1// SPDX-License-Identifier: GPL-2.0
2/*
3 * kaslr.c
4 *
5 * This contains the routines needed to generate a reasonable level of
6 * entropy to choose a randomized kernel base address offset in support
7 * of Kernel Address Space Layout Randomization (KASLR). Additionally
8 * handles walking the physical memory maps (and tracking memory regions
9 * to avoid) in order to select a physical memory location that can
10 * contain the entire properly aligned running kernel image.
11 *
12 */
13
14/*
15 * isspace() in linux/ctype.h is expected by next_args() to filter
16 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
17 * since isdigit() is implemented in both of them. Hence disable it
18 * here.
19 */
20#define BOOT_CTYPE_H
21
22#include "misc.h"
23#include "error.h"
24#include "../string.h"
25
26#include <generated/compile.h>
27#include <linux/module.h>
28#include <linux/uts.h>
29#include <linux/utsname.h>
30#include <linux/ctype.h>
31#include <linux/efi.h>
32#include <generated/utsrelease.h>
33#include <asm/efi.h>
34
35/* Macros used by the included decompressor code below. */
36#define STATIC
37#include <linux/decompress/mm.h>
38
39#define _SETUP
40#include <asm/setup.h>	/* For COMMAND_LINE_SIZE */
41#undef _SETUP
42
43extern unsigned long get_cmd_line_ptr(void);
44
45/* Simplified build-specific string for starting entropy. */
46static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
47		LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
48
49static unsigned long rotate_xor(unsigned long hash, const void *area,
50				size_t size)
51{
52	size_t i;
53	unsigned long *ptr = (unsigned long *)area;
54
55	for (i = 0; i < size / sizeof(hash); i++) {
56		/* Rotate by odd number of bits and XOR. */
57		hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
58		hash ^= ptr[i];
59	}
60
61	return hash;
62}
63
64/* Attempt to create a simple but unpredictable starting entropy. */
65static unsigned long get_boot_seed(void)
66{
67	unsigned long hash = 0;
68
69	hash = rotate_xor(hash, build_str, sizeof(build_str));
70	hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
71
72	return hash;
73}
74
75#define KASLR_COMPRESSED_BOOT
76#include "../../lib/kaslr.c"
77
78
79/* Only supporting at most 4 unusable memmap regions with kaslr */
80#define MAX_MEMMAP_REGIONS	4
81
82static bool memmap_too_large;
83
84
85/*
86 * Store memory limit: MAXMEM on 64-bit and KERNEL_IMAGE_SIZE on 32-bit.
87 * It may be reduced by "mem=nn[KMG]" or "memmap=nn[KMG]" command line options.
88 */
89static u64 mem_limit;
90
91/* Number of immovable memory regions */
92static int num_immovable_mem;
93
94enum mem_avoid_index {
95	MEM_AVOID_ZO_RANGE = 0,
96	MEM_AVOID_INITRD,
97	MEM_AVOID_CMDLINE,
98	MEM_AVOID_BOOTPARAMS,
99	MEM_AVOID_MEMMAP_BEGIN,
100	MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
101	MEM_AVOID_MAX,
102};
103
104static struct mem_vector mem_avoid[MEM_AVOID_MAX];
105
106static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
107{
108	/* Item one is entirely before item two. */
109	if (one->start + one->size <= two->start)
110		return false;
111	/* Item one is entirely after item two. */
112	if (one->start >= two->start + two->size)
113		return false;
114	return true;
115}
116
117char *skip_spaces(const char *str)
118{
119	while (isspace(*str))
120		++str;
121	return (char *)str;
122}
123#include "../../../../lib/ctype.c"
124#include "../../../../lib/cmdline.c"
125
126enum parse_mode {
127	PARSE_MEMMAP,
128	PARSE_EFI,
129};
130
131static int
132parse_memmap(char *p, u64 *start, u64 *size, enum parse_mode mode)
133{
134	char *oldp;
135
136	if (!p)
137		return -EINVAL;
138
139	/* We don't care about this option here */
140	if (!strncmp(p, "exactmap", 8))
141		return -EINVAL;
142
143	oldp = p;
144	*size = memparse(p, &p);
145	if (p == oldp)
146		return -EINVAL;
147
148	switch (*p) {
149	case '#':
150	case '$':
151	case '!':
152		*start = memparse(p + 1, &p);
153		return 0;
154	case '@':
155		if (mode == PARSE_MEMMAP) {
156			/*
157			 * memmap=nn@ss specifies usable region, should
158			 * be skipped
159			 */
160			*size = 0;
161		} else {
162			u64 flags;
163
164			/*
165			 * efi_fake_mem=nn@ss:attr the attr specifies
166			 * flags that might imply a soft-reservation.
