xref: /kernel/linux/linux-5.10/arch/sparc/mm/init_64.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  arch/sparc64/mm/init.c
4 *
5 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
6 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7 */
8
9#include <linux/extable.h>
10#include <linux/kernel.h>
11#include <linux/sched.h>
12#include <linux/string.h>
13#include <linux/init.h>
14#include <linux/memblock.h>
15#include <linux/mm.h>
16#include <linux/hugetlb.h>
17#include <linux/initrd.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/poison.h>
21#include <linux/fs.h>
22#include <linux/seq_file.h>
23#include <linux/kprobes.h>
24#include <linux/cache.h>
25#include <linux/sort.h>
26#include <linux/ioport.h>
27#include <linux/percpu.h>
28#include <linux/mmzone.h>
29#include <linux/gfp.h>
30
31#include <asm/head.h>
32#include <asm/page.h>
33#include <asm/pgalloc.h>
34#include <asm/oplib.h>
35#include <asm/iommu.h>
36#include <asm/io.h>
37#include <linux/uaccess.h>
38#include <asm/mmu_context.h>
39#include <asm/tlbflush.h>
40#include <asm/dma.h>
41#include <asm/starfire.h>
42#include <asm/tlb.h>
43#include <asm/spitfire.h>
44#include <asm/sections.h>
45#include <asm/tsb.h>
46#include <asm/hypervisor.h>
47#include <asm/prom.h>
48#include <asm/mdesc.h>
49#include <asm/cpudata.h>
50#include <asm/setup.h>
51#include <asm/irq.h>
52
53#include "init_64.h"
54
55unsigned long kern_linear_pte_xor[4] __read_mostly;
56static unsigned long page_cache4v_flag;
57
58/* A bitmap, two bits for every 256MB of physical memory.  These two
59 * bits determine what page size we use for kernel linear
60 * translations.  They form an index into kern_linear_pte_xor[].  The
61 * value in the indexed slot is XOR'd with the TLB miss virtual
62 * address to form the resulting TTE.  The mapping is:
63 *
64 *	0	==>	4MB
65 *	1	==>	256MB
66 *	2	==>	2GB
67 *	3	==>	16GB
68 *
69 * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
70 * support 2GB pages, and hopefully future cpus will support the 16GB
71 * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
72 * if these larger page sizes are not supported by the cpu.
73 *
74 * It would be nice to determine this from the machine description
75 * 'cpu' properties, but we need to have this table setup before the
76 * MDESC is initialized.
77 */
78
79#ifndef CONFIG_DEBUG_PAGEALLOC
80/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
81 * Space is allocated for this right after the trap table in
82 * arch/sparc64/kernel/head.S
83 */
84extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
85#endif
86extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
87
88static unsigned long cpu_pgsz_mask;
89
90#define MAX_BANKS	1024
91
92static struct linux_prom64_registers pavail[MAX_BANKS];
93static int pavail_ents;
94
95u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
96
97static int cmp_p64(const void *a, const void *b)
98{
99	const struct linux_prom64_registers *x = a, *y = b;
100
101	if (x->phys_addr > y->phys_addr)
102		return 1;
103	if (x->phys_addr < y->phys_addr)
104		return -1;
105	return 0;
106}
107
108static void __init read_obp_memory(const char *property,
109				   struct linux_prom64_registers *regs,
110				   int *num_ents)
111{
112	phandle node = prom_finddevice("/memory");
113	int prop_size = prom_getproplen(node, property);
114	int ents, ret, i;
115
116	ents = prop_size / sizeof(struct linux_prom64_registers);
117	if (ents > MAX_BANKS) {
118		prom_printf("The machine has more %s property entries than "
119			    "this kernel can support (%d).\n",
120			    property, MAX_BANKS);
121		prom_halt();
122	}
123
124	ret = prom_getproperty(node, property, (char *) regs, prop_size);
125	if (ret == -1) {
126		prom_printf("Couldn't get %s property from /memory.\n",
127				property);
128		prom_halt();
129	}
130
131	/* Sanitize what we got from the firmware, by page aligning
132	 * everything.
133	 */
134	for (i = 0; i < ents; i++) {
135		unsigned long base, size;
136
137		base = regs[i].phys_addr;
138		size = regs[i].reg_size;
139
140		size &= PAGE_MASK;
141		if (base & ~PAGE_MASK) {
142			unsigned long new_base = PAGE_ALIGN(base);
143
144			size -= new_base - base;
145			if ((long) size < 0L)
146				size = 0UL;
147			base = new_base;
148		}
149		if (size == 0UL) {
150			/* If it is empty, simply get rid of it.
151			 * This simplifies the logic of the other
152			 * functions that process these arrays.
153			 */
154			memmove(&regs[i], &regs[i + 1],
155				(ents - i - 1) * sizeof(regs[0]));
156			i--;
157			ents--;
158			continue;
159		}
160		regs[i].phys_addr = base;
161		regs[i].reg_size = size;
162	}
163
164	*num_ents = ents;
165
166	sort(regs, ents, sizeof(struct linux_prom64_registers),
167	     cmp_p64, NULL);
168}
169
170/* Kernel physical address base and size in bytes.  */
171unsigned long kern_base __read_mostly;
172unsigned long kern_size __read_mostly;
173
174/* Initial ramdisk setup */
175extern unsigned long sparc_ramdisk_image64;
176extern unsigned int sparc_ramdisk_image;
177extern unsigned int sparc_ramdisk_size;
178
179struct page *mem_map_zero __read_mostly;
180EXPORT_SYMBOL(mem_map_zero);
181
182unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
183
184unsigned long sparc64_kern_pri_context __read_mostly;
185unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
186unsigned long sparc64_kern_sec_context __read_mostly;
187
188int num_kernel_image_mappings;
189
190#ifdef CONFIG_DEBUG_DCFLUSH
191atomic_t dcpage_flushes = ATOMIC_INIT(0);
192#ifdef CONFIG_SMP
193atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
194#endif
195#endif
196
197inline void flush_dcache_page_impl(struct page *page)
198{
199	BUG_ON(tlb_type == hypervisor);
200#ifdef CONFIG_DEBUG_DCFLUSH
201	atomic_inc(&dcpage_flushes);
202#endif
203
204#ifdef DCACHE_ALIASING_POSSIBLE
205	__flush_dcache_page(page_address(page),
206			    ((tlb_type == spitfire) &&
207			     page_mapping_file(page) != NULL));
208#else
209	if (page_mapping_file(page) != NULL &&
210	    tlb_type == spitfire)
211		__flush_icache_page(__pa(page_address(page)));
212#endif
213}
214
215#define PG_dcache_dirty		PG_arch_1
216#define PG_dcache_cpu_shift	32UL
217#define PG_dcache_cpu_mask	\
218	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
219
220#define dcache_dirty_cpu(page) \
221	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
222
223static inline void set_dcache_dirty(struct page *page, int this_cpu)
224{
225	unsigned long mask = this_cpu;
226	unsigned long non_cpu_bits;
227
228	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
229	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
230
231	__asm__ __volatile__("1:\n\t"
232			     "ldx	[%2], %%g7\n\t"
233			     "and	%%g7, %1, %%g1\n\t"
234			     "or	%%g1, %0, %%g1\n\t"
235			     "casx	[%2], %%g7, %%g1\n\t"
236			     "cmp	%%g7, %%g1\n\t"
237			     "bne,pn	%%xcc, 1b\n\t"
238			     " nop"
239			     : /* no outputs */
240			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
241			     : "g1", "g7");
242}
243
244static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
245{
246	unsigned long mask = (1UL << PG_dcache_dirty);
247
248	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
249			     "1:\n\t"
250			     "ldx	[%2], %%g7\n\t"
251			     "srlx	%%g7, %4, %%g1\n\t"
252			     "and	%%g1, %3, %%g1\n\t"
253			     "cmp	%%g1, %0\n\t"
254			     "bne,pn	%%icc, 2f\n\t"
255			     " andn	%%g7, %1, %%g1\n\t"
256			     "casx	[%2], %%g7, %%g1\n\t"
257			     "cmp	%%g7, %%g1\n\t"
258			     "bne,pn	%%xcc, 1b\n\t"
259			     " nop\n"
260			     "2:"
261			     : /* no outputs */
262			     : "r" (cpu), "r" (mask), "r" (&page->flags),
263			       "i" (PG_dcache_cpu_mask),
264			       "i" (PG_dcache_cpu_shift)
265			     : "g1", "g7");
266}
267
268static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
269{
270	unsigned long tsb_addr = (unsigned long) ent;
271
272	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
273		tsb_addr = __pa(tsb_addr);
274
275	__tsb_insert(tsb_addr, tag, pte);
276}
277
278unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
279
280static void flush_dcache(unsigned long pfn)
281{
282	struct page *page;
283
284	page = pfn_to_page(pfn);
285	if (page) {
286		unsigned long pg_flags;
287
288		pg_flags = page->flags;
289		if (pg_flags & (1UL << PG_dcache_dirty)) {
290			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
291				   PG_dcache_cpu_mask);
292			int this_cpu = get_cpu();
293
294			/* This is just to optimize away some function calls
295			 * in the SMP case.
296			 */
297			if (cpu == this_cpu)
298				flush_dcache_page_impl(page);
299			else
300				smp_flush_dcache_page_impl(page, cpu);
301
302			clear_dcache_dirty_cpu(page, cpu);
303
304			put_cpu();
305		}
306	}
307}
308
309/* mm->context.lock must be held */
310static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
311				    unsigned long tsb_hash_shift, unsigned long address,
312				    unsigned long tte)
313{
314	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
315	unsigned long tag;
316
317	if (unlikely(!tsb))
318		return;
319
320	tsb += ((address >> tsb_hash_shift) &
321		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
322	tag = (address >> 22UL);
323	tsb_insert(tsb, tag, tte);
324}
325
326#ifdef CONFIG_HUGETLB_PAGE
327static int __init hugetlbpage_init(void)
328{
329	hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT);
330	hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
331	hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT);
332	hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT);
333
334	return 0;
335}
336
337arch_initcall(hugetlbpage_init);
338
339static void __init pud_huge_patch(void)
340{
341	struct pud_huge_patch_entry *p;
342	unsigned long addr;
343
344	p = &__pud_huge_patch;
345	addr = p->addr;
346	*(unsigned int *)addr = p->insn;
347
348	__asm__ __volatile__("flush %0" : : "r" (addr));
349}
350
351bool __init arch_hugetlb_valid_size(unsigned long size)
352{
353	unsigned int hugepage_shift = ilog2(size);
354	unsigned short hv_pgsz_idx;
355	unsigned int hv_pgsz_mask;
356
357	switch (hugepage_shift) {
358	case HPAGE_16GB_SHIFT:
359		hv_pgsz_mask = HV_PGSZ_MASK_16GB;
360		hv_pgsz_idx = HV_PGSZ_IDX_16GB;
361		pud_huge_patch();
362		break;
363	case HPAGE_2GB_SHIFT:
364		hv_pgsz_mask = HV_PGSZ_MASK_2GB;
365		hv_pgsz_idx = HV_PGSZ_IDX_2GB;
366		break;
367	case HPAGE_256MB_SHIFT:
368		hv_pgsz_mask = HV_PGSZ_MASK_256MB;
369		hv_pgsz_idx = HV_PGSZ_IDX_256MB;
370		break;
371	case HPAGE_SHIFT:
372		hv_pgsz_mask = HV_PGSZ_MASK_4MB;
373		hv_pgsz_idx = HV_PGSZ_IDX_4MB;
374		break;
375	case HPAGE_64K_SHIFT:
376		hv_pgsz_mask = HV_PGSZ_MASK_64K;
377		hv_pgsz_idx = HV_PGSZ_IDX_64K;
378		break;
379	default:
380		hv_pgsz_mask = 0;
381	}
382
383	if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U)
384		return false;
385
386	return true;
387}
388#endif	/* CONFIG_HUGETLB_PAGE */
389
390void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
391{
392	struct mm_struct *mm;
393	unsigned long flags;
394	bool is_huge_tsb;
395	pte_t pte = *ptep;
396
397	if (tlb_type != hypervisor) {
398		unsigned long pfn = pte_pfn(pte);
399
400		if (pfn_valid(pfn))
401			flush_dcache(pfn);
402	}
403
404	mm = vma->vm_mm;
405
406	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
407	if (!pte_accessible(mm, pte))
408		return;
409
410	spin_lock_irqsave(&mm->context.lock, flags);
411
412	is_huge_tsb = false;
413#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
414	if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
415		unsigned long hugepage_size = PAGE_SIZE;
416
417		if (is_vm_hugetlb_page(vma))
418			hugepage_size = huge_page_size(hstate_vma(vma));
419
420		if (hugepage_size >= PUD_SIZE) {
421			unsigned long mask = 0x1ffc00000UL;
422
423			/* Transfer bits [32:22] from address to resolve
424			 * at 4M granularity.
