xref: /kernel/linux/linux-5.10/arch/s390/mm/gmap.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  KVM guest address space mapping code
4 *
5 *    Copyright IBM Corp. 2007, 2016, 2018
6 *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7 *		 David Hildenbrand <david@redhat.com>
8 *		 Janosch Frank <frankja@linux.vnet.ibm.com>
9 */
10
11#include <linux/kernel.h>
12#include <linux/pagewalk.h>
13#include <linux/swap.h>
14#include <linux/smp.h>
15#include <linux/spinlock.h>
16#include <linux/slab.h>
17#include <linux/swapops.h>
18#include <linux/ksm.h>
19#include <linux/mman.h>
20#include <linux/pgtable.h>
21
22#include <asm/pgalloc.h>
23#include <asm/gmap.h>
24#include <asm/tlb.h>
25
26#define GMAP_SHADOW_FAKE_TABLE 1ULL
27
28/**
29 * gmap_alloc - allocate and initialize a guest address space
30 * @mm: pointer to the parent mm_struct
31 * @limit: maximum address of the gmap address space
32 *
33 * Returns a guest address space structure.
34 */
35static struct gmap *gmap_alloc(unsigned long limit)
36{
37	struct gmap *gmap;
38	struct page *page;
39	unsigned long *table;
40	unsigned long etype, atype;
41
42	if (limit < _REGION3_SIZE) {
43		limit = _REGION3_SIZE - 1;
44		atype = _ASCE_TYPE_SEGMENT;
45		etype = _SEGMENT_ENTRY_EMPTY;
46	} else if (limit < _REGION2_SIZE) {
47		limit = _REGION2_SIZE - 1;
48		atype = _ASCE_TYPE_REGION3;
49		etype = _REGION3_ENTRY_EMPTY;
50	} else if (limit < _REGION1_SIZE) {
51		limit = _REGION1_SIZE - 1;
52		atype = _ASCE_TYPE_REGION2;
53		etype = _REGION2_ENTRY_EMPTY;
54	} else {
55		limit = -1UL;
56		atype = _ASCE_TYPE_REGION1;
57		etype = _REGION1_ENTRY_EMPTY;
58	}
59	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
60	if (!gmap)
61		goto out;
62	INIT_LIST_HEAD(&gmap->crst_list);
63	INIT_LIST_HEAD(&gmap->children);
64	INIT_LIST_HEAD(&gmap->pt_list);
65	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
66	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
67	INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC);
68	spin_lock_init(&gmap->guest_table_lock);
69	spin_lock_init(&gmap->shadow_lock);
70	refcount_set(&gmap->ref_count, 1);
71	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
72	if (!page)
73		goto out_free;
74	page->index = 0;
75	list_add(&page->lru, &gmap->crst_list);
76	table = (unsigned long *) page_to_phys(page);
77	crst_table_init(table, etype);
78	gmap->table = table;
79	gmap->asce = atype | _ASCE_TABLE_LENGTH |
80		_ASCE_USER_BITS | __pa(table);
81	gmap->asce_end = limit;
82	return gmap;
83
84out_free:
85	kfree(gmap);
86out:
87	return NULL;
88}
89
90/**
91 * gmap_create - create a guest address space
92 * @mm: pointer to the parent mm_struct
93 * @limit: maximum size of the gmap address space
94 *
95 * Returns a guest address space structure.
96 */
97struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
98{
99	struct gmap *gmap;
100	unsigned long gmap_asce;
101
102	gmap = gmap_alloc(limit);
103	if (!gmap)
104		return NULL;
105	gmap->mm = mm;
106	spin_lock(&mm->context.lock);
107	list_add_rcu(&gmap->list, &mm->context.gmap_list);
108	if (list_is_singular(&mm->context.gmap_list))
109		gmap_asce = gmap->asce;
110	else
111		gmap_asce = -1UL;
112	WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
113	spin_unlock(&mm->context.lock);
114	return gmap;
115}
116EXPORT_SYMBOL_GPL(gmap_create);
117
118static void gmap_flush_tlb(struct gmap *gmap)
119{
120	if (MACHINE_HAS_IDTE)
121		__tlb_flush_idte(gmap->asce);
122	else
123		__tlb_flush_global();
124}
125
126static void gmap_radix_tree_free(struct radix_tree_root *root)
127{
128	struct radix_tree_iter iter;
129	unsigned long indices[16];
130	unsigned long index;
131	void __rcu **slot;
132	int i, nr;
133
134	/* A radix tree is freed by deleting all of its entries */
135	index = 0;
136	do {
137		nr = 0;
138		radix_tree_for_each_slot(slot, root, &iter, index) {
139			indices[nr] = iter.index;
140			if (++nr == 16)
141				break;
142		}
143		for (i = 0; i < nr; i++) {
144			index = indices[i];
145			radix_tree_delete(root, index);
146		}
147	} while (nr > 0);
148}
149
150static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
151{
152	struct gmap_rmap *rmap, *rnext, *head;
153	struct radix_tree_iter iter;
154	unsigned long indices[16];
155	unsigned long index;
156	void __rcu **slot;
157	int i, nr;
158
159	/* A radix tree is freed by deleting all of its entries */
160	index = 0;
161	do {
162		nr = 0;
163		radix_tree_for_each_slot(slot, root, &iter, index) {
164			indices[nr] = iter.index;
165			if (++nr == 16)
166				break;
167		}
168		for (i = 0; i < nr; i++) {
169			index = indices[i];
170			head = radix_tree_delete(root, index);
171			gmap_for_each_rmap_safe(rmap, rnext, head)
172				kfree(rmap);
173		}
174	} while (nr > 0);
175}
176
177/**
178 * gmap_free - free a guest address space
179 * @gmap: pointer to the guest address space structure
180 *
181 * No locks required. There are no references to this gmap anymore.
182 */
183static void gmap_free(struct gmap *gmap)
184{
185	struct page *page, *next;
186
187	/* Flush tlb of all gmaps (if not already done for shadows) */
188	if (!(gmap_is_shadow(gmap) && gmap->removed))
189		gmap_flush_tlb(gmap);
190	/* Free all segment & region tables. */
191	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
192		__free_pages(page, CRST_ALLOC_ORDER);
193	gmap_radix_tree_free(&gmap->guest_to_host);
194	gmap_radix_tree_free(&gmap->host_to_guest);
195
196	/* Free additional data for a shadow gmap */
197	if (gmap_is_shadow(gmap)) {
198		/* Free all page tables. */
199		list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
200			page_table_free_pgste(page);
201		gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
202		/* Release reference to the parent */
203		gmap_put(gmap->parent);
204	}
205
206	kfree(gmap);
207}
208
209/**
210 * gmap_get - increase reference counter for guest address space
211 * @gmap: pointer to the guest address space structure
212 *
213 * Returns the gmap pointer
214 */
215struct gmap *gmap_get(struct gmap *gmap)
216{
217	refcount_inc(&gmap->ref_count);
218	return gmap;
219}
220EXPORT_SYMBOL_GPL(gmap_get);
221
222/**
223 * gmap_put - decrease reference counter for guest address space
224 * @gmap: pointer to the guest address space structure
225 *
226 * If the reference counter reaches zero the guest address space is freed.
227 */
228void gmap_put(struct gmap *gmap)
229{
230	if (refcount_dec_and_test(&gmap->ref_count))
231		gmap_free(gmap);
232}
233EXPORT_SYMBOL_GPL(gmap_put);
234
235/**
236 * gmap_remove - remove a guest address space but do not free it yet
237 * @gmap: pointer to the guest address space structure
238 */
239void gmap_remove(struct gmap *gmap)
240{
241	struct gmap *sg, *next;
242	unsigned long gmap_asce;
243
244	/* Remove all shadow gmaps linked to this gmap */
245	if (!list_empty(&gmap->children)) {
246		spin_lock(&gmap->shadow_lock);
247		list_for_each_entry_safe(sg, next, &gmap->children, list) {
248			list_del(&sg->list);
249			gmap_put(sg);
250		}
251		spin_unlock(&gmap->shadow_lock);
252	}
253	/* Remove gmap from the pre-mm list */
254	spin_lock(&gmap->mm->context.lock);
255	list_del_rcu(&gmap->list);
256	if (list_empty(&gmap->mm->context.gmap_list))
257		gmap_asce = 0;
258	else if (list_is_singular(&gmap->mm->context.gmap_list))
259		gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
260					     struct gmap, list)->asce;
261	else
262		gmap_asce = -1UL;
263	WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
264	spin_unlock(&gmap->mm->context.lock);
265	synchronize_rcu();
266	/* Put reference */
267	gmap_put(gmap);
268}
269EXPORT_SYMBOL_GPL(gmap_remove);
270
271/**
272 * gmap_enable - switch primary space to the guest address space
273 * @gmap: pointer to the guest address space structure
274 */
275void gmap_enable(struct gmap *gmap)
276{
277	S390_lowcore.gmap = (unsigned long) gmap;
278}
279EXPORT_SYMBOL_GPL(gmap_enable);
280
281/**
282 * gmap_disable - switch back to the standard primary address space
283 * @gmap: pointer to the guest address space structure
284 */
285void gmap_disable(struct gmap *gmap)
286{
287	S390_lowcore.gmap = 0UL;
288}
289EXPORT_SYMBOL_GPL(gmap_disable);
290
291/**
292 * gmap_get_enabled - get a pointer to the currently enabled gmap
293 *
294 * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
295 */
296struct gmap *gmap_get_enabled(void)
297{
298	return (struct gmap *) S390_lowcore.gmap;
299}
300EXPORT_SYMBOL_GPL(gmap_get_enabled);
301
302/*
303 * gmap_alloc_table is assumed to be called with mmap_lock held
304 */
305static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
306			    unsigned long init, unsigned long gaddr)
307{
308	struct page *page;
309	unsigned long *new;
310
311	/* since we dont free the gmap table until gmap_free we can unlock */
312	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
313	if (!page)
314		return -ENOMEM;
315	new = (unsigned long *) page_to_phys(page);
316	crst_table_init(new, init);
317	spin_lock(&gmap->guest_table_lock);
318	if (*table & _REGION_ENTRY_INVALID) {
319		list_add(&page->lru, &gmap->crst_list);
320		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
321			(*table & _REGION_ENTRY_TYPE_MASK);
322		page->index = gaddr;
323		page = NULL;
324	}
325	spin_unlock(&gmap->guest_table_lock);
326	if (page)
327		__free_pages(page, CRST_ALLOC_ORDER);
328	return 0;
329}
330
331/**
332 * __gmap_segment_gaddr - find virtual address from segment pointer
333 * @entry: pointer to a segment table entry in the guest address space
334 *
335 * Returns the virtual address in the guest address space for the segment
336 */
337static unsigned long __gmap_segment_gaddr(unsigned long *entry)
338{
339	struct page *page;
340	unsigned long offset, mask;
341
342	offset = (unsigned long) entry / sizeof(unsigned long);
343	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
344	mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
345	page = virt_to_page((void *)((unsigned long) entry & mask));
346	return page->index + offset;
347}
348
349/**
350 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
351 * @gmap: pointer to the guest address space structure
352 * @vmaddr: address in the host process address space
353 *
354 * Returns 1 if a TLB flush is required
355 */
356static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
357{
358	unsigned long *entry;
359	int flush = 0;
360
361	BUG_ON(gmap_is_shadow(gmap));
362	spin_lock(&gmap->guest_table_lock);
363	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
364	if (entry) {
365		flush = (*entry != _SEGMENT_ENTRY_EMPTY);
366		*entry = _SEGMENT_ENTRY_EMPTY;
367	}
368	spin_unlock(&gmap->guest_table_lock);
369	return flush;
370}
371
372/**
373 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
374 * @gmap: pointer to the guest address space structure
375 * @gaddr: address in the guest address space
376 *
377 * Returns 1 if a TLB flush is required
378 */
379static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
380{
381	unsigned long vmaddr;
382
383	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
384						   gaddr >> PMD_SHIFT);
385	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
386}
387
388/**
389 * gmap_unmap_segment - unmap segment from the guest address space
390 * @gmap: pointer to the guest address space structure
391 * @to: address in the guest address space
392 * @len: length of the memory area to unmap
393 *
394 * Returns 0 if the unmap succeeded, -EINVAL if not.
