1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2017 - 2019 Cambridge Greys Limited
4 * Copyright (C) 2011 - 2014 Cisco Systems Inc
5 * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6 * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
7 * James Leu (jleu@mindspring.net).
8 * Copyright (C) 2001 by various other people who didn't put their name here.
9 */
10
11#include <linux/version.h>
12#include <linux/memblock.h>
13#include <linux/etherdevice.h>
14#include <linux/ethtool.h>
15#include <linux/inetdevice.h>
16#include <linux/init.h>
17#include <linux/list.h>
18#include <linux/netdevice.h>
19#include <linux/platform_device.h>
20#include <linux/rtnetlink.h>
21#include <linux/skbuff.h>
22#include <linux/slab.h>
23#include <linux/interrupt.h>
24#include <linux/firmware.h>
25#include <linux/fs.h>
26#include <uapi/linux/filter.h>
27#include <init.h>
28#include <irq_kern.h>
29#include <irq_user.h>
30#include <net_kern.h>
31#include <os.h>
32#include "mconsole_kern.h"
33#include "vector_user.h"
34#include "vector_kern.h"
35
36/*
37 * Adapted from network devices with the following major changes:
38 * All transports are static - simplifies the code significantly
39 * Multiple FDs/IRQs per device
40 * Vector IO optionally used for read/write, falling back to legacy
41 * based on configuration and/or availability
42 * Configuration is no longer positional - L2TPv3 and GRE require up to
43 * 10 parameters, passing this as positional is not fit for purpose.
44 * Only socket transports are supported
45 */
46
47
48#define DRIVER_NAME "uml-vector"
49struct vector_cmd_line_arg {
50	struct list_head list;
51	int unit;
52	char *arguments;
53};
54
55struct vector_device {
56	struct list_head list;
57	struct net_device *dev;
58	struct platform_device pdev;
59	int unit;
60	int opened;
61};
62
63static LIST_HEAD(vec_cmd_line);
64
65static DEFINE_SPINLOCK(vector_devices_lock);
66static LIST_HEAD(vector_devices);
67
68static int driver_registered;
69
70static void vector_eth_configure(int n, struct arglist *def);
71
72/* Argument accessors to set variables (and/or set default values)
73 * mtu, buffer sizing, default headroom, etc
74 */
75
76#define DEFAULT_HEADROOM 2
77#define SAFETY_MARGIN 32
78#define DEFAULT_VECTOR_SIZE 64
79#define TX_SMALL_PACKET 128
80#define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
81#define MAX_ITERATIONS 64
82
83static const struct {
84	const char string[ETH_GSTRING_LEN];
85} ethtool_stats_keys[] = {
86	{ "rx_queue_max" },
87	{ "rx_queue_running_average" },
88	{ "tx_queue_max" },
89	{ "tx_queue_running_average" },
90	{ "rx_encaps_errors" },
91	{ "tx_timeout_count" },
92	{ "tx_restart_queue" },
93	{ "tx_kicks" },
94	{ "tx_flow_control_xon" },
95	{ "tx_flow_control_xoff" },
96	{ "rx_csum_offload_good" },
97	{ "rx_csum_offload_errors"},
98	{ "sg_ok"},
99	{ "sg_linearized"},
100};
101
102#define VECTOR_NUM_STATS	ARRAY_SIZE(ethtool_stats_keys)
103
104static void vector_reset_stats(struct vector_private *vp)
105{
106	vp->estats.rx_queue_max = 0;
107	vp->estats.rx_queue_running_average = 0;
108	vp->estats.tx_queue_max = 0;
109	vp->estats.tx_queue_running_average = 0;
110	vp->estats.rx_encaps_errors = 0;
111	vp->estats.tx_timeout_count = 0;
112	vp->estats.tx_restart_queue = 0;
113	vp->estats.tx_kicks = 0;
114	vp->estats.tx_flow_control_xon = 0;
115	vp->estats.tx_flow_control_xoff = 0;
116	vp->estats.sg_ok = 0;
117	vp->estats.sg_linearized = 0;
118}
119
120static int get_mtu(struct arglist *def)
121{
122	char *mtu = uml_vector_fetch_arg(def, "mtu");
123	long result;
124
125	if (mtu != NULL) {
126		if (kstrtoul(mtu, 10, &result) == 0)
127			if ((result < (1 << 16) - 1) && (result >= 576))
128				return result;
129	}
130	return ETH_MAX_PACKET;
131}
132
133static char *get_bpf_file(struct arglist *def)
134{
135	return uml_vector_fetch_arg(def, "bpffile");
136}
137
138static bool get_bpf_flash(struct arglist *def)
139{
140	char *allow = uml_vector_fetch_arg(def, "bpfflash");
141	long result;
142
143	if (allow != NULL) {
144		if (kstrtoul(allow, 10, &result) == 0)
145			return (allow > 0);
146	}
147	return false;
148}
149
150static int get_depth(struct arglist *def)
151{
152	char *mtu = uml_vector_fetch_arg(def, "depth");
153	long result;
154
155	if (mtu != NULL) {
156		if (kstrtoul(mtu, 10, &result) == 0)
157			return result;
158	}
159	return DEFAULT_VECTOR_SIZE;
160}
161
162static int get_headroom(struct arglist *def)
163{
164	char *mtu = uml_vector_fetch_arg(def, "headroom");
165	long result;
166
167	if (mtu != NULL) {
168		if (kstrtoul(mtu, 10, &result) == 0)
169			return result;
170	}
171	return DEFAULT_HEADROOM;
172}
173
174static int get_req_size(struct arglist *def)
175{
176	char *gro = uml_vector_fetch_arg(def, "gro");
177	long result;
178
179	if (gro != NULL) {
180		if (kstrtoul(gro, 10, &result) == 0) {
181			if (result > 0)
182				return 65536;
183		}
184	}
185	return get_mtu(def) + ETH_HEADER_OTHER +
186		get_headroom(def) + SAFETY_MARGIN;
187}
188
189
190static int get_transport_options(struct arglist *def)
191{
192	char *transport = uml_vector_fetch_arg(def, "transport");
193	char *vector = uml_vector_fetch_arg(def, "vec");
194
195	int vec_rx = VECTOR_RX;
196	int vec_tx = VECTOR_TX;
197	long parsed;
198	int result = 0;
199
200	if (transport == NULL)
201		return -EINVAL;
202
203	if (vector != NULL) {
204		if (kstrtoul(vector, 10, &parsed) == 0) {
205			if (parsed == 0) {
206				vec_rx = 0;
207				vec_tx = 0;
208			}
209		}
210	}
211
212	if (get_bpf_flash(def))
213		result = VECTOR_BPF_FLASH;
214
215	if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
216		return result;
217	if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0)
218		return (result | vec_rx | VECTOR_BPF);
219	if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
220		return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
221	return (result | vec_rx | vec_tx);
222}
223
224
225/* A mini-buffer for packet drop read
226 * All of our supported transports are datagram oriented and we always
227 * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
228 * than the packet size it still counts as full packet read and will
229 * clean the incoming stream to keep sigio/epoll happy
230 */
231
232#define DROP_BUFFER_SIZE 32
233
234static char *drop_buffer;
235
236/* Array backed queues optimized for bulk enqueue/dequeue and
237 * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios.
