
247};
248
249#define PEBS_HSW_TSX_FLAGS	0xff00000000ULL
250
251/* Same as HSW, plus TSC */
252
253struct pebs_record_skl {
254	u64 flags, ip;
255	u64 ax, bx, cx, dx;
256	u64 si, di, bp, sp;
257	u64 r8,  r9,  r10, r11;
258	u64 r12, r13, r14, r15;
259	u64 status, dla, dse, lat;
260	u64 real_ip, tsx_tuning;
261	u64 tsc;
262};
263
264void init_debug_store_on_cpu(int cpu)
265{
266	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
267
268	if (!ds)
269		return;
270
271	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
272		     (u32)((u64)(unsigned long)ds),
273		     (u32)((u64)(unsigned long)ds >> 32));
274}
275
276void fini_debug_store_on_cpu(int cpu)
277{
278	if (!per_cpu(cpu_hw_events, cpu).ds)
279		return;
280
281	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
282}
283
284static DEFINE_PER_CPU(void *, insn_buffer);
285
286static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
287{
288	unsigned long start = (unsigned long)cea;
289	phys_addr_t pa;
290	size_t msz = 0;
291
292	pa = virt_to_phys(addr);
293
294	preempt_disable();
295	for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
296		cea_set_pte(cea, pa, prot);
297
298	/*
299	 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
300	 * all TLB entries for it.
301	 */
302	flush_tlb_kernel_range(start, start + size);
303	preempt_enable();
304}
305
306static void ds_clear_cea(void *cea, size_t size)
307{
308	unsigned long start = (unsigned long)cea;
309	size_t msz = 0;
310
311	preempt_disable();
312	for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
313		cea_set_pte(cea, 0, PAGE_NONE);
314
315	flush_tlb_kernel_range(start, start + size);
316	preempt_enable();
317}
318
319static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
320{
321	unsigned int order = get_order(size);
322	int node = cpu_to_node(cpu);
323	struct page *page;
324
325	page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
326	return page ? page_address(page) : NULL;
327}
328
329static void dsfree_pages(const void *buffer, size_t size)
330{
331	if (buffer)
332		free_pages((unsigned long)buffer, get_order(size));
333}
334
335static int alloc_pebs_buffer(int cpu)
336{
337	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
338	struct debug_store *ds = hwev->ds;
339	size_t bsiz = x86_pmu.pebs_buffer_size;
340	int max, node = cpu_to_node(cpu);
341	void *buffer, *insn_buff, *cea;
342
343	if (!x86_pmu.pebs)
344		return 0;
345
346	buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
347	if (unlikely(!buffer))
348		return -ENOMEM;
349
350	/*
351	 * HSW+ already provides us the eventing ip; no need to allocate this
352	 * buffer then.
353	 */
354	if (x86_pmu.intel_cap.pebs_format < 2) {
355		insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
356		if (!insn_buff) {
357			dsfree_pages(buffer, bsiz);
358			return -ENOMEM;
359		}
360		per_cpu(insn_buffer, cpu) = insn_buff;
361	}
362	hwev->ds_pebs_vaddr = buffer;
363	/* Update the cpu entry area mapping */
364	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
365	ds->pebs_buffer_base = (unsigned long) cea;
366	ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
367	ds->pebs_index = ds->pebs_buffer_base;
368	max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
369	ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
370	return 0;
371}
372
373static void release_pebs_buffer(int cpu)
374{
375	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
376	void *cea;
377
378	if (!x86_pmu.pebs)
379		return;
380
381	kfree(per_cpu(insn_buffer, cpu));
382	per_cpu(insn_buffer, cpu) = NULL;
383
384	/* Clear the fixmap */
385	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
386	ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
387	dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
388	hwev->ds_pebs_vaddr = NULL;
389}
390
391static int alloc_bts_buffer(int cpu)
392{
393	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
394	struct debug_store *ds = hwev->ds;
395	void *buffer, *cea;
396	int max;
397
398	if (!x86_pmu.bts)
399		return 0;
400
401	buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
402	if (unlikely(!buffer)) {
403		WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
404		return -ENOMEM;
405	}
406	hwev->ds_bts_vaddr = buffer;
407	/* Update the fixmap */
408	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
409	ds->bts_buffer_base = (unsigned long) cea;
410	ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
411	ds->bts_index = ds->bts_buffer_base;
412	max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
413	ds->bts_absolute_maximum = ds->bts_buffer_base +
414					max * BTS_RECORD_SIZE;
415	ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
416					(max / 16) * BTS_RECORD_SIZE;
417	return 0;
418}
419
420static void release_bts_buffer(int cpu)
421{
422	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
423	void *cea;
424
425	if (!x86_pmu.bts)
426		return;
427
428	/* Clear the fixmap */
429	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
430	ds_clear_cea(cea, BTS_BUFFER_SIZE);
431	dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
432	hwev->ds_bts_vaddr = NULL;
433}
434
435static int alloc_ds_buffer(int cpu)
436{
437	struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
438
439	memset(ds, 0, sizeof(*ds));
440	per_cpu(cpu_hw_events, cpu).ds = ds;
441	return 0;
442}
443
444static void release_ds_buffer(int cpu)
445{
446	per_cpu(cpu_hw_events, cpu).ds = NULL;
447}
448
449void release_ds_buffers(void)
450{
451	int cpu;
452
453	if (!x86_pmu.bts && !x86_pmu.pebs)
454		return;
455
456	for_each_possible_cpu(cpu)
457		release_ds_buffer(cpu);
458
459	for_each_possible_cpu(cpu) {
460		/*
461		 * Again, ignore errors from offline CPUs, they will no longer
462		 * observe cpu_hw_events.ds and not program the DS_AREA when
463		 * they come up.
464		 */
465		fini_debug_store_on_cpu(cpu);
466	}
467
468	for_each_possible_cpu(cpu) {
469		release_pebs_buffer(cpu);
470		release_bts_buffer(cpu);
471	}
472}
473
474void reserve_ds_buffers(void)
475{
476	int bts_err = 0, pebs_err = 0;
477	int cpu;
478
479	x86_pmu.bts_active = 0;
480	x86_pmu.pebs_active = 0;
481
482	if (!x86_pmu.bts && !x86_pmu.pebs)
483		return;
484
485	if (!x86_pmu.bts)
486		bts_err = 1;
487
488	if (!x86_pmu.pebs)
489		pebs_err = 1;
490
491	for_each_possible_cpu(cpu) {
492		if (alloc_ds_buffer(cpu)) {
493			bts_err = 1;
494			pebs_err = 1;
495		}
496
497		if (!bts_err && alloc_bts_buffer(cpu))
498			bts_err = 1;
499
500		if (!pebs_err && alloc_pebs_buffer(cpu))
501			pebs_err = 1;
502
503		if (bts_err && pebs_err)
504			break;
505	}
506
507	if (bts_err) {
508		for_each_possible_cpu(cpu)
509			release_bts_buffer(cpu);
510	}
511
512	if (pebs_err) {
513		for_each_possible_cpu(cpu)
514			release_pebs_buffer(cpu);
515	}
516
517	if (bts_err && pebs_err) {
518		for_each_possible_cpu(cpu)
519			release_ds_buffer(cpu);
520	} else {
521		if (x86_pmu.bts && !bts_err)
522			x86_pmu.bts_active = 1;
523
524		if (x86_pmu.pebs && !pebs_err)
525			x86_pmu.pebs_active = 1;
526
527		for_each_possible_cpu(cpu) {
528			/*
529			 * Ignores wrmsr_on_cpu() errors for offline CPUs they
530			 * will get this call through intel_pmu_cpu_starting().