425			 */
426			pte_val(pte) &= ~mask;
427			pte_val(pte) |= (address & mask);
428		} else if (hugepage_size >= PMD_SIZE) {
429			/* We are fabricating 8MB pages using 4MB
430			 * real hw pages.
431			 */
432			pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
433		}
434
435		if (hugepage_size >= PMD_SIZE) {
436			__update_mmu_tsb_insert(mm, MM_TSB_HUGE,
437				REAL_HPAGE_SHIFT, address, pte_val(pte));
438			is_huge_tsb = true;
439		}
440	}
441#endif
442	if (!is_huge_tsb)
443		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
444					address, pte_val(pte));
445
446	spin_unlock_irqrestore(&mm->context.lock, flags);
447}
448
449void flush_dcache_page(struct page *page)
450{
451	struct address_space *mapping;
452	int this_cpu;
453
454	if (tlb_type == hypervisor)
455		return;
456
457	/* Do not bother with the expensive D-cache flush if it
458	 * is merely the zero page.  The 'bigcore' testcase in GDB
459	 * causes this case to run millions of times.
460	 */
461	if (page == ZERO_PAGE(0))
462		return;
463
464	this_cpu = get_cpu();
465
466	mapping = page_mapping_file(page);
467	if (mapping && !mapping_mapped(mapping)) {
468		int dirty = test_bit(PG_dcache_dirty, &page->flags);
469		if (dirty) {
470			int dirty_cpu = dcache_dirty_cpu(page);
471
472			if (dirty_cpu == this_cpu)
473				goto out;
474			smp_flush_dcache_page_impl(page, dirty_cpu);
475		}
476		set_dcache_dirty(page, this_cpu);
477	} else {
478		/* We could delay the flush for the !page_mapping
479		 * case too.  But that case is for exec env/arg
480		 * pages and those are %99 certainly going to get
481		 * faulted into the tlb (and thus flushed) anyways.
482		 */
483		flush_dcache_page_impl(page);
484	}
485
486out:
487	put_cpu();
488}
489EXPORT_SYMBOL(flush_dcache_page);
490
491void __kprobes flush_icache_range(unsigned long start, unsigned long end)
492{
493	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
494	if (tlb_type == spitfire) {
495		unsigned long kaddr;
496
497		/* This code only runs on Spitfire cpus so this is
498		 * why we can assume _PAGE_PADDR_4U.
499		 */
500		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
501			unsigned long paddr, mask = _PAGE_PADDR_4U;
502
503			if (kaddr >= PAGE_OFFSET)
504				paddr = kaddr & mask;
505			else {
506				pte_t *ptep = virt_to_kpte(kaddr);
507
508				paddr = pte_val(*ptep) & mask;
509			}
510			__flush_icache_page(paddr);
511		}
512	}
513}
514EXPORT_SYMBOL(flush_icache_range);
515
516void mmu_info(struct seq_file *m)
517{
518	static const char *pgsz_strings[] = {
519		"8K", "64K", "512K", "4MB", "32MB",
520		"256MB", "2GB", "16GB",
521	};
522	int i, printed;
523
524	if (tlb_type == cheetah)
525		seq_printf(m, "MMU Type\t: Cheetah\n");
526	else if (tlb_type == cheetah_plus)
527		seq_printf(m, "MMU Type\t: Cheetah+\n");
528	else if (tlb_type == spitfire)
529		seq_printf(m, "MMU Type\t: Spitfire\n");
530	else if (tlb_type == hypervisor)
531		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
532	else
533		seq_printf(m, "MMU Type\t: ???\n");
534
535	seq_printf(m, "MMU PGSZs\t: ");
536	printed = 0;
537	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
538		if (cpu_pgsz_mask & (1UL << i)) {
539			seq_printf(m, "%s%s",
540				   printed ? "," : "", pgsz_strings[i]);
541			printed++;
542		}
543	}
544	seq_putc(m, '\n');
545
546#ifdef CONFIG_DEBUG_DCFLUSH
547	seq_printf(m, "DCPageFlushes\t: %d\n",
548		   atomic_read(&dcpage_flushes));
549#ifdef CONFIG_SMP
550	seq_printf(m, "DCPageFlushesXC\t: %d\n",
551		   atomic_read(&dcpage_flushes_xcall));
552#endif /* CONFIG_SMP */
553#endif /* CONFIG_DEBUG_DCFLUSH */
554}
555
556struct linux_prom_translation prom_trans[512] __read_mostly;
557unsigned int prom_trans_ents __read_mostly;
558
559unsigned long kern_locked_tte_data;
560
561/* The obp translations are saved based on 8k pagesize, since obp can
562 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
563 * HI_OBP_ADDRESS range are handled in ktlb.S.
564 */
565static inline int in_obp_range(unsigned long vaddr)
566{
567	return (vaddr >= LOW_OBP_ADDRESS &&
568		vaddr < HI_OBP_ADDRESS);
569}
570
571static int cmp_ptrans(const void *a, const void *b)
572{
573	const struct linux_prom_translation *x = a, *y = b;
574
575	if (x->virt > y->virt)
576		return 1;
577	if (x->virt < y->virt)
578		return -1;
579	return 0;
580}
581
582/* Read OBP translations property into 'prom_trans[]'.  */
583static void __init read_obp_translations(void)
584{
585	int n, node, ents, first, last, i;
586
587	node = prom_finddevice("/virtual-memory");
588	n = prom_getproplen(node, "translations");
589	if (unlikely(n == 0 || n == -1)) {
590		prom_printf("prom_mappings: Couldn't get size.\n");
591		prom_halt();
592	}
593	if (unlikely(n > sizeof(prom_trans))) {
594		prom_printf("prom_mappings: Size %d is too big.\n", n);
595		prom_halt();
596	}
597
598	if ((n = prom_getproperty(node, "translations",
599				  (char *)&prom_trans[0],
600				  sizeof(prom_trans))) == -1) {
601		prom_printf("prom_mappings: Couldn't get property.\n");
602		prom_halt();
603	}
604
605	n = n / sizeof(struct linux_prom_translation);
606
607	ents = n;
608
609	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
610	     cmp_ptrans, NULL);
611
612	/* Now kick out all the non-OBP entries.  */
613	for (i = 0; i < ents; i++) {
614		if (in_obp_range(prom_trans[i].virt))
615			break;
616	}
617	first = i;
618	for (; i < ents; i++) {
619		if (!in_obp_range(prom_trans[i].virt))
620			break;
621	}
622	last = i;
623
624	for (i = 0; i < (last - first); i++) {
625		struct linux_prom_translation *src = &prom_trans[i + first];
626		struct linux_prom_translation *dest = &prom_trans[i];
627
628		*dest = *src;
629	}
630	for (; i < ents; i++) {
631		struct linux_prom_translation *dest = &prom_trans[i];
632		dest->virt = dest->size = dest->data = 0x0UL;
633	}
634
635	prom_trans_ents = last - first;
636
637	if (tlb_type == spitfire) {
638		/* Clear diag TTE bits. */
639		for (i = 0; i < prom_trans_ents; i++)
640			prom_trans[i].data &= ~0x0003fe0000000000UL;
641	}
642
643	/* Force execute bit on.  */
644	for (i = 0; i < prom_trans_ents; i++)
645		prom_trans[i].data |= (tlb_type == hypervisor ?
646				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
647}
648
649static void __init hypervisor_tlb_lock(unsigned long vaddr,
650				       unsigned long pte,
651				       unsigned long mmu)
652{
653	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
654
655	if (ret != 0) {
656		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
657			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
658		prom_halt();
659	}
660}
661
662static unsigned long kern_large_tte(unsigned long paddr);
663
664static void __init remap_kernel(void)
665{
666	unsigned long phys_page, tte_vaddr, tte_data;
667	int i, tlb_ent = sparc64_highest_locked_tlbent();
668
669	tte_vaddr = (unsigned long) KERNBASE;
670	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
671	tte_data = kern_large_tte(phys_page);
672
673	kern_locked_tte_data = tte_data;
674
675	/* Now lock us into the TLBs via Hypervisor or OBP. */
676	if (tlb_type == hypervisor) {
677		for (i = 0; i < num_kernel_image_mappings; i++) {
678			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
679			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
680			tte_vaddr += 0x400000;
681			tte_data += 0x400000;
682		}
683	} else {
684		for (i = 0; i < num_kernel_image_mappings; i++) {
685			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
686			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
687			tte_vaddr += 0x400000;
688			tte_data += 0x400000;
689		}
690		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
691	}
692	if (tlb_type == cheetah_plus) {
693		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
694					    CTX_CHEETAH_PLUS_NUC);
695		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
696		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
697	}
698}
699
700
701static void __init inherit_prom_mappings(void)
702{
703	/* Now fixup OBP's idea about where we really are mapped. */
704	printk("Remapping the kernel... ");
705	remap_kernel();
706	printk("done.\n");
707}
708
709void prom_world(int enter)
710{
711	if (!enter)
712		set_fs(get_fs());
713
714	__asm__ __volatile__("flushw");
715}
716
717void __flush_dcache_range(unsigned long start, unsigned long end)
718{
719	unsigned long va;
720
721	if (tlb_type == spitfire) {
722		int n = 0;
723
724		for (va = start; va < end; va += 32) {
725			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
726			if (++n >= 512)
727				break;
728		}
729	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
730		start = __pa(start);
731		end = __pa(end);
732		for (va = start; va < end; va += 32)
733			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
734					     "membar #Sync"
735					     : /* no outputs */
736					     : "r" (va),
737					       "i" (ASI_DCACHE_INVALIDATE));
738	}
739}
740EXPORT_SYMBOL(__flush_dcache_range);
741
742/* get_new_mmu_context() uses "cache + 1".  */
743DEFINE_SPINLOCK(ctx_alloc_lock);
744unsigned long tlb_context_cache = CTX_FIRST_VERSION;
745#define MAX_CTX_NR	(1UL << CTX_NR_BITS)
746#define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
747DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
748DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
749
750static void mmu_context_wrap(void)
751{
752	unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
753	unsigned long new_ver, new_ctx, old_ctx;
754	struct mm_struct *mm;
755	int cpu;
756
757	bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
758
759	/* Reserve kernel context */
760	set_bit(0, mmu_context_bmap);
761
762	new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
763	if (unlikely(new_ver == 0))
764		new_ver = CTX_FIRST_VERSION;
765	tlb_context_cache = new_ver;
766
767	/*
768	 * Make sure that any new mm that are added into per_cpu_secondary_mm,
769	 * are going to go through get_new_mmu_context() path.
