xref: /kernel/linux/linux-5.10/arch/sh/mm/cache-sh4.c (revision 8c2ecf20)
1/*
2 * arch/sh/mm/cache-sh4.c
3 *
4 * Copyright (C) 1999, 2000, 2002  Niibe Yutaka
5 * Copyright (C) 2001 - 2009  Paul Mundt
6 * Copyright (C) 2003  Richard Curnow
7 * Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
8 *
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License.  See the file "COPYING" in the main directory of this archive
11 * for more details.
12 */
13#include <linux/init.h>
14#include <linux/mm.h>
15#include <linux/io.h>
16#include <linux/mutex.h>
17#include <linux/fs.h>
18#include <linux/highmem.h>
19#include <asm/mmu_context.h>
20#include <asm/cache_insns.h>
21#include <asm/cacheflush.h>
22
23/*
24 * The maximum number of pages we support up to when doing ranged dcache
25 * flushing. Anything exceeding this will simply flush the dcache in its
26 * entirety.
27 */
28#define MAX_ICACHE_PAGES	32
29
30static void __flush_cache_one(unsigned long addr, unsigned long phys,
31			       unsigned long exec_offset);
32
33/*
34 * Write back the range of D-cache, and purge the I-cache.
35 *
36 * Called from kernel/module.c:sys_init_module and routine for a.out format,
37 * signal handler code and kprobes code
38 */
39static void sh4_flush_icache_range(void *args)
40{
41	struct flusher_data *data = args;
42	unsigned long start, end;
43	unsigned long flags, v;
44	int i;
45
46	start = data->addr1;
47	end = data->addr2;
48
49	/* If there are too many pages then just blow away the caches */
50	if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) {
51		local_flush_cache_all(NULL);
52		return;
53	}
54
55	/*
56	 * Selectively flush d-cache then invalidate the i-cache.
57	 * This is inefficient, so only use this for small ranges.
58	 */
59	start &= ~(L1_CACHE_BYTES-1);
60	end += L1_CACHE_BYTES-1;
61	end &= ~(L1_CACHE_BYTES-1);
62
63	local_irq_save(flags);
64	jump_to_uncached();
65
66	for (v = start; v < end; v += L1_CACHE_BYTES) {
67		unsigned long icacheaddr;
68		int j, n;
69
70		__ocbwb(v);
71
72		icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v &
73				cpu_data->icache.entry_mask);
74
75		/* Clear i-cache line valid-bit */
76		n = boot_cpu_data.icache.n_aliases;
77		for (i = 0; i < cpu_data->icache.ways; i++) {
78			for (j = 0; j < n; j++)
79				__raw_writel(0, icacheaddr + (j * PAGE_SIZE));
80			icacheaddr += cpu_data->icache.way_incr;
81		}
82	}
83
84	back_to_cached();
85	local_irq_restore(flags);
86}
87
88static inline void flush_cache_one(unsigned long start, unsigned long phys)
89{
90	unsigned long flags, exec_offset = 0;
91
92	/*
93	 * All types of SH-4 require PC to be uncached to operate on the I-cache.
94	 * Some types of SH-4 require PC to be uncached to operate on the D-cache.
95	 */
96	if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) ||
97	    (start < CACHE_OC_ADDRESS_ARRAY))
98		exec_offset = cached_to_uncached;
99
100	local_irq_save(flags);
101	__flush_cache_one(start, phys, exec_offset);
102	local_irq_restore(flags);
103}
104
105/*
106 * Write back & invalidate the D-cache of the page.
107 * (To avoid "alias" issues)
108 */
109static void sh4_flush_dcache_page(void *arg)
110{
111	struct page *page = arg;
112	unsigned long addr = (unsigned long)page_address(page);
113#ifndef CONFIG_SMP
114	struct address_space *mapping = page_mapping_file(page);
115
116	if (mapping && !mapping_mapped(mapping))
117		clear_bit(PG_dcache_clean, &page->flags);
118	else
119#endif
120		flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
121				(addr & shm_align_mask), page_to_phys(page));
122
123	wmb();
124}
125
126/* TODO: Selective icache invalidation through IC address array.. */
127static void flush_icache_all(void)
128{
129	unsigned long flags, ccr;
130
131	local_irq_save(flags);
132	jump_to_uncached();
133
134	/* Flush I-cache */
135	ccr = __raw_readl(SH_CCR);
136	ccr |= CCR_CACHE_ICI;
137	__raw_writel(ccr, SH_CCR);
138
139	/*
140	 * back_to_cached() will take care of the barrier for us, don't add
141	 * another one!