531			 */
532			init_debug_store_on_cpu(cpu);
533		}
534	}
535}
536
537/*
538 * BTS
539 */
540
541struct event_constraint bts_constraint =
542	EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
543
544void intel_pmu_enable_bts(u64 config)
545{
546	unsigned long debugctlmsr;
547
548	debugctlmsr = get_debugctlmsr();
549
550	debugctlmsr |= DEBUGCTLMSR_TR;
551	debugctlmsr |= DEBUGCTLMSR_BTS;
552	if (config & ARCH_PERFMON_EVENTSEL_INT)
553		debugctlmsr |= DEBUGCTLMSR_BTINT;
554
555	if (!(config & ARCH_PERFMON_EVENTSEL_OS))
556		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
557
558	if (!(config & ARCH_PERFMON_EVENTSEL_USR))
559		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
560
561	update_debugctlmsr(debugctlmsr);
562}
563
564void intel_pmu_disable_bts(void)
565{
566	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
567	unsigned long debugctlmsr;
568
569	if (!cpuc->ds)
570		return;
571
572	debugctlmsr = get_debugctlmsr();
573
574	debugctlmsr &=
575		~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
576		  DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
577
578	update_debugctlmsr(debugctlmsr);
579}
580
581int intel_pmu_drain_bts_buffer(void)
582{
583	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
584	struct debug_store *ds = cpuc->ds;
585	struct bts_record {
586		u64	from;
587		u64	to;
588		u64	flags;
589	};
590	struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
591	struct bts_record *at, *base, *top;
592	struct perf_output_handle handle;
593	struct perf_event_header header;
594	struct perf_sample_data data;
595	unsigned long skip = 0;
596	struct pt_regs regs;
597
598	if (!event)
599		return 0;
600
601	if (!x86_pmu.bts_active)
602		return 0;
603
604	base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
605	top  = (struct bts_record *)(unsigned long)ds->bts_index;
606
607	if (top <= base)
608		return 0;
609
610	memset(&regs, 0, sizeof(regs));
611
612	ds->bts_index = ds->bts_buffer_base;
613
614	perf_sample_data_init(&data, 0, event->hw.last_period);
615
616	/*
617	 * BTS leaks kernel addresses in branches across the cpl boundary,
618	 * such as traps or system calls, so unless the user is asking for
619	 * kernel tracing (and right now it's not possible), we'd need to
620	 * filter them out. But first we need to count how many of those we
621	 * have in the current batch. This is an extra O(n) pass, however,
622	 * it's much faster than the other one especially considering that
623	 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
624	 * alloc_bts_buffer()).
625	 */
626	for (at = base; at < top; at++) {
627		/*
628		 * Note that right now *this* BTS code only works if
629		 * attr::exclude_kernel is set, but let's keep this extra
630		 * check here in case that changes.
631		 */
632		if (event->attr.exclude_kernel &&
633		    (kernel_ip(at->from) || kernel_ip(at->to)))
634			skip++;
635	}
636
637	/*
638	 * Prepare a generic sample, i.e. fill in the invariant fields.
639	 * We will overwrite the from and to address before we output
640	 * the sample.
641	 */
642	rcu_read_lock();
643	perf_prepare_sample(&header, &data, event, &regs);
644
645	if (perf_output_begin(&handle, &data, event,
646			      header.size * (top - base - skip)))
647		goto unlock;
648
649	for (at = base; at < top; at++) {
650		/* Filter out any records that contain kernel addresses. */
651		if (event->attr.exclude_kernel &&
652		    (kernel_ip(at->from) || kernel_ip(at->to)))
653			continue;
654
655		data.ip		= at->from;
656		data.addr	= at->to;
657
658		perf_output_sample(&handle, &header, &data, event);
659	}
660
661	perf_output_end(&handle);
662
663	/* There's new data available. */
664	event->hw.interrupts++;
665	event->pending_kill = POLL_IN;
666unlock:
667	rcu_read_unlock();
668	return 1;
669}
670
671static inline void intel_pmu_drain_pebs_buffer(void)
672{
673	struct perf_sample_data data;
674
675	x86_pmu.drain_pebs(NULL, &data);
676}
677
678/*
679 * PEBS
680 */
681struct event_constraint intel_core2_pebs_event_constraints[] = {
682	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
683	INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
684	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
685	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
686	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
687	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
688	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
689	EVENT_CONSTRAINT_END
690};
691
692struct event_constraint intel_atom_pebs_event_constraints[] = {
693	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
694	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
695	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
696	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
697	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
698	/* Allow all events as PEBS with no flags */
699	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
700	EVENT_CONSTRAINT_END
701};
702
703struct event_constraint intel_slm_pebs_event_constraints[] = {
704	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
705	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
706	/* Allow all events as PEBS with no flags */
707	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
708	EVENT_CONSTRAINT_END
709};
710
711struct event_constraint intel_glm_pebs_event_constraints[] = {
712	/* Allow all events as PEBS with no flags */
713	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
714	EVENT_CONSTRAINT_END
715};
716
717struct event_constraint intel_nehalem_pebs_event_constraints[] = {
718	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
719	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
720	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
721	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
722	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
723	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
724	INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
725	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
726	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
727	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
728	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
729	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
730	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
731	EVENT_CONSTRAINT_END
732};
733
734struct event_constraint intel_westmere_pebs_event_constraints[] = {
735	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
736	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
737	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
738	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
739	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
740	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
741	INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
742	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
743	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
744	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
745	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
746	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
747	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
748	EVENT_CONSTRAINT_END
749};
750
751struct event_constraint intel_snb_pebs_event_constraints[] = {
752	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
753	INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
754	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
755	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
756	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
757        INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
758        INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
759        INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
760        INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
761	/* Allow all events as PEBS with no flags */
762	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
763	EVENT_CONSTRAINT_END
764};
765
766struct event_constraint intel_ivb_pebs_event_constraints[] = {
767        INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
768        INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
769	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
770	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
771	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
772	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
773	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
774	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
775	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
776	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
777	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
778	/* Allow all events as PEBS with no flags */
779	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
780        EVENT_CONSTRAINT_END
781};
782
783struct event_constraint intel_hsw_pebs_event_constraints[] = {
784	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
785	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
786	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
787	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
788	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
789	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
790	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
791	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
792	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
793	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
794	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
795	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
796	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
797	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
798	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
799	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
800	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
801	/* Allow all events as PEBS with no flags */
802	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
803	EVENT_CONSTRAINT_END
804};
805
806struct event_constraint intel_bdw_pebs_event_constraints[] = {
807	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
808	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
809	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
810	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
811	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
812	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
813	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
814	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
815	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
816	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
817	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
818	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
819	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
820	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
821	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
822	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
823	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
824	/* Allow all events as PEBS with no flags */
825	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
826	EVENT_CONSTRAINT_END
827};
828
829
830struct event_constraint intel_skl_pebs_event_constraints[] = {
831	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
832	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
833	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
834	/* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
835	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
836	INTEL_PLD_CONSTRAINT(0x1cd, 0xf),		      /* MEM_TRANS_RETIRED.* */
837	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
838	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
839	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
840	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
841	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
842	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
843	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
844	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
845	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
846	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
847	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
848	/* Allow all events as PEBS with no flags */
849	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
850	EVENT_CONSTRAINT_END
851};
852
853struct event_constraint intel_icl_pebs_event_constraints[] = {
854	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
855	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),	/* SLOTS */
856
857	INTEL_PLD_CONSTRAINT(0x1cd, 0xff),			/* MEM_TRANS_RETIRED.LOAD_LATENCY */
858	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_LOADS */
859	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_STORES */
860	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),	/* MEM_INST_RETIRED.LOCK_LOADS */
861	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_LOADS */
862	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_STORES */
863	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),	/* MEM_INST_RETIRED.ALL_LOADS */
864	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),	/* MEM_INST_RETIRED.ALL_STORES */
865
866	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
867
868	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),		/* MEM_INST_RETIRED.* */
869
870	/*
871	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
872	 * need the full constraints from the main table.
