18c2ecf20Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */ 28c2ecf20Sopenharmony_ci#ifndef _SPARC64_TSB_H 38c2ecf20Sopenharmony_ci#define _SPARC64_TSB_H 48c2ecf20Sopenharmony_ci 58c2ecf20Sopenharmony_ci/* The sparc64 TSB is similar to the powerpc hashtables. It's a 68c2ecf20Sopenharmony_ci * power-of-2 sized table of TAG/PTE pairs. The cpu precomputes 78c2ecf20Sopenharmony_ci * pointers into this table for 8K and 64K page sizes, and also a 88c2ecf20Sopenharmony_ci * comparison TAG based upon the virtual address and context which 98c2ecf20Sopenharmony_ci * faults. 108c2ecf20Sopenharmony_ci * 118c2ecf20Sopenharmony_ci * TLB miss trap handler software does the actual lookup via something 128c2ecf20Sopenharmony_ci * of the form: 138c2ecf20Sopenharmony_ci * 148c2ecf20Sopenharmony_ci * ldxa [%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1 158c2ecf20Sopenharmony_ci * ldxa [%g0] ASI_{D,I}MMU, %g6 168c2ecf20Sopenharmony_ci * sllx %g6, 22, %g6 178c2ecf20Sopenharmony_ci * srlx %g6, 22, %g6 188c2ecf20Sopenharmony_ci * ldda [%g1] ASI_NUCLEUS_QUAD_LDD, %g4 198c2ecf20Sopenharmony_ci * cmp %g4, %g6 208c2ecf20Sopenharmony_ci * bne,pn %xcc, tsb_miss_{d,i}tlb 218c2ecf20Sopenharmony_ci * mov FAULT_CODE_{D,I}TLB, %g3 228c2ecf20Sopenharmony_ci * stxa %g5, [%g0] ASI_{D,I}TLB_DATA_IN 238c2ecf20Sopenharmony_ci * retry 248c2ecf20Sopenharmony_ci * 258c2ecf20Sopenharmony_ci * 268c2ecf20Sopenharmony_ci * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte 278c2ecf20Sopenharmony_ci * PTE. The TAG is of the same layout as the TLB TAG TARGET mmu 288c2ecf20Sopenharmony_ci * register which is: 298c2ecf20Sopenharmony_ci * 308c2ecf20Sopenharmony_ci * ------------------------------------------------- 318c2ecf20Sopenharmony_ci * | - | CONTEXT | - | VADDR bits 63:22 | 328c2ecf20Sopenharmony_ci * ------------------------------------------------- 338c2ecf20Sopenharmony_ci * 63 61 60 48 47 42 41 0 348c2ecf20Sopenharmony_ci * 358c2ecf20Sopenharmony_ci * But actually, since we use per-mm TSB's, we zero out the CONTEXT 368c2ecf20Sopenharmony_ci * field. 378c2ecf20Sopenharmony_ci * 388c2ecf20Sopenharmony_ci * Like the powerpc hashtables we need to use locking in order to 398c2ecf20Sopenharmony_ci * synchronize while we update the entries. PTE updates need locking 408c2ecf20Sopenharmony_ci * as well. 418c2ecf20Sopenharmony_ci * 428c2ecf20Sopenharmony_ci * We need to carefully choose a lock bits for the TSB entry. We 438c2ecf20Sopenharmony_ci * choose to use bit 47 in the tag. Also, since we never map anything 448c2ecf20Sopenharmony_ci * at page zero in context zero, we use zero as an invalid tag entry. 458c2ecf20Sopenharmony_ci * When the lock bit is set, this forces a tag comparison failure. 