142	 */
143
144	back_to_cached();
145	local_irq_restore(flags);
146}
147
148static void flush_dcache_all(void)
149{
150	unsigned long addr, end_addr, entry_offset;
151
152	end_addr = CACHE_OC_ADDRESS_ARRAY +
153		(current_cpu_data.dcache.sets <<
154		 current_cpu_data.dcache.entry_shift) *
155			current_cpu_data.dcache.ways;
156
157	entry_offset = 1 << current_cpu_data.dcache.entry_shift;
158
159	for (addr = CACHE_OC_ADDRESS_ARRAY; addr < end_addr; ) {
160		__raw_writel(0, addr); addr += entry_offset;
161		__raw_writel(0, addr); addr += entry_offset;
162		__raw_writel(0, addr); addr += entry_offset;
163		__raw_writel(0, addr); addr += entry_offset;
164		__raw_writel(0, addr); addr += entry_offset;
165		__raw_writel(0, addr); addr += entry_offset;
166		__raw_writel(0, addr); addr += entry_offset;
167		__raw_writel(0, addr); addr += entry_offset;
168	}
169}
170
171static void sh4_flush_cache_all(void *unused)
172{
173	flush_dcache_all();
174	flush_icache_all();
175}
176
177/*
178 * Note : (RPC) since the caches are physically tagged, the only point
179 * of flush_cache_mm for SH-4 is to get rid of aliases from the
180 * D-cache.  The assumption elsewhere, e.g. flush_cache_range, is that
181 * lines can stay resident so long as the virtual address they were
182 * accessed with (hence cache set) is in accord with the physical
183 * address (i.e. tag).  It's no different here.
184 *
185 * Caller takes mm->mmap_lock.
186 */
187static void sh4_flush_cache_mm(void *arg)
188{
189	struct mm_struct *mm = arg;
190
191	if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT)
192		return;
193
194	flush_dcache_all();
195}
196
197/*
198 * Write back and invalidate I/D-caches for the page.
199 *
200 * ADDR: Virtual Address (U0 address)
201 * PFN: Physical page number
202 */
203static void sh4_flush_cache_page(void *args)
204{
205	struct flusher_data *data = args;
206	struct vm_area_struct *vma;
207	struct page *page;
208	unsigned long address, pfn, phys;
209	int map_coherent = 0;
210	pmd_t *pmd;
211	pte_t *pte;
212	void *vaddr;
213
214	vma = data->vma;
215	address = data->addr1 & PAGE_MASK;
216	pfn = data->addr2;
217	phys = pfn << PAGE_SHIFT;
218	page = pfn_to_page(pfn);
219
220	if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
221		return;
222
223	pmd = pmd_off(vma->vm_mm, address);
224	pte = pte_offset_kernel(pmd, address);
225
226	/* If the page isn't present, there is nothing to do here. */
227	if (!(pte_val(*pte) & _PAGE_PRESENT))
228		return;
229
230	if ((vma->vm_mm == current->active_mm))
231		vaddr = NULL;
232	else {
233		/*
234		 * Use kmap_coherent or kmap_atomic to do flushes for
235		 * another ASID than the current one.
236		 */
237		map_coherent = (current_cpu_data.dcache.n_aliases &&
238			test_bit(PG_dcache_clean, &page->flags) &&
239			page_mapcount(page));
240		if (map_coherent)
241			vaddr = kmap_coherent(page, address);
242		else
243			vaddr = kmap_atomic(page);
244
245		address = (unsigned long)vaddr;
246	}
247
248	flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
249			(address & shm_align_mask), phys);
250
251	if (vma->vm_flags & VM_EXEC)
252		flush_icache_all();
253
254	if (vaddr) {
255		if (map_coherent)
256			kunmap_coherent(vaddr);
257		else
258			kunmap_atomic(vaddr);
259	}
260}
261
262/*
263 * Write back and invalidate D-caches.