873	 */
874
875	EVENT_CONSTRAINT_END
876};
877
878struct event_constraint *intel_pebs_constraints(struct perf_event *event)
879{
880	struct event_constraint *c;
881
882	if (!event->attr.precise_ip)
883		return NULL;
884
885	if (x86_pmu.pebs_constraints) {
886		for_each_event_constraint(c, x86_pmu.pebs_constraints) {
887			if (constraint_match(c, event->hw.config)) {
888				event->hw.flags |= c->flags;
889				return c;
890			}
891		}
892	}
893
894	/*
895	 * Extended PEBS support
896	 * Makes the PEBS code search the normal constraints.
897	 */
898	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
899		return NULL;
900
901	return &emptyconstraint;
902}
903
904/*
905 * We need the sched_task callback even for per-cpu events when we use
906 * the large interrupt threshold, such that we can provide PID and TID
907 * to PEBS samples.
908 */
909static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
910{
911	if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
912		return false;
913
914	return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
915}
916
917void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
918{
919	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
920
921	if (!sched_in && pebs_needs_sched_cb(cpuc))
922		intel_pmu_drain_pebs_buffer();
923}
924
925static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
926{
927	struct debug_store *ds = cpuc->ds;
928	u64 threshold;
929	int reserved;
930
931	if (cpuc->n_pebs_via_pt)
932		return;
933
934	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
935		reserved = x86_pmu.max_pebs_events + x86_pmu.num_counters_fixed;
936	else
937		reserved = x86_pmu.max_pebs_events;
938
939	if (cpuc->n_pebs == cpuc->n_large_pebs) {
940		threshold = ds->pebs_absolute_maximum -
941			reserved * cpuc->pebs_record_size;
942	} else {
943		threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
944	}
945
946	ds->pebs_interrupt_threshold = threshold;
947}
948
949static void adaptive_pebs_record_size_update(void)
950{
951	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
952	u64 pebs_data_cfg = cpuc->pebs_data_cfg;
953	int sz = sizeof(struct pebs_basic);
954
955	if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
956		sz += sizeof(struct pebs_meminfo);
957	if (pebs_data_cfg & PEBS_DATACFG_GP)
958		sz += sizeof(struct pebs_gprs);
959	if (pebs_data_cfg & PEBS_DATACFG_XMMS)
960		sz += sizeof(struct pebs_xmm);
961	if (pebs_data_cfg & PEBS_DATACFG_LBRS)
962		sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
963
964	cpuc->pebs_record_size = sz;
965}
966
967#define PERF_PEBS_MEMINFO_TYPE	(PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC |   \
968				PERF_SAMPLE_PHYS_ADDR | PERF_SAMPLE_WEIGHT | \
969				PERF_SAMPLE_TRANSACTION)
970
971static u64 pebs_update_adaptive_cfg(struct perf_event *event)
972{
973	struct perf_event_attr *attr = &event->attr;
974	u64 sample_type = attr->sample_type;
975	u64 pebs_data_cfg = 0;
976	bool gprs, tsx_weight;
977
978	if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
979	    attr->precise_ip > 1)
980		return pebs_data_cfg;
981
982	if (sample_type & PERF_PEBS_MEMINFO_TYPE)
983		pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
984
985	/*
986	 * We need GPRs when:
987	 * + user requested them
988	 * + precise_ip < 2 for the non event IP
989	 * + For RTM TSX weight we need GPRs for the abort code.
990	 */
991	gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
992	       (attr->sample_regs_intr & PEBS_GP_REGS);
993
994	tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT) &&
995		     ((attr->config & INTEL_ARCH_EVENT_MASK) ==
996		      x86_pmu.rtm_abort_event);
997
998	if (gprs || (attr->precise_ip < 2) || tsx_weight)
999		pebs_data_cfg |= PEBS_DATACFG_GP;
1000
1001	if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1002	    (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1003		pebs_data_cfg |= PEBS_DATACFG_XMMS;
1004
1005	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1006		/*
1007		 * For now always log all LBRs. Could configure this
1008		 * later.
1009		 */
1010		pebs_data_cfg |= PEBS_DATACFG_LBRS |
1011			((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1012	}
1013
1014	return pebs_data_cfg;
1015}
1016
1017static void
1018pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1019		  struct perf_event *event, bool add)
1020{
1021	struct pmu *pmu = event->ctx->pmu;
1022	/*
1023	 * Make sure we get updated with the first PEBS
1024	 * event. It will trigger also during removal, but
1025	 * that does not hurt:
1026	 */
1027	bool update = cpuc->n_pebs == 1;
1028
1029	if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1030		if (!needed_cb)
1031			perf_sched_cb_inc(pmu);
1032		else
1033			perf_sched_cb_dec(pmu);
1034
1035		update = true;
1036	}
1037
1038	/*
1039	 * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1040	 * iterating all remaining PEBS events to reconstruct the config.