468c2ecf20Sopenharmony_ci */ 478c2ecf20Sopenharmony_ci 488c2ecf20Sopenharmony_ci#define TSB_TAG_LOCK_BIT 47 498c2ecf20Sopenharmony_ci#define TSB_TAG_LOCK_HIGH (1 << (TSB_TAG_LOCK_BIT - 32)) 508c2ecf20Sopenharmony_ci 518c2ecf20Sopenharmony_ci#define TSB_TAG_INVALID_BIT 46 528c2ecf20Sopenharmony_ci#define TSB_TAG_INVALID_HIGH (1 << (TSB_TAG_INVALID_BIT - 32)) 538c2ecf20Sopenharmony_ci 548c2ecf20Sopenharmony_ci/* Some cpus support physical address quad loads. We want to use 558c2ecf20Sopenharmony_ci * those if possible so we don't need to hard-lock the TSB mapping 568c2ecf20Sopenharmony_ci * into the TLB. We encode some instruction patching in order to 578c2ecf20Sopenharmony_ci * support this. 588c2ecf20Sopenharmony_ci * 598c2ecf20Sopenharmony_ci * The kernel TSB is locked into the TLB by virtue of being in the 608c2ecf20Sopenharmony_ci * kernel image, so we don't play these games for swapper_tsb access. 618c2ecf20Sopenharmony_ci */ 628c2ecf20Sopenharmony_ci#ifndef __ASSEMBLY__ 638c2ecf20Sopenharmony_cistruct tsb_ldquad_phys_patch_entry { 648c2ecf20Sopenharmony_ci unsigned int addr; 658c2ecf20Sopenharmony_ci unsigned int sun4u_insn; 668c2ecf20Sopenharmony_ci unsigned int sun4v_insn; 678c2ecf20Sopenharmony_ci}; 688c2ecf20Sopenharmony_ciextern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch, 698c2ecf20Sopenharmony_ci __tsb_ldquad_phys_patch_end; 708c2ecf20Sopenharmony_ci 718c2ecf20Sopenharmony_cistruct tsb_phys_patch_entry { 728c2ecf20Sopenharmony_ci unsigned int addr; 738c2ecf20Sopenharmony_ci unsigned int insn; 748c2ecf20Sopenharmony_ci}; 758c2ecf20Sopenharmony_ciextern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end; 768c2ecf20Sopenharmony_ci#endif 778c2ecf20Sopenharmony_ci#define TSB_LOAD_QUAD(TSB, REG) \ 788c2ecf20Sopenharmony_ci661: ldda [TSB] ASI_NUCLEUS_QUAD_LDD, REG; \ 798c2ecf20Sopenharmony_ci .section .tsb_ldquad_phys_patch, "ax"; \ 808c2ecf20Sopenharmony_ci .word 661b; \ 818c2ecf20Sopenharmony_ci ldda [TSB] ASI_QUAD_LDD_PHYS, REG; \ 828c2ecf20Sopenharmony_ci ldda [TSB] ASI_QUAD_LDD_PHYS_4V, REG; \ 838c2ecf20Sopenharmony_ci .previous 848c2ecf20Sopenharmony_ci 858c2ecf20Sopenharmony_ci#define TSB_LOAD_TAG_HIGH(TSB, REG) \ 868c2ecf20Sopenharmony_ci661: lduwa [TSB] ASI_N, REG; \ 878c2ecf20Sopenharmony_ci .section .tsb_phys_patch, "ax"; \ 888c2ecf20Sopenharmony_ci .word 661b; \ 898c2ecf20Sopenharmony_ci lduwa [TSB] ASI_PHYS_USE_EC, REG; \ 908c2ecf20Sopenharmony_ci .previous 918c2ecf20Sopenharmony_ci 928c2ecf20Sopenharmony_ci#define TSB_LOAD_TAG(TSB, REG) \ 938c2ecf20Sopenharmony_ci661: ldxa [TSB] ASI_N, REG; \ 948c2ecf20Sopenharmony_ci .section .tsb_phys_patch, "ax"; \ 958c2ecf20Sopenharmony_ci .word 661b; \ 968c2ecf20Sopenharmony_ci ldxa [TSB] ASI_PHYS_USE_EC, REG; \ 978c2ecf20Sopenharmony_ci .previous 988c2ecf20Sopenharmony_ci 998c2ecf20Sopenharmony_ci#define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \ 1008c2ecf20Sopenharmony_ci661: casa [TSB] ASI_N, REG1, REG2; \ 1018c2ecf20Sopenharmony_ci .section .tsb_phys_patch, "ax"; \ 1028c2ecf20Sopenharmony_ci .word 661b; \ 1038c2ecf20Sopenharmony_ci casa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \ 1048c2ecf20Sopenharmony_ci .previous 1058c2ecf20Sopenharmony_ci 1068c2ecf20Sopenharmony_ci#define TSB_CAS_TAG(TSB, REG1, REG2) \ 1078c2ecf20Sopenharmony_ci661: casxa [TSB] ASI_N, REG1, REG2; \ 1088c2ecf20Sopenharmony_ci .section .tsb_phys_patch, "ax"; \ 1098c2ecf20Sopenharmony_ci .word 661b; \ 1108c2ecf20Sopenharmony_ci casxa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \ 1118c2ecf20Sopenharmony_ci .previous 1128c2ecf20Sopenharmony_ci 1138c2ecf20Sopenharmony_ci#define TSB_STORE(ADDR, VAL) \ 1148c2ecf20Sopenharmony_ci661: stxa VAL, [ADDR] ASI_N; \ 1158c2ecf20Sopenharmony_ci .section .tsb_phys_patch, "ax"; \ 1168c2ecf20Sopenharmony_ci .word 661b; \ 1178c2ecf20Sopenharmony_ci stxa VAL, [ADDR] ASI_PHYS_USE_EC; \ 1188c2ecf20Sopenharmony_ci .previous 1198c2ecf20Sopenharmony_ci 1208c2ecf20Sopenharmony_ci#define TSB_LOCK_TAG(TSB, REG1, REG2) \ 1218c2ecf20Sopenharmony_ci99: TSB_LOAD_TAG_HIGH(TSB, REG1); \ 1228c2ecf20Sopenharmony_ci sethi %hi(TSB_TAG_LOCK_HIGH), REG2;\ 1238c2ecf20Sopenharmony_ci andcc REG1, REG2, %g0; \ 1248c2ecf20Sopenharmony_ci bne,pn %icc, 99b; \ 1258c2ecf20Sopenharmony_ci nop; \ 1268c2ecf20Sopenharmony_ci TSB_CAS_TAG_HIGH(TSB, REG1, REG2); \ 1278c2ecf20Sopenharmony_ci cmp REG1, REG2; \ 1288c2ecf20Sopenharmony_ci bne,pn %icc, 99b; \ 1298c2ecf20Sopenharmony_ci nop; \ 1308c2ecf20Sopenharmony_ci 1318c2ecf20Sopenharmony_ci#define TSB_WRITE(TSB, TTE, TAG) \ 1328c2ecf20Sopenharmony_ci add TSB, 0x8, TSB; \ 1338c2ecf20Sopenharmony_ci TSB_STORE(TSB, TTE); \ 1348c2ecf20Sopenharmony_ci sub TSB, 0x8, TSB; \ 1358c2ecf20Sopenharmony_ci TSB_STORE(TSB, TAG); 1368c2ecf20Sopenharmony_ci 1378c2ecf20Sopenharmony_ci /* Do a kernel page table walk. Leaves valid PTE value in 1388c2ecf20Sopenharmony_ci * REG1. Jumps to FAIL_LABEL on early page table walk 1398c2ecf20Sopenharmony_ci * termination. VADDR will not be clobbered, but REG2 will. 1408c2ecf20Sopenharmony_ci * 1418c2ecf20Sopenharmony_ci * There are two masks we must apply to propagate bits from 1428c2ecf20Sopenharmony_ci * the virtual address into the PTE physical address field 1438c2ecf20Sopenharmony_ci * when dealing with huge pages. This is because the page 1448c2ecf20Sopenharmony_ci * table boundaries do not match the huge page size(s) the 1458c2ecf20Sopenharmony_ci * hardware supports. 