1// SPDX-License-Identifier: GPL-2.0
2/*
3 * handling kvm guest interrupts
4 *
5 * Copyright IBM Corp. 2008, 2020
6 *
7 *    Author(s): Carsten Otte <cotte@de.ibm.com>
8 */
9
10#define KMSG_COMPONENT "kvm-s390"
11#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
12
13#include <linux/interrupt.h>
14#include <linux/kvm_host.h>
15#include <linux/hrtimer.h>
16#include <linux/mmu_context.h>
17#include <linux/nospec.h>
18#include <linux/signal.h>
19#include <linux/slab.h>
20#include <linux/bitmap.h>
21#include <linux/vmalloc.h>
22#include <asm/asm-offsets.h>
23#include <asm/dis.h>
24#include <linux/uaccess.h>
25#include <asm/sclp.h>
26#include <asm/isc.h>
27#include <asm/gmap.h>
28#include <asm/switch_to.h>
29#include <asm/nmi.h>
30#include <asm/airq.h>
31#include "kvm-s390.h"
32#include "gaccess.h"
33#include "trace-s390.h"
34
35#define PFAULT_INIT 0x0600
36#define PFAULT_DONE 0x0680
37#define VIRTIO_PARAM 0x0d00
38
39static struct kvm_s390_gib *gib;
40
41/* handle external calls via sigp interpretation facility */
42static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
43{
44	int c, scn;
45
46	if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND))
47		return 0;
48
49	BUG_ON(!kvm_s390_use_sca_entries());
50	read_lock(&vcpu->kvm->arch.sca_lock);
51	if (vcpu->kvm->arch.use_esca) {
52		struct esca_block *sca = vcpu->kvm->arch.sca;
53		union esca_sigp_ctrl sigp_ctrl =
54			sca->cpu[vcpu->vcpu_id].sigp_ctrl;
55
56		c = sigp_ctrl.c;
57		scn = sigp_ctrl.scn;
58	} else {
59		struct bsca_block *sca = vcpu->kvm->arch.sca;
60		union bsca_sigp_ctrl sigp_ctrl =
61			sca->cpu[vcpu->vcpu_id].sigp_ctrl;
62
63		c = sigp_ctrl.c;
64		scn = sigp_ctrl.scn;
65	}
66	read_unlock(&vcpu->kvm->arch.sca_lock);
67
68	if (src_id)
69		*src_id = scn;
70
71	return c;
72}
73
74static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
75{
76	int expect, rc;
77
78	BUG_ON(!kvm_s390_use_sca_entries());
79	read_lock(&vcpu->kvm->arch.sca_lock);
80	if (vcpu->kvm->arch.use_esca) {
81		struct esca_block *sca = vcpu->kvm->arch.sca;
82		union esca_sigp_ctrl *sigp_ctrl =
83			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
84		union esca_sigp_ctrl new_val = {0}, old_val;
85
86		old_val = READ_ONCE(*sigp_ctrl);
87		new_val.scn = src_id;
88		new_val.c = 1;
89		old_val.c = 0;
90
91		expect = old_val.value;
92		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
93	} else {
94		struct bsca_block *sca = vcpu->kvm->arch.sca;
95		union bsca_sigp_ctrl *sigp_ctrl =
96			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
97		union bsca_sigp_ctrl new_val = {0}, old_val;
98
99		old_val = READ_ONCE(*sigp_ctrl);
100		new_val.scn = src_id;
101		new_val.c = 1;
102		old_val.c = 0;
103
104		expect = old_val.value;
105		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
106	}
107	read_unlock(&vcpu->kvm->arch.sca_lock);
108
109	if (rc != expect) {
110		/* another external call is pending */
111		return -EBUSY;
112	}
113	kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
114	return 0;
115}
116
117static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
118{
119	int rc, expect;
120
121	if (!kvm_s390_use_sca_entries())
122		return;
123	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
124	read_lock(&vcpu->kvm->arch.sca_lock);
125	if (vcpu->kvm->arch.use_esca) {
126		struct esca_block *sca = vcpu->kvm->arch.sca;
127		union esca_sigp_ctrl *sigp_ctrl =
128			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
129		union esca_sigp_ctrl old;
130
131		old = READ_ONCE(*sigp_ctrl);
132		expect = old.value;
133		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
134	} else {
135		struct bsca_block *sca = vcpu->kvm->arch.sca;
136		union bsca_sigp_ctrl *sigp_ctrl =