238 * For more details and full design rationale see
239 * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt
240 */
241
242
243/*
244 * Advance the mmsg queue head by n = advance. Resets the queue to
245 * maximum enqueue/dequeue-at-once capacity if possible. Called by
246 * dequeuers. Caller must hold the head_lock!
247 */
248
249static int vector_advancehead(struct vector_queue *qi, int advance)
250{
251	int queue_depth;
252
253	qi->head =
254		(qi->head + advance)
255			% qi->max_depth;
256
257
258	spin_lock(&qi->tail_lock);
259	qi->queue_depth -= advance;
260
261	/* we are at 0, use this to
262	 * reset head and tail so we can use max size vectors
263	 */
264
265	if (qi->queue_depth == 0) {
266		qi->head = 0;
267		qi->tail = 0;
268	}
269	queue_depth = qi->queue_depth;
270	spin_unlock(&qi->tail_lock);
271	return queue_depth;
272}
273
274/*	Advance the queue tail by n = advance.
275 *	This is called by enqueuers which should hold the
276 *	head lock already
277 */
278
279static int vector_advancetail(struct vector_queue *qi, int advance)
280{
281	int queue_depth;
282
283	qi->tail =
284		(qi->tail + advance)
285			% qi->max_depth;
286	spin_lock(&qi->head_lock);
287	qi->queue_depth += advance;
288	queue_depth = qi->queue_depth;
289	spin_unlock(&qi->head_lock);
290	return queue_depth;
291}
292
293static int prep_msg(struct vector_private *vp,
294	struct sk_buff *skb,
295	struct iovec *iov)
296{
297	int iov_index = 0;
298	int nr_frags, frag;
299	skb_frag_t *skb_frag;
300
301	nr_frags = skb_shinfo(skb)->nr_frags;
302	if (nr_frags > MAX_IOV_SIZE) {
303		if (skb_linearize(skb) != 0)
304			goto drop;
305	}
306	if (vp->header_size > 0) {
307		iov[iov_index].iov_len = vp->header_size;
308		vp->form_header(iov[iov_index].iov_base, skb, vp);
309		iov_index++;
310	}
311	iov[iov_index].iov_base = skb->data;
312	if (nr_frags > 0) {
313		iov[iov_index].iov_len = skb->len - skb->data_len;
314		vp->estats.sg_ok++;
315	} else
316		iov[iov_index].iov_len = skb->len;
317	iov_index++;
318	for (frag = 0; frag < nr_frags; frag++) {
319		skb_frag = &skb_shinfo(skb)->frags[frag];
320		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
321		iov[iov_index].iov_len = skb_frag_size(skb_frag);
322		iov_index++;
323	}
324	return iov_index;
325drop:
326	return -1;
327}
328/*
329 * Generic vector enqueue with support for forming headers using transport
330 * specific callback. Allows GRE, L2TPv3, RAW and other transports
331 * to use a common enqueue procedure in vector mode
332 */
333
334static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
335{
336	struct vector_private *vp = netdev_priv(qi->dev);
337	int queue_depth;
338	int packet_len;
339	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
340	int iov_count;
341
342	spin_lock(&qi->tail_lock);
343	spin_lock(&qi->head_lock);
344	queue_depth = qi->queue_depth;
345	spin_unlock(&qi->head_lock);
346
347	if (skb)
348		packet_len = skb->len;
349
350	if (queue_depth < qi->max_depth) {
351
352		*(qi->skbuff_vector + qi->tail) = skb;
353		mmsg_vector += qi->tail;
354		iov_count = prep_msg(
355			vp,
356			skb,
357			mmsg_vector->msg_hdr.msg_iov
358		);
359		if (iov_count < 1)
360			goto drop;
361		mmsg_vector->msg_hdr.msg_iovlen = iov_count;
362		mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
363		mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
364		queue_depth = vector_advancetail(qi, 1);
365	} else
366		goto drop;
367	spin_unlock(&qi->tail_lock);
368	return queue_depth;
369drop:
370	qi->dev->stats.tx_dropped++;
371	if (skb != NULL) {
372		packet_len = skb->len;
373		dev_consume_skb_any(skb);
374		netdev_completed_queue(qi->dev, 1, packet_len);
375	}
376	spin_unlock(&qi->tail_lock);
377	return queue_depth;
378}
379
380static int consume_vector_skbs(struct vector_queue *qi, int count)
381{
382	struct sk_buff *skb;
383	int skb_index;
384	int bytes_compl = 0;
385
386	for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
387		skb = *(qi->skbuff_vector + skb_index);
388		/* mark as empty to ensure correct destruction if
389		 * needed
390		 */
391		bytes_compl += skb->len;
392		*(qi->skbuff_vector + skb_index) = NULL;
393		dev_consume_skb_any(skb);
394	}
395	qi->dev->stats.tx_bytes += bytes_compl;
396	qi->dev->stats.tx_packets += count;
397	netdev_completed_queue(qi->dev, count, bytes_compl);
398	return vector_advancehead(qi, count);
399}
400
401/*
402 * Generic vector deque via sendmmsg with support for forming headers
403 * using transport specific callback. Allows GRE, L2TPv3, RAW and
404 * other transports to use a common dequeue procedure in vector mode
405 */
406
407
408static int vector_send(struct vector_queue *qi)
409{
410	struct vector_private *vp = netdev_priv(qi->dev);
411	struct mmsghdr *send_from;
412	int result = 0, send_len, queue_depth = qi->max_depth;
413
414	if (spin_trylock(&qi->head_lock)) {
415		if (spin_trylock(&qi->tail_lock)) {
416			/* update queue_depth to current value */
417			queue_depth = qi->queue_depth;
418			spin_unlock(&qi->tail_lock);
419			while (queue_depth > 0) {
420				/* Calculate the start of the vector */
421				send_len = queue_depth;
422				send_from = qi->mmsg_vector;
423				send_from += qi->head;
424				/* Adjust vector size if wraparound */
425				if (send_len + qi->head > qi->max_depth)
426					send_len = qi->max_depth - qi->head;
427				/* Try to TX as many packets as possible */
428				if (send_len > 0) {
429					result = uml_vector_sendmmsg(
430						 vp->fds->tx_fd,
431						 send_from,
432						 send_len,
433						 0
434					);
435					vp->in_write_poll =
436						(result != send_len);
437				}
438				/* For some of the sendmmsg error scenarios
439				 * we may end being unsure in the TX success
440				 * for all packets. It is safer to declare
441				 * them all TX-ed and blame the network.