770	 */
771	mb();
772
773	/*
774	 * Updated versions to current on those CPUs that had valid secondary
775	 * contexts
776	 */
777	for_each_online_cpu(cpu) {
778		/*
779		 * If a new mm is stored after we took this mm from the array,
780		 * it will go into get_new_mmu_context() path, because we
781		 * already bumped the version in tlb_context_cache.
782		 */
783		mm = per_cpu(per_cpu_secondary_mm, cpu);
784
785		if (unlikely(!mm || mm == &init_mm))
786			continue;
787
788		old_ctx = mm->context.sparc64_ctx_val;
789		if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
790			new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
791			set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
792			mm->context.sparc64_ctx_val = new_ctx;
793		}
794	}
795}
796
797/* Caller does TLB context flushing on local CPU if necessary.
798 * The caller also ensures that CTX_VALID(mm->context) is false.
799 *
800 * We must be careful about boundary cases so that we never
801 * let the user have CTX 0 (nucleus) or we ever use a CTX
802 * version of zero (and thus NO_CONTEXT would not be caught
803 * by version mis-match tests in mmu_context.h).
804 *
805 * Always invoked with interrupts disabled.
806 */
807void get_new_mmu_context(struct mm_struct *mm)
808{
809	unsigned long ctx, new_ctx;
810	unsigned long orig_pgsz_bits;
811
812	spin_lock(&ctx_alloc_lock);
813retry:
814	/* wrap might have happened, test again if our context became valid */
815	if (unlikely(CTX_VALID(mm->context)))
816		goto out;
817	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
818	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
819	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
820	if (new_ctx >= (1 << CTX_NR_BITS)) {
821		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
822		if (new_ctx >= ctx) {
823			mmu_context_wrap();
824			goto retry;
825		}
826	}
827	if (mm->context.sparc64_ctx_val)
828		cpumask_clear(mm_cpumask(mm));
829	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
830	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
831	tlb_context_cache = new_ctx;
832	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
833out:
834	spin_unlock(&ctx_alloc_lock);
835}
836
837static int numa_enabled = 1;
838static int numa_debug;
839
840static int __init early_numa(char *p)
841{
842	if (!p)
843		return 0;
844
845	if (strstr(p, "off"))
846		numa_enabled = 0;
847
848	if (strstr(p, "debug"))
849		numa_debug = 1;
850
851	return 0;
852}
853early_param("numa", early_numa);
854
855#define numadbg(f, a...) \
856do {	if (numa_debug) \
857		printk(KERN_INFO f, ## a); \
858} while (0)
859
860static void __init find_ramdisk(unsigned long phys_base)
861{
862#ifdef CONFIG_BLK_DEV_INITRD
863	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
864		unsigned long ramdisk_image;
865
866		/* Older versions of the bootloader only supported a
867		 * 32-bit physical address for the ramdisk image
868		 * location, stored at sparc_ramdisk_image.  Newer
869		 * SILO versions set sparc_ramdisk_image to zero and
870		 * provide a full 64-bit physical address at
871		 * sparc_ramdisk_image64.
872		 */
873		ramdisk_image = sparc_ramdisk_image;
874		if (!ramdisk_image)
875			ramdisk_image = sparc_ramdisk_image64;
876
877		/* Another bootloader quirk.  The bootloader normalizes
878		 * the physical address to KERNBASE, so we have to
879		 * factor that back out and add in the lowest valid
880		 * physical page address to get the true physical address.
881		 */
882		ramdisk_image -= KERNBASE;
883		ramdisk_image += phys_base;
884
885		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
886			ramdisk_image, sparc_ramdisk_size);
887
888		initrd_start = ramdisk_image;
889		initrd_end = ramdisk_image + sparc_ramdisk_size;
890
891		memblock_reserve(initrd_start, sparc_ramdisk_size);
892
893		initrd_start += PAGE_OFFSET;
894		initrd_end += PAGE_OFFSET;
895	}
896#endif
897}
898
899struct node_mem_mask {
900	unsigned long mask;
901	unsigned long match;
902};
903static struct node_mem_mask node_masks[MAX_NUMNODES];
904static int num_node_masks;
905
906#ifdef CONFIG_NEED_MULTIPLE_NODES
907
908struct mdesc_mlgroup {
909	u64	node;
910	u64	latency;
911	u64	match;
912	u64	mask;
913};
914
915static struct mdesc_mlgroup *mlgroups;
916static int num_mlgroups;
917
918int numa_cpu_lookup_table[NR_CPUS];
919cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
920
921struct mdesc_mblock {
922	u64	base;
923	u64	size;
924	u64	offset; /* RA-to-PA */
925};
926static struct mdesc_mblock *mblocks;
927static int num_mblocks;
928
929static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
930{
931	struct mdesc_mblock *m = NULL;
932	int i;
933
934	for (i = 0; i < num_mblocks; i++) {
935		m = &mblocks[i];
936
937		if (addr >= m->base &&
938		    addr < (m->base + m->size)) {
939			break;
940		}
941	}
942
943	return m;
944}
945
946static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
947{
948	int prev_nid, new_nid;
949
950	prev_nid = NUMA_NO_NODE;
951	for ( ; start < end; start += PAGE_SIZE) {
952		for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
953			struct node_mem_mask *p = &node_masks[new_nid];
954
955			if ((start & p->mask) == p->match) {
956				if (prev_nid == NUMA_NO_NODE)
957					prev_nid = new_nid;
958				break;
959			}
960		}
961
962		if (new_nid == num_node_masks) {
963			prev_nid = 0;
964			WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
965				  start);
966			break;
967		}
968
969		if (prev_nid != new_nid)
970			break;
971	}
972	*nid = prev_nid;
973
974	return start > end ? end : start;
975}
976
977static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
978{
979	u64 ret_end, pa_start, m_mask, m_match, m_end;
980	struct mdesc_mblock *mblock;
981	int _nid, i;
982
983	if (tlb_type != hypervisor)
984		return memblock_nid_range_sun4u(start, end, nid);
985
986	mblock = addr_to_mblock(start);
987	if (!mblock) {
988		WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
989			  start);
990
991		_nid = 0;
992		ret_end = end;
993		goto done;
994	}
995
996	pa_start = start + mblock->offset;
997	m_match = 0;
998	m_mask = 0;
999
1000	for (_nid = 0; _nid < num_node_masks; _nid++) {
1001		struct node_mem_mask *const m = &node_masks[_nid];
1002
1003		if ((pa_start & m->mask) == m->match) {
1004			m_match = m->match;
1005			m_mask = m->mask;
1006			break;
1007		}
1008	}
1009
1010	if (num_node_masks == _nid) {
1011		/* We could not find NUMA group, so default to 0, but lets
1012		 * search for latency group, so we could calculate the correct
1013		 * end address that we return
1014		 */
1015		_nid = 0;
1016
1017		for (i = 0; i < num_mlgroups; i++) {
1018			struct mdesc_mlgroup *const m = &mlgroups[i];
1019
1020			if ((pa_start & m->mask) == m->match) {
1021				m_match = m->match;
1022				m_mask = m->mask;
1023				break;
1024			}
1025		}
1026
1027		if (i == num_mlgroups) {
1028			WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1029				  start);
1030
1031			ret_end = end;
1032			goto done;
1033		}
1034	}
1035
1036	/*
1037	 * Each latency group has match and mask, and each memory block has an
1038	 * offset.  An address belongs to a latency group if its address matches
1039	 * the following formula: ((addr + offset) & mask) == match
1040	 * It is, however, slow to check every single page if it matches a
1041	 * particular latency group. As optimization we calculate end value by
1042	 * using bit arithmetics.
1043	 */
1044	m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1045	m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1046	ret_end = m_end > end ? end : m_end;
1047
1048done:
1049	*nid = _nid;
1050	return ret_end;
1051}
1052#endif
1053
1054/* This must be invoked after performing all of the necessary
1055 * memblock_set_node() calls for 'nid'.  We need to be able to get
1056 * correct data from get_pfn_range_for_nid().
1057 */
1058static void __init allocate_node_data(int nid)
1059{
1060	struct pglist_data *p;
1061	unsigned long start_pfn, end_pfn;
1062#ifdef CONFIG_NEED_MULTIPLE_NODES
1063
1064	NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data),
1065					     SMP_CACHE_BYTES, nid);
1066	if (!NODE_DATA(nid)) {
1067		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1068		prom_halt();
1069	}
1070
1071	NODE_DATA(nid)->node_id = nid;
1072#endif
1073
1074	p = NODE_DATA(nid);
1075
1076	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1077	p->node_start_pfn = start_pfn;
1078	p->node_spanned_pages = end_pfn - start_pfn;
1079}
1080
1081static void init_node_masks_nonnuma(void)
1082{
1083#ifdef CONFIG_NEED_MULTIPLE_NODES
1084	int i;
1085#endif
1086
1087	numadbg("Initializing tables for non-numa.\n");
1088
1089	node_masks[0].mask = 0;
1090	node_masks[0].match = 0;
1091	num_node_masks = 1;
1092
1093#ifdef CONFIG_NEED_MULTIPLE_NODES
1094	for (i = 0; i < NR_CPUS; i++)
1095		numa_cpu_lookup_table[i] = 0;
1096
1097	cpumask_setall(&numa_cpumask_lookup_table[0]);
1098#endif
1099}
1100
1101#ifdef CONFIG_NEED_MULTIPLE_NODES
1102struct pglist_data *node_data[MAX_NUMNODES];
1103
1104EXPORT_SYMBOL(numa_cpu_lookup_table);
1105EXPORT_SYMBOL(numa_cpumask_lookup_table);
1106EXPORT_SYMBOL(node_data);
1107
1108static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1109				   u32 cfg_handle)
1110{
1111	u64 arc;
1112
1113	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1114		u64 target = mdesc_arc_target(md, arc);
1115		const u64 *val;
1116
1117		val = mdesc_get_property(md, target,
1118					 "cfg-handle", NULL);
1119		if (val && *val == cfg_handle)
1120			return 0;
1121	}
1122	return -ENODEV;
1123}
1124
1125static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1126				    u32 cfg_handle)
1127{
1128	u64 arc, candidate, best_latency = ~(u64)0;
1129
1130	candidate = MDESC_NODE_NULL;
1131	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1132		u64 target = mdesc_arc_target(md, arc);
1133		const char *name = mdesc_node_name(md, target);
1134		const u64 *val;
1135
1136		if (strcmp(name, "pio-latency-group"))
1137			continue;
1138
1139		val = mdesc_get_property(md, target, "latency", NULL);
1140		if (!val)
1141			continue;
1142
1143		if (*val < best_latency) {
1144			candidate = target;
1145			best_latency = *val;
1146		}
1147	}
1148
1149	if (candidate == MDESC_NODE_NULL)
1150		return -ENODEV;
1151
1152	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1153}
1154
1155int of_node_to_nid(struct device_node *dp)
1156{
1157	const struct linux_prom64_registers *regs;
1158	struct mdesc_handle *md;
1159	u32 cfg_handle;
1160	int count, nid;
1161	u64 grp;
1162
1163	/* This is the right thing to do on currently supported
1164	 * SUN4U NUMA platforms as well, as the PCI controller does
1165	 * not sit behind any particular memory controller.