1468c2ecf20Sopenharmony_ci * 1478c2ecf20Sopenharmony_ci * In these cases we propagate the bits that are below the 1488c2ecf20Sopenharmony_ci * page table level where we saw the huge page mapping, but 1498c2ecf20Sopenharmony_ci * are still within the relevant physical bits for the huge 1508c2ecf20Sopenharmony_ci * page size in question. So for PMD mappings (which fall on 1518c2ecf20Sopenharmony_ci * bit 23, for 8MB per PMD) we must propagate bit 22 for a 1528c2ecf20Sopenharmony_ci * 4MB huge page. For huge PUDs (which fall on bit 33, for 1538c2ecf20Sopenharmony_ci * 8GB per PUD), we have to accommodate 256MB and 2GB huge 1548c2ecf20Sopenharmony_ci * pages. So for those we propagate bits 32 to 28. 1558c2ecf20Sopenharmony_ci */ 1568c2ecf20Sopenharmony_ci#define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL) \ 1578c2ecf20Sopenharmony_ci sethi %hi(swapper_pg_dir), REG1; \ 1588c2ecf20Sopenharmony_ci or REG1, %lo(swapper_pg_dir), REG1; \ 1598c2ecf20Sopenharmony_ci sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \ 1608c2ecf20Sopenharmony_ci srlx REG2, 64 - PAGE_SHIFT, REG2; \ 1618c2ecf20Sopenharmony_ci andn REG2, 0x7, REG2; \ 1628c2ecf20Sopenharmony_ci ldx [REG1 + REG2], REG1; \ 1638c2ecf20Sopenharmony_ci brz,pn REG1, FAIL_LABEL; \ 1648c2ecf20Sopenharmony_ci sllx VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \ 1658c2ecf20Sopenharmony_ci srlx REG2, 64 - PAGE_SHIFT, REG2; \ 1668c2ecf20Sopenharmony_ci andn REG2, 0x7, REG2; \ 1678c2ecf20Sopenharmony_ci ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ 1688c2ecf20Sopenharmony_ci brz,pn REG1, FAIL_LABEL; \ 1698c2ecf20Sopenharmony_ci sethi %uhi(_PAGE_PUD_HUGE), REG2; \ 1708c2ecf20Sopenharmony_ci brz,pn REG1, FAIL_LABEL; \ 1718c2ecf20Sopenharmony_ci sllx REG2, 32, REG2; \ 1728c2ecf20Sopenharmony_ci andcc REG1, REG2, %g0; \ 1738c2ecf20Sopenharmony_ci sethi %hi(0xf8000000), REG2; \ 1748c2ecf20Sopenharmony_ci bne,pt %xcc, 697f; \ 1758c2ecf20Sopenharmony_ci sllx REG2, 1, REG2; \ 1768c2ecf20Sopenharmony_ci sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \ 1778c2ecf20Sopenharmony_ci srlx REG2, 64 - PAGE_SHIFT, REG2; \ 1788c2ecf20Sopenharmony_ci andn REG2, 0x7, REG2; \ 1798c2ecf20Sopenharmony_ci ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ 1808c2ecf20Sopenharmony_ci sethi %uhi(_PAGE_PMD_HUGE), REG2; \ 1818c2ecf20Sopenharmony_ci brz,pn REG1, FAIL_LABEL; \ 1828c2ecf20Sopenharmony_ci sllx REG2, 32, REG2; \ 1838c2ecf20Sopenharmony_ci andcc REG1, REG2, %g0; \ 1848c2ecf20Sopenharmony_ci be,pn %xcc, 698f; \ 1858c2ecf20Sopenharmony_ci sethi %hi(0x400000), REG2; \ 1868c2ecf20Sopenharmony_ci697: brgez,pn REG1, FAIL_LABEL; \ 1878c2ecf20Sopenharmony_ci andn REG1, REG2, REG1; \ 1888c2ecf20Sopenharmony_ci and VADDR, REG2, REG2; \ 1898c2ecf20Sopenharmony_ci ba,pt %xcc, 699f; \ 1908c2ecf20Sopenharmony_ci