137			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
138		union bsca_sigp_ctrl old;
139
140		old = READ_ONCE(*sigp_ctrl);
141		expect = old.value;
142		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
143	}
144	read_unlock(&vcpu->kvm->arch.sca_lock);
145	WARN_ON(rc != expect); /* cannot clear? */
146}
147
148int psw_extint_disabled(struct kvm_vcpu *vcpu)
149{
150	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
151}
152
153static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
154{
155	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
156}
157
158static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
159{
160	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
161}
162
163static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
164{
165	return psw_extint_disabled(vcpu) &&
166	       psw_ioint_disabled(vcpu) &&
167	       psw_mchk_disabled(vcpu);
168}
169
170static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
171{
172	if (psw_extint_disabled(vcpu) ||
173	    !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
174		return 0;
175	if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
176		/* No timer interrupts when single stepping */
177		return 0;
178	return 1;
179}
180
181static int ckc_irq_pending(struct kvm_vcpu *vcpu)
182{
183	const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
184	const u64 ckc = vcpu->arch.sie_block->ckc;
185
186	if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
187		if ((s64)ckc >= (s64)now)
188			return 0;
189	} else if (ckc >= now) {
190		return 0;
191	}
192	return ckc_interrupts_enabled(vcpu);
193}
194
195static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
196{
197	return !psw_extint_disabled(vcpu) &&
198	       (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK);
199}
200
201static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
202{
203	if (!cpu_timer_interrupts_enabled(vcpu))
204		return 0;
205	return kvm_s390_get_cpu_timer(vcpu) >> 63;
206}
207
208static uint64_t isc_to_isc_bits(int isc)
209{
210	return (0x80 >> isc) << 24;
211}
212
213static inline u32 isc_to_int_word(u8 isc)
214{
215	return ((u32)isc << 27) | 0x80000000;
216}
217
218static inline u8 int_word_to_isc(u32 int_word)
219{
220	return (int_word & 0x38000000) >> 27;
221}
222
223/*
224 * To use atomic bitmap functions, we have to provide a bitmap address
225 * that is u64 aligned. However, the ipm might be u32 aligned.
226 * Therefore, we logically start the bitmap at the very beginning of the
227 * struct and fixup the bit number.
228 */
229#define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE)
230
231/**
232 * gisa_set_iam - change the GISA interruption alert mask
233 *
234 * @gisa: gisa to operate on
235 * @iam: new IAM value to use
236 *
237 * Change the IAM atomically with the next alert address and the IPM
238 * of the GISA if the GISA is not part of the GIB alert list. All three
239 * fields are located in the first long word of the GISA.
240 *
241 * Returns: 0 on success
242 *          -EBUSY in case the gisa is part of the alert list
243 */
244static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam)
245{
246	u64 word, _word;
247
248	do {
249		word = READ_ONCE(gisa->u64.word[0]);
250		if ((u64)gisa != word >> 32)
251			return -EBUSY;
252		_word = (word & ~0xffUL) | iam;
253	} while (cmpxchg(&gisa->u64.word[0], word, _word) != word);
254
255	return 0;
256}
257
258/**
259 * gisa_clear_ipm - clear the GISA interruption pending mask
260 *
261 * @gisa: gisa to operate on
262 *
263 * Clear the IPM atomically with the next alert address and the IAM
264 * of the GISA unconditionally. All three fields are located in the
265 * first long word of the GISA.