395 */
396int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
397{
398	unsigned long off;
399	int flush;
400
401	BUG_ON(gmap_is_shadow(gmap));
402	if ((to | len) & (PMD_SIZE - 1))
403		return -EINVAL;
404	if (len == 0 || to + len < to)
405		return -EINVAL;
406
407	flush = 0;
408	mmap_write_lock(gmap->mm);
409	for (off = 0; off < len; off += PMD_SIZE)
410		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
411	mmap_write_unlock(gmap->mm);
412	if (flush)
413		gmap_flush_tlb(gmap);
414	return 0;
415}
416EXPORT_SYMBOL_GPL(gmap_unmap_segment);
417
418/**
419 * gmap_map_segment - map a segment to the guest address space
420 * @gmap: pointer to the guest address space structure
421 * @from: source address in the parent address space
422 * @to: target address in the guest address space
423 * @len: length of the memory area to map
424 *
425 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
426 */
427int gmap_map_segment(struct gmap *gmap, unsigned long from,
428		     unsigned long to, unsigned long len)
429{
430	unsigned long off;
431	int flush;
432
433	BUG_ON(gmap_is_shadow(gmap));
434	if ((from | to | len) & (PMD_SIZE - 1))
435		return -EINVAL;
436	if (len == 0 || from + len < from || to + len < to ||
437	    from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
438		return -EINVAL;
439
440	flush = 0;
441	mmap_write_lock(gmap->mm);
442	for (off = 0; off < len; off += PMD_SIZE) {
443		/* Remove old translation */
444		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
445		/* Store new translation */
446		if (radix_tree_insert(&gmap->guest_to_host,
447				      (to + off) >> PMD_SHIFT,
448				      (void *) from + off))
449			break;
450	}
451	mmap_write_unlock(gmap->mm);
452	if (flush)
453		gmap_flush_tlb(gmap);
454	if (off >= len)
455		return 0;
456	gmap_unmap_segment(gmap, to, len);
457	return -ENOMEM;
458}
459EXPORT_SYMBOL_GPL(gmap_map_segment);
460
461/**
462 * __gmap_translate - translate a guest address to a user space address
463 * @gmap: pointer to guest mapping meta data structure
464 * @gaddr: guest address
465 *
466 * Returns user space address which corresponds to the guest address or
467 * -EFAULT if no such mapping exists.
468 * This function does not establish potentially missing page table entries.
469 * The mmap_lock of the mm that belongs to the address space must be held
470 * when this function gets called.
471 *
472 * Note: Can also be called for shadow gmaps.
473 */
474unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
475{
476	unsigned long vmaddr;
477
478	vmaddr = (unsigned long)
479		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
480	/* Note: guest_to_host is empty for a shadow gmap */
481	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
482}
483EXPORT_SYMBOL_GPL(__gmap_translate);
484
485/**
486 * gmap_translate - translate a guest address to a user space address
487 * @gmap: pointer to guest mapping meta data structure
488 * @gaddr: guest address
489 *
490 * Returns user space address which corresponds to the guest address or
491 * -EFAULT if no such mapping exists.
492 * This function does not establish potentially missing page table entries.
493 */
494unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
495{
496	unsigned long rc;
497
498	mmap_read_lock(gmap->mm);
499	rc = __gmap_translate(gmap, gaddr);
500	mmap_read_unlock(gmap->mm);
501	return rc;
502}
503EXPORT_SYMBOL_GPL(gmap_translate);
504
505/**
506 * gmap_unlink - disconnect a page table from the gmap shadow tables
507 * @gmap: pointer to guest mapping meta data structure
508 * @table: pointer to the host page table
509 * @vmaddr: vm address associated with the host page table
510 */
511void gmap_unlink(struct mm_struct *mm, unsigned long *table,
512		 unsigned long vmaddr)
513{
514	struct gmap *gmap;
515	int flush;
516
517	rcu_read_lock();
518	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
519		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
520		if (flush)
521			gmap_flush_tlb(gmap);
522	}
523	rcu_read_unlock();
524}
525
526static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
527			   unsigned long gaddr);
528
529/**
530 * gmap_link - set up shadow page tables to connect a host to a guest address
531 * @gmap: pointer to guest mapping meta data structure
532 * @gaddr: guest address
533 * @vmaddr: vm address
534 *
535 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
536 * if the vm address is already mapped to a different guest segment.
537 * The mmap_lock of the mm that belongs to the address space must be held
538 * when this function gets called.
539 */
540int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
541{
542	struct mm_struct *mm;
543	unsigned long *table;
544	spinlock_t *ptl;
545	pgd_t *pgd;
546	p4d_t *p4d;
547	pud_t *pud;
548	pmd_t *pmd;
549	u64 unprot;
550	int rc;
551
552	BUG_ON(gmap_is_shadow(gmap));
553	/* Create higher level tables in the gmap page table */
554	table = gmap->table;
555	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
556		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
557		if ((*table & _REGION_ENTRY_INVALID) &&
558		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
559				     gaddr & _REGION1_MASK))
560			return -ENOMEM;
561		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
562	}
563	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
564		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
565		if ((*table & _REGION_ENTRY_INVALID) &&
566		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
567				     gaddr & _REGION2_MASK))
568			return -ENOMEM;
569		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
570	}
571	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
572		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
573		if ((*table & _REGION_ENTRY_INVALID) &&
574		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
575				     gaddr & _REGION3_MASK))
576			return -ENOMEM;
577		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
578	}
579	table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
580	/* Walk the parent mm page table */
581	mm = gmap->mm;
582	pgd = pgd_offset(mm, vmaddr);
583	VM_BUG_ON(pgd_none(*pgd));
584	p4d = p4d_offset(pgd, vmaddr);
585	VM_BUG_ON(p4d_none(*p4d));
586	pud = pud_offset(p4d, vmaddr);
587	VM_BUG_ON(pud_none(*pud));
588	/* large puds cannot yet be handled */
589	if (pud_large(*pud))
590		return -EFAULT;
591	pmd = pmd_offset(pud, vmaddr);
592	VM_BUG_ON(pmd_none(*pmd));
593	/* Are we allowed to use huge pages? */
594	if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
595		return -EFAULT;
596	/* Link gmap segment table entry location to page table. */
597	rc = radix_tree_preload(GFP_KERNEL);
598	if (rc)
599		return rc;
600	ptl = pmd_lock(mm, pmd);
601	spin_lock(&gmap->guest_table_lock);
602	if (*table == _SEGMENT_ENTRY_EMPTY) {
603		rc = radix_tree_insert(&gmap->host_to_guest,
604				       vmaddr >> PMD_SHIFT, table);
605		if (!rc) {
606			if (pmd_large(*pmd)) {
607				*table = (pmd_val(*pmd) &
608					  _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
609					| _SEGMENT_ENTRY_GMAP_UC;
610			} else
611				*table = pmd_val(*pmd) &
612					_SEGMENT_ENTRY_HARDWARE_BITS;
613		}
614	} else if (*table & _SEGMENT_ENTRY_PROTECT &&
615		   !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
616		unprot = (u64)*table;
617		unprot &= ~_SEGMENT_ENTRY_PROTECT;
618		unprot |= _SEGMENT_ENTRY_GMAP_UC;
619		gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
620	}
621	spin_unlock(&gmap->guest_table_lock);
622	spin_unlock(ptl);
623	radix_tree_preload_end();
624	return rc;
625}
626
627/**
628 * gmap_fault - resolve a fault on a guest address
629 * @gmap: pointer to guest mapping meta data structure
630 * @gaddr: guest address
631 * @fault_flags: flags to pass down to handle_mm_fault()
632 *
633 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
634 * if the vm address is already mapped to a different guest segment.
635 */
636int gmap_fault(struct gmap *gmap, unsigned long gaddr,
637	       unsigned int fault_flags)
638{
639	unsigned long vmaddr;
640	int rc;
641	bool unlocked;
642
643	mmap_read_lock(gmap->mm);
644
645retry:
646	unlocked = false;
647	vmaddr = __gmap_translate(gmap, gaddr);
648	if (IS_ERR_VALUE(vmaddr)) {
649		rc = vmaddr;
650		goto out_up;
651	}
652	if (fixup_user_fault(gmap->mm, vmaddr, fault_flags,
653			     &unlocked)) {
654		rc = -EFAULT;
655		goto out_up;
656	}
657	/*
658	 * In the case that fixup_user_fault unlocked the mmap_lock during
659	 * faultin redo __gmap_translate to not race with a map/unmap_segment.
660	 */
661	if (unlocked)
662		goto retry;
663
664	rc = __gmap_link(gmap, gaddr, vmaddr);
665out_up:
666	mmap_read_unlock(gmap->mm);
667	return rc;
668}
669EXPORT_SYMBOL_GPL(gmap_fault);
670
671/*
672 * this function is assumed to be called with mmap_lock held
673 */
674void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
675{
676	unsigned long vmaddr;
677	spinlock_t *ptl;
678	pte_t *ptep;
679
680	/* Find the vm address for the guest address */
681	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
682						   gaddr >> PMD_SHIFT);
683	if (vmaddr) {
684		vmaddr |= gaddr & ~PMD_MASK;
685		/* Get pointer to the page table entry */
686		ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
687		if (likely(ptep)) {
688			ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
689			pte_unmap_unlock(ptep, ptl);
690		}
691	}
692}
693EXPORT_SYMBOL_GPL(__gmap_zap);
694
695void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
696{
697	unsigned long gaddr, vmaddr, size;
698	struct vm_area_struct *vma;
699
700	mmap_read_lock(gmap->mm);
701	for (gaddr = from; gaddr < to;
702	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
703		/* Find the vm address for the guest address */
704		vmaddr = (unsigned long)
705			radix_tree_lookup(&gmap->guest_to_host,
706					  gaddr >> PMD_SHIFT);
707		if (!vmaddr)
708			continue;
709		vmaddr |= gaddr & ~PMD_MASK;
710		/* Find vma in the parent mm */
711		vma = find_vma(gmap->mm, vmaddr);
712		if (!vma)
713			continue;
714		/*
715		 * We do not discard pages that are backed by
716		 * hugetlbfs, so we don't have to refault them.