or REG1, REG2, REG1; \ 1918c2ecf20Sopenharmony_ci698: sllx VADDR, 64 - PMD_SHIFT, REG2; \ 1928c2ecf20Sopenharmony_ci srlx REG2, 64 - PAGE_SHIFT, REG2; \ 1938c2ecf20Sopenharmony_ci andn REG2, 0x7, REG2; \ 1948c2ecf20Sopenharmony_ci ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ 1958c2ecf20Sopenharmony_ci brgez,pn REG1, FAIL_LABEL; \ 1968c2ecf20Sopenharmony_ci nop; \ 1978c2ecf20Sopenharmony_ci699: 1988c2ecf20Sopenharmony_ci 1998c2ecf20Sopenharmony_ci /* PUD has been loaded into REG1, interpret the value, seeing 2008c2ecf20Sopenharmony_ci * if it is a HUGE PUD or a normal one. If it is not valid 2018c2ecf20Sopenharmony_ci * then jump to FAIL_LABEL. If it is a HUGE PUD, and it 2028c2ecf20Sopenharmony_ci * translates to a valid PTE, branch to PTE_LABEL. 2038c2ecf20Sopenharmony_ci * 2048c2ecf20Sopenharmony_ci * We have to propagate bits [32:22] from the virtual address 2058c2ecf20Sopenharmony_ci * to resolve at 4M granularity. 2068c2ecf20Sopenharmony_ci */ 2078c2ecf20Sopenharmony_ci#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 2088c2ecf20Sopenharmony_ci#define USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \ 2098c2ecf20Sopenharmony_ci700: ba 700f; \ 2108c2ecf20Sopenharmony_ci nop; \ 2118c2ecf20Sopenharmony_ci .section .pud_huge_patch, "ax"; \ 2128c2ecf20Sopenharmony_ci .word 700b; \ 2138c2ecf20Sopenharmony_ci nop; \ 2148c2ecf20Sopenharmony_ci .previous; \ 2158c2ecf20Sopenharmony_ci brz,pn REG1, FAIL_LABEL; \ 2168c2ecf20Sopenharmony_ci sethi %uhi(_PAGE_PUD_HUGE), REG2; \ 2178c2ecf20Sopenharmony_ci sllx REG2, 32, REG2; \ 2188c2ecf20Sopenharmony_ci andcc REG1, REG2, %g0; \ 2198c2ecf20Sopenharmony_ci be,pt %xcc, 700f; \ 2208c2ecf20Sopenharmony_ci sethi %hi(0xffe00000), REG2; \ 2218c2ecf20Sopenharmony_ci sllx REG2, 1, REG2; \ 2228c2ecf20Sopenharmony_ci brgez,pn REG1, FAIL_LABEL; \ 2238c2ecf20Sopenharmony_ci andn REG1, REG2, REG1; \ 2248c2ecf20Sopenharmony_ci and VADDR, REG2, REG2; \ 2258c2ecf20Sopenharmony_ci brlz,pt REG1, PTE_LABEL; \ 2268c2ecf20Sopenharmony_ci or REG1, REG2, REG1; \ 2278c2ecf20Sopenharmony_ci700: 2288c2ecf20Sopenharmony_ci#else 2298c2ecf20Sopenharmony_ci#define USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \ 2308c2ecf20Sopenharmony_ci brz,pn REG1, FAIL_LABEL; \ 2318c2ecf20Sopenharmony_ci nop; 2328c2ecf20Sopenharmony_ci#endif 2338c2ecf20Sopenharmony_ci 2348c2ecf20Sopenharmony_ci /* PMD has been loaded into REG1, interpret the value, seeing 2358c2ecf20Sopenharmony_ci * if it is a HUGE PMD or a normal one. If it is not valid 2368c2ecf20Sopenharmony_ci * then jump to FAIL_LABEL. If it is a HUGE PMD, and it 2378c2ecf20Sopenharmony_ci * translates to a valid PTE, branch to PTE_LABEL. 