266 */
267static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa)
268{
269	u64 word, _word;
270
271	do {
272		word = READ_ONCE(gisa->u64.word[0]);
273		_word = word & ~(0xffUL << 24);
274	} while (cmpxchg(&gisa->u64.word[0], word, _word) != word);
275}
276
277/**
278 * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM
279 *
280 * @gi: gisa interrupt struct to work on
281 *
282 * Atomically restores the interruption alert mask if none of the
283 * relevant ISCs are pending and return the IPM.
284 *
285 * Returns: the relevant pending ISCs
286 */
287static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi)
288{
289	u8 pending_mask, alert_mask;
290	u64 word, _word;
291
292	do {
293		word = READ_ONCE(gi->origin->u64.word[0]);
294		alert_mask = READ_ONCE(gi->alert.mask);
295		pending_mask = (u8)(word >> 24) & alert_mask;
296		if (pending_mask)
297			return pending_mask;
298		_word = (word & ~0xffUL) | alert_mask;
299	} while (cmpxchg(&gi->origin->u64.word[0], word, _word) != word);
300
301	return 0;
302}
303
304static inline int gisa_in_alert_list(struct kvm_s390_gisa *gisa)
305{
306	return READ_ONCE(gisa->next_alert) != (u32)(u64)gisa;
307}
308
309static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
310{
311	set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
312}
313
314static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa)
315{
316	return READ_ONCE(gisa->ipm);
317}
318
319static inline void gisa_clear_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
320{
321	clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
322}
323
324static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
325{
326	return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
327}
328
329static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu)
330{
331	unsigned long pending = vcpu->kvm->arch.float_int.pending_irqs |
332				vcpu->arch.local_int.pending_irqs;
333
334	pending &= ~vcpu->kvm->arch.float_int.masked_irqs;
335	return pending;
336}
337
338static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
339{
340	struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
341	unsigned long pending_mask;
342
343	pending_mask = pending_irqs_no_gisa(vcpu);
344	if (gi->origin)
345		pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7;
346	return pending_mask;
347}
348
349static inline int isc_to_irq_type(unsigned long isc)
350{
351	return IRQ_PEND_IO_ISC_0 - isc;
352}
353
354static inline int irq_type_to_isc(unsigned long irq_type)
355{
356	return IRQ_PEND_IO_ISC_0 - irq_type;
357}
358
359static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
360				   unsigned long active_mask)
361{
362	int i;
363
364	for (i = 0; i <= MAX_ISC; i++)
365		if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
366			active_mask &= ~(1UL << (isc_to_irq_type(i)));
367
368	return active_mask;
369}
370
371static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
372{
373	unsigned long active_mask;
374
375	active_mask = pending_irqs(vcpu);
376	if (!active_mask)
377		return 0;
378
379	if (psw_extint_disabled(vcpu))
380		active_mask &= ~IRQ_PEND_EXT_MASK;
381	if (psw_ioint_disabled(vcpu))
382		active_mask &= ~IRQ_PEND_IO_MASK;
383	else
384		active_mask = disable_iscs(vcpu, active_mask);
385	if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
386		__clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
387	if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK))
388		__clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
389	if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
390		__clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
391	if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK))
392		__clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
393	if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) {
394		__clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
395		__clear_bit(IRQ_PEND_EXT_SERVICE_EV, &active_mask);
396	}
397	if (psw_mchk_disabled(vcpu))
398		active_mask &= ~IRQ_PEND_MCHK_MASK;
399	/* PV guest cpus can have a single interruption injected at a time. */
400	if (kvm_s390_pv_cpu_get_handle(vcpu) &&
401	    vcpu->arch.sie_block->iictl != IICTL_CODE_NONE)
402		active_mask &= ~(IRQ_PEND_EXT_II_MASK |
403				 IRQ_PEND_IO_MASK |
404				 IRQ_PEND_MCHK_MASK);
405	/*
406	 * Check both floating and local interrupt's cr14 because
407	 * bit IRQ_PEND_MCHK_REP could be set in both cases.