442				 */
443				if (result < 0) {
444					if (net_ratelimit())
445						netdev_err(vp->dev, "sendmmsg err=%i\n",
446							result);
447					vp->in_error = true;
448					result = send_len;
449				}
450				if (result > 0) {
451					queue_depth =
452						consume_vector_skbs(qi, result);
453					/* This is equivalent to an TX IRQ.
454					 * Restart the upper layers to feed us
455					 * more packets.
456					 */
457					if (result > vp->estats.tx_queue_max)
458						vp->estats.tx_queue_max = result;
459					vp->estats.tx_queue_running_average =
460						(vp->estats.tx_queue_running_average + result) >> 1;
461				}
462				netif_trans_update(qi->dev);
463				netif_wake_queue(qi->dev);
464				/* if TX is busy, break out of the send loop,
465				 *  poll write IRQ will reschedule xmit for us
466				 */
467				if (result != send_len) {
468					vp->estats.tx_restart_queue++;
469					break;
470				}
471			}
472		}
473		spin_unlock(&qi->head_lock);
474	} else {
475		tasklet_schedule(&vp->tx_poll);
476	}
477	return queue_depth;
478}
479
480/* Queue destructor. Deliberately stateless so we can use
481 * it in queue cleanup if initialization fails.
482 */
483
484static void destroy_queue(struct vector_queue *qi)
485{
486	int i;
487	struct iovec *iov;
488	struct vector_private *vp = netdev_priv(qi->dev);
489	struct mmsghdr *mmsg_vector;
490
491	if (qi == NULL)
492		return;
493	/* deallocate any skbuffs - we rely on any unused to be
494	 * set to NULL.
495	 */
496	if (qi->skbuff_vector != NULL) {
497		for (i = 0; i < qi->max_depth; i++) {
498			if (*(qi->skbuff_vector + i) != NULL)
499				dev_kfree_skb_any(*(qi->skbuff_vector + i));
500		}
501		kfree(qi->skbuff_vector);
502	}
503	/* deallocate matching IOV structures including header buffs */
504	if (qi->mmsg_vector != NULL) {
505		mmsg_vector = qi->mmsg_vector;
506		for (i = 0; i < qi->max_depth; i++) {
507			iov = mmsg_vector->msg_hdr.msg_iov;
508			if (iov != NULL) {
509				if ((vp->header_size > 0) &&
510					(iov->iov_base != NULL))
511					kfree(iov->iov_base);
512				kfree(iov);
513			}
514			mmsg_vector++;
515		}
516		kfree(qi->mmsg_vector);
517	}
518	kfree(qi);
519}
520
521/*
522 * Queue constructor. Create a queue with a given side.
523 */
524static struct vector_queue *create_queue(
525	struct vector_private *vp,
526	int max_size,
527	int header_size,
528	int num_extra_frags)
529{
530	struct vector_queue *result;
531	int i;
532	struct iovec *iov;
533	struct mmsghdr *mmsg_vector;
534
535	result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
536	if (result == NULL)
537		return NULL;
538	result->max_depth = max_size;
539	result->dev = vp->dev;
540	result->mmsg_vector = kmalloc(
541		(sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
542	if (result->mmsg_vector == NULL)
543		goto out_mmsg_fail;
544	result->skbuff_vector = kmalloc(
545		(sizeof(void *) * max_size), GFP_KERNEL);
546	if (result->skbuff_vector == NULL)
547		goto out_skb_fail;
548
549	/* further failures can be handled safely by destroy_queue*/
550
551	mmsg_vector = result->mmsg_vector;
552	for (i = 0; i < max_size; i++) {
553		/* Clear all pointers - we use non-NULL as marking on
554		 * what to free on destruction
555		 */
556		*(result->skbuff_vector + i) = NULL;
557		mmsg_vector->msg_hdr.msg_iov = NULL;
558		mmsg_vector++;
559	}
560	mmsg_vector = result->mmsg_vector;
561	result->max_iov_frags = num_extra_frags;
562	for (i = 0; i < max_size; i++) {
563		if (vp->header_size > 0)
564			iov = kmalloc_array(3 + num_extra_frags,
565					    sizeof(struct iovec),
566					    GFP_KERNEL
567			);
568		else
569			iov = kmalloc_array(2 + num_extra_frags,
570					    sizeof(struct iovec),
571					    GFP_KERNEL
572			);
573		if (iov == NULL)
574			goto out_fail;
575		mmsg_vector->msg_hdr.msg_iov = iov;
576		mmsg_vector->msg_hdr.msg_iovlen = 1;
577		mmsg_vector->msg_hdr.msg_control = NULL;
578		mmsg_vector->msg_hdr.msg_controllen = 0;
579		mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
580		mmsg_vector->msg_hdr.msg_name = NULL;
581		mmsg_vector->msg_hdr.msg_namelen = 0;
582		if (vp->header_size > 0) {
583			iov->iov_base = kmalloc(header_size, GFP_KERNEL);
584			if (iov->iov_base == NULL)
585				goto out_fail;
586			iov->iov_len = header_size;
587			mmsg_vector->msg_hdr.msg_iovlen = 2;
588			iov++;
589		}
590		iov->iov_base = NULL;
591		iov->iov_len = 0;
592		mmsg_vector++;
593	}
594	spin_lock_init(&result->head_lock);
595	spin_lock_init(&result->tail_lock);
596	result->queue_depth = 0;
597	result->head = 0;
598	result->tail = 0;
599	return result;
600out_skb_fail:
601	kfree(result->mmsg_vector);
602out_mmsg_fail:
603	kfree(result);
604	return NULL;
605out_fail:
606	destroy_queue(result);
607	return NULL;
608}
609
610/*
611 * We do not use the RX queue as a proper wraparound queue for now
612 * This is not necessary because the consumption via netif_rx()
613 * happens in-line. While we can try using the return code of
614 * netif_rx() for flow control there are no drivers doing this today.
615 * For this RX specific use we ignore the tail/head locks and
616 * just read into a prepared queue filled with skbuffs.