1041	 */
1042	if (x86_pmu.intel_cap.pebs_baseline && add) {
1043		u64 pebs_data_cfg;
1044
1045		/* Clear pebs_data_cfg and pebs_record_size for first PEBS. */
1046		if (cpuc->n_pebs == 1) {
1047			cpuc->pebs_data_cfg = 0;
1048			cpuc->pebs_record_size = sizeof(struct pebs_basic);
1049		}
1050
1051		pebs_data_cfg = pebs_update_adaptive_cfg(event);
1052
1053		/* Update pebs_record_size if new event requires more data. */
1054		if (pebs_data_cfg & ~cpuc->pebs_data_cfg) {
1055			cpuc->pebs_data_cfg |= pebs_data_cfg;
1056			adaptive_pebs_record_size_update();
1057			update = true;
1058		}
1059	}
1060
1061	if (update)
1062		pebs_update_threshold(cpuc);
1063}
1064
1065void intel_pmu_pebs_add(struct perf_event *event)
1066{
1067	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1068	struct hw_perf_event *hwc = &event->hw;
1069	bool needed_cb = pebs_needs_sched_cb(cpuc);
1070
1071	cpuc->n_pebs++;
1072	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1073		cpuc->n_large_pebs++;
1074	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1075		cpuc->n_pebs_via_pt++;
1076
1077	pebs_update_state(needed_cb, cpuc, event, true);
1078}
1079
1080static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1081{
1082	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1083
1084	if (!is_pebs_pt(event))
1085		return;
1086
1087	if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1088		cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1089}
1090
1091static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1092{
1093	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1094	struct hw_perf_event *hwc = &event->hw;
1095	struct debug_store *ds = cpuc->ds;
1096
1097	if (!is_pebs_pt(event))
1098		return;
1099
1100	if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1101		cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1102
1103	cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1104
1105	wrmsrl(MSR_RELOAD_PMC0 + hwc->idx, ds->pebs_event_reset[hwc->idx]);
1106}
1107
1108void intel_pmu_pebs_enable(struct perf_event *event)
1109{
1110	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1111	struct hw_perf_event *hwc = &event->hw;
1112	struct debug_store *ds = cpuc->ds;
1113
1114	hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1115
1116	cpuc->pebs_enabled |= 1ULL << hwc->idx;
1117
1118	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1119		cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1120	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1121		cpuc->pebs_enabled |= 1ULL << 63;
1122
1123	if (x86_pmu.intel_cap.pebs_baseline) {
1124		hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1125		if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1126			wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg);
1127			cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg;
1128		}
1129	}
1130
1131	/*
1132	 * Use auto-reload if possible to save a MSR write in the PMI.
1133	 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1134	 */
1135	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1136		unsigned int idx = hwc->idx;
1137
1138		if (idx >= INTEL_PMC_IDX_FIXED)
1139			idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1140		ds->pebs_event_reset[idx] =
1141			(u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1142	} else {
1143		ds->pebs_event_reset[hwc->idx] = 0;
1144	}
1145
1146	intel_pmu_pebs_via_pt_enable(event);
1147}
1148
1149void intel_pmu_pebs_del(struct perf_event *event)
1150{
1151	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1152	struct hw_perf_event *hwc = &event->hw;
1153	bool needed_cb = pebs_needs_sched_cb(cpuc);
1154
1155	cpuc->n_pebs--;
1156	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1157		cpuc->n_large_pebs--;
1158	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1159		cpuc->n_pebs_via_pt--;
1160
1161	pebs_update_state(needed_cb, cpuc, event, false);
1162}
1163
1164void intel_pmu_pebs_disable(struct perf_event *event)
1165{
1166	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1167	struct hw_perf_event *hwc = &event->hw;
1168
1169	if (cpuc->n_pebs == cpuc->n_large_pebs &&
1170	    cpuc->n_pebs != cpuc->n_pebs_via_pt)
1171		intel_pmu_drain_pebs_buffer();
1172
1173	cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1174
1175	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1176	    (x86_pmu.version < 5))
1177		cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1178	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1179		cpuc->pebs_enabled &= ~(1ULL << 63);
1180
1181	intel_pmu_pebs_via_pt_disable(event);
1182
1183	if (cpuc->enabled)
1184		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1185
1186	hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1187}
1188
1189void intel_pmu_pebs_enable_all(void)
1190{
1191	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1192
1193	if (cpuc->pebs_enabled)
1194		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1195}
1196
1197void intel_pmu_pebs_disable_all(void)
1198{
1199	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1200
1201	if (cpuc->pebs_enabled)
1202		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1203}
1204
1205static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1206{
1207	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1208	unsigned long from = cpuc->lbr_entries[0].from;
1209	unsigned long old_to, to = cpuc->lbr_entries[0].to;
1210	unsigned long ip = regs->ip;
1211	int is_64bit = 0;
1212	void *kaddr;
1213	int size;
1214
1215	/*
1216	 * We don't need to fixup if the PEBS assist is fault like
1217	 */
1218	if (!x86_pmu.intel_cap.pebs_trap)
1219		return 1;
1220
1221	/*
1222	 * No LBR entry, no basic block, no rewinding
1223	 */
1224	if (!cpuc->lbr_stack.nr || !from || !to)
1225		return 0;
1226
1227	/*
1228	 * Basic blocks should never cross user/kernel boundaries
1229	 */
1230	if (kernel_ip(ip) != kernel_ip(to))
1231		return 0;
1232
1233	/*
1234	 * unsigned math, either ip is before the start (impossible) or
1235	 * the basic block is larger than 1 page (sanity)
1236	 */
1237	if ((ip - to) > PEBS_FIXUP_SIZE)
1238		return 0;
1239
1240	/*
1241	 * We sampled a branch insn, rewind using the LBR stack
1242	 */
1243	if (ip == to) {
1244		set_linear_ip(regs, from);
1245		return 1;
1246	}
1247
1248	size = ip - to;
1249	if (!kernel_ip(ip)) {
1250		int bytes;
1251		u8 *buf = this_cpu_read(insn_buffer);
1252
1253		/* 'size' must fit our buffer, see above */
1254		bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1255		if (bytes != 0)
1256			return 0;
1257
1258		kaddr = buf;
1259	} else {
1260		kaddr = (void *)to;
1261	}
1262
1263	do {
1264		struct insn insn;
1265
1266		old_to = to;
1267
1268#ifdef CONFIG_X86_64
1269		is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
1270#endif
1271		insn_init(&insn, kaddr, size, is_64bit);
1272		insn_get_length(&insn);
1273		/*
1274		 * Make sure there was not a problem decoding the
1275		 * instruction and getting the length.  This is
1276		 * doubly important because we have an infinite
1277		 * loop if insn.length=0.