717		 */
718		if (is_vm_hugetlb_page(vma))
719			continue;
720		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
721		zap_page_range(vma, vmaddr, size);
722	}
723	mmap_read_unlock(gmap->mm);
724}
725EXPORT_SYMBOL_GPL(gmap_discard);
726
727static LIST_HEAD(gmap_notifier_list);
728static DEFINE_SPINLOCK(gmap_notifier_lock);
729
730/**
731 * gmap_register_pte_notifier - register a pte invalidation callback
732 * @nb: pointer to the gmap notifier block
733 */
734void gmap_register_pte_notifier(struct gmap_notifier *nb)
735{
736	spin_lock(&gmap_notifier_lock);
737	list_add_rcu(&nb->list, &gmap_notifier_list);
738	spin_unlock(&gmap_notifier_lock);
739}
740EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
741
742/**
743 * gmap_unregister_pte_notifier - remove a pte invalidation callback
744 * @nb: pointer to the gmap notifier block
745 */
746void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
747{
748	spin_lock(&gmap_notifier_lock);
749	list_del_rcu(&nb->list);
750	spin_unlock(&gmap_notifier_lock);
751	synchronize_rcu();
752}
753EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
754
755/**
756 * gmap_call_notifier - call all registered invalidation callbacks
757 * @gmap: pointer to guest mapping meta data structure
758 * @start: start virtual address in the guest address space
759 * @end: end virtual address in the guest address space
760 */
761static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
762			       unsigned long end)
763{
764	struct gmap_notifier *nb;
765
766	list_for_each_entry(nb, &gmap_notifier_list, list)
767		nb->notifier_call(gmap, start, end);
768}
769
770/**
771 * gmap_table_walk - walk the gmap page tables
772 * @gmap: pointer to guest mapping meta data structure
773 * @gaddr: virtual address in the guest address space
774 * @level: page table level to stop at
775 *
776 * Returns a table entry pointer for the given guest address and @level
777 * @level=0 : returns a pointer to a page table table entry (or NULL)
778 * @level=1 : returns a pointer to a segment table entry (or NULL)
779 * @level=2 : returns a pointer to a region-3 table entry (or NULL)
780 * @level=3 : returns a pointer to a region-2 table entry (or NULL)
781 * @level=4 : returns a pointer to a region-1 table entry (or NULL)
782 *
783 * Returns NULL if the gmap page tables could not be walked to the
784 * requested level.
785 *
786 * Note: Can also be called for shadow gmaps.
787 */
788static inline unsigned long *gmap_table_walk(struct gmap *gmap,
789					     unsigned long gaddr, int level)
790{
791	const int asce_type = gmap->asce & _ASCE_TYPE_MASK;
792	unsigned long *table = gmap->table;
793
794	if (gmap_is_shadow(gmap) && gmap->removed)
795		return NULL;
796
797	if (WARN_ON_ONCE(level > (asce_type >> 2) + 1))
798		return NULL;
799
800	if (asce_type != _ASCE_TYPE_REGION1 &&
801	    gaddr & (-1UL << (31 + (asce_type >> 2) * 11)))
802		return NULL;
803
804	switch (asce_type) {
805	case _ASCE_TYPE_REGION1:
806		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
807		if (level == 4)
808			break;
809		if (*table & _REGION_ENTRY_INVALID)
810			return NULL;
811		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
812		fallthrough;
813	case _ASCE_TYPE_REGION2:
814		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
815		if (level == 3)
816			break;
817		if (*table & _REGION_ENTRY_INVALID)
818			return NULL;
819		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
820		fallthrough;
821	case _ASCE_TYPE_REGION3:
822		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
823		if (level == 2)
824			break;
825		if (*table & _REGION_ENTRY_INVALID)
826			return NULL;
827		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
828		fallthrough;
829	case _ASCE_TYPE_SEGMENT:
830		table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
831		if (level == 1)
832			break;
833		if (*table & _REGION_ENTRY_INVALID)
834			return NULL;
835		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
836		table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
837	}
838	return table;
839}
840
841/**
842 * gmap_pte_op_walk - walk the gmap page table, get the page table lock
843 *		      and return the pte pointer
844 * @gmap: pointer to guest mapping meta data structure
845 * @gaddr: virtual address in the guest address space
846 * @ptl: pointer to the spinlock pointer
847 *
848 * Returns a pointer to the locked pte for a guest address, or NULL
849 */
850static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
851			       spinlock_t **ptl)
852{
853	unsigned long *table;
854
855	BUG_ON(gmap_is_shadow(gmap));
856	/* Walk the gmap page table, lock and get pte pointer */
857	table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
858	if (!table || *table & _SEGMENT_ENTRY_INVALID)
859		return NULL;
860	return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
861}
862
863/**
864 * gmap_pte_op_fixup - force a page in and connect the gmap page table
865 * @gmap: pointer to guest mapping meta data structure
866 * @gaddr: virtual address in the guest address space
867 * @vmaddr: address in the host process address space
868 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
869 *
870 * Returns 0 if the caller can retry __gmap_translate (might fail again),
871 * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
872 * up or connecting the gmap page table.
873 */
874static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
875			     unsigned long vmaddr, int prot)
876{
877	struct mm_struct *mm = gmap->mm;
878	unsigned int fault_flags;
879	bool unlocked = false;
880
881	BUG_ON(gmap_is_shadow(gmap));
882	fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
883	if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked))
884		return -EFAULT;
885	if (unlocked)
886		/* lost mmap_lock, caller has to retry __gmap_translate */
887		return 0;
888	/* Connect the page tables */
889	return __gmap_link(gmap, gaddr, vmaddr);
890}
891
892/**
893 * gmap_pte_op_end - release the page table lock
894 * @ptl: pointer to the spinlock pointer
895 */
896static void gmap_pte_op_end(spinlock_t *ptl)
897{
898	if (ptl)
899		spin_unlock(ptl);
900}
901
902/**
903 * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
904 *		      and return the pmd pointer
905 * @gmap: pointer to guest mapping meta data structure
906 * @gaddr: virtual address in the guest address space
907 *
908 * Returns a pointer to the pmd for a guest address, or NULL
909 */
910static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
911{
912	pmd_t *pmdp;
913
914	BUG_ON(gmap_is_shadow(gmap));
915	pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
916	if (!pmdp)
917		return NULL;
918
919	/* without huge pages, there is no need to take the table lock */
920	if (!gmap->mm->context.allow_gmap_hpage_1m)
921		return pmd_none(*pmdp) ? NULL : pmdp;
922
923	spin_lock(&gmap->guest_table_lock);
924	if (pmd_none(*pmdp)) {
925		spin_unlock(&gmap->guest_table_lock);
926		return NULL;
927	}
928
929	/* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
930	if (!pmd_large(*pmdp))
931		spin_unlock(&gmap->guest_table_lock);
932	return pmdp;
933}
934
935/**
936 * gmap_pmd_op_end - release the guest_table_lock if needed
937 * @gmap: pointer to the guest mapping meta data structure
938 * @pmdp: pointer to the pmd
939 */
940static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
941{
942	if (pmd_large(*pmdp))
943		spin_unlock(&gmap->guest_table_lock);
944}
945
946/*
947 * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
948 * @pmdp: pointer to the pmd to be protected
949 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
950 * @bits: notification bits to set
951 *
952 * Returns:
953 * 0 if successfully protected
954 * -EAGAIN if a fixup is needed
955 * -EINVAL if unsupported notifier bits have been specified
956 *
957 * Expected to be called with sg->mm->mmap_lock in read and
958 * guest_table_lock held.
959 */
960static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
961			    pmd_t *pmdp, int prot, unsigned long bits)
962{
963	int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
964	int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
965	pmd_t new = *pmdp;
966
967	/* Fixup needed */
968	if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
969		return -EAGAIN;
970
971	if (prot == PROT_NONE && !pmd_i) {
972		pmd_val(new) |= _SEGMENT_ENTRY_INVALID;
973		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
974	}
975
976	if (prot == PROT_READ && !pmd_p) {
977		pmd_val(new) &= ~_SEGMENT_ENTRY_INVALID;
978		pmd_val(new) |= _SEGMENT_ENTRY_PROTECT;
979		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
980	}
981
982	if (bits & GMAP_NOTIFY_MPROT)
983		pmd_val(*pmdp) |= _SEGMENT_ENTRY_GMAP_IN;
984
985	/* Shadow GMAP protection needs split PMDs */
986	if (bits & GMAP_NOTIFY_SHADOW)
987		return -EINVAL;
988
989	return 0;
990}
991
992/*
993 * gmap_protect_pte - remove access rights to memory and set pgste bits
994 * @gmap: pointer to guest mapping meta data structure
995 * @gaddr: virtual address in the guest address space
996 * @pmdp: pointer to the pmd associated with the pte
997 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
998 * @bits: notification bits to set
999 *
1000 * Returns 0 if successfully protected, -ENOMEM if out of memory and
1001 * -EAGAIN if a fixup is needed.
1002 *
1003 * Expected to be called with sg->mm->mmap_lock in read
1004 */
1005static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
1006			    pmd_t *pmdp, int prot, unsigned long bits)
1007{
1008	int rc;
1009	pte_t *ptep;
1010	spinlock_t *ptl = NULL;
1011	unsigned long pbits = 0;
1012
1013	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1014		return -EAGAIN;
1015
1016	ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
1017	if (!ptep)
1018		return -ENOMEM;
1019
1020	pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
1021	pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
1022	/* Protect and unlock. */
1023	rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
1024	gmap_pte_op_end(ptl);
1025	return rc;
1026}
1027
1028/*
1029 * gmap_protect_range - remove access rights to memory and set pgste bits
1030 * @gmap: pointer to guest mapping meta data structure
1031 * @gaddr: virtual address in the guest address space
1032 * @len: size of area
1033 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1034 * @bits: pgste notification bits to set
1035 *
1036 * Returns 0 if successfully protected, -ENOMEM if out of memory and
1037 * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1038 *
1039 * Called with sg->mm->mmap_lock in read.
1040 */
1041static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
1042			      unsigned long len, int prot, unsigned long bits)
1043{
1044	unsigned long vmaddr, dist;
1045	pmd_t *pmdp;
1046	int rc;
1047
1048	BUG_ON(gmap_is_shadow(gmap));
1049	while (len) {
1050		rc = -EAGAIN;
1051		pmdp = gmap_pmd_op_walk(gmap, gaddr);
1052		if (pmdp) {
1053			if (!pmd_large(*pmdp)) {
1054				rc = gmap_protect_pte(gmap, gaddr, pmdp, prot,
1055						      bits);
1056				if (!rc) {
1057					len -= PAGE_SIZE;
1058					gaddr += PAGE_SIZE;
1059				}
1060			} else {
1061				rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot,
1062						      bits);
1063				if (!rc) {
1064					dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK);
1065					len = len < dist ? 0 : len - dist;
1066					gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE;
1067				}
1068			}
1069			gmap_pmd_op_end(gmap, pmdp);
1070		}
1071		if (rc) {
1072			if (rc == -EINVAL)
1073				return rc;
1074
1075			/* -EAGAIN, fixup of userspace mm and gmap */
1076			vmaddr = __gmap_translate(gmap, gaddr);
1077			if (IS_ERR_VALUE(vmaddr))
1078				return vmaddr;
1079			rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
1080			if (rc)
1081				return rc;
1082		}
1083	}
1084	return 0;
1085}
1086
1087/**
1088 * gmap_mprotect_notify - change access rights for a range of ptes and
1089 *                        call the notifier if any pte changes again
1090 * @gmap: pointer to guest mapping meta data structure
1091 * @gaddr: virtual address in the guest address space
1092 * @len: size of area
1093 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1094 *
1095 * Returns 0 if for each page in the given range a gmap mapping exists,
1096 * the new access rights could be set and the notifier could be armed.
1097 * If the gmap mapping is missing for one or more pages -EFAULT is
1098 * returned. If no memory could be allocated -ENOMEM is returned.
1099 * This function establishes missing page table entries.