617 */
618
619static struct sk_buff *prep_skb(
620	struct vector_private *vp,
621	struct user_msghdr *msg)
622{
623	int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
624	struct sk_buff *result;
625	int iov_index = 0, len;
626	struct iovec *iov = msg->msg_iov;
627	int err, nr_frags, frag;
628	skb_frag_t *skb_frag;
629
630	if (vp->req_size <= linear)
631		len = linear;
632	else
633		len = vp->req_size;
634	result = alloc_skb_with_frags(
635		linear,
636		len - vp->max_packet,
637		3,
638		&err,
639		GFP_ATOMIC
640	);
641	if (vp->header_size > 0)
642		iov_index++;
643	if (result == NULL) {
644		iov[iov_index].iov_base = NULL;
645		iov[iov_index].iov_len = 0;
646		goto done;
647	}
648	skb_reserve(result, vp->headroom);
649	result->dev = vp->dev;
650	skb_put(result, vp->max_packet);
651	result->data_len = len - vp->max_packet;
652	result->len += len - vp->max_packet;
653	skb_reset_mac_header(result);
654	result->ip_summed = CHECKSUM_NONE;
655	iov[iov_index].iov_base = result->data;
656	iov[iov_index].iov_len = vp->max_packet;
657	iov_index++;
658
659	nr_frags = skb_shinfo(result)->nr_frags;
660	for (frag = 0; frag < nr_frags; frag++) {
661		skb_frag = &skb_shinfo(result)->frags[frag];
662		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
663		if (iov[iov_index].iov_base != NULL)
664			iov[iov_index].iov_len = skb_frag_size(skb_frag);
665		else
666			iov[iov_index].iov_len = 0;
667		iov_index++;
668	}
669done:
670	msg->msg_iovlen = iov_index;
671	return result;
672}
673
674
675/* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/
676
677static void prep_queue_for_rx(struct vector_queue *qi)
678{
679	struct vector_private *vp = netdev_priv(qi->dev);
680	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
681	void **skbuff_vector = qi->skbuff_vector;
682	int i;
683
684	if (qi->queue_depth == 0)
685		return;
686	for (i = 0; i < qi->queue_depth; i++) {
687		/* it is OK if allocation fails - recvmmsg with NULL data in
688		 * iov argument still performs an RX, just drops the packet
689		 * This allows us stop faffing around with a "drop buffer"
690		 */
691
692		*skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
693		skbuff_vector++;
694		mmsg_vector++;
695	}
696	qi->queue_depth = 0;
697}
698
699static struct vector_device *find_device(int n)
700{
701	struct vector_device *device;
702	struct list_head *ele;
703
704	spin_lock(&vector_devices_lock);
705	list_for_each(ele, &vector_devices) {
706		device = list_entry(ele, struct vector_device, list);
707		if (device->unit == n)
708			goto out;
709	}
710	device = NULL;
711 out:
712	spin_unlock(&vector_devices_lock);
713	return device;
714}
715
716static int vector_parse(char *str, int *index_out, char **str_out,
717			char **error_out)
718{
719	int n, len, err;
720	char *start = str;
721
722	len = strlen(str);
723
724	while ((*str != ':') && (strlen(str) > 1))
725		str++;
726	if (*str != ':') {
727		*error_out = "Expected ':' after device number";
728		return -EINVAL;
729	}
730	*str = '\0';
731
732	err = kstrtouint(start, 0, &n);
733	if (err < 0) {
734		*error_out = "Bad device number";
735		return err;
736	}
737
738	str++;
739	if (find_device(n)) {
740		*error_out = "Device already configured";
741		return -EINVAL;
742	}
743
744	*index_out = n;
745	*str_out = str;
746	return 0;
747}
748
749static int vector_config(char *str, char **error_out)
750{
751	int err, n;
752	char *params;
753	struct arglist *parsed;
754
755	err = vector_parse(str, &n, &params, error_out);
756	if (err != 0)
757		return err;
758
759	/* This string is broken up and the pieces used by the underlying
760	 * driver. We should copy it to make sure things do not go wrong
761	 * later.
762	 */
763
764	params = kstrdup(params, GFP_KERNEL);
765	if (params == NULL) {
766		*error_out = "vector_config failed to strdup string";
767		return -ENOMEM;
768	}
769
770	parsed = uml_parse_vector_ifspec(params);
771
772	if (parsed == NULL) {
773		*error_out = "vector_config failed to parse parameters";
774		kfree(params);
775		return -EINVAL;
776	}
777
778	vector_eth_configure(n, parsed);
779	return 0;
780}
781
782static int vector_id(char **str, int *start_out, int *end_out)
783{
784	char *end;
785	int n;
786
787	n = simple_strtoul(*str, &end, 0);
788	if ((*end != '\0') || (end == *str))
789		return -1;
790
791	*start_out = n;
792	*end_out = n;
793	*str = end;
794	return n;
795}
796
797static int vector_remove(int n, char **error_out)
798{
799	struct vector_device *vec_d;
800	struct net_device *dev;
801	struct vector_private *vp;
802
803	vec_d = find_device(n);
804	if (vec_d == NULL)
805		return -ENODEV;
806	dev = vec_d->dev;
807	vp = netdev_priv(dev);
808	if (vp->fds != NULL)
809		return -EBUSY;
810	unregister_netdev(dev);
811	platform_device_unregister(&vec_d->pdev);
812	return 0;
813}
814
815/*
816 * There is no shared per-transport initialization code, so
817 * we will just initialize each interface one by one and
818 * add them to a list
819 */
820
821static struct platform_driver uml_net_driver = {
822	.driver = {
823		.name = DRIVER_NAME,
824	},
825};
826
827
828static void vector_device_release(struct device *dev)
829{
830	struct vector_device *device = dev_get_drvdata(dev);
831	struct net_device *netdev = device->dev;
832
833	list_del(&device->list);
834	kfree(device);
835	free_netdev(netdev);
836}
837
838/* Bog standard recv using recvmsg - not used normally unless the user
839 * explicitly specifies not to use recvmmsg vector RX.
840 */
841
842static int vector_legacy_rx(struct vector_private *vp)
843{
844	int pkt_len;
845	struct user_msghdr hdr;
846	struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
847	int iovpos = 0;
848	struct sk_buff *skb;
849	int header_check;
850
851	hdr.msg_name = NULL;
852	hdr.msg_namelen = 0;
853	hdr.msg_iov = (struct iovec *) &iov;
854	hdr.msg_control = NULL;
855	hdr.msg_controllen = 0;
856	hdr.msg_flags = 0;
857
858	if (vp->header_size > 0) {
859		iov[0].iov_base = vp->header_rxbuffer;
860		iov[0].iov_len = vp->header_size;
861	}
862
863	skb = prep_skb(vp, &hdr);
864
865	if (skb == NULL) {
866		/* Read a packet into drop_buffer and don't do
867		 * anything with it.
868		 */
869		iov[iovpos].iov_base = drop_buffer;
870		iov[iovpos].iov_len = DROP_BUFFER_SIZE;
871		hdr.msg_iovlen = 1;
872		vp->dev->stats.rx_dropped++;
873	}
874
875	pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
876	if (pkt_len < 0) {
877		vp->in_error = true;
878		return pkt_len;
879	}
880
881	if (skb != NULL) {
882		if (pkt_len > vp->header_size) {
883			if (vp->header_size > 0) {
884				header_check = vp->verify_header(
885					vp->header_rxbuffer, skb, vp);
886				if (header_check < 0) {
887					dev_kfree_skb_irq(skb);
888					vp->dev->stats.rx_dropped++;
889					vp->estats.rx_encaps_errors++;
890					return 0;
891				}
892				if (header_check > 0) {
893					vp->estats.rx_csum_offload_good++;
894					skb->ip_summed = CHECKSUM_UNNECESSARY;
895				}
896			}
897			pskb_trim(skb, pkt_len - vp->rx_header_size);
898			skb->protocol = eth_type_trans(skb, skb->dev);
899			vp->dev->stats.rx_bytes += skb->len;
900			vp->dev->stats.rx_packets++;
901			netif_rx(skb);
902		} else {
903			dev_kfree_skb_irq(skb);
904		}
905	}
906	return pkt_len;
907}
908
909/*
910 * Packet at a time TX which falls back to vector TX if the
911 * underlying transport is busy.