2388c2ecf20Sopenharmony_ci * 2398c2ecf20Sopenharmony_ci * We have to propagate the 4MB bit of the virtual address 2408c2ecf20Sopenharmony_ci * because we are fabricating 8MB pages using 4MB hw pages. 2418c2ecf20Sopenharmony_ci */ 2428c2ecf20Sopenharmony_ci#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 2438c2ecf20Sopenharmony_ci#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \ 2448c2ecf20Sopenharmony_ci brz,pn REG1, FAIL_LABEL; \ 2458c2ecf20Sopenharmony_ci sethi %uhi(_PAGE_PMD_HUGE), REG2; \ 2468c2ecf20Sopenharmony_ci sllx REG2, 32, REG2; \ 2478c2ecf20Sopenharmony_ci andcc REG1, REG2, %g0; \ 2488c2ecf20Sopenharmony_ci be,pt %xcc, 700f; \ 2498c2ecf20Sopenharmony_ci sethi %hi(4 * 1024 * 1024), REG2; \ 2508c2ecf20Sopenharmony_ci brgez,pn REG1, FAIL_LABEL; \ 2518c2ecf20Sopenharmony_ci andn REG1, REG2, REG1; \ 2528c2ecf20Sopenharmony_ci and VADDR, REG2, REG2; \ 2538c2ecf20Sopenharmony_ci brlz,pt REG1, PTE_LABEL; \ 2548c2ecf20Sopenharmony_ci or REG1, REG2, REG1; \ 2558c2ecf20Sopenharmony_ci700: 2568c2ecf20Sopenharmony_ci#else 2578c2ecf20Sopenharmony_ci#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \ 2588c2ecf20Sopenharmony_ci brz,pn REG1, FAIL_LABEL; \ 2598c2ecf20Sopenharmony_ci nop; 2608c2ecf20Sopenharmony_ci#endif 2618c2ecf20Sopenharmony_ci 2628c2ecf20Sopenharmony_ci /* Do a user page table walk in MMU globals. Leaves final, 2638c2ecf20Sopenharmony_ci * valid, PTE value in REG1. Jumps to FAIL_LABEL on early 2648c2ecf20Sopenharmony_ci * page table walk termination or if the PTE is not valid. 2658c2ecf20Sopenharmony_ci * 2668c2ecf20Sopenharmony_ci * Physical base of page tables is in PHYS_PGD which will not 2678c2ecf20Sopenharmony_ci * be modified. 2688c2ecf20Sopenharmony_ci * 2698c2ecf20Sopenharmony_ci * VADDR will not be clobbered, but REG1 and REG2 will. 2708c2ecf20Sopenharmony_ci */ 2718c2ecf20Sopenharmony_ci#define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL) \ 2728c2ecf20Sopenharmony_ci sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \ 2738c2ecf20Sopenharmony_ci srlx REG2, 64 - PAGE_SHIFT, REG2; \ 2748c2ecf20Sopenharmony_ci andn REG2, 0x7, REG2; \ 2758c2ecf20Sopenharmony_ci ldxa [PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \ 2768c2ecf20Sopenharmony_ci brz,pn REG1, FAIL_LABEL; \ 2778c2ecf20Sopenharmony_ci sllx VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \ 2788c2ecf20Sopenharmony_ci srlx REG2, 64 - PAGE_SHIFT, REG2; \ 2798c2ecf20Sopenharmony_ci andn REG2, 0x7, REG2; \ 2808c2ecf20Sopenharmony_ci ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ 2818c2ecf20Sopenharmony_ci USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \ 2828c2ecf20Sopenharmony_ci brz,pn REG1, FAIL_LABEL; \ 2838c2ecf20Sopenharmony_ci sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \ 2848c2ecf20Sopenharmony_ci srlx REG2, 