xref: /kernel/linux/linux-5.10/arch/sh/mm/ioremap.c (revision 8c2ecf20)
1/*
2 * arch/sh/mm/ioremap.c
3 *
4 * (C) Copyright 1995 1996 Linus Torvalds
5 * (C) Copyright 2005 - 2010  Paul Mundt
6 *
7 * Re-map IO memory to kernel address space so that we can access it.
8 * This is needed for high PCI addresses that aren't mapped in the
9 * 640k-1MB IO memory area on PC's
10 *
11 * This file is subject to the terms and conditions of the GNU General
12 * Public License. See the file "COPYING" in the main directory of this
13 * archive for more details.
14 */
15#include <linux/vmalloc.h>
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/mm.h>
19#include <linux/pci.h>
20#include <linux/io.h>
21#include <asm/io_trapped.h>
22#include <asm/page.h>
23#include <asm/pgalloc.h>
24#include <asm/addrspace.h>
25#include <asm/cacheflush.h>
26#include <asm/tlbflush.h>
27#include <asm/mmu.h>
28#include "ioremap.h"
29
30/*
31 * On 32-bit SH, we traditionally have the whole physical address space mapped
32 * at all times (as MIPS does), so "ioremap()" and "iounmap()" do not need to do
33 * anything but place the address in the proper segment.  This is true for P1
34 * and P2 addresses, as well as some P3 ones.  However, most of the P3 addresses
35 * and newer cores using extended addressing need to map through page tables, so
36 * the ioremap() implementation becomes a bit more complicated.
37 */
38#ifdef CONFIG_29BIT
39static void __iomem *
40__ioremap_29bit(phys_addr_t offset, unsigned long size, pgprot_t prot)
41{
42	phys_addr_t last_addr = offset + size - 1;
43
44	/*
45	 * For P1 and P2 space this is trivial, as everything is already
46	 * mapped. Uncached access for P1 addresses are done through P2.
47	 * In the P3 case or for addresses outside of the 29-bit space,
48	 * mapping must be done by the PMB or by using page tables.
49	 */
50	if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) {
51		u64 flags = pgprot_val(prot);
52
53		/*
54		 * Anything using the legacy PTEA space attributes needs
55		 * to be kicked down to page table mappings.
56		 */
57		if (unlikely(flags & _PAGE_PCC_MASK))
58			return NULL;
59		if (unlikely(flags & _PAGE_CACHABLE))
60			return (void __iomem *)P1SEGADDR(offset);
61
62		return (void __iomem *)P2SEGADDR(offset);
63	}
64
65	/* P4 above the store queues are always mapped. */
66	if (unlikely(offset >= P3_ADDR_MAX))
67		return (void __iomem *)P4SEGADDR(offset);
68
69	return NULL;
70}
71#else
72#define __ioremap_29bit(offset, size, prot)		NULL
73#endif /* CONFIG_29BIT */
74
75/*
76 * Remap an arbitrary physical address space into the kernel virtual
77 * address space. Needed when the kernel wants to access high addresses
78 * directly.
79 *
80 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
81 * have to convert them into an offset in a page-aligned mapping, but the
82 * caller shouldn't need to know that small detail.
83 */
84void __iomem * __ref
85__ioremap_caller(phys_addr_t phys_addr, unsigned long size,
86		 pgprot_t pgprot, void *caller)
87{
88	struct vm_struct *area;
89	unsigned long offset, last_addr, addr, orig_addr;
90	void __iomem *mapped;
91
92	mapped = __ioremap_trapped(phys_addr, size);
93	if (mapped)
94		return mapped;
95
96	mapped = __ioremap_29bit(phys_addr, size, pgprot);
97	if (mapped)
98		return mapped;
99
100	/* Don't allow wraparound or zero size */
101	last_addr = phys_addr + size - 1;
102	if (!size || last_addr < phys_addr)
103		return NULL;
104
105	/*
106	 * If we can't yet use the regular approach, go the fixmap route.
107	 */
108	if (!mem_init_done)
109		return ioremap_fixed(phys_addr, size, pgprot);
110
111	/*
112	 * First try to remap through the PMB.
113	 * PMB entries are all pre-faulted.
114	 */
115	mapped = pmb_remap_caller(phys_addr, size, pgprot, caller);
116	if (mapped && !IS_ERR(mapped))
117		return mapped;
118
119	/*
120	 * Mappings have to be page-aligned
121	 */
122	offset = phys_addr & ~PAGE_MASK;
123	phys_addr &= PAGE_MASK;
124	size = PAGE_ALIGN(last_addr+1) - phys_addr;
125
126	/*
127	 * Ok, go for it..
128	 */
129	area = get_vm_area_caller(size, VM_IOREMAP, caller);
130	if (!area)
131		return NULL;
132	area->phys_addr = phys_addr;
133	orig_addr = addr = (unsigned long)area->addr;
134
135	if (ioremap_page_range(addr, addr + size, phys_addr, pgprot)) {
136		vunmap((void *)orig_addr);
137		return NULL;
138	}
139
140	return (void __iomem *)(offset + (char *)orig_addr);
141}
142EXPORT_SYMBOL(__ioremap_caller);
143
144/*
145 * Simple checks for non-translatable mappings.
146 */
147static inline int iomapping_nontranslatable(unsigned long offset)
148{
149#ifdef CONFIG_29BIT
150	/*
151	 * In 29-bit mode this includes the fixed P1/P2 areas, as well as
152	 * parts of P3.
153	 */
154	if (PXSEG(offset) < P3SEG || offset >= P3_ADDR_MAX)
155		return 1;
156#endif
157
158	return 0;
159}
160
161void iounmap(void __iomem *addr)
162{
163	unsigned long vaddr = (unsigned long __force)addr;
164	struct vm_struct *p;
165
166	/*
167	 * Nothing to do if there is no translatable mapping.
168	 */
169	if (iomapping_nontranslatable(vaddr))
170		return;
171
172	/*
173	 * There's no VMA if it's from an early fixed mapping.
174	 */
175	if (iounmap_fixed(addr) == 0)
176		return;
177
178	/*
179	 * If the PMB handled it, there's nothing else to do.
180	 */
181	if (pmb_unmap(addr) == 0)
182		return;
183
184	p = remove_vm_area((void *)(vaddr & PAGE_MASK));
185	if (!p) {
186		printk(KERN_ERR "%s: bad address %p\n", __func__, addr);
187		return;
188	}
189
190	kfree(p);
191}
192EXPORT_SYMBOL(iounmap);
193