1278		 */
1279		if (!insn.length)
1280			break;
1281
1282		to += insn.length;
1283		kaddr += insn.length;
1284		size -= insn.length;
1285	} while (to < ip);
1286
1287	if (to == ip) {
1288		set_linear_ip(regs, old_to);
1289		return 1;
1290	}
1291
1292	/*
1293	 * Even though we decoded the basic block, the instruction stream
1294	 * never matched the given IP, either the TO or the IP got corrupted.
1295	 */
1296	return 0;
1297}
1298
1299static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1300{
1301	if (tsx_tuning) {
1302		union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1303		return tsx.cycles_last_block;
1304	}
1305	return 0;
1306}
1307
1308static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1309{
1310	u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1311
1312	/* For RTM XABORTs also log the abort code from AX */
1313	if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1314		txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1315	return txn;
1316}
1317
1318static inline u64 get_pebs_status(void *n)
1319{
1320	if (x86_pmu.intel_cap.pebs_format < 4)
1321		return ((struct pebs_record_nhm *)n)->status;
1322	return ((struct pebs_basic *)n)->applicable_counters;
1323}
1324
1325#define PERF_X86_EVENT_PEBS_HSW_PREC \
1326		(PERF_X86_EVENT_PEBS_ST_HSW | \
1327		 PERF_X86_EVENT_PEBS_LD_HSW | \
1328		 PERF_X86_EVENT_PEBS_NA_HSW)
1329
1330static u64 get_data_src(struct perf_event *event, u64 aux)
1331{
1332	u64 val = PERF_MEM_NA;
1333	int fl = event->hw.flags;
1334	bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1335
1336	if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1337		val = load_latency_data(aux);
1338	else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1339		val = precise_datala_hsw(event, aux);
1340	else if (fst)
1341		val = precise_store_data(aux);
1342	return val;
1343}
1344
1345static void setup_pebs_fixed_sample_data(struct perf_event *event,
1346				   struct pt_regs *iregs, void *__pebs,
1347				   struct perf_sample_data *data,
1348				   struct pt_regs *regs)
1349{
1350	/*
1351	 * We cast to the biggest pebs_record but are careful not to
1352	 * unconditionally access the 'extra' entries.
1353	 */
1354	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1355	struct pebs_record_skl *pebs = __pebs;
1356	u64 sample_type;
1357	int fll;
1358
1359	if (pebs == NULL)
1360		return;
1361
1362	sample_type = event->attr.sample_type;
1363	fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1364
1365	perf_sample_data_init(data, 0, event->hw.last_period);
1366
1367	data->period = event->hw.last_period;
1368
1369	/*
1370	 * Use latency for weight (only avail with PEBS-LL)
1371	 */
1372	if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1373		data->weight = pebs->lat;
1374
1375	/*
1376	 * data.data_src encodes the data source
1377	 */
1378	if (sample_type & PERF_SAMPLE_DATA_SRC)
1379		data->data_src.val = get_data_src(event, pebs->dse);
1380
1381	/*
1382	 * We must however always use iregs for the unwinder to stay sane; the
1383	 * record BP,SP,IP can point into thin air when the record is from a
1384	 * previous PMI context or an (I)RET happened between the record and
1385	 * PMI.
1386	 */
1387	if (sample_type & PERF_SAMPLE_CALLCHAIN)
1388		data->callchain = perf_callchain(event, iregs);
1389
1390	/*
1391	 * We use the interrupt regs as a base because the PEBS record does not
1392	 * contain a full regs set, specifically it seems to lack segment
1393	 * descriptors, which get used by things like user_mode().
1394	 *
1395	 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1396	 */
1397	*regs = *iregs;
1398
1399	/*
1400	 * Initialize regs_>flags from PEBS,
1401	 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1402	 * i.e., do not rely on it being zero:
1403	 */
1404	regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1405
1406	if (sample_type & PERF_SAMPLE_REGS_INTR) {
1407		regs->ax = pebs->ax;
1408		regs->bx = pebs->bx;
1409		regs->cx = pebs->cx;
1410		regs->dx = pebs->dx;
1411		regs->si = pebs->si;
1412		regs->di = pebs->di;
1413
1414		regs->bp = pebs->bp;
1415		regs->sp = pebs->sp;
1416
1417#ifndef CONFIG_X86_32
1418		regs->r8 = pebs->r8;
1419		regs->r9 = pebs->r9;
1420		regs->r10 = pebs->r10;
1421		regs->r11 = pebs->r11;
1422		regs->r12 = pebs->r12;
1423		regs->r13 = pebs->r13;
1424		regs->r14 = pebs->r14;
1425		regs->r15 = pebs->r15;
1426#endif
1427	}
1428
1429	if (event->attr.precise_ip > 1) {
1430		/*
1431		 * Haswell and later processors have an 'eventing IP'
1432		 * (real IP) which fixes the off-by-1 skid in hardware.
1433		 * Use it when precise_ip >= 2 :
1434		 */
1435		if (x86_pmu.intel_cap.pebs_format >= 2) {
1436			set_linear_ip(regs, pebs->real_ip);
1437			regs->flags |= PERF_EFLAGS_EXACT;
1438		} else {
1439			/* Otherwise, use PEBS off-by-1 IP: */
1440			set_linear_ip(regs, pebs->ip);
1441
1442			/*
1443			 * With precise_ip >= 2, try to fix up the off-by-1 IP
1444			 * using the LBR. If successful, the fixup function
1445			 * corrects regs->ip and calls set_linear_ip() on regs:
1446			 */
1447			if (intel_pmu_pebs_fixup_ip(regs))
1448				regs->flags |= PERF_EFLAGS_EXACT;
1449		}
1450	} else {
1451		/*
1452		 * When precise_ip == 1, return the PEBS off-by-1 IP,
1453		 * no fixup attempted:
1454		 */
1455		set_linear_ip(regs, pebs->ip);
1456	}
1457
1458
1459	if ((sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) &&
1460	    x86_pmu.intel_cap.pebs_format >= 1)
1461		data->addr = pebs->dla;
1462
1463	if (x86_pmu.intel_cap.pebs_format >= 2) {
1464		/* Only set the TSX weight when no memory weight. */
1465		if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1466			data->weight = intel_get_tsx_weight(pebs->tsx_tuning);
1467
1468		if (sample_type & PERF_SAMPLE_TRANSACTION)
1469			data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1470							      pebs->ax);
1471	}
1472
1473	/*
1474	 * v3 supplies an accurate time stamp, so we use that
1475	 * for the time stamp.
1476	 *
1477	 * We can only do this for the default trace clock.