912 */
913
914
915
916static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
917{
918	struct iovec iov[3 + MAX_IOV_SIZE];
919	int iov_count, pkt_len = 0;
920
921	iov[0].iov_base = vp->header_txbuffer;
922	iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
923
924	if (iov_count < 1)
925		goto drop;
926
927	pkt_len = uml_vector_writev(
928		vp->fds->tx_fd,
929		(struct iovec *) &iov,
930		iov_count
931	);
932
933	if (pkt_len < 0)
934		goto drop;
935
936	netif_trans_update(vp->dev);
937	netif_wake_queue(vp->dev);
938
939	if (pkt_len > 0) {
940		vp->dev->stats.tx_bytes += skb->len;
941		vp->dev->stats.tx_packets++;
942	} else {
943		vp->dev->stats.tx_dropped++;
944	}
945	consume_skb(skb);
946	return pkt_len;
947drop:
948	vp->dev->stats.tx_dropped++;
949	consume_skb(skb);
950	if (pkt_len < 0)
951		vp->in_error = true;
952	return pkt_len;
953}
954
955/*
956 * Receive as many messages as we can in one call using the special
957 * mmsg vector matched to an skb vector which we prepared earlier.
958 */
959
960static int vector_mmsg_rx(struct vector_private *vp)
961{
962	int packet_count, i;
963	struct vector_queue *qi = vp->rx_queue;
964	struct sk_buff *skb;
965	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
966	void **skbuff_vector = qi->skbuff_vector;
967	int header_check;
968
969	/* Refresh the vector and make sure it is with new skbs and the
970	 * iovs are updated to point to them.
971	 */
972
973	prep_queue_for_rx(qi);
974
975	/* Fire the Lazy Gun - get as many packets as we can in one go. */
976
977	packet_count = uml_vector_recvmmsg(
978		vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0);
979
980	if (packet_count < 0)
981		vp->in_error = true;
982
983	if (packet_count <= 0)
984		return packet_count;
985
986	/* We treat packet processing as enqueue, buffer refresh as dequeue
987	 * The queue_depth tells us how many buffers have been used and how
988	 * many do we need to prep the next time prep_queue_for_rx() is called.
989	 */
990
991	qi->queue_depth = packet_count;
992
993	for (i = 0; i < packet_count; i++) {
994		skb = (*skbuff_vector);
995		if (mmsg_vector->msg_len > vp->header_size) {
996			if (vp->header_size > 0) {
997				header_check = vp->verify_header(
998					mmsg_vector->msg_hdr.msg_iov->iov_base,
999					skb,
1000					vp
1001				);
1002				if (header_check < 0) {
1003				/* Overlay header failed to verify - discard.
1004				 * We can actually keep this skb and reuse it,
1005				 * but that will make the prep logic too
1006				 * complex.
1007				 */
1008					dev_kfree_skb_irq(skb);
1009					vp->estats.rx_encaps_errors++;
1010					continue;
1011				}
1012				if (header_check > 0) {
1013					vp->estats.rx_csum_offload_good++;
1014					skb->ip_summed = CHECKSUM_UNNECESSARY;
1015				}
1016			}
1017			pskb_trim(skb,
1018				mmsg_vector->msg_len - vp->rx_header_size);
1019			skb->protocol = eth_type_trans(skb, skb->dev);
1020			/*
1021			 * We do not need to lock on updating stats here
1022			 * The interrupt loop is non-reentrant.
1023			 */
1024			vp->dev->stats.rx_bytes += skb->len;
1025			vp->dev->stats.rx_packets++;
1026			netif_rx(skb);
1027		} else {
1028			/* Overlay header too short to do anything - discard.
1029			 * We can actually keep this skb and reuse it,
1030			 * but that will make the prep logic too complex.
1031			 */
1032			if (skb != NULL)
1033				dev_kfree_skb_irq(skb);
1034		}
1035		(*skbuff_vector) = NULL;
1036		/* Move to the next buffer element */
1037		mmsg_vector++;
1038		skbuff_vector++;
1039	}
1040	if (packet_count > 0) {
1041		if (vp->estats.rx_queue_max < packet_count)
1042			vp->estats.rx_queue_max = packet_count;
1043		vp->estats.rx_queue_running_average =
1044			(vp->estats.rx_queue_running_average + packet_count) >> 1;
1045	}
1046	return packet_count;
1047}
1048
1049static void vector_rx(struct vector_private *vp)
1050{
1051	int err;
1052	int iter = 0;
1053
1054	if ((vp->options & VECTOR_RX) > 0)
1055		while (((err = vector_mmsg_rx(vp)) > 0) && (iter < MAX_ITERATIONS))
1056			iter++;
1057	else
1058		while (((err = vector_legacy_rx(vp)) > 0) && (iter < MAX_ITERATIONS))
1059			iter++;
1060	if ((err != 0) && net_ratelimit())
1061		netdev_err(vp->dev, "vector_rx: error(%d)\n", err);
1062	if (iter == MAX_ITERATIONS)
1063		netdev_err(vp->dev, "vector_rx: device stuck, remote end may have closed the connection\n");
1064}
1065
1066static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1067{
1068	struct vector_private *vp = netdev_priv(dev);
1069	int queue_depth = 0;
1070
1071	if (vp->in_error) {
1072		deactivate_fd(vp->fds->rx_fd, vp->rx_irq);
1073		if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0))
1074			deactivate_fd(vp->fds->tx_fd, vp->tx_irq);
1075		return NETDEV_TX_BUSY;
1076	}
1077
1078	if ((vp->options & VECTOR_TX) == 0) {
1079		writev_tx(vp, skb);
1080		return NETDEV_TX_OK;
1081	}
1082
1083	/* We do BQL only in the vector path, no point doing it in
1084	 * packet at a time mode as there is no device queue
1085	 */
1086
1087	netdev_sent_queue(vp->dev, skb->len);
1088	queue_depth = vector_enqueue(vp->tx_queue, skb);
1089
1090	/* if the device queue is full, stop the upper layers and
1091	 * flush it.