1100 */
1101int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
1102			 unsigned long len, int prot)
1103{
1104	int rc;
1105
1106	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
1107		return -EINVAL;
1108	if (!MACHINE_HAS_ESOP && prot == PROT_READ)
1109		return -EINVAL;
1110	mmap_read_lock(gmap->mm);
1111	rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT);
1112	mmap_read_unlock(gmap->mm);
1113	return rc;
1114}
1115EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
1116
1117/**
1118 * gmap_read_table - get an unsigned long value from a guest page table using
1119 *                   absolute addressing, without marking the page referenced.
1120 * @gmap: pointer to guest mapping meta data structure
1121 * @gaddr: virtual address in the guest address space
1122 * @val: pointer to the unsigned long value to return
1123 *
1124 * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1125 * if reading using the virtual address failed. -EINVAL if called on a gmap
1126 * shadow.
1127 *
1128 * Called with gmap->mm->mmap_lock in read.
1129 */
1130int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1131{
1132	unsigned long address, vmaddr;
1133	spinlock_t *ptl;
1134	pte_t *ptep, pte;
1135	int rc;
1136
1137	if (gmap_is_shadow(gmap))
1138		return -EINVAL;
1139
1140	while (1) {
1141		rc = -EAGAIN;
1142		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1143		if (ptep) {
1144			pte = *ptep;
1145			if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1146				address = pte_val(pte) & PAGE_MASK;
1147				address += gaddr & ~PAGE_MASK;
1148				*val = *(unsigned long *) address;
1149				pte_val(*ptep) |= _PAGE_YOUNG;
1150				/* Do *NOT* clear the _PAGE_INVALID bit! */
1151				rc = 0;
1152			}
1153			gmap_pte_op_end(ptl);
1154		}
1155		if (!rc)
1156			break;
1157		vmaddr = __gmap_translate(gmap, gaddr);
1158		if (IS_ERR_VALUE(vmaddr)) {
1159			rc = vmaddr;
1160			break;
1161		}
1162		rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1163		if (rc)
1164			break;
1165	}
1166	return rc;
1167}
1168EXPORT_SYMBOL_GPL(gmap_read_table);
1169
1170/**
1171 * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1172 * @sg: pointer to the shadow guest address space structure
1173 * @vmaddr: vm address associated with the rmap
1174 * @rmap: pointer to the rmap structure
1175 *
1176 * Called with the sg->guest_table_lock
1177 */
1178static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1179				    struct gmap_rmap *rmap)
1180{
1181	void __rcu **slot;
1182
1183	BUG_ON(!gmap_is_shadow(sg));
1184	slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1185	if (slot) {
1186		rmap->next = radix_tree_deref_slot_protected(slot,
1187							&sg->guest_table_lock);
1188		radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1189	} else {
1190		rmap->next = NULL;
1191		radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1192				  rmap);
1193	}
1194}
1195
1196/**
1197 * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1198 * @sg: pointer to the shadow guest address space structure
1199 * @raddr: rmap address in the shadow gmap
1200 * @paddr: address in the parent guest address space
1201 * @len: length of the memory area to protect
1202 *
1203 * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1204 * if out of memory and -EFAULT if paddr is invalid.
1205 */
1206static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1207			     unsigned long paddr, unsigned long len)
1208{
1209	struct gmap *parent;
1210	struct gmap_rmap *rmap;
1211	unsigned long vmaddr;
1212	spinlock_t *ptl;
1213	pte_t *ptep;
1214	int rc;
1215
1216	BUG_ON(!gmap_is_shadow(sg));
1217	parent = sg->parent;
1218	while (len) {
1219		vmaddr = __gmap_translate(parent, paddr);
1220		if (IS_ERR_VALUE(vmaddr))
1221			return vmaddr;
1222		rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
1223		if (!rmap)
1224			return -ENOMEM;
1225		rmap->raddr = raddr;
1226		rc = radix_tree_preload(GFP_KERNEL);
1227		if (rc) {
1228			kfree(rmap);
1229			return rc;
1230		}
1231		rc = -EAGAIN;
1232		ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1233		if (ptep) {
1234			spin_lock(&sg->guest_table_lock);
1235			rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1236					     PGSTE_VSIE_BIT);
1237			if (!rc)
1238				gmap_insert_rmap(sg, vmaddr, rmap);
1239			spin_unlock(&sg->guest_table_lock);
1240			gmap_pte_op_end(ptl);
1241		}
1242		radix_tree_preload_end();
1243		if (rc) {
1244			kfree(rmap);
1245			rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1246			if (rc)
1247				return rc;
1248			continue;
1249		}
1250		paddr += PAGE_SIZE;
1251		len -= PAGE_SIZE;
1252	}
1253	return 0;
1254}
1255
1256#define _SHADOW_RMAP_MASK	0x7
1257#define _SHADOW_RMAP_REGION1	0x5
1258#define _SHADOW_RMAP_REGION2	0x4
1259#define _SHADOW_RMAP_REGION3	0x3
1260#define _SHADOW_RMAP_SEGMENT	0x2
1261#define _SHADOW_RMAP_PGTABLE	0x1
1262
1263/**
1264 * gmap_idte_one - invalidate a single region or segment table entry
1265 * @asce: region or segment table *origin* + table-type bits
1266 * @vaddr: virtual address to identify the table entry to flush
1267 *
1268 * The invalid bit of a single region or segment table entry is set
1269 * and the associated TLB entries depending on the entry are flushed.
1270 * The table-type of the @asce identifies the portion of the @vaddr
1271 * that is used as the invalidation index.
1272 */
1273static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1274{
1275	asm volatile(
1276		"	.insn	rrf,0xb98e0000,%0,%1,0,0"
1277		: : "a" (asce), "a" (vaddr) : "cc", "memory");
1278}
1279
1280/**
1281 * gmap_unshadow_page - remove a page from a shadow page table
1282 * @sg: pointer to the shadow guest address space structure
1283 * @raddr: rmap address in the shadow guest address space
1284 *
1285 * Called with the sg->guest_table_lock
1286 */
1287static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1288{
1289	unsigned long *table;
1290
1291	BUG_ON(!gmap_is_shadow(sg));
1292	table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1293	if (!table || *table & _PAGE_INVALID)
1294		return;
1295	gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1296	ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1297}
1298
1299/**
1300 * __gmap_unshadow_pgt - remove all entries from a shadow page table
1301 * @sg: pointer to the shadow guest address space structure
1302 * @raddr: rmap address in the shadow guest address space
1303 * @pgt: pointer to the start of a shadow page table
1304 *
1305 * Called with the sg->guest_table_lock
1306 */
1307static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1308				unsigned long *pgt)
1309{
1310	int i;
1311
1312	BUG_ON(!gmap_is_shadow(sg));
1313	for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1314		pgt[i] = _PAGE_INVALID;
1315}
1316
1317/**
1318 * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1319 * @sg: pointer to the shadow guest address space structure
1320 * @raddr: address in the shadow guest address space
1321 *
1322 * Called with the sg->guest_table_lock
1323 */
1324static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1325{
1326	unsigned long sto, *ste, *pgt;
1327	struct page *page;
1328
1329	BUG_ON(!gmap_is_shadow(sg));
1330	ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1331	if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1332		return;
1333	gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1334	sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1335	gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1336	pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN);
1337	*ste = _SEGMENT_ENTRY_EMPTY;
1338	__gmap_unshadow_pgt(sg, raddr, pgt);
1339	/* Free page table */
1340	page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1341	list_del(&page->lru);
1342	page_table_free_pgste(page);
1343}
1344
1345/**
1346 * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1347 * @sg: pointer to the shadow guest address space structure
1348 * @raddr: rmap address in the shadow guest address space
1349 * @sgt: pointer to the start of a shadow segment table
1350 *
1351 * Called with the sg->guest_table_lock
1352 */
1353static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1354				unsigned long *sgt)
1355{
1356	unsigned long *pgt;
1357	struct page *page;
1358	int i;
1359
1360	BUG_ON(!gmap_is_shadow(sg));
1361	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1362		if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1363			continue;
1364		pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN);
1365		sgt[i] = _SEGMENT_ENTRY_EMPTY;
1366		__gmap_unshadow_pgt(sg, raddr, pgt);
1367		/* Free page table */
1368		page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1369		list_del(&page->lru);
1370		page_table_free_pgste(page);
1371	}
1372}
1373
1374/**
1375 * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1376 * @sg: pointer to the shadow guest address space structure
1377 * @raddr: rmap address in the shadow guest address space
1378 *
1379 * Called with the shadow->guest_table_lock
1380 */
1381static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1382{
1383	unsigned long r3o, *r3e, *sgt;
1384	struct page *page;
1385
1386	BUG_ON(!gmap_is_shadow(sg));
1387	r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1388	if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1389		return;
1390	gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1391	r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1392	gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr);
1393	sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN);
1394	*r3e = _REGION3_ENTRY_EMPTY;
1395	__gmap_unshadow_sgt(sg, raddr, sgt);
1396	/* Free segment table */
1397	page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1398	list_del(&page->lru);
1399	__free_pages(page, CRST_ALLOC_ORDER);
1400}
1401
1402/**
1403 * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1404 * @sg: pointer to the shadow guest address space structure
1405 * @raddr: address in the shadow guest address space
1406 * @r3t: pointer to the start of a shadow region-3 table
1407 *
1408 * Called with the sg->guest_table_lock
1409 */
1410static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1411				unsigned long *r3t)
1412{
1413	unsigned long *sgt;
1414	struct page *page;
1415	int i;
1416
1417	BUG_ON(!gmap_is_shadow(sg));
1418	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1419		if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1420			continue;
1421		sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN);
1422		r3t[i] = _REGION3_ENTRY_EMPTY;
1423		__gmap_unshadow_sgt(sg, raddr, sgt);
1424		/* Free segment table */
1425		page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1426		list_del(&page->lru);
1427		__free_pages(page, CRST_ALLOC_ORDER);
1428	}
1429}
1430
1431/**
1432 * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1433 * @sg: pointer to the shadow guest address space structure
1434 * @raddr: rmap address in the shadow guest address space
1435 *
1436 * Called with the sg->guest_table_lock
1437 */
1438static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1439{
1440	unsigned long r2o, *r2e, *r3t;
1441	struct page *page;
1442
1443	BUG_ON(!gmap_is_shadow(sg));
1444	r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1445	if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1446		return;
1447	gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1448	r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1449	gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr);
1450	r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN);
1451	*r2e = _REGION2_ENTRY_EMPTY;
1452	__gmap_unshadow_r3t(sg, raddr, r3t);
1453	/* Free region 3 table */
1454	page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1455	list_del(&page->lru);
1456	__free_pages(page, CRST_ALLOC_ORDER);
1457}
1458
1459/**
1460 * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1461 * @sg: pointer to the shadow guest address space structure
1462 * @raddr: rmap address in the shadow guest address space
1463 * @r2t: pointer to the start of a shadow region-2 table
1464 *
1465 * Called with the sg->guest_table_lock
1466 */
1467static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1468				unsigned long *r2t)
1469{
1470	unsigned long *r3t;