1478	 */
1479	if (x86_pmu.intel_cap.pebs_format >= 3 &&
1480		event->attr.use_clockid == 0)
1481		data->time = native_sched_clock_from_tsc(pebs->tsc);
1482
1483	if (has_branch_stack(event))
1484		data->br_stack = &cpuc->lbr_stack;
1485}
1486
1487static void adaptive_pebs_save_regs(struct pt_regs *regs,
1488				    struct pebs_gprs *gprs)
1489{
1490	regs->ax = gprs->ax;
1491	regs->bx = gprs->bx;
1492	regs->cx = gprs->cx;
1493	regs->dx = gprs->dx;
1494	regs->si = gprs->si;
1495	regs->di = gprs->di;
1496	regs->bp = gprs->bp;
1497	regs->sp = gprs->sp;
1498#ifndef CONFIG_X86_32
1499	regs->r8 = gprs->r8;
1500	regs->r9 = gprs->r9;
1501	regs->r10 = gprs->r10;
1502	regs->r11 = gprs->r11;
1503	regs->r12 = gprs->r12;
1504	regs->r13 = gprs->r13;
1505	regs->r14 = gprs->r14;
1506	regs->r15 = gprs->r15;
1507#endif
1508}
1509
1510/*
1511 * With adaptive PEBS the layout depends on what fields are configured.
1512 */
1513
1514static void setup_pebs_adaptive_sample_data(struct perf_event *event,
1515					    struct pt_regs *iregs, void *__pebs,
1516					    struct perf_sample_data *data,
1517					    struct pt_regs *regs)
1518{
1519	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1520	struct pebs_basic *basic = __pebs;
1521	void *next_record = basic + 1;
1522	u64 sample_type;
1523	u64 format_size;
1524	struct pebs_meminfo *meminfo = NULL;
1525	struct pebs_gprs *gprs = NULL;
1526	struct x86_perf_regs *perf_regs;
1527
1528	if (basic == NULL)
1529		return;
1530
1531	perf_regs = container_of(regs, struct x86_perf_regs, regs);
1532	perf_regs->xmm_regs = NULL;
1533
1534	sample_type = event->attr.sample_type;
1535	format_size = basic->format_size;
1536	perf_sample_data_init(data, 0, event->hw.last_period);
1537	data->period = event->hw.last_period;
1538
1539	if (event->attr.use_clockid == 0)
1540		data->time = native_sched_clock_from_tsc(basic->tsc);
1541
1542	/*
1543	 * We must however always use iregs for the unwinder to stay sane; the
1544	 * record BP,SP,IP can point into thin air when the record is from a
1545	 * previous PMI context or an (I)RET happened between the record and
1546	 * PMI.
1547	 */
1548	if (sample_type & PERF_SAMPLE_CALLCHAIN)
1549		data->callchain = perf_callchain(event, iregs);
1550
1551	*regs = *iregs;
1552	/* The ip in basic is EventingIP */
1553	set_linear_ip(regs, basic->ip);
1554	regs->flags = PERF_EFLAGS_EXACT;
1555
1556	/*
1557	 * The record for MEMINFO is in front of GP
1558	 * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
1559	 * Save the pointer here but process later.
1560	 */
1561	if (format_size & PEBS_DATACFG_MEMINFO) {
1562		meminfo = next_record;
1563		next_record = meminfo + 1;
1564	}
1565
1566	if (format_size & PEBS_DATACFG_GP) {
1567		gprs = next_record;
1568		next_record = gprs + 1;
1569
1570		if (event->attr.precise_ip < 2) {
1571			set_linear_ip(regs, gprs->ip);
1572			regs->flags &= ~PERF_EFLAGS_EXACT;
1573		}
1574
1575		if (sample_type & PERF_SAMPLE_REGS_INTR)
1576			adaptive_pebs_save_regs(regs, gprs);
1577	}
1578
1579	if (format_size & PEBS_DATACFG_MEMINFO) {
1580		if (sample_type & PERF_SAMPLE_WEIGHT)
1581			data->weight = meminfo->latency ?:
1582				intel_get_tsx_weight(meminfo->tsx_tuning);
1583
1584		if (sample_type & PERF_SAMPLE_DATA_SRC)
1585			data->data_src.val = get_data_src(event, meminfo->aux);
1586
1587		if (sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
1588			data->addr = meminfo->address;
1589
1590		if (sample_type & PERF_SAMPLE_TRANSACTION)
1591			data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
1592							  gprs ? gprs->ax : 0);
1593	}
1594
1595	if (format_size & PEBS_DATACFG_XMMS) {
1596		struct pebs_xmm *xmm = next_record;
1597
1598		next_record = xmm + 1;
1599		perf_regs->xmm_regs = xmm->xmm;
1600	}
1601
1602	if (format_size & PEBS_DATACFG_LBRS) {
1603		struct lbr_entry *lbr = next_record;
1604		int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
1605					& 0xff) + 1;
1606		next_record = next_record + num_lbr * sizeof(struct lbr_entry);
1607
1608		if (has_branch_stack(event)) {
1609			intel_pmu_store_pebs_lbrs(lbr);
1610			data->br_stack = &cpuc->lbr_stack;
1611		}
1612	}
1613
1614	WARN_ONCE(next_record != __pebs + (format_size >> 48),
1615			"PEBS record size %llu, expected %llu, config %llx\n",
1616			format_size >> 48,
1617			(u64)(next_record - __pebs),
1618			basic->format_size);
1619}
1620
1621static inline void *
1622get_next_pebs_record_by_bit(void *base, void *top, int bit)
1623{
1624	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1625	void *at;
1626	u64 pebs_status;
1627
1628	/*
1629	 * fmt0 does not have a status bitfield (does not use
1630	 * perf_record_nhm format)
1631	 */
1632	if (x86_pmu.intel_cap.pebs_format < 1)
1633		return base;
1634
1635	if (base == NULL)
1636		return NULL;
1637
1638	for (at = base; at < top; at += cpuc->pebs_record_size) {
1639		unsigned long status = get_pebs_status(at);
1640
1641		if (test_bit(bit, (unsigned long *)&status)) {
1642			/* PEBS v3 has accurate status bits */
1643			if (x86_pmu.intel_cap.pebs_format >= 3)
1644				return at;
1645
1646			if (status == (1 << bit))
1647				return at;
1648
1649			/* clear non-PEBS bit and re-check */
1650			pebs_status = status & cpuc->pebs_enabled;
1651			pebs_status &= PEBS_COUNTER_MASK;
1652			if (pebs_status == (1 << bit))
1653				return at;
1654		}
1655	}
1656	return NULL;
1657}
1658
1659void intel_pmu_auto_reload_read(struct perf_event *event)
1660{
1661	WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
1662
1663	perf_pmu_disable(event->pmu);
1664	intel_pmu_drain_pebs_buffer();
1665	perf_pmu_enable(event->pmu);
1666}
1667
1668/*
1669 * Special variant of intel_pmu_save_and_restart() for auto-reload.