167			 */
168			*start = memparse(p + 1, &p);
169			if (p && *p == ':') {
170				p++;
171				if (kstrtoull(p, 0, &flags) < 0)
172					*size = 0;
173				else if (flags & EFI_MEMORY_SP)
174					return 0;
175			}
176			*size = 0;
177		}
178		fallthrough;
179	default:
180		/*
181		 * If w/o offset, only size specified, memmap=nn[KMG] has the
182		 * same behaviour as mem=nn[KMG]. It limits the max address
183		 * system can use. Region above the limit should be avoided.
184		 */
185		*start = 0;
186		return 0;
187	}
188
189	return -EINVAL;
190}
191
192static void mem_avoid_memmap(enum parse_mode mode, char *str)
193{
194	static int i;
195
196	if (i >= MAX_MEMMAP_REGIONS)
197		return;
198
199	while (str && (i < MAX_MEMMAP_REGIONS)) {
200		int rc;
201		u64 start, size;
202		char *k = strchr(str, ',');
203
204		if (k)
205			*k++ = 0;
206
207		rc = parse_memmap(str, &start, &size, mode);
208		if (rc < 0)
209			break;
210		str = k;
211
212		if (start == 0) {
213			/* Store the specified memory limit if size > 0 */
214			if (size > 0 && size < mem_limit)
215				mem_limit = size;
216
217			continue;
218		}
219
220		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
221		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
222		i++;
223	}
224
225	/* More than 4 memmaps, fail kaslr */
226	if ((i >= MAX_MEMMAP_REGIONS) && str)
227		memmap_too_large = true;
228}
229
230/* Store the number of 1GB huge pages which users specified: */
231static unsigned long max_gb_huge_pages;
232
233static void parse_gb_huge_pages(char *param, char *val)
234{
235	static bool gbpage_sz;
236	char *p;
237
238	if (!strcmp(param, "hugepagesz")) {
239		p = val;
240		if (memparse(p, &p) != PUD_SIZE) {
241			gbpage_sz = false;
242			return;
243		}
244
245		if (gbpage_sz)
246			warn("Repeatedly set hugeTLB page size of 1G!\n");
247		gbpage_sz = true;
248		return;
249	}
250
251	if (!strcmp(param, "hugepages") && gbpage_sz) {
252		p = val;
253		max_gb_huge_pages = simple_strtoull(p, &p, 0);
254		return;
255	}
256}
257
258static void handle_mem_options(void)
259{
260	char *args = (char *)get_cmd_line_ptr();
261	size_t len;
262	char *tmp_cmdline;
263	char *param, *val;
264	u64 mem_size;
265
266	if (!args)
267		return;
268
269	len = strnlen(args, COMMAND_LINE_SIZE-1);
270	tmp_cmdline = malloc(len + 1);
271	if (!tmp_cmdline)
272		error("Failed to allocate space for tmp_cmdline");
273
274	memcpy(tmp_cmdline, args, len);
275	tmp_cmdline[len] = 0;
276	args = tmp_cmdline;
277
278	/* Chew leading spaces */
279	args = skip_spaces(args);
280
281	while (*args) {
282		args = next_arg(args, &param, &val);
283		/* Stop at -- */
284		if (!val && strcmp(param, "--") == 0)
285			break;
286
287		if (!strcmp(param, "memmap")) {
288			mem_avoid_memmap(PARSE_MEMMAP, val);
289		} else if (IS_ENABLED(CONFIG_X86_64) && strstr(param, "hugepages")) {
290			parse_gb_huge_pages(param, val);
291		} else if (!strcmp(param, "mem")) {
292			char *p = val;
293
294			if (!strcmp(p, "nopentium"))
295				continue;
296			mem_size = memparse(p, &p);
297			if (mem_size == 0)
298				break;
299
300			if (mem_size < mem_limit)
301				mem_limit = mem_size;
302		} else if (!strcmp(param, "efi_fake_mem")) {
303			mem_avoid_memmap(PARSE_EFI, val);
304		}
305	}
306
307	free(tmp_cmdline);
308	return;
309}
310
311/*
312 * In theory, KASLR can put the kernel anywhere in the range of [16M, MAXMEM)
313 * on 64-bit, and [16M, KERNEL_IMAGE_SIZE) on 32-bit.