64 - PAGE_SHIFT, REG2; \ 2858c2ecf20Sopenharmony_ci andn REG2, 0x7, REG2; \ 2868c2ecf20Sopenharmony_ci ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ 2878c2ecf20Sopenharmony_ci USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \ 2888c2ecf20Sopenharmony_ci sllx VADDR, 64 - PMD_SHIFT, REG2; \ 2898c2ecf20Sopenharmony_ci srlx REG2, 64 - PAGE_SHIFT, REG2; \ 2908c2ecf20Sopenharmony_ci andn REG2, 0x7, REG2; \ 2918c2ecf20Sopenharmony_ci add REG1, REG2, REG1; \ 2928c2ecf20Sopenharmony_ci ldxa [REG1] ASI_PHYS_USE_EC, REG1; \ 2938c2ecf20Sopenharmony_ci brgez,pn REG1, FAIL_LABEL; \ 2948c2ecf20Sopenharmony_ci nop; \ 2958c2ecf20Sopenharmony_ci800: 2968c2ecf20Sopenharmony_ci 2978c2ecf20Sopenharmony_ci/* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0. 2988c2ecf20Sopenharmony_ci * If no entry is found, FAIL_LABEL will be branched to. On success 2998c2ecf20Sopenharmony_ci * the resulting PTE value will be left in REG1. VADDR is preserved 3008c2ecf20Sopenharmony_ci * by this routine. 3018c2ecf20Sopenharmony_ci */ 3028c2ecf20Sopenharmony_ci#define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \ 3038c2ecf20Sopenharmony_ci sethi %hi(prom_trans), REG1; \ 3048c2ecf20Sopenharmony_ci or REG1, %lo(prom_trans), REG1; \ 3058c2ecf20Sopenharmony_ci97: ldx [REG1 + 0x00], REG2; \ 3068c2ecf20Sopenharmony_ci brz,pn REG2, FAIL_LABEL; \ 3078c2ecf20Sopenharmony_ci nop; \ 3088c2ecf20Sopenharmony_ci ldx [REG1 + 0x08], REG3; \ 3098c2ecf20Sopenharmony_ci add REG2, REG3, REG3; \ 3108c2ecf20Sopenharmony_ci cmp REG2, VADDR; \ 3118c2ecf20Sopenharmony_ci bgu,pt %xcc, 98f; \ 3128c2ecf20Sopenharmony_ci cmp VADDR, REG3; \ 3138c2ecf20Sopenharmony_ci bgeu,pt %xcc, 98f; \ 3148c2ecf20Sopenharmony_ci ldx [REG1 + 0x10], REG3; \ 3158c2ecf20Sopenharmony_ci sub VADDR, REG2, REG2; \ 3168c2ecf20Sopenharmony_ci ba,pt %xcc, 99f; \ 3178c2ecf20Sopenharmony_ci add REG3, REG2, REG1; \ 3188c2ecf20Sopenharmony_ci98: ba,pt %xcc, 97b; \ 3198c2ecf20Sopenharmony_ci add REG1, (3 * 8), REG1; \ 3208c2ecf20Sopenharmony_ci99: 3218c2ecf20Sopenharmony_ci 3228c2ecf20Sopenharmony_ci /* We use a 32K TSB for the whole kernel, this allows to 3238c2ecf20Sopenharmony_ci * handle about 16MB of modules and vmalloc mappings without 3248c2ecf20Sopenharmony_ci * incurring many hash conflicts. 3258c2ecf20Sopenharmony_ci */ 3268c2ecf20Sopenharmony_ci#define KERNEL_TSB_SIZE_BYTES (32 * 1024) 3278c2ecf20Sopenharmony_ci#define KERNEL_TSB_NENTRIES \ 3288c2ecf20Sopenharmony_ci (KERNEL_TSB_SIZE_BYTES / 16) 3298c2ecf20Sopenharmony_ci#define KERNEL_TSB4M_NENTRIES 4096 3308c2ecf20Sopenharmony_ci 3318c2ecf20Sopenharmony_ci /* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL 3328c2ecf20Sopenharmony_ci * on TSB hit. REG1, REG2, REG3, and REG4 are used as temporaries 3338c2ecf20Sopenharmony_ci * and the found TTE will be left in REG1. REG3 and REG4 must 3348c2ecf20Sopenharmony_ci * be an even/odd pair of registers. 