1471	struct page *page;
1472	int i;
1473
1474	BUG_ON(!gmap_is_shadow(sg));
1475	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1476		if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1477			continue;
1478		r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN);
1479		r2t[i] = _REGION2_ENTRY_EMPTY;
1480		__gmap_unshadow_r3t(sg, raddr, r3t);
1481		/* Free region 3 table */
1482		page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1483		list_del(&page->lru);
1484		__free_pages(page, CRST_ALLOC_ORDER);
1485	}
1486}
1487
1488/**
1489 * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1490 * @sg: pointer to the shadow guest address space structure
1491 * @raddr: rmap address in the shadow guest address space
1492 *
1493 * Called with the sg->guest_table_lock
1494 */
1495static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1496{
1497	unsigned long r1o, *r1e, *r2t;
1498	struct page *page;
1499
1500	BUG_ON(!gmap_is_shadow(sg));
1501	r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1502	if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1503		return;
1504	gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1505	r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1506	gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr);
1507	r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN);
1508	*r1e = _REGION1_ENTRY_EMPTY;
1509	__gmap_unshadow_r2t(sg, raddr, r2t);
1510	/* Free region 2 table */
1511	page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1512	list_del(&page->lru);
1513	__free_pages(page, CRST_ALLOC_ORDER);
1514}
1515
1516/**
1517 * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1518 * @sg: pointer to the shadow guest address space structure
1519 * @raddr: rmap address in the shadow guest address space
1520 * @r1t: pointer to the start of a shadow region-1 table
1521 *
1522 * Called with the shadow->guest_table_lock
1523 */
1524static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1525				unsigned long *r1t)
1526{
1527	unsigned long asce, *r2t;
1528	struct page *page;
1529	int i;
1530
1531	BUG_ON(!gmap_is_shadow(sg));
1532	asce = (unsigned long) r1t | _ASCE_TYPE_REGION1;
1533	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1534		if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1535			continue;
1536		r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN);
1537		__gmap_unshadow_r2t(sg, raddr, r2t);
1538		/* Clear entry and flush translation r1t -> r2t */
1539		gmap_idte_one(asce, raddr);
1540		r1t[i] = _REGION1_ENTRY_EMPTY;
1541		/* Free region 2 table */
1542		page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1543		list_del(&page->lru);
1544		__free_pages(page, CRST_ALLOC_ORDER);
1545	}
1546}
1547
1548/**
1549 * gmap_unshadow - remove a shadow page table completely
1550 * @sg: pointer to the shadow guest address space structure
1551 *
1552 * Called with sg->guest_table_lock
1553 */
1554static void gmap_unshadow(struct gmap *sg)
1555{
1556	unsigned long *table;
1557
1558	BUG_ON(!gmap_is_shadow(sg));
1559	if (sg->removed)
1560		return;
1561	sg->removed = 1;
1562	gmap_call_notifier(sg, 0, -1UL);
1563	gmap_flush_tlb(sg);
1564	table = (unsigned long *)(sg->asce & _ASCE_ORIGIN);
1565	switch (sg->asce & _ASCE_TYPE_MASK) {
1566	case _ASCE_TYPE_REGION1:
1567		__gmap_unshadow_r1t(sg, 0, table);
1568		break;
1569	case _ASCE_TYPE_REGION2:
1570		__gmap_unshadow_r2t(sg, 0, table);
1571		break;
1572	case _ASCE_TYPE_REGION3:
1573		__gmap_unshadow_r3t(sg, 0, table);
1574		break;
1575	case _ASCE_TYPE_SEGMENT:
1576		__gmap_unshadow_sgt(sg, 0, table);
1577		break;
1578	}
1579}
1580
1581/**
1582 * gmap_find_shadow - find a specific asce in the list of shadow tables
1583 * @parent: pointer to the parent gmap
1584 * @asce: ASCE for which the shadow table is created
1585 * @edat_level: edat level to be used for the shadow translation
1586 *
1587 * Returns the pointer to a gmap if a shadow table with the given asce is
1588 * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1589 * otherwise NULL
1590 */
1591static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1592				     int edat_level)
1593{
1594	struct gmap *sg;
1595
1596	list_for_each_entry(sg, &parent->children, list) {
1597		if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1598		    sg->removed)
1599			continue;
1600		if (!sg->initialized)
1601			return ERR_PTR(-EAGAIN);
1602		refcount_inc(&sg->ref_count);
1603		return sg;
1604	}
1605	return NULL;
1606}
1607
1608/**
1609 * gmap_shadow_valid - check if a shadow guest address space matches the
1610 *                     given properties and is still valid
1611 * @sg: pointer to the shadow guest address space structure
1612 * @asce: ASCE for which the shadow table is requested
1613 * @edat_level: edat level to be used for the shadow translation
1614 *
1615 * Returns 1 if the gmap shadow is still valid and matches the given
1616 * properties, the caller can continue using it. Returns 0 otherwise, the
1617 * caller has to request a new shadow gmap in this case.
1618 *
1619 */
1620int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1621{
1622	if (sg->removed)
1623		return 0;
1624	return sg->orig_asce == asce && sg->edat_level == edat_level;
1625}
1626EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1627
1628/**
1629 * gmap_shadow - create/find a shadow guest address space
1630 * @parent: pointer to the parent gmap
1631 * @asce: ASCE for which the shadow table is created
1632 * @edat_level: edat level to be used for the shadow translation
1633 *
1634 * The pages of the top level page table referred by the asce parameter
1635 * will be set to read-only and marked in the PGSTEs of the kvm process.
1636 * The shadow table will be removed automatically on any change to the
1637 * PTE mapping for the source table.
1638 *
1639 * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1640 * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1641 * parent gmap table could not be protected.
1642 */
1643struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1644			 int edat_level)
1645{
1646	struct gmap *sg, *new;
1647	unsigned long limit;
1648	int rc;
1649
1650	BUG_ON(parent->mm->context.allow_gmap_hpage_1m);
1651	BUG_ON(gmap_is_shadow(parent));
1652	spin_lock(&parent->shadow_lock);
1653	sg = gmap_find_shadow(parent, asce, edat_level);
1654	spin_unlock(&parent->shadow_lock);
1655	if (sg)
1656		return sg;
1657	/* Create a new shadow gmap */
1658	limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1659	if (asce & _ASCE_REAL_SPACE)
1660		limit = -1UL;
1661	new = gmap_alloc(limit);
1662	if (!new)
1663		return ERR_PTR(-ENOMEM);
1664	new->mm = parent->mm;
1665	new->parent = gmap_get(parent);
1666	new->orig_asce = asce;
1667	new->edat_level = edat_level;
1668	new->initialized = false;
1669	spin_lock(&parent->shadow_lock);
1670	/* Recheck if another CPU created the same shadow */
1671	sg = gmap_find_shadow(parent, asce, edat_level);
1672	if (sg) {
1673		spin_unlock(&parent->shadow_lock);
1674		gmap_free(new);
1675		return sg;
1676	}
1677	if (asce & _ASCE_REAL_SPACE) {
1678		/* only allow one real-space gmap shadow */
1679		list_for_each_entry(sg, &parent->children, list) {
1680			if (sg->orig_asce & _ASCE_REAL_SPACE) {
1681				spin_lock(&sg->guest_table_lock);
1682				gmap_unshadow(sg);
1683				spin_unlock(&sg->guest_table_lock);
1684				list_del(&sg->list);
1685				gmap_put(sg);
1686				break;
1687			}
1688		}
1689	}
1690	refcount_set(&new->ref_count, 2);
1691	list_add(&new->list, &parent->children);
1692	if (asce & _ASCE_REAL_SPACE) {
1693		/* nothing to protect, return right away */
1694		new->initialized = true;
1695		spin_unlock(&parent->shadow_lock);
1696		return new;
1697	}
1698	spin_unlock(&parent->shadow_lock);
1699	/* protect after insertion, so it will get properly invalidated */
1700	mmap_read_lock(parent->mm);
1701	rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1702				((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1703				PROT_READ, GMAP_NOTIFY_SHADOW);
1704	mmap_read_unlock(parent->mm);
1705	spin_lock(&parent->shadow_lock);
1706	new->initialized = true;
1707	if (rc) {
1708		list_del(&new->list);
1709		gmap_free(new);
1710		new = ERR_PTR(rc);
1711	}
1712	spin_unlock(&parent->shadow_lock);
1713	return new;
1714}
1715EXPORT_SYMBOL_GPL(gmap_shadow);
1716
1717/**
1718 * gmap_shadow_r2t - create an empty shadow region 2 table
1719 * @sg: pointer to the shadow guest address space structure
1720 * @saddr: faulting address in the shadow gmap
1721 * @r2t: parent gmap address of the region 2 table to get shadowed
1722 * @fake: r2t references contiguous guest memory block, not a r2t
1723 *
1724 * The r2t parameter specifies the address of the source table. The
1725 * four pages of the source table are made read-only in the parent gmap
1726 * address space. A write to the source table area @r2t will automatically
1727 * remove the shadow r2 table and all of its decendents.
1728 *
1729 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1730 * shadow table structure is incomplete, -ENOMEM if out of memory and
1731 * -EFAULT if an address in the parent gmap could not be resolved.
1732 *
1733 * Called with sg->mm->mmap_lock in read.
1734 */
1735int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1736		    int fake)
1737{
1738	unsigned long raddr, origin, offset, len;
1739	unsigned long *s_r2t, *table;
1740	struct page *page;
1741	int rc;
1742
1743	BUG_ON(!gmap_is_shadow(sg));
1744	/* Allocate a shadow region second table */
1745	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1746	if (!page)
1747		return -ENOMEM;
1748	page->index = r2t & _REGION_ENTRY_ORIGIN;
1749	if (fake)
1750		page->index |= GMAP_SHADOW_FAKE_TABLE;
1751	s_r2t = (unsigned long *) page_to_phys(page);
1752	/* Install shadow region second table */
1753	spin_lock(&sg->guest_table_lock);
1754	table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1755	if (!table) {
1756		rc = -EAGAIN;		/* Race with unshadow */
1757		goto out_free;
1758	}
1759	if (!(*table & _REGION_ENTRY_INVALID)) {
1760		rc = 0;			/* Already established */
1761		goto out_free;
1762	} else if (*table & _REGION_ENTRY_ORIGIN) {
1763		rc = -EAGAIN;		/* Race with shadow */
1764		goto out_free;
1765	}
1766	crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY);
1767	/* mark as invalid as long as the parent table is not protected */
1768	*table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH |
1769		 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1770	if (sg->edat_level >= 1)
1771		*table |= (r2t & _REGION_ENTRY_PROTECT);
1772	list_add(&page->lru, &sg->crst_list);
1773	if (fake) {
1774		/* nothing to protect for fake tables */
1775		*table &= ~_REGION_ENTRY_INVALID;
1776		spin_unlock(&sg->guest_table_lock);
1777		return 0;
1778	}
1779	spin_unlock(&sg->guest_table_lock);
1780	/* Make r2t read-only in parent gmap page table */
1781	raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1782	origin = r2t & _REGION_ENTRY_ORIGIN;
1783	offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1784	len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1785	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1786	spin_lock(&sg->guest_table_lock);
1787	if (!rc) {
1788		table = gmap_table_walk(sg, saddr, 4);
1789		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1790			      (unsigned long) s_r2t)
1791			rc = -EAGAIN;		/* Race with unshadow */
1792		else
1793			*table &= ~_REGION_ENTRY_INVALID;
1794	} else {
1795		gmap_unshadow_r2t(sg, raddr);
1796	}
1797	spin_unlock(&sg->guest_table_lock);
1798	return rc;
1799out_free:
1800	spin_unlock(&sg->guest_table_lock);
1801	__free_pages(page, CRST_ALLOC_ORDER);
1802	return rc;
1803}
1804EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1805
1806/**
1807 * gmap_shadow_r3t - create a shadow region 3 table
1808 * @sg: pointer to the shadow guest address space structure
1809 * @saddr: faulting address in the shadow gmap
1810 * @r3t: parent gmap address of the region 3 table to get shadowed
1811 * @fake: r3t references contiguous guest memory block, not a r3t
1812 *
1813 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1814 * shadow table structure is incomplete, -ENOMEM if out of memory and
1815 * -EFAULT if an address in the parent gmap could not be resolved.