314 *
315 * The mem_avoid array is used to store the ranges that need to be avoided
316 * when KASLR searches for an appropriate random address. We must avoid any
317 * regions that are unsafe to overlap with during decompression, and other
318 * things like the initrd, cmdline and boot_params. This comment seeks to
319 * explain mem_avoid as clearly as possible since incorrect mem_avoid
320 * memory ranges lead to really hard to debug boot failures.
321 *
322 * The initrd, cmdline, and boot_params are trivial to identify for
323 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
324 * MEM_AVOID_BOOTPARAMS respectively below.
325 *
326 * What is not obvious how to avoid is the range of memory that is used
327 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
328 * the compressed kernel (ZO) and its run space, which is used to extract
329 * the uncompressed kernel (VO) and relocs.
330 *
331 * ZO's full run size sits against the end of the decompression buffer, so
332 * we can calculate where text, data, bss, etc of ZO are positioned more
333 * easily.
334 *
335 * For additional background, the decompression calculations can be found
336 * in header.S, and the memory diagram is based on the one found in misc.c.
337 *
338 * The following conditions are already enforced by the image layouts and
339 * associated code:
340 *  - input + input_size >= output + output_size
341 *  - kernel_total_size <= init_size
342 *  - kernel_total_size <= output_size (see Note below)
343 *  - output + init_size >= output + output_size
344 *
345 * (Note that kernel_total_size and output_size have no fundamental
346 * relationship, but output_size is passed to choose_random_location
347 * as a maximum of the two. The diagram is showing a case where
348 * kernel_total_size is larger than output_size, but this case is
349 * handled by bumping output_size.)
350 *
351 * The above conditions can be illustrated by a diagram:
352 *
353 * 0   output            input            input+input_size    output+init_size
354 * |     |                 |                             |             |
355 * |     |                 |                             |             |
356 * |-----|--------|--------|--------------|-----------|--|-------------|
357 *                |                       |           |
358 *                |                       |           |
359 * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
360 *
361 * [output, output+init_size) is the entire memory range used for
362 * extracting the compressed image.
363 *
364 * [output, output+kernel_total_size) is the range needed for the
365 * uncompressed kernel (VO) and its run size (bss, brk, etc).
366 *
367 * [output, output+output_size) is VO plus relocs (i.e. the entire
368 * uncompressed payload contained by ZO). This is the area of the buffer
369 * written to during decompression.
370 *
371 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
372 * range of the copied ZO and decompression code. (i.e. the range
373 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
374 *
375 * [input, input+input_size) is the original copied compressed image (ZO)
376 * (i.e. it does not include its run size). This range must be avoided
377 * because it contains the data used for decompression.
378 *
379 * [input+input_size, output+init_size) is [_text, _end) for ZO. This
380 * range includes ZO's heap and stack, and must be avoided since it
381 * performs the decompression.
382 *
383 * Since the above two ranges need to be avoided and they are adjacent,
384 * they can be merged, resulting in: [input, output+init_size) which
385 * becomes the MEM_AVOID_ZO_RANGE below.
386 */
387static void mem_avoid_init(unsigned long input, unsigned long input_size,
388			   unsigned long output)
389{
390	unsigned long init_size = boot_params->hdr.init_size;
391	u64 initrd_start, initrd_size;
392	unsigned long cmd_line, cmd_line_size;
393
394	/*
395	 * Avoid the region that is unsafe to overlap during
396	 * decompression.
397	 */
398	mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
399	mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
400
401	/* Avoid initrd. */
402	initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
403	initrd_start |= boot_params->hdr.ramdisk_image;
404	initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
405	initrd_size |= boot_params->hdr.ramdisk_size;
406	mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
407	mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
408	/* No need to set mapping for initrd, it will be handled in VO. */
409
410	/* Avoid kernel command line. */
411	cmd_line = get_cmd_line_ptr();
412	/* Calculate size of cmd_line. */
413	if (cmd_line) {
414		cmd_line_size = strnlen((char *)cmd_line, COMMAND_LINE_SIZE-1) + 1;
415		mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
416		mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
417	}
418
419	/* Avoid boot parameters. */
420	mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
421	mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
422
423	/* We don't need to set a mapping for setup_data. */
424
425	/* Mark the memmap regions we need to avoid */
426	handle_mem_options();
427
428	/* Enumerate the immovable memory regions */
429	num_immovable_mem = count_immovable_mem_regions();
430}
431
432/*
433 * Does this memory vector overlap a known avoided area? If so, record the
434 * overlap region with the lowest address.