1092	 */
1093
1094	if (queue_depth >= vp->tx_queue->max_depth - 1) {
1095		vp->estats.tx_kicks++;
1096		netif_stop_queue(dev);
1097		vector_send(vp->tx_queue);
1098		return NETDEV_TX_OK;
1099	}
1100	if (netdev_xmit_more()) {
1101		mod_timer(&vp->tl, vp->coalesce);
1102		return NETDEV_TX_OK;
1103	}
1104	if (skb->len < TX_SMALL_PACKET) {
1105		vp->estats.tx_kicks++;
1106		vector_send(vp->tx_queue);
1107	} else
1108		tasklet_schedule(&vp->tx_poll);
1109	return NETDEV_TX_OK;
1110}
1111
1112static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1113{
1114	struct net_device *dev = dev_id;
1115	struct vector_private *vp = netdev_priv(dev);
1116
1117	if (!netif_running(dev))
1118		return IRQ_NONE;
1119	vector_rx(vp);
1120	return IRQ_HANDLED;
1121
1122}
1123
1124static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1125{
1126	struct net_device *dev = dev_id;
1127	struct vector_private *vp = netdev_priv(dev);
1128
1129	if (!netif_running(dev))
1130		return IRQ_NONE;
1131	/* We need to pay attention to it only if we got
1132	 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1133	 * we ignore it. In the future, it may be worth
1134	 * it to improve the IRQ controller a bit to make
1135	 * tweaking the IRQ mask less costly
1136	 */
1137
1138	if (vp->in_write_poll)
1139		tasklet_schedule(&vp->tx_poll);
1140	return IRQ_HANDLED;
1141
1142}
1143
1144static int irq_rr;
1145
1146static int vector_net_close(struct net_device *dev)
1147{
1148	struct vector_private *vp = netdev_priv(dev);
1149	unsigned long flags;
1150
1151	netif_stop_queue(dev);
1152	del_timer(&vp->tl);
1153
1154	if (vp->fds == NULL)
1155		return 0;
1156
1157	/* Disable and free all IRQS */
1158	if (vp->rx_irq > 0) {
1159		um_free_irq(vp->rx_irq, dev);
1160		vp->rx_irq = 0;
1161	}
1162	if (vp->tx_irq > 0) {
1163		um_free_irq(vp->tx_irq, dev);
1164		vp->tx_irq = 0;
1165	}
1166	tasklet_kill(&vp->tx_poll);
1167	if (vp->fds->rx_fd > 0) {
1168		if (vp->bpf)
1169			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1170		os_close_file(vp->fds->rx_fd);
1171		vp->fds->rx_fd = -1;
1172	}
1173	if (vp->fds->tx_fd > 0) {
1174		os_close_file(vp->fds->tx_fd);
1175		vp->fds->tx_fd = -1;
1176	}
1177	if (vp->bpf != NULL)
1178		kfree(vp->bpf->filter);
1179	kfree(vp->bpf);
1180	vp->bpf = NULL;
1181	kfree(vp->fds->remote_addr);
1182	kfree(vp->transport_data);
1183	kfree(vp->header_rxbuffer);
1184	kfree(vp->header_txbuffer);
1185	if (vp->rx_queue != NULL)
1186		destroy_queue(vp->rx_queue);
1187	if (vp->tx_queue != NULL)
1188		destroy_queue(vp->tx_queue);
1189	kfree(vp->fds);
1190	vp->fds = NULL;
1191	spin_lock_irqsave(&vp->lock, flags);
1192	vp->opened = false;
1193	vp->in_error = false;
1194	spin_unlock_irqrestore(&vp->lock, flags);
1195	return 0;
1196}
1197
1198/* TX tasklet */
1199
1200static void vector_tx_poll(unsigned long data)
1201{
1202	struct vector_private *vp = (struct vector_private *)data;
1203
1204	vp->estats.tx_kicks++;
1205	vector_send(vp->tx_queue);
1206}
1207static void vector_reset_tx(struct work_struct *work)
1208{
1209	struct vector_private *vp =
1210		container_of(work, struct vector_private, reset_tx);
1211	netdev_reset_queue(vp->dev);
1212	netif_start_queue(vp->dev);
1213	netif_wake_queue(vp->dev);
1214}
1215
1216static int vector_net_open(struct net_device *dev)
1217{
1218	struct vector_private *vp = netdev_priv(dev);
1219	unsigned long flags;
1220	int err = -EINVAL;
1221	struct vector_device *vdevice;
1222
1223	spin_lock_irqsave(&vp->lock, flags);
1224	if (vp->opened) {
1225		spin_unlock_irqrestore(&vp->lock, flags);
1226		return -ENXIO;
1227	}
1228	vp->opened = true;
1229	spin_unlock_irqrestore(&vp->lock, flags);
1230
1231	vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed));
1232
1233	vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1234
1235	if (vp->fds == NULL)
1236		goto out_close;
1237
1238	if (build_transport_data(vp) < 0)
1239		goto out_close;
1240
1241	if ((vp->options & VECTOR_RX) > 0) {
1242		vp->rx_queue = create_queue(
1243			vp,
1244			get_depth(vp->parsed),
1245			vp->rx_header_size,
1246			MAX_IOV_SIZE
1247		);
1248		vp->rx_queue->queue_depth = get_depth(vp->parsed);
1249	} else {
1250		vp->header_rxbuffer = kmalloc(
1251			vp->rx_header_size,
1252			GFP_KERNEL
1253		);
1254		if (vp->header_rxbuffer == NULL)
1255			goto out_close;
1256	}
1257	if ((vp->options & VECTOR_TX) > 0) {
1258		vp->tx_queue = create_queue(
1259			vp,
1260			get_depth(vp->parsed),
1261			vp->header_size,
1262			MAX_IOV_SIZE
1263		);
1264	} else {
1265		vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1266		if (vp->header_txbuffer == NULL)
1267			goto out_close;
1268	}
1269
1270	/* READ IRQ */
1271	err = um_request_irq(
1272		irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1273			IRQ_READ, vector_rx_interrupt,
1274			IRQF_SHARED, dev->name, dev);
1275	if (err != 0) {
1276		netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1277		err = -ENETUNREACH;
1278		goto out_close;
1279	}
1280	vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1281	dev->irq = irq_rr + VECTOR_BASE_IRQ;
1282	irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1283
1284	/* WRITE IRQ - we need it only if we have vector TX */
1285	if ((vp->options & VECTOR_TX) > 0) {
1286		err = um_request_irq(
1287			irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1288				IRQ_WRITE, vector_tx_interrupt,
1289				IRQF_SHARED, dev->name, dev);
1290		if (err != 0) {
1291			netdev_err(dev,
1292				"vector_open: failed to get tx irq(%d)\n", err);
1293			err = -ENETUNREACH;
1294			goto out_close;
1295		}
1296		vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1297		irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1298	}
1299
1300	if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1301		if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1302			vp->options |= VECTOR_BPF;
1303	}
1304	if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL))
1305		vp->bpf = uml_vector_default_bpf(dev->dev_addr);
1306
1307	if (vp->bpf != NULL)
1308		uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1309
1310	netif_start_queue(dev);
1311
1312	/* clear buffer - it can happen that the host side of the interface
1313	 * is full when we get here. In this case, new data is never queued,
1314	 * SIGIOs never arrive, and the net never works.