1816 *
1817 * Called with sg->mm->mmap_lock in read.
1818 */
1819int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1820		    int fake)
1821{
1822	unsigned long raddr, origin, offset, len;
1823	unsigned long *s_r3t, *table;
1824	struct page *page;
1825	int rc;
1826
1827	BUG_ON(!gmap_is_shadow(sg));
1828	/* Allocate a shadow region second table */
1829	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1830	if (!page)
1831		return -ENOMEM;
1832	page->index = r3t & _REGION_ENTRY_ORIGIN;
1833	if (fake)
1834		page->index |= GMAP_SHADOW_FAKE_TABLE;
1835	s_r3t = (unsigned long *) page_to_phys(page);
1836	/* Install shadow region second table */
1837	spin_lock(&sg->guest_table_lock);
1838	table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1839	if (!table) {
1840		rc = -EAGAIN;		/* Race with unshadow */
1841		goto out_free;
1842	}
1843	if (!(*table & _REGION_ENTRY_INVALID)) {
1844		rc = 0;			/* Already established */
1845		goto out_free;
1846	} else if (*table & _REGION_ENTRY_ORIGIN) {
1847		rc = -EAGAIN;		/* Race with shadow */
1848		goto out_free;
1849	}
1850	crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY);
1851	/* mark as invalid as long as the parent table is not protected */
1852	*table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH |
1853		 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1854	if (sg->edat_level >= 1)
1855		*table |= (r3t & _REGION_ENTRY_PROTECT);
1856	list_add(&page->lru, &sg->crst_list);
1857	if (fake) {
1858		/* nothing to protect for fake tables */
1859		*table &= ~_REGION_ENTRY_INVALID;
1860		spin_unlock(&sg->guest_table_lock);
1861		return 0;
1862	}
1863	spin_unlock(&sg->guest_table_lock);
1864	/* Make r3t read-only in parent gmap page table */
1865	raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1866	origin = r3t & _REGION_ENTRY_ORIGIN;
1867	offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1868	len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1869	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1870	spin_lock(&sg->guest_table_lock);
1871	if (!rc) {
1872		table = gmap_table_walk(sg, saddr, 3);
1873		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1874			      (unsigned long) s_r3t)
1875			rc = -EAGAIN;		/* Race with unshadow */
1876		else
1877			*table &= ~_REGION_ENTRY_INVALID;
1878	} else {
1879		gmap_unshadow_r3t(sg, raddr);
1880	}
1881	spin_unlock(&sg->guest_table_lock);
1882	return rc;
1883out_free:
1884	spin_unlock(&sg->guest_table_lock);
1885	__free_pages(page, CRST_ALLOC_ORDER);
1886	return rc;
1887}
1888EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1889
1890/**
1891 * gmap_shadow_sgt - create a shadow segment table
1892 * @sg: pointer to the shadow guest address space structure
1893 * @saddr: faulting address in the shadow gmap
1894 * @sgt: parent gmap address of the segment table to get shadowed
1895 * @fake: sgt references contiguous guest memory block, not a sgt
1896 *
1897 * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1898 * shadow table structure is incomplete, -ENOMEM if out of memory and
1899 * -EFAULT if an address in the parent gmap could not be resolved.
1900 *
1901 * Called with sg->mm->mmap_lock in read.
1902 */
1903int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1904		    int fake)
1905{
1906	unsigned long raddr, origin, offset, len;
1907	unsigned long *s_sgt, *table;
1908	struct page *page;
1909	int rc;
1910
1911	BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1912	/* Allocate a shadow segment table */
1913	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1914	if (!page)
1915		return -ENOMEM;
1916	page->index = sgt & _REGION_ENTRY_ORIGIN;
1917	if (fake)
1918		page->index |= GMAP_SHADOW_FAKE_TABLE;
1919	s_sgt = (unsigned long *) page_to_phys(page);
1920	/* Install shadow region second table */
1921	spin_lock(&sg->guest_table_lock);
1922	table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1923	if (!table) {
1924		rc = -EAGAIN;		/* Race with unshadow */
1925		goto out_free;
1926	}
1927	if (!(*table & _REGION_ENTRY_INVALID)) {
1928		rc = 0;			/* Already established */
1929		goto out_free;
1930	} else if (*table & _REGION_ENTRY_ORIGIN) {
1931		rc = -EAGAIN;		/* Race with shadow */
1932		goto out_free;
1933	}
1934	crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY);
1935	/* mark as invalid as long as the parent table is not protected */
1936	*table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH |
1937		 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1938	if (sg->edat_level >= 1)
1939		*table |= sgt & _REGION_ENTRY_PROTECT;
1940	list_add(&page->lru, &sg->crst_list);
1941	if (fake) {
1942		/* nothing to protect for fake tables */
1943		*table &= ~_REGION_ENTRY_INVALID;
1944		spin_unlock(&sg->guest_table_lock);
1945		return 0;
1946	}
1947	spin_unlock(&sg->guest_table_lock);
1948	/* Make sgt read-only in parent gmap page table */
1949	raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1950	origin = sgt & _REGION_ENTRY_ORIGIN;
1951	offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1952	len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1953	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1954	spin_lock(&sg->guest_table_lock);
1955	if (!rc) {
1956		table = gmap_table_walk(sg, saddr, 2);
1957		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1958			      (unsigned long) s_sgt)
1959			rc = -EAGAIN;		/* Race with unshadow */
1960		else
1961			*table &= ~_REGION_ENTRY_INVALID;
1962	} else {
1963		gmap_unshadow_sgt(sg, raddr);
1964	}
1965	spin_unlock(&sg->guest_table_lock);
1966	return rc;
1967out_free:
1968	spin_unlock(&sg->guest_table_lock);
1969	__free_pages(page, CRST_ALLOC_ORDER);
1970	return rc;
1971}
1972EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
1973
1974/**
1975 * gmap_shadow_lookup_pgtable - find a shadow page table
1976 * @sg: pointer to the shadow guest address space structure
1977 * @saddr: the address in the shadow aguest address space
1978 * @pgt: parent gmap address of the page table to get shadowed
1979 * @dat_protection: if the pgtable is marked as protected by dat
1980 * @fake: pgt references contiguous guest memory block, not a pgtable
1981 *
1982 * Returns 0 if the shadow page table was found and -EAGAIN if the page
1983 * table was not found.
1984 *
1985 * Called with sg->mm->mmap_lock in read.
1986 */
1987int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
1988			   unsigned long *pgt, int *dat_protection,
1989			   int *fake)
1990{
1991	unsigned long *table;
1992	struct page *page;
1993	int rc;
1994
1995	BUG_ON(!gmap_is_shadow(sg));
1996	spin_lock(&sg->guest_table_lock);
1997	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
1998	if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
1999		/* Shadow page tables are full pages (pte+pgste) */
2000		page = pfn_to_page(*table >> PAGE_SHIFT);
2001		*pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
2002		*dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
2003		*fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
2004		rc = 0;
2005	} else  {
2006		rc = -EAGAIN;
2007	}
2008	spin_unlock(&sg->guest_table_lock);
2009	return rc;
2010
2011}
2012EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
2013
2014/**
2015 * gmap_shadow_pgt - instantiate a shadow page table
2016 * @sg: pointer to the shadow guest address space structure
2017 * @saddr: faulting address in the shadow gmap
2018 * @pgt: parent gmap address of the page table to get shadowed
2019 * @fake: pgt references contiguous guest memory block, not a pgtable
2020 *
2021 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2022 * shadow table structure is incomplete, -ENOMEM if out of memory,
2023 * -EFAULT if an address in the parent gmap could not be resolved and
2024 *
2025 * Called with gmap->mm->mmap_lock in read
2026 */
2027int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
2028		    int fake)
2029{
2030	unsigned long raddr, origin;
2031	unsigned long *s_pgt, *table;
2032	struct page *page;
2033	int rc;
2034
2035	BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
2036	/* Allocate a shadow page table */
2037	page = page_table_alloc_pgste(sg->mm);
2038	if (!page)
2039		return -ENOMEM;
2040	page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
2041	if (fake)
2042		page->index |= GMAP_SHADOW_FAKE_TABLE;
2043	s_pgt = (unsigned long *) page_to_phys(page);
2044	/* Install shadow page table */
2045	spin_lock(&sg->guest_table_lock);
2046	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2047	if (!table) {
2048		rc = -EAGAIN;		/* Race with unshadow */
2049		goto out_free;
2050	}
2051	if (!(*table & _SEGMENT_ENTRY_INVALID)) {
2052		rc = 0;			/* Already established */
2053		goto out_free;
2054	} else if (*table & _SEGMENT_ENTRY_ORIGIN) {
2055		rc = -EAGAIN;		/* Race with shadow */
2056		goto out_free;
2057	}
2058	/* mark as invalid as long as the parent table is not protected */
2059	*table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
2060		 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
2061	list_add(&page->lru, &sg->pt_list);
2062	if (fake) {
2063		/* nothing to protect for fake tables */
2064		*table &= ~_SEGMENT_ENTRY_INVALID;
2065		spin_unlock(&sg->guest_table_lock);
2066		return 0;
2067	}
2068	spin_unlock(&sg->guest_table_lock);
2069	/* Make pgt read-only in parent gmap page table (not the pgste) */
2070	raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
2071	origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
2072	rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
2073	spin_lock(&sg->guest_table_lock);
2074	if (!rc) {
2075		table = gmap_table_walk(sg, saddr, 1);
2076		if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) !=
2077			      (unsigned long) s_pgt)
2078			rc = -EAGAIN;		/* Race with unshadow */
2079		else
2080			*table &= ~_SEGMENT_ENTRY_INVALID;
2081	} else {
2082		gmap_unshadow_pgt(sg, raddr);
2083	}
2084	spin_unlock(&sg->guest_table_lock);
2085	return rc;
2086out_free:
2087	spin_unlock(&sg->guest_table_lock);
2088	page_table_free_pgste(page);
2089	return rc;
2090
2091}
2092EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
2093
2094/**
2095 * gmap_shadow_page - create a shadow page mapping
2096 * @sg: pointer to the shadow guest address space structure
2097 * @saddr: faulting address in the shadow gmap
2098 * @pte: pte in parent gmap address space to get shadowed
2099 *
2100 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2101 * shadow table structure is incomplete, -ENOMEM if out of memory and
2102 * -EFAULT if an address in the parent gmap could not be resolved.
2103 *
2104 * Called with sg->mm->mmap_lock in read.