435 */
436static bool mem_avoid_overlap(struct mem_vector *img,
437			      struct mem_vector *overlap)
438{
439	int i;
440	struct setup_data *ptr;
441	u64 earliest = img->start + img->size;
442	bool is_overlapping = false;
443
444	for (i = 0; i < MEM_AVOID_MAX; i++) {
445		if (mem_overlaps(img, &mem_avoid[i]) &&
446		    mem_avoid[i].start < earliest) {
447			*overlap = mem_avoid[i];
448			earliest = overlap->start;
449			is_overlapping = true;
450		}
451	}
452
453	/* Avoid all entries in the setup_data linked list. */
454	ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
455	while (ptr) {
456		struct mem_vector avoid;
457
458		avoid.start = (unsigned long)ptr;
459		avoid.size = sizeof(*ptr) + ptr->len;
460
461		if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
462			*overlap = avoid;
463			earliest = overlap->start;
464			is_overlapping = true;
465		}
466
467		if (ptr->type == SETUP_INDIRECT &&
468		    ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) {
469			avoid.start = ((struct setup_indirect *)ptr->data)->addr;
470			avoid.size = ((struct setup_indirect *)ptr->data)->len;
471
472			if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
473				*overlap = avoid;
474				earliest = overlap->start;
475				is_overlapping = true;
476			}
477		}
478
479		ptr = (struct setup_data *)(unsigned long)ptr->next;
480	}
481
482	return is_overlapping;
483}
484
485struct slot_area {
486	u64 addr;
487	unsigned long num;
488};
489
490#define MAX_SLOT_AREA 100
491
492static struct slot_area slot_areas[MAX_SLOT_AREA];
493static unsigned int slot_area_index;
494static unsigned long slot_max;
495
496static void store_slot_info(struct mem_vector *region, unsigned long image_size)
497{
498	struct slot_area slot_area;
499
500	if (slot_area_index == MAX_SLOT_AREA)
501		return;
502
503	slot_area.addr = region->start;
504	slot_area.num = 1 + (region->size - image_size) / CONFIG_PHYSICAL_ALIGN;
505
506	slot_areas[slot_area_index++] = slot_area;
507	slot_max += slot_area.num;
508}
509
510/*
511 * Skip as many 1GB huge pages as possible in the passed region
512 * according to the number which users specified:
513 */
514static void
515process_gb_huge_pages(struct mem_vector *region, unsigned long image_size)
516{
517	u64 pud_start, pud_end;
518	unsigned long gb_huge_pages;
519	struct mem_vector tmp;
520
521	if (!IS_ENABLED(CONFIG_X86_64) || !max_gb_huge_pages) {
522		store_slot_info(region, image_size);
523		return;
524	}
525
526	/* Are there any 1GB pages in the region? */
527	pud_start = ALIGN(region->start, PUD_SIZE);
528	pud_end = ALIGN_DOWN(region->start + region->size, PUD_SIZE);
529
530	/* No good 1GB huge pages found: */
531	if (pud_start >= pud_end) {
532		store_slot_info(region, image_size);
533		return;
534	}
535
536	/* Check if the head part of the region is usable. */
537	if (pud_start >= region->start + image_size) {
538		tmp.start = region->start;
539		tmp.size = pud_start - region->start;
540		store_slot_info(&tmp, image_size);
541	}
542
543	/* Skip the good 1GB pages. */
544	gb_huge_pages = (pud_end - pud_start) >> PUD_SHIFT;
545	if (gb_huge_pages > max_gb_huge_pages) {
546		pud_end = pud_start + (max_gb_huge_pages << PUD_SHIFT);
547		max_gb_huge_pages = 0;
548	} else {
549		max_gb_huge_pages -= gb_huge_pages;
550	}
551
552	/* Check if the tail part of the region is usable. */
553	if (region->start + region->size >= pud_end + image_size) {
554		tmp.start = pud_end;
555		tmp.size = region->start + region->size - pud_end;
556		store_slot_info(&tmp, image_size);
557	}
558}
559
560static u64 slots_fetch_random(void)
561{
562	unsigned long slot;
563	unsigned int i;
564
565	/* Handle case of no slots stored. */
566	if (slot_max == 0)
567		return 0;
568
569	slot = kaslr_get_random_long("Physical") % slot_max;
570
571	for (i = 0; i < slot_area_index; i++) {
572		if (slot >= slot_areas[i].num) {
573			slot -= slot_areas[i].num;
574			continue;
575		}
576		return slot_areas[i].addr + ((u64)slot * CONFIG_PHYSICAL_ALIGN);
577	}
578
579	if (i == slot_area_index)
580		debug_putstr("slots_fetch_random() failed!?\n");
581	return 0;
582}
583
584static void __process_mem_region(struct mem_vector *entry,
585				 unsigned long minimum,
586				 unsigned long image_size)
587{
588	struct mem_vector region, overlap;
589	u64 region_end;
590