264 *
265 * START, END: Virtual Address (U0 address)
266 *
267 * NOTE: We need to flush the _physical_ page entry.
268 * Flushing the cache lines for U0 only isn't enough.
269 * We need to flush for P1 too, which may contain aliases.
270 */
271static void sh4_flush_cache_range(void *args)
272{
273	struct flusher_data *data = args;
274	struct vm_area_struct *vma;
275	unsigned long start, end;
276
277	vma = data->vma;
278	start = data->addr1;
279	end = data->addr2;
280
281	if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
282		return;
283
284	/*
285	 * If cache is only 4k-per-way, there are never any 'aliases'.  Since
286	 * the cache is physically tagged, the data can just be left in there.
287	 */
288	if (boot_cpu_data.dcache.n_aliases == 0)
289		return;
290
291	flush_dcache_all();
292
293	if (vma->vm_flags & VM_EXEC)
294		flush_icache_all();
295}
296
297/**
298 * __flush_cache_one
299 *
300 * @addr:  address in memory mapped cache array
301 * @phys:  P1 address to flush (has to match tags if addr has 'A' bit
302 *         set i.e. associative write)
303 * @exec_offset: set to 0x20000000 if flush has to be executed from P2
304 *               region else 0x0
305 *
306 * The offset into the cache array implied by 'addr' selects the
307 * 'colour' of the virtual address range that will be flushed.  The
308 * operation (purge/write-back) is selected by the lower 2 bits of
309 * 'phys'.
310 */
311static void __flush_cache_one(unsigned long addr, unsigned long phys,
312			       unsigned long exec_offset)
313{
314	int way_count;
315	unsigned long base_addr = addr;
316	struct cache_info *dcache;
317	unsigned long way_incr;
318	unsigned long a, ea, p;
319	unsigned long temp_pc;
320
321	dcache = &boot_cpu_data.dcache;
322	/* Write this way for better assembly. */
323	way_count = dcache->ways;
324	way_incr = dcache->way_incr;
325
326	/*
327	 * Apply exec_offset (i.e. branch to P2 if required.).
328	 *
329	 * FIXME:
330	 *
331	 *	If I write "=r" for the (temp_pc), it puts this in r6 hence
332	 *	trashing exec_offset before it's been added on - why?  Hence
333	 *	"=&r" as a 'workaround'
334	 */
335	asm volatile("mov.l 1f, %0\n\t"
336		     "add   %1, %0\n\t"
337		     "jmp   @%0\n\t"
338		     "nop\n\t"
339		     ".balign 4\n\t"
340		     "1:  .long 2f\n\t"
341		     "2:\n" : "=&r" (temp_pc) : "r" (exec_offset));
342
343	/*
344	 * We know there will be >=1 iteration, so write as do-while to avoid
345	 * pointless nead-of-loop check for 0 iterations.
346	 */
347	do {
348		ea = base_addr + PAGE_SIZE;
349		a = base_addr;
350		p = phys;
351
352		do {
353			*(volatile unsigned long *)a = p;
354			/*
355			 * Next line: intentionally not p+32, saves an add, p
356			 * will do since only the cache tag bits need to
357			 * match.
358			 */
359			*(volatile unsigned long *)(a+32) = p;
360			a += 64;
361			p += 64;
362		} while (a < ea);
363
364		base_addr += way_incr;
365	} while (--way_count != 0);
366}
367
368extern void __weak sh4__flush_region_init(void);
369
370/*
371 * SH-4 has virtually indexed and physically tagged cache.
372 */
373void __init sh4_cache_init(void)
374{
375	printk("PVR=%08x CVR=%08x PRR=%08x\n",
376		__raw_readl(CCN_PVR),
377		__raw_readl(CCN_CVR),
378		__raw_readl(CCN_PRR));
379
380	local_flush_icache_range	= sh4_flush_icache_range;
381	local_flush_dcache_page		= sh4_flush_dcache_page;
382	local_flush_cache_all		= sh4_flush_cache_all;
383	local_flush_cache_mm		= sh4_flush_cache_mm;
384	local_flush_cache_dup_mm	= sh4_flush_cache_mm;
385	local_flush_cache_page		= sh4_flush_cache_page;
386	local_flush_cache_range		= sh4_flush_cache_range;
387
388	sh4__flush_region_init();
389}
390