1166	 */
1167	if (!mlgroups)
1168		return -1;
1169
1170	regs = of_get_property(dp, "reg", NULL);
1171	if (!regs)
1172		return -1;
1173
1174	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1175
1176	md = mdesc_grab();
1177
1178	count = 0;
1179	nid = NUMA_NO_NODE;
1180	mdesc_for_each_node_by_name(md, grp, "group") {
1181		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1182			nid = count;
1183			break;
1184		}
1185		count++;
1186	}
1187
1188	mdesc_release(md);
1189
1190	return nid;
1191}
1192
1193static void __init add_node_ranges(void)
1194{
1195	phys_addr_t start, end;
1196	unsigned long prev_max;
1197	u64 i;
1198
1199memblock_resized:
1200	prev_max = memblock.memory.max;
1201
1202	for_each_mem_range(i, &start, &end) {
1203		while (start < end) {
1204			unsigned long this_end;
1205			int nid;
1206
1207			this_end = memblock_nid_range(start, end, &nid);
1208
1209			numadbg("Setting memblock NUMA node nid[%d] "
1210				"start[%llx] end[%lx]\n",
1211				nid, start, this_end);
1212
1213			memblock_set_node(start, this_end - start,
1214					  &memblock.memory, nid);
1215			if (memblock.memory.max != prev_max)
1216				goto memblock_resized;
1217			start = this_end;
1218		}
1219	}
1220}
1221
1222static int __init grab_mlgroups(struct mdesc_handle *md)
1223{
1224	unsigned long paddr;
1225	int count = 0;
1226	u64 node;
1227
1228	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1229		count++;
1230	if (!count)
1231		return -ENOENT;
1232
1233	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1234				    SMP_CACHE_BYTES);
1235	if (!paddr)
1236		return -ENOMEM;
1237
1238	mlgroups = __va(paddr);
1239	num_mlgroups = count;
1240
1241	count = 0;
1242	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1243		struct mdesc_mlgroup *m = &mlgroups[count++];
1244		const u64 *val;
1245
1246		m->node = node;
1247
1248		val = mdesc_get_property(md, node, "latency", NULL);
1249		m->latency = *val;
1250		val = mdesc_get_property(md, node, "address-match", NULL);
1251		m->match = *val;
1252		val = mdesc_get_property(md, node, "address-mask", NULL);
1253		m->mask = *val;
1254
1255		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1256			"match[%llx] mask[%llx]\n",
1257			count - 1, m->node, m->latency, m->match, m->mask);
1258	}
1259
1260	return 0;
1261}
1262
1263static int __init grab_mblocks(struct mdesc_handle *md)
1264{
1265	unsigned long paddr;
1266	int count = 0;
1267	u64 node;
1268
1269	mdesc_for_each_node_by_name(md, node, "mblock")
1270		count++;
1271	if (!count)
1272		return -ENOENT;
1273
1274	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1275				    SMP_CACHE_BYTES);
1276	if (!paddr)
1277		return -ENOMEM;
1278
1279	mblocks = __va(paddr);
1280	num_mblocks = count;
1281
1282	count = 0;
1283	mdesc_for_each_node_by_name(md, node, "mblock") {
1284		struct mdesc_mblock *m = &mblocks[count++];
1285		const u64 *val;
1286
1287		val = mdesc_get_property(md, node, "base", NULL);
1288		m->base = *val;
1289		val = mdesc_get_property(md, node, "size", NULL);
1290		m->size = *val;
1291		val = mdesc_get_property(md, node,
1292					 "address-congruence-offset", NULL);
1293
1294		/* The address-congruence-offset property is optional.
1295		 * Explicity zero it be identifty this.
1296		 */
1297		if (val)
1298			m->offset = *val;
1299		else
1300			m->offset = 0UL;
1301
1302		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1303			count - 1, m->base, m->size, m->offset);
1304	}
1305
1306	return 0;
1307}
1308
1309static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1310					       u64 grp, cpumask_t *mask)
1311{
1312	u64 arc;
1313
1314	cpumask_clear(mask);
1315
1316	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1317		u64 target = mdesc_arc_target(md, arc);
1318		const char *name = mdesc_node_name(md, target);
1319		const u64 *id;
1320
1321		if (strcmp(name, "cpu"))
1322			continue;
1323		id = mdesc_get_property(md, target, "id", NULL);
1324		if (*id < nr_cpu_ids)
1325			cpumask_set_cpu(*id, mask);
1326	}
1327}
1328
1329static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1330{
1331	int i;
1332
1333	for (i = 0; i < num_mlgroups; i++) {
1334		struct mdesc_mlgroup *m = &mlgroups[i];
1335		if (m->node == node)
1336			return m;
1337	}
1338	return NULL;
1339}
1340
1341int __node_distance(int from, int to)
1342{
1343	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1344		pr_warn("Returning default NUMA distance value for %d->%d\n",
1345			from, to);
1346		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1347	}
1348	return numa_latency[from][to];
1349}
1350EXPORT_SYMBOL(__node_distance);
1351
1352static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1353{
1354	int i;
1355
1356	for (i = 0; i < MAX_NUMNODES; i++) {
1357		struct node_mem_mask *n = &node_masks[i];
1358
1359		if ((grp->mask == n->mask) && (grp->match == n->match))
1360			break;
1361	}
1362	return i;
1363}
1364
1365static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1366						 u64 grp, int index)
1367{
1368	u64 arc;
1369
1370	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1371		int tnode;
1372		u64 target = mdesc_arc_target(md, arc);
1373		struct mdesc_mlgroup *m = find_mlgroup(target);
1374
1375		if (!m)
1376			continue;
1377		tnode = find_best_numa_node_for_mlgroup(m);
1378		if (tnode == MAX_NUMNODES)
1379			continue;
1380		numa_latency[index][tnode] = m->latency;
1381	}
1382}
1383
1384static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1385				      int index)
1386{
1387	struct mdesc_mlgroup *candidate = NULL;
1388	u64 arc, best_latency = ~(u64)0;
1389	struct node_mem_mask *n;
1390
1391	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1392		u64 target = mdesc_arc_target(md, arc);
1393		struct mdesc_mlgroup *m = find_mlgroup(target);
1394		if (!m)
1395			continue;
1396		if (m->latency < best_latency) {
1397			candidate = m;
1398			best_latency = m->latency;
1399		}
1400	}
1401	if (!candidate)
1402		return -ENOENT;
1403
1404	if (num_node_masks != index) {
1405		printk(KERN_ERR "Inconsistent NUMA state, "
1406		       "index[%d] != num_node_masks[%d]\n",
1407		       index, num_node_masks);
1408		return -EINVAL;
1409	}
1410
1411	n = &node_masks[num_node_masks++];
1412
1413	n->mask = candidate->mask;
1414	n->match = candidate->match;
1415
1416	numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1417		index, n->mask, n->match, candidate->latency);
1418
1419	return 0;
1420}
1421
1422static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1423					 int index)
1424{
1425	cpumask_t mask;
1426	int cpu;
1427
1428	numa_parse_mdesc_group_cpus(md, grp, &mask);
1429
1430	for_each_cpu(cpu, &mask)
1431		numa_cpu_lookup_table[cpu] = index;
1432	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1433
1434	if (numa_debug) {
1435		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1436		for_each_cpu(cpu, &mask)
1437			printk("%d ", cpu);
1438		printk("]\n");
1439	}
1440
1441	return numa_attach_mlgroup(md, grp, index);
1442}
1443
1444static int __init numa_parse_mdesc(void)
1445{
1446	struct mdesc_handle *md = mdesc_grab();
1447	int i, j, err, count;
1448	u64 node;
1449
1450	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1451	if (node == MDESC_NODE_NULL) {
1452		mdesc_release(md);
1453		return -ENOENT;
1454	}
1455
1456	err = grab_mblocks(md);
1457	if (err < 0)
1458		goto out;
1459
1460	err = grab_mlgroups(md);
1461	if (err < 0)
1462		goto out;
1463
1464	count = 0;
1465	mdesc_for_each_node_by_name(md, node, "group") {
1466		err = numa_parse_mdesc_group(md, node, count);
1467		if (err < 0)
1468			break;
1469		count++;
1470	}
1471
1472	count = 0;
1473	mdesc_for_each_node_by_name(md, node, "group") {
1474		find_numa_latencies_for_group(md, node, count);
1475		count++;
1476	}
1477
1478	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1479	for (i = 0; i < MAX_NUMNODES; i++) {
1480		u64 self_latency = numa_latency[i][i];
1481
1482		for (j = 0; j < MAX_NUMNODES; j++) {
1483			numa_latency[i][j] =
1484				(numa_latency[i][j] * LOCAL_DISTANCE) /
1485				self_latency;
1486		}
1487	}
1488
1489	add_node_ranges();
1490
1491	for (i = 0; i < num_node_masks; i++) {
1492		allocate_node_data(i);
1493		node_set_online(i);
1494	}
1495
1496	err = 0;
1497out:
1498	mdesc_release(md);
1499	return err;
1500}
1501
1502static int __init numa_parse_jbus(void)
1503{
1504	unsigned long cpu, index;
1505
1506	/* NUMA node id is encoded in bits 36 and higher, and there is
1507	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1508	 */
1509	index = 0;
1510	for_each_present_cpu(cpu) {
1511		numa_cpu_lookup_table[cpu] = index;
1512		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1513		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1514		node_masks[index].match = cpu << 36UL;
1515
1516		index++;
1517	}
1518	num_node_masks = index;
1519
1520	add_node_ranges();
1521
1522	for (index = 0; index < num_node_masks; index++) {
1523		allocate_node_data(index);
1524		node_set_online(index);
1525	}
1526
1527	return 0;
1528}
1529
1530static int __init numa_parse_sun4u(void)
1531{
1532	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1533		unsigned long ver;
1534
1535		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1536		if ((ver >> 32UL) == __JALAPENO_ID ||
1537		    (ver >> 32UL) == __SERRANO_ID)
1538			return numa_parse_jbus();
1539	}
1540	return -1;
1541}
1542
1543static int __init bootmem_init_numa(void)
1544{
1545	int i, j;
1546	int err = -1;
1547
1548	numadbg("bootmem_init_numa()\n");
1549
1550	/* Some sane defaults for numa latency values */
1551	for (i = 0; i < MAX_NUMNODES; i++) {
1552		for (j = 0; j < MAX_NUMNODES; j++)
1553			numa_latency[i][j] = (i == j) ?