2105 */
2106int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
2107{
2108	struct gmap *parent;
2109	struct gmap_rmap *rmap;
2110	unsigned long vmaddr, paddr;
2111	spinlock_t *ptl;
2112	pte_t *sptep, *tptep;
2113	int prot;
2114	int rc;
2115
2116	BUG_ON(!gmap_is_shadow(sg));
2117	parent = sg->parent;
2118	prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
2119
2120	rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
2121	if (!rmap)
2122		return -ENOMEM;
2123	rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
2124
2125	while (1) {
2126		paddr = pte_val(pte) & PAGE_MASK;
2127		vmaddr = __gmap_translate(parent, paddr);
2128		if (IS_ERR_VALUE(vmaddr)) {
2129			rc = vmaddr;
2130			break;
2131		}
2132		rc = radix_tree_preload(GFP_KERNEL);
2133		if (rc)
2134			break;
2135		rc = -EAGAIN;
2136		sptep = gmap_pte_op_walk(parent, paddr, &ptl);
2137		if (sptep) {
2138			spin_lock(&sg->guest_table_lock);
2139			/* Get page table pointer */
2140			tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
2141			if (!tptep) {
2142				spin_unlock(&sg->guest_table_lock);
2143				gmap_pte_op_end(ptl);
2144				radix_tree_preload_end();
2145				break;
2146			}
2147			rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
2148			if (rc > 0) {
2149				/* Success and a new mapping */
2150				gmap_insert_rmap(sg, vmaddr, rmap);
2151				rmap = NULL;
2152				rc = 0;
2153			}
2154			gmap_pte_op_end(ptl);
2155			spin_unlock(&sg->guest_table_lock);
2156		}
2157		radix_tree_preload_end();
2158		if (!rc)
2159			break;
2160		rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
2161		if (rc)
2162			break;
2163	}
2164	kfree(rmap);
2165	return rc;
2166}
2167EXPORT_SYMBOL_GPL(gmap_shadow_page);
2168
2169/**
2170 * gmap_shadow_notify - handle notifications for shadow gmap
2171 *
2172 * Called with sg->parent->shadow_lock.
2173 */
2174static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2175			       unsigned long gaddr)
2176{
2177	struct gmap_rmap *rmap, *rnext, *head;
2178	unsigned long start, end, bits, raddr;
2179
2180	BUG_ON(!gmap_is_shadow(sg));
2181
2182	spin_lock(&sg->guest_table_lock);
2183	if (sg->removed) {
2184		spin_unlock(&sg->guest_table_lock);
2185		return;
2186	}
2187	/* Check for top level table */
2188	start = sg->orig_asce & _ASCE_ORIGIN;
2189	end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2190	if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2191	    gaddr < end) {
2192		/* The complete shadow table has to go */
2193		gmap_unshadow(sg);
2194		spin_unlock(&sg->guest_table_lock);
2195		list_del(&sg->list);
2196		gmap_put(sg);
2197		return;
2198	}
2199	/* Remove the page table tree from on specific entry */
2200	head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2201	gmap_for_each_rmap_safe(rmap, rnext, head) {
2202		bits = rmap->raddr & _SHADOW_RMAP_MASK;
2203		raddr = rmap->raddr ^ bits;
2204		switch (bits) {
2205		case _SHADOW_RMAP_REGION1:
2206			gmap_unshadow_r2t(sg, raddr);
2207			break;
2208		case _SHADOW_RMAP_REGION2:
2209			gmap_unshadow_r3t(sg, raddr);
2210			break;
2211		case _SHADOW_RMAP_REGION3:
2212			gmap_unshadow_sgt(sg, raddr);
2213			break;
2214		case _SHADOW_RMAP_SEGMENT:
2215			gmap_unshadow_pgt(sg, raddr);
2216			break;
2217		case _SHADOW_RMAP_PGTABLE:
2218			gmap_unshadow_page(sg, raddr);
2219			break;
2220		}
2221		kfree(rmap);
2222	}
2223	spin_unlock(&sg->guest_table_lock);
2224}
2225
2226/**
2227 * ptep_notify - call all invalidation callbacks for a specific pte.
2228 * @mm: pointer to the process mm_struct
2229 * @addr: virtual address in the process address space
2230 * @pte: pointer to the page table entry
2231 * @bits: bits from the pgste that caused the notify call
2232 *
2233 * This function is assumed to be called with the page table lock held
2234 * for the pte to notify.
2235 */
2236void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2237		 pte_t *pte, unsigned long bits)
2238{
2239	unsigned long offset, gaddr = 0;
2240	unsigned long *table;
2241	struct gmap *gmap, *sg, *next;
2242
2243	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2244	offset = offset * (PAGE_SIZE / sizeof(pte_t));
2245	rcu_read_lock();
2246	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2247		spin_lock(&gmap->guest_table_lock);
2248		table = radix_tree_lookup(&gmap->host_to_guest,
2249					  vmaddr >> PMD_SHIFT);
2250		if (table)
2251			gaddr = __gmap_segment_gaddr(table) + offset;
2252		spin_unlock(&gmap->guest_table_lock);
2253		if (!table)
2254			continue;
2255
2256		if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2257			spin_lock(&gmap->shadow_lock);
2258			list_for_each_entry_safe(sg, next,
2259						 &gmap->children, list)
2260				gmap_shadow_notify(sg, vmaddr, gaddr);
2261			spin_unlock(&gmap->shadow_lock);
2262		}
2263		if (bits & PGSTE_IN_BIT)
2264			gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2265	}
2266	rcu_read_unlock();
2267}
2268EXPORT_SYMBOL_GPL(ptep_notify);
2269
2270static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2271			     unsigned long gaddr)
2272{
2273	pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_IN;
2274	gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2275}
2276
2277/**
2278 * gmap_pmdp_xchg - exchange a gmap pmd with another
2279 * @gmap: pointer to the guest address space structure
2280 * @pmdp: pointer to the pmd entry
2281 * @new: replacement entry
2282 * @gaddr: the affected guest address
2283 *
2284 * This function is assumed to be called with the guest_table_lock
2285 * held.
2286 */
2287static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2288			   unsigned long gaddr)
2289{
2290	gaddr &= HPAGE_MASK;
2291	pmdp_notify_gmap(gmap, pmdp, gaddr);
2292	pmd_val(new) &= ~_SEGMENT_ENTRY_GMAP_IN;
2293	if (MACHINE_HAS_TLB_GUEST)
2294		__pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2295			    IDTE_GLOBAL);
2296	else if (MACHINE_HAS_IDTE)
2297		__pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2298	else
2299		__pmdp_csp(pmdp);
2300	*pmdp = new;
2301}
2302
2303static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2304			    int purge)
2305{
2306	pmd_t *pmdp;
2307	struct gmap *gmap;
2308	unsigned long gaddr;
2309
2310	rcu_read_lock();
2311	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2312		spin_lock(&gmap->guest_table_lock);
2313		pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest,
2314						  vmaddr >> PMD_SHIFT);
2315		if (pmdp) {
2316			gaddr = __gmap_segment_gaddr((unsigned long *)pmdp);
2317			pmdp_notify_gmap(gmap, pmdp, gaddr);
2318			WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2319						   _SEGMENT_ENTRY_GMAP_UC));
2320			if (purge)
2321				__pmdp_csp(pmdp);
2322			pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
2323		}
2324		spin_unlock(&gmap->guest_table_lock);
2325	}
2326	rcu_read_unlock();
2327}
2328
2329/**
2330 * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2331 *                        flushing
2332 * @mm: pointer to the process mm_struct
2333 * @vmaddr: virtual address in the process address space
2334 */
2335void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2336{
2337	gmap_pmdp_clear(mm, vmaddr, 0);
2338}
2339EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2340
2341/**
2342 * gmap_pmdp_csp - csp all affected guest pmd entries
2343 * @mm: pointer to the process mm_struct
2344 * @vmaddr: virtual address in the process address space
2345 */
2346void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2347{
2348	gmap_pmdp_clear(mm, vmaddr, 1);
2349}
2350EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2351
2352/**
2353 * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2354 * @mm: pointer to the process mm_struct
2355 * @vmaddr: virtual address in the process address space
2356 */
2357void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2358{
2359	unsigned long *entry, gaddr;
2360	struct gmap *gmap;
2361	pmd_t *pmdp;
2362
2363	rcu_read_lock();
2364	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2365		spin_lock(&gmap->guest_table_lock);
2366		entry = radix_tree_delete(&gmap->host_to_guest,
2367					  vmaddr >> PMD_SHIFT);
2368		if (entry) {
2369			pmdp = (pmd_t *)entry;
2370			gaddr = __gmap_segment_gaddr(entry);
2371			pmdp_notify_gmap(gmap, pmdp, gaddr);
2372			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2373					   _SEGMENT_ENTRY_GMAP_UC));
2374			if (MACHINE_HAS_TLB_GUEST)
2375				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2376					    gmap->asce, IDTE_LOCAL);
2377			else if (MACHINE_HAS_IDTE)
2378				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2379			*entry = _SEGMENT_ENTRY_EMPTY;
2380		}
2381		spin_unlock(&gmap->guest_table_lock);
2382	}
2383	rcu_read_unlock();
2384}
2385EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2386
2387/**
2388 * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2389 * @mm: pointer to the process mm_struct
2390 * @vmaddr: virtual address in the process address space
2391 */
2392void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2393{
2394	unsigned long *entry, gaddr;
2395	struct gmap *gmap;
2396	pmd_t *pmdp;
2397
2398	rcu_read_lock();
2399	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2400		spin_lock(&gmap->guest_table_lock);
2401		entry = radix_tree_delete(&gmap->host_to_guest,
2402					  vmaddr >> PMD_SHIFT);
2403		if (entry) {
2404			pmdp = (pmd_t *)entry;
2405			gaddr = __gmap_segment_gaddr(entry);
2406			pmdp_notify_gmap(gmap, pmdp, gaddr);
2407			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2408					   _SEGMENT_ENTRY_GMAP_UC));
2409			if (MACHINE_HAS_TLB_GUEST)
2410				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2411					    gmap->asce, IDTE_GLOBAL);
2412			else if (MACHINE_HAS_IDTE)
2413				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2414			else
2415				__pmdp_csp(pmdp);
2416			*entry = _SEGMENT_ENTRY_EMPTY;
2417		}
2418		spin_unlock(&gmap->guest_table_lock);
2419	}
2420	rcu_read_unlock();
2421}
2422EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2423
2424/**
2425 * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2426 * @gmap: pointer to guest address space
2427 * @pmdp: pointer to the pmd to be tested
2428 * @gaddr: virtual address in the guest address space
2429 *
2430 * This function is assumed to be called with the guest_table_lock
2431 * held.
2432 */
2433static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2434					  unsigned long gaddr)
2435{
2436	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2437		return false;
2438
2439	/* Already protected memory, which did not change is clean */
2440	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2441	    !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2442		return false;
2443
2444	/* Clear UC indication and reset protection */
2445	pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_UC;
2446	gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2447	return true;
2448}
2449
2450/**
2451 * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2452 * @gmap: pointer to guest address space
2453 * @bitmap: dirty bitmap for this pmd
2454 * @gaddr: virtual address in the guest address space
2455 * @vmaddr: virtual address in the host address space
2456 *
2457 * This function is assumed to be called with the guest_table_lock
2458 * held.