1315	 */
1316
1317	vector_rx(vp);
1318
1319	vector_reset_stats(vp);
1320	vdevice = find_device(vp->unit);
1321	vdevice->opened = 1;
1322
1323	if ((vp->options & VECTOR_TX) != 0)
1324		add_timer(&vp->tl);
1325	return 0;
1326out_close:
1327	vector_net_close(dev);
1328	return err;
1329}
1330
1331
1332static void vector_net_set_multicast_list(struct net_device *dev)
1333{
1334	/* TODO: - we can do some BPF games here */
1335	return;
1336}
1337
1338static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue)
1339{
1340	struct vector_private *vp = netdev_priv(dev);
1341
1342	vp->estats.tx_timeout_count++;
1343	netif_trans_update(dev);
1344	schedule_work(&vp->reset_tx);
1345}
1346
1347static netdev_features_t vector_fix_features(struct net_device *dev,
1348	netdev_features_t features)
1349{
1350	features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1351	return features;
1352}
1353
1354static int vector_set_features(struct net_device *dev,
1355	netdev_features_t features)
1356{
1357	struct vector_private *vp = netdev_priv(dev);
1358	/* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1359	 * no way to negotiate it on raw sockets, so we can change
1360	 * only our side.
1361	 */
1362	if (features & NETIF_F_GRO)
1363		/* All new frame buffers will be GRO-sized */
1364		vp->req_size = 65536;
1365	else
1366		/* All new frame buffers will be normal sized */
1367		vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1368	return 0;
1369}
1370
1371#ifdef CONFIG_NET_POLL_CONTROLLER
1372static void vector_net_poll_controller(struct net_device *dev)
1373{
1374	disable_irq(dev->irq);
1375	vector_rx_interrupt(dev->irq, dev);
1376	enable_irq(dev->irq);
1377}
1378#endif
1379
1380static void vector_net_get_drvinfo(struct net_device *dev,
1381				struct ethtool_drvinfo *info)
1382{
1383	strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1384}
1385
1386static int vector_net_load_bpf_flash(struct net_device *dev,
1387				struct ethtool_flash *efl)
1388{
1389	struct vector_private *vp = netdev_priv(dev);
1390	struct vector_device *vdevice;
1391	const struct firmware *fw;
1392	int result = 0;
1393
1394	if (!(vp->options & VECTOR_BPF_FLASH)) {
1395		netdev_err(dev, "loading firmware not permitted: %s\n", efl->data);
1396		return -1;
1397	}
1398
1399	spin_lock(&vp->lock);
1400
1401	if (vp->bpf != NULL) {
1402		if (vp->opened)
1403			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1404		kfree(vp->bpf->filter);
1405		vp->bpf->filter = NULL;
1406	} else {
1407		vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_ATOMIC);
1408		if (vp->bpf == NULL) {
1409			netdev_err(dev, "failed to allocate memory for firmware\n");
1410			goto flash_fail;
1411		}
1412	}
1413
1414	vdevice = find_device(vp->unit);
1415
1416	if (request_firmware(&fw, efl->data, &vdevice->pdev.dev))
1417		goto flash_fail;
1418
1419	vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC);
1420	if (!vp->bpf->filter)
1421		goto free_buffer;
1422
1423	vp->bpf->len = fw->size / sizeof(struct sock_filter);
1424	release_firmware(fw);
1425
1426	if (vp->opened)
1427		result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1428
1429	spin_unlock(&vp->lock);
1430
1431	return result;
1432
1433free_buffer:
1434	release_firmware(fw);
1435
1436flash_fail:
1437	spin_unlock(&vp->lock);
1438	if (vp->bpf != NULL)
1439		kfree(vp->bpf->filter);
1440	kfree(vp->bpf);
1441	vp->bpf = NULL;
1442	return -1;
1443}
1444
1445static void vector_get_ringparam(struct net_device *netdev,
1446				struct ethtool_ringparam *ring)
1447{
1448	struct vector_private *vp = netdev_priv(netdev);
1449
1450	ring->rx_max_pending = vp->rx_queue->max_depth;
1451	ring->tx_max_pending = vp->tx_queue->max_depth;
1452	ring->rx_pending = vp->rx_queue->max_depth;
1453	ring->tx_pending = vp->tx_queue->max_depth;
1454}
1455
1456static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1457{
1458	switch (stringset) {
1459	case ETH_SS_TEST:
1460		*buf = '\0';
1461		break;
1462	case ETH_SS_STATS:
1463		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1464		break;
1465	default:
1466		WARN_ON(1);
1467		break;
1468	}
1469}
1470
1471static int vector_get_sset_count(struct net_device *dev, int sset)
1472{
1473	switch (sset) {
1474	case ETH_SS_TEST:
1475		return 0;
1476	case ETH_SS_STATS:
1477		return VECTOR_NUM_STATS;
1478	default:
1479		return -EOPNOTSUPP;
1480	}
1481}
1482
1483static void vector_get_ethtool_stats(struct net_device *dev,
1484	struct ethtool_stats *estats,
1485	u64 *tmp_stats)
1486{
1487	struct vector_private *vp = netdev_priv(dev);
1488
1489	memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
1490}
1491
1492static int vector_get_coalesce(struct net_device *netdev,
1493					struct ethtool_coalesce *ec)
1494{
1495	struct vector_private *vp = netdev_priv(netdev);
1496
1497	ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1498	return 0;
1499}
1500
1501static int vector_set_coalesce(struct net_device *netdev,
1502					struct ethtool_coalesce *ec)
1503{
1504	struct vector_private *vp = netdev_priv(netdev);
1505
1506	vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1507	if (vp->coalesce == 0)
1508		vp->coalesce = 1;
1509	return 0;
1510}
1511
1512static const struct ethtool_ops vector_net_ethtool_ops = {
1513	.supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS,
1514	.get_drvinfo	= vector_net_get_drvinfo,
1515	.get_link	= ethtool_op_get_link,
1516	.get_ts_info	= ethtool_op_get_ts_info,
1517	.get_ringparam	= vector_get_ringparam,
1518	.get_strings	= vector_get_strings,
1519	.get_sset_count	= vector_get_sset_count,
1520	.get_ethtool_stats = vector_get_ethtool_stats,
1521	.get_coalesce	= vector_get_coalesce,
1522	.set_coalesce	= vector_set_coalesce,
1523	.flash_device	= vector_net_load_bpf_flash,
1524};
1525
1526
1527static const struct net_device_ops vector_netdev_ops = {
1528	.ndo_open		= vector_net_open,
1529	.ndo_stop		= vector_net_close,
1530	.ndo_start_xmit		= vector_net_start_xmit,
1531	.ndo_set_rx_mode	= vector_net_set_multicast_list,
1532	.ndo_tx_timeout		= vector_net_tx_timeout,
1533	.ndo_set_mac_address	= eth_mac_addr,
1534	.ndo_validate_addr	= eth_validate_addr,
1535	.ndo_fix_features	= vector_fix_features,
1536	.ndo_set_features	= vector_set_features,
1537#ifdef CONFIG_NET_POLL_CONTROLLER
1538	.ndo_poll_controller = vector_net_poll_controller,
1539#endif
1540};
1541
1542
1543static void vector_timer_expire(struct timer_list *t)
1544{
1545	struct vector_private *vp = from_timer(vp, t, tl);
1546
1547	vp->estats.tx_kicks++;
1548	vector_send(vp->tx_queue);
1549}
1550
1551static void vector_eth_configure(
1552		int n,
1553		struct arglist *def
1554	)
1555{
1556	struct vector_device *device;
1557	struct net_device *dev;
1558	struct vector_private *vp;
1559	int err;
1560
1561	device = kzalloc(sizeof(*device), GFP_KERNEL);
1562	if (device == NULL) {
1563		printk(KERN_ERR "eth_configure failed to allocate struct "
1564				 "vector_device\n");
1565		return;
1566	}
1567	dev = alloc_etherdev(sizeof(struct vector_private));
1568	if (dev == NULL) {
1569		printk(KERN_ERR "eth_configure: failed to allocate struct "
1570				 "net_device for vec%d\n", n);
1571		goto out_free_device;
1572	}
1573
1574	dev->mtu = get_mtu(def);
1575
1576	INIT_LIST_HEAD(&device->list);
1577	device->unit = n;
1578
1579	/* If this name ends up conflicting with an existing registered
1580	 * netdevice, that is OK, register_netdev{,ice}() will notice this
1581	 * and fail.