1554				LOCAL_DISTANCE : REMOTE_DISTANCE;
1555	}
1556
1557	if (numa_enabled) {
1558		if (tlb_type == hypervisor)
1559			err = numa_parse_mdesc();
1560		else
1561			err = numa_parse_sun4u();
1562	}
1563	return err;
1564}
1565
1566#else
1567
1568static int bootmem_init_numa(void)
1569{
1570	return -1;
1571}
1572
1573#endif
1574
1575static void __init bootmem_init_nonnuma(void)
1576{
1577	unsigned long top_of_ram = memblock_end_of_DRAM();
1578	unsigned long total_ram = memblock_phys_mem_size();
1579
1580	numadbg("bootmem_init_nonnuma()\n");
1581
1582	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1583	       top_of_ram, total_ram);
1584	printk(KERN_INFO "Memory hole size: %ldMB\n",
1585	       (top_of_ram - total_ram) >> 20);
1586
1587	init_node_masks_nonnuma();
1588	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1589	allocate_node_data(0);
1590	node_set_online(0);
1591}
1592
1593static unsigned long __init bootmem_init(unsigned long phys_base)
1594{
1595	unsigned long end_pfn;
1596
1597	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1598	max_pfn = max_low_pfn = end_pfn;
1599	min_low_pfn = (phys_base >> PAGE_SHIFT);
1600
1601	if (bootmem_init_numa() < 0)
1602		bootmem_init_nonnuma();
1603
1604	/* Dump memblock with node info. */
1605	memblock_dump_all();
1606
1607	/* XXX cpu notifier XXX */
1608
1609	sparse_init();
1610
1611	return end_pfn;
1612}
1613
1614static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1615static int pall_ents __initdata;
1616
1617static unsigned long max_phys_bits = 40;
1618
1619bool kern_addr_valid(unsigned long addr)
1620{
1621	pgd_t *pgd;
1622	p4d_t *p4d;
1623	pud_t *pud;
1624	pmd_t *pmd;
1625	pte_t *pte;
1626
1627	if ((long)addr < 0L) {
1628		unsigned long pa = __pa(addr);
1629
1630		if ((pa >> max_phys_bits) != 0UL)
1631			return false;
1632
1633		return pfn_valid(pa >> PAGE_SHIFT);
1634	}
1635
1636	if (addr >= (unsigned long) KERNBASE &&
1637	    addr < (unsigned long)&_end)
1638		return true;
1639
1640	pgd = pgd_offset_k(addr);
1641	if (pgd_none(*pgd))
1642		return false;
1643
1644	p4d = p4d_offset(pgd, addr);
1645	if (p4d_none(*p4d))
1646		return false;
1647
1648	pud = pud_offset(p4d, addr);
1649	if (pud_none(*pud))
1650		return false;
1651
1652	if (pud_large(*pud))
1653		return pfn_valid(pud_pfn(*pud));
1654
1655	pmd = pmd_offset(pud, addr);
1656	if (pmd_none(*pmd))
1657		return false;
1658
1659	if (pmd_large(*pmd))
1660		return pfn_valid(pmd_pfn(*pmd));
1661
1662	pte = pte_offset_kernel(pmd, addr);
1663	if (pte_none(*pte))
1664		return false;
1665
1666	return pfn_valid(pte_pfn(*pte));
1667}
1668EXPORT_SYMBOL(kern_addr_valid);
1669
1670static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1671					      unsigned long vend,
1672					      pud_t *pud)
1673{
1674	const unsigned long mask16gb = (1UL << 34) - 1UL;
1675	u64 pte_val = vstart;
1676
1677	/* Each PUD is 8GB */
1678	if ((vstart & mask16gb) ||
1679	    (vend - vstart <= mask16gb)) {
1680		pte_val ^= kern_linear_pte_xor[2];
1681		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1682
1683		return vstart + PUD_SIZE;
1684	}
1685
1686	pte_val ^= kern_linear_pte_xor[3];
1687	pte_val |= _PAGE_PUD_HUGE;
1688
1689	vend = vstart + mask16gb + 1UL;
1690	while (vstart < vend) {
1691		pud_val(*pud) = pte_val;
1692
1693		pte_val += PUD_SIZE;
1694		vstart += PUD_SIZE;
1695		pud++;
1696	}
1697	return vstart;
1698}
1699
1700static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1701				   bool guard)
1702{
1703	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1704		return true;
1705
1706	return false;
1707}
1708
1709static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1710					      unsigned long vend,
1711					      pmd_t *pmd)
1712{
1713	const unsigned long mask256mb = (1UL << 28) - 1UL;
1714	const unsigned long mask2gb = (1UL << 31) - 1UL;
1715	u64 pte_val = vstart;
1716
1717	/* Each PMD is 8MB */
1718	if ((vstart & mask256mb) ||
1719	    (vend - vstart <= mask256mb)) {
1720		pte_val ^= kern_linear_pte_xor[0];
1721		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1722
1723		return vstart + PMD_SIZE;
1724	}
1725
1726	if ((vstart & mask2gb) ||
1727	    (vend - vstart <= mask2gb)) {
1728		pte_val ^= kern_linear_pte_xor[1];
1729		pte_val |= _PAGE_PMD_HUGE;
1730		vend = vstart + mask256mb + 1UL;
1731	} else {
1732		pte_val ^= kern_linear_pte_xor[2];
1733		pte_val |= _PAGE_PMD_HUGE;
1734		vend = vstart + mask2gb + 1UL;
1735	}
1736
1737	while (vstart < vend) {
1738		pmd_val(*pmd) = pte_val;
1739
1740		pte_val += PMD_SIZE;
1741		vstart += PMD_SIZE;
1742		pmd++;
1743	}
1744
1745	return vstart;
1746}
1747
1748static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1749				   bool guard)
1750{
1751	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1752		return true;
1753
1754	return false;
1755}
1756
1757static unsigned long __ref kernel_map_range(unsigned long pstart,
1758					    unsigned long pend, pgprot_t prot,
1759					    bool use_huge)
1760{
1761	unsigned long vstart = PAGE_OFFSET + pstart;
1762	unsigned long vend = PAGE_OFFSET + pend;
1763	unsigned long alloc_bytes = 0UL;
1764
1765	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1766		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1767			    vstart, vend);
1768		prom_halt();
1769	}
1770
1771	while (vstart < vend) {
1772		unsigned long this_end, paddr = __pa(vstart);
1773		pgd_t *pgd = pgd_offset_k(vstart);
1774		p4d_t *p4d;
1775		pud_t *pud;
1776		pmd_t *pmd;
1777		pte_t *pte;
1778
1779		if (pgd_none(*pgd)) {
1780			pud_t *new;
1781
1782			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1783						  PAGE_SIZE);
1784			if (!new)
1785				goto err_alloc;
1786			alloc_bytes += PAGE_SIZE;
1787			pgd_populate(&init_mm, pgd, new);
1788		}
1789
1790		p4d = p4d_offset(pgd, vstart);
1791		if (p4d_none(*p4d)) {
1792			pud_t *new;
1793
1794			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1795						  PAGE_SIZE);
1796			if (!new)
1797				goto err_alloc;
1798			alloc_bytes += PAGE_SIZE;
1799			p4d_populate(&init_mm, p4d, new);
1800		}
1801
1802		pud = pud_offset(p4d, vstart);
1803		if (pud_none(*pud)) {
1804			pmd_t *new;
1805
1806			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1807				vstart = kernel_map_hugepud(vstart, vend, pud);
1808				continue;
1809			}
1810			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1811						  PAGE_SIZE);
1812			if (!new)
1813				goto err_alloc;
1814			alloc_bytes += PAGE_SIZE;
1815			pud_populate(&init_mm, pud, new);
1816		}
1817
1818		pmd = pmd_offset(pud, vstart);
1819		if (pmd_none(*pmd)) {
1820			pte_t *new;
1821
1822			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1823				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1824				continue;
1825			}
1826			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1827						  PAGE_SIZE);
1828			if (!new)
1829				goto err_alloc;
1830			alloc_bytes += PAGE_SIZE;
1831			pmd_populate_kernel(&init_mm, pmd, new);
1832		}
1833
1834		pte = pte_offset_kernel(pmd, vstart);
1835		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1836		if (this_end > vend)
1837			this_end = vend;
1838
1839		while (vstart < this_end) {
1840			pte_val(*pte) = (paddr | pgprot_val(prot));
1841
1842			vstart += PAGE_SIZE;
1843			paddr += PAGE_SIZE;
1844			pte++;
1845		}
1846	}
1847
1848	return alloc_bytes;
1849
1850err_alloc:
1851	panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1852	      __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1853	return -ENOMEM;
1854}
1855
1856static void __init flush_all_kernel_tsbs(void)
1857{
1858	int i;
1859
1860	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1861		struct tsb *ent = &swapper_tsb[i];
1862
1863		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1864	}
1865#ifndef CONFIG_DEBUG_PAGEALLOC
1866	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1867		struct tsb *ent = &swapper_4m_tsb[i];
1868
1869		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1870	}
1871#endif
1872}
1873
1874extern unsigned int kvmap_linear_patch[1];
1875
1876static void __init kernel_physical_mapping_init(void)
1877{
1878	unsigned long i, mem_alloced = 0UL;
1879	bool use_huge = true;
1880
1881#ifdef CONFIG_DEBUG_PAGEALLOC
1882	use_huge = false;
1883#endif
1884	for (i = 0; i < pall_ents; i++) {
1885		unsigned long phys_start, phys_end;
1886
1887		phys_start = pall[i].phys_addr;
1888		phys_end = phys_start + pall[i].reg_size;
1889
1890		mem_alloced += kernel_map_range(phys_start, phys_end,
1891						PAGE_KERNEL, use_huge);
1892	}
1893
1894	printk("Allocated %ld bytes for kernel page tables.\n",
1895	       mem_alloced);
1896
1897	kvmap_linear_patch[0] = 0x01000000; /* nop */
1898	flushi(&kvmap_linear_patch[0]);
1899
1900	flush_all_kernel_tsbs();
1901
1902	__flush_tlb_all();
1903}
1904
1905#ifdef CONFIG_DEBUG_PAGEALLOC
1906void __kernel_map_pages(struct page *page, int numpages, int enable)
1907{
1908	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1909	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1910
1911	kernel_map_range(phys_start, phys_end,
1912			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1913
1914	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1915			       PAGE_OFFSET + phys_end);
1916
1917	/* we should perform an IPI and flush all tlbs,
1918	 * but that can deadlock->flush only current cpu.
1919	 */
1920	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1921				 PAGE_OFFSET + phys_end);
1922}
1923#endif
1924
1925unsigned long __init find_ecache_flush_span(unsigned long size)
1926{
1927	int i;
1928
1929	for (i = 0; i < pavail_ents; i++) {
1930		if (pavail[i].reg_size >= size)
1931			return pavail[i].phys_addr;
1932	}
1933
1934	return ~0UL;
1935}
1936
1937unsigned long PAGE_OFFSET;
1938EXPORT_SYMBOL(PAGE_OFFSET);
1939
1940unsigned long VMALLOC_END   = 0x0000010000000000UL;
1941EXPORT_SYMBOL(VMALLOC_END);
1942
1943unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1944unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1945
1946static void __init setup_page_offset(void)
1947{
1948	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1949		/* Cheetah/Panther support a full 64-bit virtual
1950		 * address, so we can use all that our page tables
1951		 * support.
1952		 */
1953		sparc64_va_hole_top =    0xfff0000000000000UL;
1954		sparc64_va_hole_bottom = 0x0010000000000000UL;
1955
1956		max_phys_bits = 42;
1957	} else if (tlb_type == hypervisor) {
1958		switch (sun4v_chip_type) {
1959		case SUN4V_CHIP_NIAGARA1:
1960		case SUN4V_CHIP_NIAGARA2:
1961			/* T1 and T2 support 48-bit virtual addresses.  */
1962			sparc64_va_hole_top =    0xffff800000000000UL;
1963			sparc64_va_hole_bottom = 0x0000800000000000UL;
1964
1965			max_phys_bits = 39;
1966			break;
1967		case SUN4V_CHIP_NIAGARA3:
1968			/* T3 supports 48-bit virtual addresses.  */
1969			sparc64_va_hole_top =    0xffff800000000000UL;
1970			sparc64_va_hole_bottom = 0x0000800000000000UL;
1971
1972			max_phys_bits = 43;
1973			break;
1974		case SUN4V_CHIP_NIAGARA4:
1975		case SUN4V_CHIP_NIAGARA5:
1976		case SUN4V_CHIP_SPARC64X:
1977		case SUN4V_CHIP_SPARC_M6:
1978			/* T4 and later support 52-bit virtual addresses.  */
1979			sparc64_va_hole_top =    0xfff8000000000000UL;
1980			sparc64_va_hole_bottom = 0x0008000000000000UL;
1981			max_phys_bits = 47;
1982			break;
1983		case SUN4V_CHIP_SPARC_M7:
1984		case SUN4V_CHIP_SPARC_SN:
1985			/* M7 and later support 52-bit virtual addresses.  */
1986			sparc64_va_hole_top =    0xfff8000000000000UL;
1987			sparc64_va_hole_bottom = 0x0008000000000000UL;
1988			max_phys_bits = 49;
1989			break;
1990		case SUN4V_CHIP_SPARC_M8:
1991		default:
1992			/* M8 and later support 54-bit virtual addresses.