2459 */
2460void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2461			     unsigned long gaddr, unsigned long vmaddr)
2462{
2463	int i;
2464	pmd_t *pmdp;
2465	pte_t *ptep;
2466	spinlock_t *ptl;
2467
2468	pmdp = gmap_pmd_op_walk(gmap, gaddr);
2469	if (!pmdp)
2470		return;
2471
2472	if (pmd_large(*pmdp)) {
2473		if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2474			bitmap_fill(bitmap, _PAGE_ENTRIES);
2475	} else {
2476		for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2477			ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2478			if (!ptep)
2479				continue;
2480			if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2481				set_bit(i, bitmap);
2482			spin_unlock(ptl);
2483		}
2484	}
2485	gmap_pmd_op_end(gmap, pmdp);
2486}
2487EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2488
2489#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2490static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
2491				    unsigned long end, struct mm_walk *walk)
2492{
2493	struct vm_area_struct *vma = walk->vma;
2494
2495	split_huge_pmd(vma, pmd, addr);
2496	return 0;
2497}
2498
2499static const struct mm_walk_ops thp_split_walk_ops = {
2500	.pmd_entry	= thp_split_walk_pmd_entry,
2501};
2502
2503static inline void thp_split_mm(struct mm_struct *mm)
2504{
2505	struct vm_area_struct *vma;
2506
2507	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
2508		vma->vm_flags &= ~VM_HUGEPAGE;
2509		vma->vm_flags |= VM_NOHUGEPAGE;
2510		walk_page_vma(vma, &thp_split_walk_ops, NULL);
2511	}
2512	mm->def_flags |= VM_NOHUGEPAGE;
2513}
2514#else
2515static inline void thp_split_mm(struct mm_struct *mm)
2516{
2517}
2518#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2519
2520/*
2521 * Remove all empty zero pages from the mapping for lazy refaulting
2522 * - This must be called after mm->context.has_pgste is set, to avoid
2523 *   future creation of zero pages
2524 * - This must be called after THP was enabled
2525 */
2526static int __zap_zero_pages(pmd_t *pmd, unsigned long start,
2527			   unsigned long end, struct mm_walk *walk)
2528{
2529	unsigned long addr;
2530
2531	for (addr = start; addr != end; addr += PAGE_SIZE) {
2532		pte_t *ptep;
2533		spinlock_t *ptl;
2534
2535		ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2536		if (is_zero_pfn(pte_pfn(*ptep)))
2537			ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID));
2538		pte_unmap_unlock(ptep, ptl);
2539	}
2540	return 0;
2541}
2542
2543static const struct mm_walk_ops zap_zero_walk_ops = {
2544	.pmd_entry	= __zap_zero_pages,
2545};
2546
2547/*
2548 * switch on pgstes for its userspace process (for kvm)
2549 */
2550int s390_enable_sie(void)
2551{
2552	struct mm_struct *mm = current->mm;
2553
2554	/* Do we have pgstes? if yes, we are done */
2555	if (mm_has_pgste(mm))
2556		return 0;
2557	/* Fail if the page tables are 2K */
2558	if (!mm_alloc_pgste(mm))
2559		return -EINVAL;
2560	mmap_write_lock(mm);
2561	mm->context.has_pgste = 1;
2562	/* split thp mappings and disable thp for future mappings */
2563	thp_split_mm(mm);
2564	walk_page_range(mm, 0, TASK_SIZE, &zap_zero_walk_ops, NULL);
2565	mmap_write_unlock(mm);
2566	return 0;
2567}
2568EXPORT_SYMBOL_GPL(s390_enable_sie);
2569
2570int gmap_mark_unmergeable(void)
2571{
2572	struct mm_struct *mm = current->mm;
2573	struct vm_area_struct *vma;
2574	int ret;
2575
2576	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2577		ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
2578				  MADV_UNMERGEABLE, &vma->vm_flags);
2579		if (ret)
2580			return ret;
2581	}
2582	mm->def_flags &= ~VM_MERGEABLE;
2583	return 0;
2584}
2585EXPORT_SYMBOL_GPL(gmap_mark_unmergeable);
2586
2587/*
2588 * Enable storage key handling from now on and initialize the storage
2589 * keys with the default key.
2590 */
2591static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2592				  unsigned long next, struct mm_walk *walk)
2593{
2594	/* Clear storage key */
2595	ptep_zap_key(walk->mm, addr, pte);
2596	return 0;
2597}
2598
2599/*
2600 * Give a chance to schedule after setting a key to 256 pages.
2601 * We only hold the mm lock, which is a rwsem and the kvm srcu.
2602 * Both can sleep.
2603 */
2604static int __s390_enable_skey_pmd(pmd_t *pmd, unsigned long addr,
2605				  unsigned long next, struct mm_walk *walk)
2606{
2607	cond_resched();
2608	return 0;
2609}
2610
2611static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2612				      unsigned long hmask, unsigned long next,
2613				      struct mm_walk *walk)
2614{
2615	pmd_t *pmd = (pmd_t *)pte;
2616	unsigned long start, end;
2617	struct page *page = pmd_page(*pmd);
2618
2619	/*
2620	 * The write check makes sure we do not set a key on shared
2621	 * memory. This is needed as the walker does not differentiate
2622	 * between actual guest memory and the process executable or
2623	 * shared libraries.
2624	 */
2625	if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2626	    !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2627		return 0;
2628
2629	start = pmd_val(*pmd) & HPAGE_MASK;
2630	end = start + HPAGE_SIZE - 1;
2631	__storage_key_init_range(start, end);
2632	set_bit(PG_arch_1, &page->flags);
2633	cond_resched();
2634	return 0;
2635}
2636
2637static const struct mm_walk_ops enable_skey_walk_ops = {
2638	.hugetlb_entry		= __s390_enable_skey_hugetlb,
2639	.pte_entry		= __s390_enable_skey_pte,
2640	.pmd_entry		= __s390_enable_skey_pmd,
2641};
2642
2643int s390_enable_skey(void)
2644{
2645	struct mm_struct *mm = current->mm;
2646	int rc = 0;
2647
2648	mmap_write_lock(mm);
2649	if (mm_uses_skeys(mm))
2650		goto out_up;
2651
2652	mm->context.uses_skeys = 1;
2653	rc = gmap_mark_unmergeable();
2654	if (rc) {
2655		mm->context.uses_skeys = 0;
2656		goto out_up;
2657	}
2658	walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
2659
2660out_up:
2661	mmap_write_unlock(mm);
2662	return rc;
2663}
2664EXPORT_SYMBOL_GPL(s390_enable_skey);
2665
2666/*
2667 * Reset CMMA state, make all pages stable again.
2668 */
2669static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2670			     unsigned long next, struct mm_walk *walk)
2671{
2672	ptep_zap_unused(walk->mm, addr, pte, 1);
2673	return 0;
2674}
2675
2676static const struct mm_walk_ops reset_cmma_walk_ops = {
2677	.pte_entry		= __s390_reset_cmma,
2678};
2679
2680void s390_reset_cmma(struct mm_struct *mm)
2681{
2682	mmap_write_lock(mm);
2683	walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2684	mmap_write_unlock(mm);
2685}
2686EXPORT_SYMBOL_GPL(s390_reset_cmma);
2687
2688/*
2689 * make inaccessible pages accessible again
2690 */
2691static int __s390_reset_acc(pte_t *ptep, unsigned long addr,
2692			    unsigned long next, struct mm_walk *walk)
2693{
2694	pte_t pte = READ_ONCE(*ptep);
2695
2696	if (pte_present(pte))
2697		WARN_ON_ONCE(uv_destroy_page(pte_val(pte) & PAGE_MASK));
2698	return 0;
2699}
2700
2701static const struct mm_walk_ops reset_acc_walk_ops = {
2702	.pte_entry		= __s390_reset_acc,
2703};
2704
2705#include <linux/sched/mm.h>
2706void s390_reset_acc(struct mm_struct *mm)
2707{
2708	if (!mm_is_protected(mm))
2709		return;
2710	/*
2711	 * we might be called during
2712	 * reset:                             we walk the pages and clear
2713	 * close of all kvm file descriptors: we walk the pages and clear
2714	 * exit of process on fd closure:     vma already gone, do nothing
2715	 */
2716	if (!mmget_not_zero(mm))
2717		return;
2718	mmap_read_lock(mm);
2719	walk_page_range(mm, 0, TASK_SIZE, &reset_acc_walk_ops, NULL);
2720	mmap_read_unlock(mm);
2721	mmput(mm);
2722}
2723EXPORT_SYMBOL_GPL(s390_reset_acc);
2724
2725/**
2726 * s390_unlist_old_asce - Remove the topmost level of page tables from the
2727 * list of page tables of the gmap.
2728 * @gmap: the gmap whose table is to be removed
2729 *
2730 * On s390x, KVM keeps a list of all pages containing the page tables of the
2731 * gmap (the CRST list). This list is used at tear down time to free all
2732 * pages that are now not needed anymore.
2733 *
2734 * This function removes the topmost page of the tree (the one pointed to by
2735 * the ASCE) from the CRST list.
2736 *
2737 * This means that it will not be freed when the VM is torn down, and needs
2738 * to be handled separately by the caller, unless a leak is actually
2739 * intended. Notice that this function will only remove the page from the
2740 * list, the page will still be used as a top level page table (and ASCE).
2741 */
2742void s390_unlist_old_asce(struct gmap *gmap)
2743{
2744	struct page *old;
2745
2746	old = virt_to_page(gmap->table);
2747	spin_lock(&gmap->guest_table_lock);
2748	list_del(&old->lru);
2749	/*
2750	 * Sometimes the topmost page might need to be "removed" multiple
2751	 * times, for example if the VM is rebooted into secure mode several
2752	 * times concurrently, or if s390_replace_asce fails after calling
2753	 * s390_remove_old_asce and is attempted again later. In that case
2754	 * the old asce has been removed from the list, and therefore it
2755	 * will not be freed when the VM terminates, but the ASCE is still
2756	 * in use and still pointed to.
2757	 * A subsequent call to replace_asce will follow the pointer and try
2758	 * to remove the same page from the list again.
2759	 * Therefore it's necessary that the page of the ASCE has valid
2760	 * pointers, so list_del can work (and do nothing) without
2761	 * dereferencing stale or invalid pointers.
2762	 */
2763	INIT_LIST_HEAD(&old->lru);
2764	spin_unlock(&gmap->guest_table_lock);
2765}
2766EXPORT_SYMBOL_GPL(s390_unlist_old_asce);
2767
2768/**
2769 * s390_replace_asce - Try to replace the current ASCE of a gmap with a copy
2770 * @gmap: the gmap whose ASCE needs to be replaced
2771 *
2772 * If the allocation of the new top level page table fails, the ASCE is not
2773 * replaced.
2774 * In any case, the old ASCE is always removed from the gmap CRST list.
2775 * Therefore the caller has to make sure to save a pointer to it
2776 * beforehand, unless a leak is actually intended.
2777 */
2778int s390_replace_asce(struct gmap *gmap)
2779{
2780	unsigned long asce;
2781	struct page *page;
2782	void *table;
2783
2784	s390_unlist_old_asce(gmap);
2785
2786	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
2787	if (!page)
2788		return -ENOMEM;
2789	page->index = 0;
2790	table = page_to_virt(page);
2791	memcpy(table, gmap->table, 1UL << (CRST_ALLOC_ORDER + PAGE_SHIFT));
2792
2793	/*
2794	 * The caller has to deal with the old ASCE, but here we make sure
2795	 * the new one is properly added to the CRST list, so that
2796	 * it will be freed when the VM is torn down.
2797	 */
2798	spin_lock(&gmap->guest_table_lock);
2799	list_add(&page->lru, &gmap->crst_list);
2800	spin_unlock(&gmap->guest_table_lock);
2801
2802	/* Set new table origin while preserving existing ASCE control bits */
2803	asce = (gmap->asce & ~_ASCE_ORIGIN) | __pa(table);
2804	WRITE_ONCE(gmap->asce, asce);
2805	WRITE_ONCE(gmap->mm->context.gmap_asce, asce);
2806	WRITE_ONCE(gmap->table, table);
2807
2808	return 0;
2809}
2810EXPORT_SYMBOL_GPL(s390_replace_asce);
2811