591	/* Enforce minimum and memory limit. */
592	region.start = max_t(u64, entry->start, minimum);
593	region_end = min(entry->start + entry->size, mem_limit);
594
595	/* Give up if slot area array is full. */
596	while (slot_area_index < MAX_SLOT_AREA) {
597		/* Potentially raise address to meet alignment needs. */
598		region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
599
600		/* Did we raise the address above the passed in memory entry? */
601		if (region.start > region_end)
602			return;
603
604		/* Reduce size by any delta from the original address. */
605		region.size = region_end - region.start;
606
607		/* Return if region can't contain decompressed kernel */
608		if (region.size < image_size)
609			return;
610
611		/* If nothing overlaps, store the region and return. */
612		if (!mem_avoid_overlap(&region, &overlap)) {
613			process_gb_huge_pages(&region, image_size);
614			return;
615		}
616
617		/* Store beginning of region if holds at least image_size. */
618		if (overlap.start >= region.start + image_size) {
619			region.size = overlap.start - region.start;
620			process_gb_huge_pages(&region, image_size);
621		}
622
623		/* Clip off the overlapping region and start over. */
624		region.start = overlap.start + overlap.size;
625	}
626}
627
628static bool process_mem_region(struct mem_vector *region,
629			       unsigned long minimum,
630			       unsigned long image_size)
631{
632	int i;
633	/*
634	 * If no immovable memory found, or MEMORY_HOTREMOVE disabled,
635	 * use @region directly.
636	 */
637	if (!num_immovable_mem) {
638		__process_mem_region(region, minimum, image_size);
639
640		if (slot_area_index == MAX_SLOT_AREA) {
641			debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n");
642			return 1;
643		}
644		return 0;
645	}
646
647#if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI)
648	/*
649	 * If immovable memory found, filter the intersection between
650	 * immovable memory and @region.
651	 */
652	for (i = 0; i < num_immovable_mem; i++) {
653		u64 start, end, entry_end, region_end;
654		struct mem_vector entry;
655
656		if (!mem_overlaps(region, &immovable_mem[i]))
657			continue;
658
659		start = immovable_mem[i].start;
660		end = start + immovable_mem[i].size;
661		region_end = region->start + region->size;
662
663		entry.start = clamp(region->start, start, end);
664		entry_end = clamp(region_end, start, end);
665		entry.size = entry_end - entry.start;
666
667		__process_mem_region(&entry, minimum, image_size);
668
669		if (slot_area_index == MAX_SLOT_AREA) {
670			debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n");
671			return 1;
672		}
673	}
674#endif
675	return 0;
676}
677
678#ifdef CONFIG_EFI
679/*
680 * Returns true if we processed the EFI memmap, which we prefer over the E820
681 * table if it is available.
682 */
683static bool
684process_efi_entries(unsigned long minimum, unsigned long image_size)
685{
686	struct efi_info *e = &boot_params->efi_info;
687	bool efi_mirror_found = false;
688	struct mem_vector region;
689	efi_memory_desc_t *md;
690	unsigned long pmap;
691	char *signature;
692	u32 nr_desc;
693	int i;
694
695	signature = (char *)&e->efi_loader_signature;
696	if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
697	    strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
698		return false;
699
700#ifdef CONFIG_X86_32
701	/* Can't handle data above 4GB at this time */
702	if (e->efi_memmap_hi) {
703		warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
704		return false;
705	}
706	pmap =  e->efi_memmap;
707#else
708	pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
709#endif
710
711	nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
712	for (i = 0; i < nr_desc; i++) {
713		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
714		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
715			efi_mirror_found = true;
716			break;
717		}
718	}
719
720	for (i = 0; i < nr_desc; i++) {
721		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
722
723		/*
724		 * Here we are more conservative in picking free memory than
725		 * the EFI spec allows:
726		 *
727		 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also
728		 * free memory and thus available to place the kernel image into,
729		 * but in practice there's firmware where using that memory leads
730		 * to crashes.