1993			 * However, restricting M8 and above VA bits to 53
1994			 * as 4-level page table cannot support more than
1995			 * 53 VA bits.
1996			 */
1997			sparc64_va_hole_top =    0xfff0000000000000UL;
1998			sparc64_va_hole_bottom = 0x0010000000000000UL;
1999			max_phys_bits = 51;
2000			break;
2001		}
2002	}
2003
2004	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2005		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2006			    max_phys_bits);
2007		prom_halt();
2008	}
2009
2010	PAGE_OFFSET = sparc64_va_hole_top;
2011	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2012		       (sparc64_va_hole_bottom >> 2));
2013
2014	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2015		PAGE_OFFSET, max_phys_bits);
2016	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2017		VMALLOC_START, VMALLOC_END);
2018	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2019		VMEMMAP_BASE, VMEMMAP_BASE << 1);
2020}
2021
2022static void __init tsb_phys_patch(void)
2023{
2024	struct tsb_ldquad_phys_patch_entry *pquad;
2025	struct tsb_phys_patch_entry *p;
2026
2027	pquad = &__tsb_ldquad_phys_patch;
2028	while (pquad < &__tsb_ldquad_phys_patch_end) {
2029		unsigned long addr = pquad->addr;
2030
2031		if (tlb_type == hypervisor)
2032			*(unsigned int *) addr = pquad->sun4v_insn;
2033		else
2034			*(unsigned int *) addr = pquad->sun4u_insn;
2035		wmb();
2036		__asm__ __volatile__("flush	%0"
2037				     : /* no outputs */
2038				     : "r" (addr));
2039
2040		pquad++;
2041	}
2042
2043	p = &__tsb_phys_patch;
2044	while (p < &__tsb_phys_patch_end) {
2045		unsigned long addr = p->addr;
2046
2047		*(unsigned int *) addr = p->insn;
2048		wmb();
2049		__asm__ __volatile__("flush	%0"
2050				     : /* no outputs */
2051				     : "r" (addr));
2052
2053		p++;
2054	}
2055}
2056
2057/* Don't mark as init, we give this to the Hypervisor.  */
2058#ifndef CONFIG_DEBUG_PAGEALLOC
2059#define NUM_KTSB_DESCR	2
2060#else
2061#define NUM_KTSB_DESCR	1
2062#endif
2063static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2064
2065/* The swapper TSBs are loaded with a base sequence of:
2066 *
2067 *	sethi	%uhi(SYMBOL), REG1
2068 *	sethi	%hi(SYMBOL), REG2
2069 *	or	REG1, %ulo(SYMBOL), REG1
2070 *	or	REG2, %lo(SYMBOL), REG2
2071 *	sllx	REG1, 32, REG1
2072 *	or	REG1, REG2, REG1
2073 *
2074 * When we use physical addressing for the TSB accesses, we patch the
2075 * first four instructions in the above sequence.
2076 */
2077
2078static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2079{
2080	unsigned long high_bits, low_bits;
2081
2082	high_bits = (pa >> 32) & 0xffffffff;
2083	low_bits = (pa >> 0) & 0xffffffff;
2084
2085	while (start < end) {
2086		unsigned int *ia = (unsigned int *)(unsigned long)*start;
2087
2088		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2089		__asm__ __volatile__("flush	%0" : : "r" (ia));
2090
2091		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2092		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
2093
2094		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2095		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
2096
2097		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2098		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
2099
2100		start++;
2101	}
2102}
2103
2104static void ktsb_phys_patch(void)
2105{
2106	extern unsigned int __swapper_tsb_phys_patch;
2107	extern unsigned int __swapper_tsb_phys_patch_end;
2108	unsigned long ktsb_pa;
2109
2110	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2111	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2112			    &__swapper_tsb_phys_patch_end, ktsb_pa);
2113#ifndef CONFIG_DEBUG_PAGEALLOC
2114	{
2115	extern unsigned int __swapper_4m_tsb_phys_patch;
2116	extern unsigned int __swapper_4m_tsb_phys_patch_end;
2117	ktsb_pa = (kern_base +
2118		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2119	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2120			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2121	}
2122#endif
2123}
2124
2125static void __init sun4v_ktsb_init(void)
2126{
2127	unsigned long ktsb_pa;
2128
2129	/* First KTSB for PAGE_SIZE mappings.  */
2130	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2131
2132	switch (PAGE_SIZE) {
2133	case 8 * 1024:
2134	default:
2135		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2136		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2137		break;
2138
2139	case 64 * 1024:
2140		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2141		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2142		break;
2143
2144	case 512 * 1024:
2145		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2146		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2147		break;
2148
2149	case 4 * 1024 * 1024:
2150		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2151		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2152		break;
2153	}
2154
2155	ktsb_descr[0].assoc = 1;
2156	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2157	ktsb_descr[0].ctx_idx = 0;
2158	ktsb_descr[0].tsb_base = ktsb_pa;
2159	ktsb_descr[0].resv = 0;
2160
2161#ifndef CONFIG_DEBUG_PAGEALLOC
2162	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2163	ktsb_pa = (kern_base +
2164		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2165
2166	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2167	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2168				    HV_PGSZ_MASK_256MB |
2169				    HV_PGSZ_MASK_2GB |
2170				    HV_PGSZ_MASK_16GB) &
2171				   cpu_pgsz_mask);
2172	ktsb_descr[1].assoc = 1;
2173	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2174	ktsb_descr[1].ctx_idx = 0;
2175	ktsb_descr[1].tsb_base = ktsb_pa;
2176	ktsb_descr[1].resv = 0;
2177#endif
2178}
2179
2180void sun4v_ktsb_register(void)
2181{
2182	unsigned long pa, ret;
2183
2184	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2185
2186	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2187	if (ret != 0) {
2188		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2189			    "errors with %lx\n", pa, ret);
2190		prom_halt();
2191	}
2192}
2193
2194static void __init sun4u_linear_pte_xor_finalize(void)
2195{
2196#ifndef CONFIG_DEBUG_PAGEALLOC
2197	/* This is where we would add Panther support for
2198	 * 32MB and 256MB pages.
2199	 */
2200#endif
2201}
2202
2203static void __init sun4v_linear_pte_xor_finalize(void)
2204{
2205	unsigned long pagecv_flag;
2206
2207	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2208	 * enables MCD error. Do not set bit 9 on M7 processor.
2209	 */
2210	switch (sun4v_chip_type) {
2211	case SUN4V_CHIP_SPARC_M7:
2212	case SUN4V_CHIP_SPARC_M8:
2213	case SUN4V_CHIP_SPARC_SN:
2214		pagecv_flag = 0x00;
2215		break;
2216	default:
2217		pagecv_flag = _PAGE_CV_4V;
2218		break;
2219	}
2220#ifndef CONFIG_DEBUG_PAGEALLOC
2221	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2222		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2223			PAGE_OFFSET;
2224		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2225					   _PAGE_P_4V | _PAGE_W_4V);
2226	} else {
2227		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2228	}
2229
2230	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2231		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2232			PAGE_OFFSET;
2233		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2234					   _PAGE_P_4V | _PAGE_W_4V);
2235	} else {
2236		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2237	}
2238
2239	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2240		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2241			PAGE_OFFSET;
2242		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2243					   _PAGE_P_4V | _PAGE_W_4V);
2244	} else {
2245		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2246	}
2247#endif
2248}
2249
2250/* paging_init() sets up the page tables */
2251
2252static unsigned long last_valid_pfn;
2253
2254static void sun4u_pgprot_init(void);
2255static void sun4v_pgprot_init(void);
2256
2257#define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2258#define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2259#define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2260#define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2261#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2262#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2263
2264/* We need to exclude reserved regions. This exclusion will include
2265 * vmlinux and initrd. To be more precise the initrd size could be used to
2266 * compute a new lower limit because it is freed later during initialization.
2267 */
2268static void __init reduce_memory(phys_addr_t limit_ram)
2269{
2270	limit_ram += memblock_reserved_size();
2271	memblock_enforce_memory_limit(limit_ram);
2272}
2273
2274void __init paging_init(void)
2275{
2276	unsigned long end_pfn, shift, phys_base;
2277	unsigned long real_end, i;
2278
2279	setup_page_offset();
2280
2281	/* These build time checkes make sure that the dcache_dirty_cpu()
2282	 * page->flags usage will work.
2283	 *
2284	 * When a page gets marked as dcache-dirty, we store the
2285	 * cpu number starting at bit 32 in the page->flags.  Also,
2286	 * functions like clear_dcache_dirty_cpu use the cpu mask
2287	 * in 13-bit signed-immediate instruction fields.
2288	 */
2289
2290	/*
2291	 * Page flags must not reach into upper 32 bits that are used
2292	 * for the cpu number
2293	 */
2294	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2295
2296	/*
2297	 * The bit fields placed in the high range must not reach below
2298	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2299	 * at the 32 bit boundary.
2300	 */
2301	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2302		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2303
2304	BUILD_BUG_ON(NR_CPUS > 4096);
2305
2306	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2307	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2308
2309	/* Invalidate both kernel TSBs.  */
2310	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2311#ifndef CONFIG_DEBUG_PAGEALLOC
2312	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2313#endif
2314
2315	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2316	 * bit on M7 processor. This is a conflicting usage of the same
2317	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2318	 * Detection error on all pages and this will lead to problems
2319	 * later. Kernel does not run with MCD enabled and hence rest
2320	 * of the required steps to fully configure memory corruption
2321	 * detection are not taken. We need to ensure TTE.mcde is not
2322	 * set on M7 processor. Compute the value of cacheability
2323	 * flag for use later taking this into consideration.
2324	 */
2325	switch (sun4v_chip_type) {
2326	case SUN4V_CHIP_SPARC_M7:
2327	case SUN4V_CHIP_SPARC_M8:
2328	case SUN4V_CHIP_SPARC_SN:
2329		page_cache4v_flag = _PAGE_CP_4V;
2330		break;
2331	default:
2332		page_cache4v_flag = _PAGE_CACHE_4V;
2333		break;
2334	}
2335
2336	if (tlb_type == hypervisor)
2337		sun4v_pgprot_init();
2338	else
2339		sun4u_pgprot_init();
2340
2341	if (tlb_type == cheetah_plus ||
2342	    tlb_type == hypervisor) {
2343		tsb_phys_patch();
2344		ktsb_phys_patch();
2345	}
2346
2347	if (tlb_type == hypervisor)
2348		sun4v_patch_tlb_handlers();
2349
2350	/* Find available physical memory...
2351	 *
2352	 * Read it twice in order to work around a bug in openfirmware.
2353	 * The call to grab this table itself can cause openfirmware to
2354	 * allocate memory, which in turn can take away some space from
2355	 * the list of available memory.  Reading it twice makes sure
2356	 * we really do get the final value.