1670 */
1671static int
1672intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
1673{
1674	struct hw_perf_event *hwc = &event->hw;
1675	int shift = 64 - x86_pmu.cntval_bits;
1676	u64 period = hwc->sample_period;
1677	u64 prev_raw_count, new_raw_count;
1678	s64 new, old;
1679
1680	WARN_ON(!period);
1681
1682	/*
1683	 * drain_pebs() only happens when the PMU is disabled.
1684	 */
1685	WARN_ON(this_cpu_read(cpu_hw_events.enabled));
1686
1687	prev_raw_count = local64_read(&hwc->prev_count);
1688	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
1689	local64_set(&hwc->prev_count, new_raw_count);
1690
1691	/*
1692	 * Since the counter increments a negative counter value and
1693	 * overflows on the sign switch, giving the interval:
1694	 *
1695	 *   [-period, 0]
1696	 *
1697	 * the difference between two consequtive reads is:
1698	 *
1699	 *   A) value2 - value1;
1700	 *      when no overflows have happened in between,
1701	 *
1702	 *   B) (0 - value1) + (value2 - (-period));
1703	 *      when one overflow happened in between,
1704	 *
1705	 *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
1706	 *      when @n overflows happened in between.
1707	 *
1708	 * Here A) is the obvious difference, B) is the extension to the
1709	 * discrete interval, where the first term is to the top of the
1710	 * interval and the second term is from the bottom of the next
1711	 * interval and C) the extension to multiple intervals, where the
1712	 * middle term is the whole intervals covered.
1713	 *
1714	 * An equivalent of C, by reduction, is:
1715	 *
1716	 *   value2 - value1 + n * period
1717	 */
1718	new = ((s64)(new_raw_count << shift) >> shift);
1719	old = ((s64)(prev_raw_count << shift) >> shift);
1720	local64_add(new - old + count * period, &event->count);
1721
1722	local64_set(&hwc->period_left, -new);
1723
1724	perf_event_update_userpage(event);
1725
1726	return 0;
1727}
1728
1729static __always_inline void
1730__intel_pmu_pebs_event(struct perf_event *event,
1731		       struct pt_regs *iregs,
1732		       struct perf_sample_data *data,
1733		       void *base, void *top,
1734		       int bit, int count,
1735		       void (*setup_sample)(struct perf_event *,
1736					    struct pt_regs *,
1737					    void *,
1738					    struct perf_sample_data *,
1739					    struct pt_regs *))
1740{
1741	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1742	struct hw_perf_event *hwc = &event->hw;
1743	struct x86_perf_regs perf_regs;
1744	struct pt_regs *regs = &perf_regs.regs;
1745	void *at = get_next_pebs_record_by_bit(base, top, bit);
1746	static struct pt_regs dummy_iregs;
1747
1748	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1749		/*
1750		 * Now, auto-reload is only enabled in fixed period mode.
1751		 * The reload value is always hwc->sample_period.
1752		 * May need to change it, if auto-reload is enabled in
1753		 * freq mode later.
1754		 */
1755		intel_pmu_save_and_restart_reload(event, count);
1756	} else if (!intel_pmu_save_and_restart(event))
1757		return;
1758
1759	if (!iregs)
1760		iregs = &dummy_iregs;
1761
1762	while (count > 1) {
1763		setup_sample(event, iregs, at, data, regs);
1764		perf_event_output(event, data, regs);
1765		at += cpuc->pebs_record_size;
1766		at = get_next_pebs_record_by_bit(at, top, bit);
1767		count--;
1768	}
1769
1770	setup_sample(event, iregs, at, data, regs);
1771	if (iregs == &dummy_iregs) {
1772		/*
1773		 * The PEBS records may be drained in the non-overflow context,
1774		 * e.g., large PEBS + context switch. Perf should treat the
1775		 * last record the same as other PEBS records, and doesn't
1776		 * invoke the generic overflow handler.
1777		 */
1778		perf_event_output(event, data, regs);
1779	} else {
1780		/*
1781		 * All but the last records are processed.
1782		 * The last one is left to be able to call the overflow handler.
1783		 */
1784		if (perf_event_overflow(event, data, regs))
1785			x86_pmu_stop(event, 0);
1786	}
1787}
1788
1789static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
1790{
1791	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1792	struct debug_store *ds = cpuc->ds;
1793	struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1794	struct pebs_record_core *at, *top;
1795	int n;
1796
1797	if (!x86_pmu.pebs_active)
1798		return;
1799
1800	at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1801	top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1802
1803	/*
1804	 * Whatever else happens, drain the thing
1805	 */
1806	ds->pebs_index = ds->pebs_buffer_base;
1807
1808	if (!test_bit(0, cpuc->active_mask))
1809		return;
1810
1811	WARN_ON_ONCE(!event);
1812
1813	if (!event->attr.precise_ip)
1814		return;
1815
1816	n = top - at;
1817	if (n <= 0) {
1818		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1819			intel_pmu_save_and_restart_reload(event, 0);
1820		return;
1821	}
1822
1823	__intel_pmu_pebs_event(event, iregs, data, at, top, 0, n,
1824			       setup_pebs_fixed_sample_data);
1825}
1826
1827static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
1828{
1829	struct perf_event *event;
1830	int bit;
1831
1832	/*
1833	 * The drain_pebs() could be called twice in a short period
1834	 * for auto-reload event in pmu::read(). There are no
1835	 * overflows have happened in between.
1836	 * It needs to call intel_pmu_save_and_restart_reload() to
1837	 * update the event->count for this case.
1838	 */
1839	for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
1840		event = cpuc->events[bit];
1841		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1842			intel_pmu_save_and_restart_reload(event, 0);
1843	}
1844}
1845
1846static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
1847{
1848	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1849	struct debug_store *ds = cpuc->ds;
1850	struct perf_event *event;
1851	void *base, *at, *top;
1852	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1853	short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1854	int bit, i, size;
1855	u64 mask;
1856
1857	if (!x86_pmu.pebs_active)
1858		return;
1859
1860	base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1861	top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1862
1863	ds->pebs_index = ds->pebs_buffer_base;
1864
1865	mask = (1ULL << x86_pmu.max_pebs_events) - 1;
1866	size = x86_pmu.max_pebs_events;
1867	if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
1868		mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
1869		size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
1870	}
1871
1872	if (unlikely(base >= top)) {
1873		intel_pmu_pebs_event_update_no_drain(cpuc, size);
1874		return;
1875	}
1876
1877	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1878		struct pebs_record_nhm *p = at;
1879		u64 pebs_status;
1880
1881		pebs_status = p->status & cpuc->pebs_enabled;
1882		pebs_status &= mask;
1883
1884		/* PEBS v3 has more accurate status bits */
1885		if (x86_pmu.intel_cap.pebs_format >= 3) {
1886			for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
1887				counts[bit]++;
1888
1889			continue;
1890		}
1891
1892		/*
1893		 * On some CPUs the PEBS status can be zero when PEBS is
1894		 * racing with clearing of GLOBAL_STATUS.