1582	 */
1583	snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1584	uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1585	vp = netdev_priv(dev);
1586
1587	/* sysfs register */
1588	if (!driver_registered) {
1589		platform_driver_register(&uml_net_driver);
1590		driver_registered = 1;
1591	}
1592	device->pdev.id = n;
1593	device->pdev.name = DRIVER_NAME;
1594	device->pdev.dev.release = vector_device_release;
1595	dev_set_drvdata(&device->pdev.dev, device);
1596	if (platform_device_register(&device->pdev))
1597		goto out_free_netdev;
1598	SET_NETDEV_DEV(dev, &device->pdev.dev);
1599
1600	device->dev = dev;
1601
1602	*vp = ((struct vector_private)
1603		{
1604		.list			= LIST_HEAD_INIT(vp->list),
1605		.dev			= dev,
1606		.unit			= n,
1607		.options		= get_transport_options(def),
1608		.rx_irq			= 0,
1609		.tx_irq			= 0,
1610		.parsed			= def,
1611		.max_packet		= get_mtu(def) + ETH_HEADER_OTHER,
1612		/* TODO - we need to calculate headroom so that ip header
1613		 * is 16 byte aligned all the time
1614		 */
1615		.headroom		= get_headroom(def),
1616		.form_header		= NULL,
1617		.verify_header		= NULL,
1618		.header_rxbuffer	= NULL,
1619		.header_txbuffer	= NULL,
1620		.header_size		= 0,
1621		.rx_header_size		= 0,
1622		.rexmit_scheduled	= false,
1623		.opened			= false,
1624		.transport_data		= NULL,
1625		.in_write_poll		= false,
1626		.coalesce		= 2,
1627		.req_size		= get_req_size(def),
1628		.in_error		= false,
1629		.bpf			= NULL
1630	});
1631
1632	dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1633	tasklet_init(&vp->tx_poll, vector_tx_poll, (unsigned long)vp);
1634	INIT_WORK(&vp->reset_tx, vector_reset_tx);
1635
1636	timer_setup(&vp->tl, vector_timer_expire, 0);
1637	spin_lock_init(&vp->lock);
1638
1639	/* FIXME */
1640	dev->netdev_ops = &vector_netdev_ops;
1641	dev->ethtool_ops = &vector_net_ethtool_ops;
1642	dev->watchdog_timeo = (HZ >> 1);
1643	/* primary IRQ - fixme */
1644	dev->irq = 0; /* we will adjust this once opened */
1645
1646	rtnl_lock();
1647	err = register_netdevice(dev);
1648	rtnl_unlock();
1649	if (err)
1650		goto out_undo_user_init;
1651
1652	spin_lock(&vector_devices_lock);
1653	list_add(&device->list, &vector_devices);
1654	spin_unlock(&vector_devices_lock);
1655
1656	return;
1657
1658out_undo_user_init:
1659	return;
1660out_free_netdev:
1661	free_netdev(dev);
1662out_free_device:
1663	kfree(device);
1664}
1665
1666
1667
1668
1669/*
1670 * Invoked late in the init
1671 */
1672
1673static int __init vector_init(void)
1674{
1675	struct list_head *ele;
1676	struct vector_cmd_line_arg *def;
1677	struct arglist *parsed;
1678
1679	list_for_each(ele, &vec_cmd_line) {
1680		def = list_entry(ele, struct vector_cmd_line_arg, list);
1681		parsed = uml_parse_vector_ifspec(def->arguments);
1682		if (parsed != NULL)
1683			vector_eth_configure(def->unit, parsed);
1684	}
1685	return 0;
1686}
1687
1688
1689/* Invoked at initial argument parsing, only stores
1690 * arguments until a proper vector_init is called
1691 * later
1692 */
1693
1694static int __init vector_setup(char *str)
1695{
1696	char *error;
1697	int n, err;
1698	struct vector_cmd_line_arg *new;
1699
1700	err = vector_parse(str, &n, &str, &error);
1701	if (err) {
1702		printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n",
1703				 str, error);
1704		return 1;
1705	}
1706	new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES);
1707	if (!new)
1708		panic("%s: Failed to allocate %zu bytes\n", __func__,
1709		      sizeof(*new));
1710	INIT_LIST_HEAD(&new->list);
1711	new->unit = n;
1712	new->arguments = str;
1713	list_add_tail(&new->list, &vec_cmd_line);
1714	return 1;
1715}
1716
1717__setup("vec", vector_setup);
1718__uml_help(vector_setup,
1719"vec[0-9]+:<option>=<value>,<option>=<value>\n"
1720"	 Configure a vector io network device.\n\n"
1721);
1722
1723late_initcall(vector_init);
1724
1725static struct mc_device vector_mc = {
1726	.list		= LIST_HEAD_INIT(vector_mc.list),
1727	.name		= "vec",
1728	.config		= vector_config,
1729	.get_config	= NULL,
1730	.id		= vector_id,
1731	.remove		= vector_remove,
1732};
1733
1734#ifdef CONFIG_INET
1735static int vector_inetaddr_event(
1736	struct notifier_block *this,
1737	unsigned long event,
1738	void *ptr)
1739{
1740	return NOTIFY_DONE;
1741}
1742
1743static struct notifier_block vector_inetaddr_notifier = {
1744	.notifier_call		= vector_inetaddr_event,
1745};
1746
1747static void inet_register(void)
1748{
1749	register_inetaddr_notifier(&vector_inetaddr_notifier);
1750}
1751#else
1752static inline void inet_register(void)
1753{
1754}
1755#endif
1756
1757static int vector_net_init(void)
1758{
1759	mconsole_register_dev(&vector_mc);
1760	inet_register();
1761	return 0;
1762}
1763
1764__initcall(vector_net_init);
1765
1766
1767
1768