2357	 */
2358	read_obp_translations();
2359	read_obp_memory("reg", &pall[0], &pall_ents);
2360	read_obp_memory("available", &pavail[0], &pavail_ents);
2361	read_obp_memory("available", &pavail[0], &pavail_ents);
2362
2363	phys_base = 0xffffffffffffffffUL;
2364	for (i = 0; i < pavail_ents; i++) {
2365		phys_base = min(phys_base, pavail[i].phys_addr);
2366		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2367	}
2368
2369	memblock_reserve(kern_base, kern_size);
2370
2371	find_ramdisk(phys_base);
2372
2373	if (cmdline_memory_size)
2374		reduce_memory(cmdline_memory_size);
2375
2376	memblock_allow_resize();
2377	memblock_dump_all();
2378
2379	set_bit(0, mmu_context_bmap);
2380
2381	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2382
2383	real_end = (unsigned long)_end;
2384	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2385	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2386	       num_kernel_image_mappings);
2387
2388	/* Set kernel pgd to upper alias so physical page computations
2389	 * work.
2390	 */
2391	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2392
2393	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2394
2395	inherit_prom_mappings();
2396
2397	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2398	setup_tba();
2399
2400	__flush_tlb_all();
2401
2402	prom_build_devicetree();
2403	of_populate_present_mask();
2404#ifndef CONFIG_SMP
2405	of_fill_in_cpu_data();
2406#endif
2407
2408	if (tlb_type == hypervisor) {
2409		sun4v_mdesc_init();
2410		mdesc_populate_present_mask(cpu_all_mask);
2411#ifndef CONFIG_SMP
2412		mdesc_fill_in_cpu_data(cpu_all_mask);
2413#endif
2414		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2415
2416		sun4v_linear_pte_xor_finalize();
2417
2418		sun4v_ktsb_init();
2419		sun4v_ktsb_register();
2420	} else {
2421		unsigned long impl, ver;
2422
2423		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2424				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2425
2426		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2427		impl = ((ver >> 32) & 0xffff);
2428		if (impl == PANTHER_IMPL)
2429			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2430					  HV_PGSZ_MASK_256MB);
2431
2432		sun4u_linear_pte_xor_finalize();
2433	}
2434
2435	/* Flush the TLBs and the 4M TSB so that the updated linear
2436	 * pte XOR settings are realized for all mappings.
2437	 */
2438	__flush_tlb_all();
2439#ifndef CONFIG_DEBUG_PAGEALLOC
2440	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2441#endif
2442	__flush_tlb_all();
2443
2444	/* Setup bootmem... */
2445	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2446
2447	kernel_physical_mapping_init();
2448
2449	{
2450		unsigned long max_zone_pfns[MAX_NR_ZONES];
2451
2452		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2453
2454		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2455
2456		free_area_init(max_zone_pfns);
2457	}
2458
2459	printk("Booting Linux...\n");
2460}
2461
2462int page_in_phys_avail(unsigned long paddr)
2463{
2464	int i;
2465
2466	paddr &= PAGE_MASK;
2467
2468	for (i = 0; i < pavail_ents; i++) {
2469		unsigned long start, end;
2470
2471		start = pavail[i].phys_addr;
2472		end = start + pavail[i].reg_size;
2473
2474		if (paddr >= start && paddr < end)
2475			return 1;
2476	}
2477	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2478		return 1;
2479#ifdef CONFIG_BLK_DEV_INITRD
2480	if (paddr >= __pa(initrd_start) &&
2481	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2482		return 1;
2483#endif
2484
2485	return 0;
2486}
2487
2488static void __init register_page_bootmem_info(void)
2489{
2490#ifdef CONFIG_NEED_MULTIPLE_NODES
2491	int i;
2492
2493	for_each_online_node(i)
2494		if (NODE_DATA(i)->node_spanned_pages)
2495			register_page_bootmem_info_node(NODE_DATA(i));
2496#endif
2497}
2498void __init mem_init(void)
2499{
2500	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2501
2502	memblock_free_all();
2503
2504	/*
2505	 * Must be done after boot memory is put on freelist, because here we
2506	 * might set fields in deferred struct pages that have not yet been
2507	 * initialized, and memblock_free_all() initializes all the reserved
2508	 * deferred pages for us.
2509	 */
2510	register_page_bootmem_info();
2511
2512	/*
2513	 * Set up the zero page, mark it reserved, so that page count
2514	 * is not manipulated when freeing the page from user ptes.
2515	 */
2516	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2517	if (mem_map_zero == NULL) {
2518		prom_printf("paging_init: Cannot alloc zero page.\n");
2519		prom_halt();
2520	}
2521	mark_page_reserved(mem_map_zero);
2522
2523	mem_init_print_info(NULL);
2524
2525	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2526		cheetah_ecache_flush_init();
2527}
2528
2529void free_initmem(void)
2530{
2531	unsigned long addr, initend;
2532	int do_free = 1;
2533
2534	/* If the physical memory maps were trimmed by kernel command
2535	 * line options, don't even try freeing this initmem stuff up.
2536	 * The kernel image could have been in the trimmed out region
2537	 * and if so the freeing below will free invalid page structs.
2538	 */
2539	if (cmdline_memory_size)
2540		do_free = 0;
2541
2542	/*
2543	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2544	 */
2545	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2546	initend = (unsigned long)(__init_end) & PAGE_MASK;
2547	for (; addr < initend; addr += PAGE_SIZE) {
2548		unsigned long page;
2549
2550		page = (addr +
2551			((unsigned long) __va(kern_base)) -
2552			((unsigned long) KERNBASE));
2553		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2554
2555		if (do_free)
2556			free_reserved_page(virt_to_page(page));
2557	}
2558}
2559
2560pgprot_t PAGE_KERNEL __read_mostly;
2561EXPORT_SYMBOL(PAGE_KERNEL);
2562
2563pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2564pgprot_t PAGE_COPY __read_mostly;
2565
2566pgprot_t PAGE_SHARED __read_mostly;
2567EXPORT_SYMBOL(PAGE_SHARED);
2568
2569unsigned long pg_iobits __read_mostly;
2570
2571unsigned long _PAGE_IE __read_mostly;
2572EXPORT_SYMBOL(_PAGE_IE);
2573
2574unsigned long _PAGE_E __read_mostly;
2575EXPORT_SYMBOL(_PAGE_E);
2576
2577unsigned long _PAGE_CACHE __read_mostly;
2578EXPORT_SYMBOL(_PAGE_CACHE);
2579
2580#ifdef CONFIG_SPARSEMEM_VMEMMAP
2581int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2582			       int node, struct vmem_altmap *altmap)
2583{
2584	unsigned long pte_base;
2585
2586	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2587		    _PAGE_CP_4U | _PAGE_CV_4U |
2588		    _PAGE_P_4U | _PAGE_W_4U);
2589	if (tlb_type == hypervisor)
2590		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2591			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2592
2593	pte_base |= _PAGE_PMD_HUGE;
2594
2595	vstart = vstart & PMD_MASK;
2596	vend = ALIGN(vend, PMD_SIZE);
2597	for (; vstart < vend; vstart += PMD_SIZE) {
2598		pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2599		unsigned long pte;
2600		p4d_t *p4d;
2601		pud_t *pud;
2602		pmd_t *pmd;
2603
2604		if (!pgd)
2605			return -ENOMEM;
2606
2607		p4d = vmemmap_p4d_populate(pgd, vstart, node);
2608		if (!p4d)
2609			return -ENOMEM;
2610
2611		pud = vmemmap_pud_populate(p4d, vstart, node);
2612		if (!pud)
2613			return -ENOMEM;
2614
2615		pmd = pmd_offset(pud, vstart);
2616		pte = pmd_val(*pmd);
2617		if (!(pte & _PAGE_VALID)) {
2618			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2619
2620			if (!block)
2621				return -ENOMEM;
2622
2623			pmd_val(*pmd) = pte_base | __pa(block);
2624		}
2625	}
2626
2627	return 0;
2628}
2629
2630void vmemmap_free(unsigned long start, unsigned long end,
2631		struct vmem_altmap *altmap)
2632{
2633}
2634#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2635
2636static void prot_init_common(unsigned long page_none,
2637			     unsigned long page_shared,
2638			     unsigned long page_copy,
2639			     unsigned long page_readonly,
2640			     unsigned long page_exec_bit)
2641{
2642	PAGE_COPY = __pgprot(page_copy);
2643	PAGE_SHARED = __pgprot(page_shared);
2644
2645	protection_map[0x0] = __pgprot(page_none);
2646	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2647	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2648	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2649	protection_map[0x4] = __pgprot(page_readonly);
2650	protection_map[0x5] = __pgprot(page_readonly);
2651	protection_map[0x6] = __pgprot(page_copy);
2652	protection_map[0x7] = __pgprot(page_copy);
2653	protection_map[0x8] = __pgprot(page_none);
2654	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2655	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2656	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2657	protection_map[0xc] = __pgprot(page_readonly);
2658	protection_map[0xd] = __pgprot(page_readonly);
2659	protection_map[0xe] = __pgprot(page_shared);
2660	protection_map[0xf] = __pgprot(page_shared);
2661}
2662
2663static void __init sun4u_pgprot_init(void)
2664{
2665	unsigned long page_none, page_shared, page_copy, page_readonly;
2666	unsigned long page_exec_bit;
2667	int i;
2668
2669	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2670				_PAGE_CACHE_4U | _PAGE_P_4U |
2671				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2672				_PAGE_EXEC_4U);
2673	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2674				       _PAGE_CACHE_4U | _PAGE_P_4U |
2675				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2676				       _PAGE_EXEC_4U | _PAGE_L_4U);
2677
2678	_PAGE_IE = _PAGE_IE_4U;
2679	_PAGE_E = _PAGE_E_4U;
2680	_PAGE_CACHE = _PAGE_CACHE_4U;
2681
2682	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2683		     __ACCESS_BITS_4U | _PAGE_E_4U);
2684
2685#ifdef CONFIG_DEBUG_PAGEALLOC
2686	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2687#else
2688	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2689		PAGE_OFFSET;
2690#endif
2691	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2692				   _PAGE_P_4U | _PAGE_W_4U);
2693
2694	for (i = 1; i < 4; i++)
2695		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2696
2697	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2698			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2699			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2700
2701
2702	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2703	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2704		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2705	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2706		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2707	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2708			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2709
2710	page_exec_bit = _PAGE_EXEC_4U;
2711
2712	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2713			 page_exec_bit);
2714}
2715
2716static void __init sun4v_pgprot_init(void)
2717{
2718	unsigned long page_none, page_shared, page_copy, page_readonly;
2719	unsigned long page_exec_bit;
2720	int i;
2721
2722	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2723				page_cache4v_flag | _PAGE_P_4V |
2724				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2725				_PAGE_EXEC_4V);
2726	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2727
2728	_PAGE_IE = _PAGE_IE_4V;
2729	_PAGE_E = _PAGE_E_4V;
2730	_PAGE_CACHE = page_cache4v_flag;
2731
2732#ifdef CONFIG_DEBUG_PAGEALLOC
2733	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2734#else
2735	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2736		PAGE_OFFSET;
2737#endif
2738	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2739				   _PAGE_W_4V);
2740
2741	for (i = 1; i < 4; i++)
2742		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2743
2744	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2745		     __ACCESS_BITS_4V | _PAGE_E_4V);
2746
2747	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2748			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2749			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2750			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2751
2752	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2753	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2754		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2755	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2756		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2757	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2758			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2759
2760	page_exec_bit = _PAGE_EXEC_4V;
2761
2762	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2763			 page_exec_bit);
2764}
2765
2766unsigned long pte_sz_bits(unsigned long sz)
2767{
2768	if (tlb_type == hypervisor) {
2769		switch (sz) {
2770		case 8 * 1024:
2771		default:
2772			return _PAGE_SZ8K_4V;
2773		case 64 * 1024:
2774			return _PAGE_SZ64K_4V;
2775		case 512 * 1024:
2776			return _PAGE_SZ512K_4V;
2777		case 4 * 1024 * 1024:
2778			return _PAGE_SZ4MB_4V;
2779		}
2780	} else {
2781		switch (sz) {
2782		case 8 * 1024:
2783		default:
2784			return _PAGE_SZ8K_4U;
2785		case 64 * 1024:
2786			return _PAGE_SZ64K_4U;
2787		case 512 * 1024:
2788			return _PAGE_SZ512K_4U;
2789		case 4 * 1024 * 1024:
2790			return _PAGE_SZ4MB_4U;
2791		}
2792	}
2793}
2794
2795pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2796{
2797	pte_t pte;
2798
2799	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2800	pte_val(pte) |= (((unsigned long)space) << 32);
2801	pte_val(pte) |= pte_sz_bits(page_size);
2802
2803	return pte;
2804}
2805
2806static unsigned long kern_large_tte(unsigned long paddr)
2807{
2808	unsigned long val;
2809
2810	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2811	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2812	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2813	if (tlb_type == hypervisor)
2814		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2815		       page_cache4v_flag | _PAGE_P_4V |
2816		       _PAGE_EXEC_4V | _PAGE_W_4V);
2817
2818	return val | paddr;
2819}
2820
2821/* If not locked, zap it. */
2822void __flush_tlb_all(void)
2823{
2824	unsigned long pstate;
2825	int i;
2826
2827	__asm__ __volatile__("flushw\n\t"
2828			     "rdpr	%%pstate, %0\n\t"
2829			     "wrpr	%0, %1, %%pstate"
2830			     : "=r" (pstate)
2831			     : "i" (PSTATE_IE));
2832	if (tlb_type == hypervisor) {
2833		sun4v_mmu_demap_all();
2834	} else if (tlb_type == spitfire) {
2835		for (i = 0; i < 64; i++) {
2836			/* Spitfire Errata #32 workaround */
2837			/* NOTE: Always runs on spitfire, so no
2838			 *       cheetah+ page size encodings.