3358c2ecf20Sopenharmony_ci * 3368c2ecf20Sopenharmony_ci * VADDR and TAG will be preserved and not clobbered by this macro. 3378c2ecf20Sopenharmony_ci */ 3388c2ecf20Sopenharmony_ci#define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \ 3398c2ecf20Sopenharmony_ci661: sethi %uhi(swapper_tsb), REG1; \ 3408c2ecf20Sopenharmony_ci sethi %hi(swapper_tsb), REG2; \ 3418c2ecf20Sopenharmony_ci or REG1, %ulo(swapper_tsb), REG1; \ 3428c2ecf20Sopenharmony_ci or REG2, %lo(swapper_tsb), REG2; \ 3438c2ecf20Sopenharmony_ci .section .swapper_tsb_phys_patch, "ax"; \ 3448c2ecf20Sopenharmony_ci .word 661b; \ 3458c2ecf20Sopenharmony_ci .previous; \ 3468c2ecf20Sopenharmony_ci sllx REG1, 32, REG1; \ 3478c2ecf20Sopenharmony_ci or REG1, REG2, REG1; \ 3488c2ecf20Sopenharmony_ci srlx VADDR, PAGE_SHIFT, REG2; \ 3498c2ecf20Sopenharmony_ci and REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \ 3508c2ecf20Sopenharmony_ci sllx REG2, 4, REG2; \ 3518c2ecf20Sopenharmony_ci add REG1, REG2, REG2; \ 3528c2ecf20Sopenharmony_ci TSB_LOAD_QUAD(REG2, REG3); \ 3538c2ecf20Sopenharmony_ci cmp REG3, TAG; \ 3548c2ecf20Sopenharmony_ci be,a,pt %xcc, OK_LABEL; \ 3558c2ecf20Sopenharmony_ci mov REG4, REG1; 3568c2ecf20Sopenharmony_ci 3578c2ecf20Sopenharmony_ci#ifndef CONFIG_DEBUG_PAGEALLOC 3588c2ecf20Sopenharmony_ci /* This version uses a trick, the TAG is already (VADDR >> 22) so 3598c2ecf20Sopenharmony_ci * we can make use of that for the index computation. 3608c2ecf20Sopenharmony_ci */ 3618c2ecf20Sopenharmony_ci#define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \ 3628c2ecf20Sopenharmony_ci661: sethi %uhi(swapper_4m_tsb), REG1; \ 3638c2ecf20Sopenharmony_ci sethi %hi(swapper_4m_tsb), REG2; \ 3648c2ecf20Sopenharmony_ci or REG1, %ulo(swapper_4m_tsb), REG1; \ 3658c2ecf20Sopenharmony_ci or REG2, %lo(swapper_4m_tsb), REG2; \ 3668c2ecf20Sopenharmony_ci .section .swapper_4m_tsb_phys_patch, "ax"; \ 3678c2ecf20Sopenharmony_ci .word 661b; \ 3688c2ecf20Sopenharmony_ci .previous; \ 3698c2ecf20Sopenharmony_ci sllx REG1, 32, REG1; \ 3708c2ecf20Sopenharmony_ci or REG1, REG2, REG1; \ 3718c2ecf20Sopenharmony_ci and TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \ 3728c2ecf20Sopenharmony_ci sllx REG2, 4, REG2; \ 3738c2ecf20Sopenharmony_ci add REG1, REG2, REG2; \ 3748c2ecf20Sopenharmony_ci TSB_LOAD_QUAD(REG2, REG3); \ 3758c2ecf20Sopenharmony_ci cmp REG3, TAG; \ 3768c2ecf20Sopenharmony_ci be,a,pt %xcc, OK_LABEL; \ 3778c2ecf20Sopenharmony_ci mov REG4, REG1; 3788c2ecf20Sopenharmony_ci#endif 3798c2ecf20Sopenharmony_ci 3808c2ecf20Sopenharmony_ci#endif /* !(_SPARC64_TSB_H) */ 381