1895		 *
1896		 * Normally we would drop that record, but in the
1897		 * case when there is only a single active PEBS event
1898		 * we can assume it's for that event.
1899		 */
1900		if (!pebs_status && cpuc->pebs_enabled &&
1901			!(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
1902			pebs_status = p->status = cpuc->pebs_enabled;
1903
1904		bit = find_first_bit((unsigned long *)&pebs_status,
1905					x86_pmu.max_pebs_events);
1906		if (bit >= x86_pmu.max_pebs_events)
1907			continue;
1908
1909		/*
1910		 * The PEBS hardware does not deal well with the situation
1911		 * when events happen near to each other and multiple bits
1912		 * are set. But it should happen rarely.
1913		 *
1914		 * If these events include one PEBS and multiple non-PEBS
1915		 * events, it doesn't impact PEBS record. The record will
1916		 * be handled normally. (slow path)
1917		 *
1918		 * If these events include two or more PEBS events, the
1919		 * records for the events can be collapsed into a single
1920		 * one, and it's not possible to reconstruct all events
1921		 * that caused the PEBS record. It's called collision.
1922		 * If collision happened, the record will be dropped.
1923		 */
1924		if (pebs_status != (1ULL << bit)) {
1925			for_each_set_bit(i, (unsigned long *)&pebs_status, size)
1926				error[i]++;
1927			continue;
1928		}
1929
1930		counts[bit]++;
1931	}
1932
1933	for_each_set_bit(bit, (unsigned long *)&mask, size) {
1934		if ((counts[bit] == 0) && (error[bit] == 0))
1935			continue;
1936
1937		event = cpuc->events[bit];
1938		if (WARN_ON_ONCE(!event))
1939			continue;
1940
1941		if (WARN_ON_ONCE(!event->attr.precise_ip))
1942			continue;
1943
1944		/* log dropped samples number */
1945		if (error[bit]) {
1946			perf_log_lost_samples(event, error[bit]);
1947
1948			if (iregs && perf_event_account_interrupt(event))
1949				x86_pmu_stop(event, 0);
1950		}
1951
1952		if (counts[bit]) {
1953			__intel_pmu_pebs_event(event, iregs, data, base,
1954					       top, bit, counts[bit],
1955					       setup_pebs_fixed_sample_data);
1956		}
1957	}
1958}
1959
1960static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
1961{
1962	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1963	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1964	struct debug_store *ds = cpuc->ds;
1965	struct perf_event *event;
1966	void *base, *at, *top;
1967	int bit, size;
1968	u64 mask;
1969
1970	if (!x86_pmu.pebs_active)
1971		return;
1972
1973	base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
1974	top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
1975
1976	ds->pebs_index = ds->pebs_buffer_base;
1977
1978	mask = ((1ULL << x86_pmu.max_pebs_events) - 1) |
1979	       (((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
1980	size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
1981
1982	if (unlikely(base >= top)) {
1983		intel_pmu_pebs_event_update_no_drain(cpuc, size);
1984		return;
1985	}
1986
1987	for (at = base; at < top; at += cpuc->pebs_record_size) {
1988		u64 pebs_status;
1989
1990		pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
1991		pebs_status &= mask;
1992
1993		for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
1994			counts[bit]++;
1995	}
1996
1997	for_each_set_bit(bit, (unsigned long *)&mask, size) {
1998		if (counts[bit] == 0)
1999			continue;
2000
2001		event = cpuc->events[bit];
2002		if (WARN_ON_ONCE(!event))
2003			continue;
2004
2005		if (WARN_ON_ONCE(!event->attr.precise_ip))
2006			continue;
2007
2008		__intel_pmu_pebs_event(event, iregs, data, base,
2009				       top, bit, counts[bit],
2010				       setup_pebs_adaptive_sample_data);
2011	}
2012}
2013
2014/*
2015 * BTS, PEBS probe and setup
2016 */
2017
2018void __init intel_ds_init(void)
2019{
2020	/*
2021	 * No support for 32bit formats
2022	 */
2023	if (!boot_cpu_has(X86_FEATURE_DTES64))
2024		return;
2025
2026	x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
2027	x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2028	x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2029	if (x86_pmu.version <= 4)
2030		x86_pmu.pebs_no_isolation = 1;
2031
2032	if (x86_pmu.pebs) {
2033		char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
2034		char *pebs_qual = "";
2035		int format = x86_pmu.intel_cap.pebs_format;
2036
2037		if (format < 4)
2038			x86_pmu.intel_cap.pebs_baseline = 0;
2039
2040		switch (format) {
2041		case 0:
2042			pr_cont("PEBS fmt0%c, ", pebs_type);
2043			x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2044			/*
2045			 * Using >PAGE_SIZE buffers makes the WRMSR to
2046			 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2047			 * mysteriously hang on Core2.
2048			 *
2049			 * As a workaround, we don't do this.
2050			 */
2051			x86_pmu.pebs_buffer_size = PAGE_SIZE;
2052			x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2053			break;
2054
2055		case 1:
2056			pr_cont("PEBS fmt1%c, ", pebs_type);
2057			x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2058			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2059			break;
2060
2061		case 2:
2062			pr_cont("PEBS fmt2%c, ", pebs_type);
2063			x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2064			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2065			break;
2066
2067		case 3:
2068			pr_cont("PEBS fmt3%c, ", pebs_type);
2069			x86_pmu.pebs_record_size =
2070						sizeof(struct pebs_record_skl);
2071			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2072			x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2073			break;
2074
2075		case 4:
2076			x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2077			x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2078			if (x86_pmu.intel_cap.pebs_baseline) {
2079				x86_pmu.large_pebs_flags |=
2080					PERF_SAMPLE_BRANCH_STACK |
2081					PERF_SAMPLE_TIME;
2082				x86_pmu.flags |= PMU_FL_PEBS_ALL;
2083				pebs_qual = "-baseline";
2084				x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2085			} else {
2086				/* Only basic record supported */
2087				x86_pmu.large_pebs_flags &=
2088					~(PERF_SAMPLE_ADDR |
2089					  PERF_SAMPLE_TIME |
2090					  PERF_SAMPLE_DATA_SRC |
2091					  PERF_SAMPLE_TRANSACTION |
2092					  PERF_SAMPLE_REGS_USER |
2093					  PERF_SAMPLE_REGS_INTR);
2094			}
2095			pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2096
2097			if (x86_pmu.intel_cap.pebs_output_pt_available) {
2098				pr_cont("PEBS-via-PT, ");
2099				x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2100			}
2101
2102			break;
2103
2104		default:
2105			pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2106			x86_pmu.pebs = 0;
2107		}
2108	}
2109}
2110
2111void perf_restore_debug_store(void)
2112{
2113	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2114
2115	if (!x86_pmu.bts && !x86_pmu.pebs)
2116		return;
2117
2118	wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2119}
2120