2839			 */
2840			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2841					     "flush	%%g6"
2842					     : /* No outputs */
2843					     : "r" (0),
2844					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2845
2846			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2847				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2848						     "membar #Sync"
2849						     : /* no outputs */
2850						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2851				spitfire_put_dtlb_data(i, 0x0UL);
2852			}
2853
2854			/* Spitfire Errata #32 workaround */
2855			/* NOTE: Always runs on spitfire, so no
2856			 *       cheetah+ page size encodings.
2857			 */
2858			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2859					     "flush	%%g6"
2860					     : /* No outputs */
2861					     : "r" (0),
2862					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2863
2864			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2865				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2866						     "membar #Sync"
2867						     : /* no outputs */
2868						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2869				spitfire_put_itlb_data(i, 0x0UL);
2870			}
2871		}
2872	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2873		cheetah_flush_dtlb_all();
2874		cheetah_flush_itlb_all();
2875	}
2876	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2877			     : : "r" (pstate));
2878}
2879
2880pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
2881{
2882	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2883	pte_t *pte = NULL;
2884
2885	if (page)
2886		pte = (pte_t *) page_address(page);
2887
2888	return pte;
2889}
2890
2891pgtable_t pte_alloc_one(struct mm_struct *mm)
2892{
2893	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2894	if (!page)
2895		return NULL;
2896	if (!pgtable_pte_page_ctor(page)) {
2897		__free_page(page);
2898		return NULL;
2899	}
2900	return (pte_t *) page_address(page);
2901}
2902
2903void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2904{
2905	free_page((unsigned long)pte);
2906}
2907
2908static void __pte_free(pgtable_t pte)
2909{
2910	struct page *page = virt_to_page(pte);
2911
2912	pgtable_pte_page_dtor(page);
2913	__free_page(page);
2914}
2915
2916void pte_free(struct mm_struct *mm, pgtable_t pte)
2917{
2918	__pte_free(pte);
2919}
2920
2921void pgtable_free(void *table, bool is_page)
2922{
2923	if (is_page)
2924		__pte_free(table);
2925	else
2926		kmem_cache_free(pgtable_cache, table);
2927}
2928
2929#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2930void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2931			  pmd_t *pmd)
2932{
2933	unsigned long pte, flags;
2934	struct mm_struct *mm;
2935	pmd_t entry = *pmd;
2936
2937	if (!pmd_large(entry) || !pmd_young(entry))
2938		return;
2939
2940	pte = pmd_val(entry);
2941
2942	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2943	if (!(pte & _PAGE_VALID))
2944		return;
2945
2946	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2947	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2948
2949	mm = vma->vm_mm;
2950
2951	spin_lock_irqsave(&mm->context.lock, flags);
2952
2953	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2954		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2955					addr, pte);
2956
2957	spin_unlock_irqrestore(&mm->context.lock, flags);
2958}
2959#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2960
2961#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2962static void context_reload(void *__data)
2963{
2964	struct mm_struct *mm = __data;
2965
2966	if (mm == current->mm)
2967		load_secondary_context(mm);
2968}
2969
2970void hugetlb_setup(struct pt_regs *regs)
2971{
2972	struct mm_struct *mm = current->mm;
2973	struct tsb_config *tp;
2974
2975	if (faulthandler_disabled() || !mm) {
2976		const struct exception_table_entry *entry;
2977
2978		entry = search_exception_tables(regs->tpc);
2979		if (entry) {
2980			regs->tpc = entry->fixup;
2981			regs->tnpc = regs->tpc + 4;
2982			return;
2983		}
2984		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2985		die_if_kernel("HugeTSB in atomic", regs);
2986	}
2987
2988	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2989	if (likely(tp->tsb == NULL))
2990		tsb_grow(mm, MM_TSB_HUGE, 0);
2991
2992	tsb_context_switch(mm);
2993	smp_tsb_sync(mm);
2994
2995	/* On UltraSPARC-III+ and later, configure the second half of
2996	 * the Data-TLB for huge pages.
2997	 */
2998	if (tlb_type == cheetah_plus) {
2999		bool need_context_reload = false;
3000		unsigned long ctx;
3001
3002		spin_lock_irq(&ctx_alloc_lock);
3003		ctx = mm->context.sparc64_ctx_val;
3004		ctx &= ~CTX_PGSZ_MASK;
3005		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3006		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3007
3008		if (ctx != mm->context.sparc64_ctx_val) {
3009			/* When changing the page size fields, we
3010			 * must perform a context flush so that no
3011			 * stale entries match.  This flush must
3012			 * occur with the original context register
3013			 * settings.
3014			 */
3015			do_flush_tlb_mm(mm);
3016
3017			/* Reload the context register of all processors
3018			 * also executing in this address space.
3019			 */
3020			mm->context.sparc64_ctx_val = ctx;
3021			need_context_reload = true;
3022		}
3023		spin_unlock_irq(&ctx_alloc_lock);
3024
3025		if (need_context_reload)
3026			on_each_cpu(context_reload, mm, 0);
3027	}
3028}
3029#endif
3030
3031static struct resource code_resource = {
3032	.name	= "Kernel code",
3033	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3034};
3035
3036static struct resource data_resource = {
3037	.name	= "Kernel data",
3038	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3039};
3040
3041static struct resource bss_resource = {
3042	.name	= "Kernel bss",
3043	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3044};
3045
3046static inline resource_size_t compute_kern_paddr(void *addr)
3047{
3048	return (resource_size_t) (addr - KERNBASE + kern_base);
3049}
3050
3051static void __init kernel_lds_init(void)
3052{
3053	code_resource.start = compute_kern_paddr(_text);
3054	code_resource.end   = compute_kern_paddr(_etext - 1);
3055	data_resource.start = compute_kern_paddr(_etext);
3056	data_resource.end   = compute_kern_paddr(_edata - 1);
3057	bss_resource.start  = compute_kern_paddr(__bss_start);
3058	bss_resource.end    = compute_kern_paddr(_end - 1);
3059}
3060
3061static int __init report_memory(void)
3062{
3063	int i;
3064	struct resource *res;
3065
3066	kernel_lds_init();
3067
3068	for (i = 0; i < pavail_ents; i++) {
3069		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3070
3071		if (!res) {
3072			pr_warn("Failed to allocate source.\n");
3073			break;
3074		}
3075
3076		res->name = "System RAM";
3077		res->start = pavail[i].phys_addr;
3078		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3079		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3080
3081		if (insert_resource(&iomem_resource, res) < 0) {
3082			pr_warn("Resource insertion failed.\n");
3083			break;
3084		}
3085
3086		insert_resource(res, &code_resource);
3087		insert_resource(res, &data_resource);
3088		insert_resource(res, &bss_resource);
3089	}
3090
3091	return 0;
3092}
3093arch_initcall(report_memory);
3094
3095#ifdef CONFIG_SMP
3096#define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
3097#else
3098#define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
3099#endif
3100
3101void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3102{
3103	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3104		if (start < LOW_OBP_ADDRESS) {
3105			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3106			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3107		}
3108		if (end > HI_OBP_ADDRESS) {
3109			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3110			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3111		}
3112	} else {
3113		flush_tsb_kernel_range(start, end);
3114		do_flush_tlb_kernel_range(start, end);
3115	}
3116}
3117
3118void copy_user_highpage(struct page *to, struct page *from,
3119	unsigned long vaddr, struct vm_area_struct *vma)
3120{
3121	char *vfrom, *vto;
3122
3123	vfrom = kmap_atomic(from);
3124	vto = kmap_atomic(to);
3125	copy_user_page(vto, vfrom, vaddr, to);
3126	kunmap_atomic(vto);
3127	kunmap_atomic(vfrom);
3128
3129	/* If this page has ADI enabled, copy over any ADI tags
3130	 * as well
3131	 */
3132	if (vma->vm_flags & VM_SPARC_ADI) {
3133		unsigned long pfrom, pto, i, adi_tag;
3134
3135		pfrom = page_to_phys(from);
3136		pto = page_to_phys(to);
3137
3138		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3139			asm volatile("ldxa [%1] %2, %0\n\t"
3140					: "=r" (adi_tag)
3141					:  "r" (i), "i" (ASI_MCD_REAL));
3142			asm volatile("stxa %0, [%1] %2\n\t"
3143					:
3144					: "r" (adi_tag), "r" (pto),
3145					  "i" (ASI_MCD_REAL));
3146			pto += adi_blksize();
3147		}
3148		asm volatile("membar #Sync\n\t");
3149	}
3150}
3151EXPORT_SYMBOL(copy_user_highpage);
3152
3153void copy_highpage(struct page *to, struct page *from)
3154{
3155	char *vfrom, *vto;
3156
3157	vfrom = kmap_atomic(from);
3158	vto = kmap_atomic(to);
3159	copy_page(vto, vfrom);
3160	kunmap_atomic(vto);
3161	kunmap_atomic(vfrom);
3162
3163	/* If this platform is ADI enabled, copy any ADI tags
3164	 * as well
3165	 */
3166	if (adi_capable()) {
3167		unsigned long pfrom, pto, i, adi_tag;
3168
3169		pfrom = page_to_phys(from);
3170		pto = page_to_phys(to);
3171
3172		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3173			asm volatile("ldxa [%1] %2, %0\n\t"
3174					: "=r" (adi_tag)
3175					:  "r" (i), "i" (ASI_MCD_REAL));
3176			asm volatile("stxa %0, [%1] %2\n\t"
3177					:
3178					: "r" (adi_tag), "r" (pto),
3179					  "i" (ASI_MCD_REAL));
3180			pto += adi_blksize();
3181		}
3182		asm volatile("membar #Sync\n\t");
3183	}
3184}
3185EXPORT_SYMBOL(copy_highpage);
3186