731		 *
732		 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free.
733		 */
734		if (md->type != EFI_CONVENTIONAL_MEMORY)
735			continue;
736
737		if (efi_soft_reserve_enabled() &&
738		    (md->attribute & EFI_MEMORY_SP))
739			continue;
740
741		if (efi_mirror_found &&
742		    !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
743			continue;
744
745		region.start = md->phys_addr;
746		region.size = md->num_pages << EFI_PAGE_SHIFT;
747		if (process_mem_region(&region, minimum, image_size))
748			break;
749	}
750	return true;
751}
752#else
753static inline bool
754process_efi_entries(unsigned long minimum, unsigned long image_size)
755{
756	return false;
757}
758#endif
759
760static void process_e820_entries(unsigned long minimum,
761				 unsigned long image_size)
762{
763	int i;
764	struct mem_vector region;
765	struct boot_e820_entry *entry;
766
767	/* Verify potential e820 positions, appending to slots list. */
768	for (i = 0; i < boot_params->e820_entries; i++) {
769		entry = &boot_params->e820_table[i];
770		/* Skip non-RAM entries. */
771		if (entry->type != E820_TYPE_RAM)
772			continue;
773		region.start = entry->addr;
774		region.size = entry->size;
775		if (process_mem_region(&region, minimum, image_size))
776			break;
777	}
778}
779
780static unsigned long find_random_phys_addr(unsigned long minimum,
781					   unsigned long image_size)
782{
783	u64 phys_addr;
784
785	/* Bail out early if it's impossible to succeed. */
786	if (minimum + image_size > mem_limit)
787		return 0;
788
789	/* Check if we had too many memmaps. */
790	if (memmap_too_large) {
791		debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
792		return 0;
793	}
794
795	if (!process_efi_entries(minimum, image_size))
796		process_e820_entries(minimum, image_size);
797
798	phys_addr = slots_fetch_random();
799
800	/* Perform a final check to make sure the address is in range. */
801	if (phys_addr < minimum || phys_addr + image_size > mem_limit) {
802		warn("Invalid physical address chosen!\n");
803		return 0;
804	}
805
806	return (unsigned long)phys_addr;
807}
808
809static unsigned long find_random_virt_addr(unsigned long minimum,
810					   unsigned long image_size)
811{
812	unsigned long slots, random_addr;
813
814	/*
815	 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
816	 * that can hold image_size within the range of minimum to
817	 * KERNEL_IMAGE_SIZE?
818	 */
819	slots = 1 + (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN;
820
821	random_addr = kaslr_get_random_long("Virtual") % slots;
822
823	return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
824}
825
826/*
827 * Since this function examines addresses much more numerically,
828 * it takes the input and output pointers as 'unsigned long'.
829 */
830void choose_random_location(unsigned long input,
831			    unsigned long input_size,
832			    unsigned long *output,
833			    unsigned long output_size,
834			    unsigned long *virt_addr)
835{
836	unsigned long random_addr, min_addr;
837
838	if (cmdline_find_option_bool("nokaslr")) {
839		warn("KASLR disabled: 'nokaslr' on cmdline.");
840		return;
841	}
842
843	boot_params->hdr.loadflags |= KASLR_FLAG;
844
845	if (IS_ENABLED(CONFIG_X86_32))
846		mem_limit = KERNEL_IMAGE_SIZE;
847	else
848		mem_limit = MAXMEM;
849
850	/* Record the various known unsafe memory ranges. */
851	mem_avoid_init(input, input_size, *output);
852
853	/*
854	 * Low end of the randomization range should be the
855	 * smaller of 512M or the initial kernel image
856	 * location:
857	 */
858	min_addr = min(*output, 512UL << 20);
859	/* Make sure minimum is aligned. */
860	min_addr = ALIGN(min_addr, CONFIG_PHYSICAL_ALIGN);
861
862	/* Walk available memory entries to find a random address. */
863	random_addr = find_random_phys_addr(min_addr, output_size);
864	if (!random_addr) {
865		warn("Physical KASLR disabled: no suitable memory region!");
866	} else {
867		/* Update the new physical address location. */
868		if (*output != random_addr)
869			*output = random_addr;
870	}
871
872
873	/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
874	if (IS_ENABLED(CONFIG_X86_64))
875		random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
876	*virt_addr = random_addr;
877}
878