408	 */
409	if (!(vcpu->arch.sie_block->gcr[14] &
410	   (vcpu->kvm->arch.float_int.mchk.cr14 |
411	   vcpu->arch.local_int.irq.mchk.cr14)))
412		__clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
413
414	/*
415	 * STOP irqs will never be actively delivered. They are triggered via
416	 * intercept requests and cleared when the stop intercept is performed.
417	 */
418	__clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
419
420	return active_mask;
421}
422
423static void __set_cpu_idle(struct kvm_vcpu *vcpu)
424{
425	kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
426	set_bit(kvm_vcpu_get_idx(vcpu), vcpu->kvm->arch.idle_mask);
427}
428
429static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
430{
431	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
432	clear_bit(kvm_vcpu_get_idx(vcpu), vcpu->kvm->arch.idle_mask);
433}
434
435static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
436{
437	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT |
438				      CPUSTAT_STOP_INT);
439	vcpu->arch.sie_block->lctl = 0x0000;
440	vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
441
442	if (guestdbg_enabled(vcpu)) {
443		vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
444					       LCTL_CR10 | LCTL_CR11);
445		vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
446	}
447}
448
449static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
450{
451	if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK))
452		return;
453	if (psw_ioint_disabled(vcpu))
454		kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT);
455	else
456		vcpu->arch.sie_block->lctl |= LCTL_CR6;
457}
458
459static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
460{
461	if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK))
462		return;
463	if (psw_extint_disabled(vcpu))
464		kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
465	else
466		vcpu->arch.sie_block->lctl |= LCTL_CR0;
467}
468
469static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
470{
471	if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK))
472		return;
473	if (psw_mchk_disabled(vcpu))
474		vcpu->arch.sie_block->ictl |= ICTL_LPSW;
475	else
476		vcpu->arch.sie_block->lctl |= LCTL_CR14;
477}
478
479static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
480{
481	if (kvm_s390_is_stop_irq_pending(vcpu))
482		kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
483}
484
485/* Set interception request for non-deliverable interrupts */
486static void set_intercept_indicators(struct kvm_vcpu *vcpu)
487{
488	set_intercept_indicators_io(vcpu);
489	set_intercept_indicators_ext(vcpu);
490	set_intercept_indicators_mchk(vcpu);
491	set_intercept_indicators_stop(vcpu);
492}
493
494static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
495{
496	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
497	int rc = 0;
498
499	vcpu->stat.deliver_cputm++;
500	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
501					 0, 0);
502	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
503		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
504		vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER;
505	} else {
506		rc  = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
507				   (u16 *)__LC_EXT_INT_CODE);
508		rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
509		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
510				     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
511		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
512				    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
513	}
514	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
515	return rc ? -EFAULT : 0;
516}
517
518static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
519{
520	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
521	int rc = 0;
522
523	vcpu->stat.deliver_ckc++;
524	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
525					 0, 0);
526	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
527		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
528		vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP;
529	} else {
530		rc  = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
531				   (u16 __user *)__LC_EXT_INT_CODE);
532		rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
533		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
534				     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
535		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
536				    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
537	}
538	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
539	return rc ? -EFAULT : 0;
540}
541
542static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
543{
544	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
545	struct kvm_s390_ext_info ext;
546	int rc;
547
548	spin_lock(&li->lock);
549	ext = li->irq.ext;
550	clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
551	li->irq.ext.ext_params2 = 0;
552	spin_unlock(&li->lock);
553
554	VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
555		   ext.ext_params2);
556	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
557					 KVM_S390_INT_PFAULT_INIT,
558					 0, ext.ext_params2);
559
560	rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
561	rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
562	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
563			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
564	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
565			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
566	rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
567	return rc ? -EFAULT : 0;
568}
569
570static int __write_machine_check(struct kvm_vcpu *vcpu,
571				 struct kvm_s390_mchk_info *mchk)
572{
573	unsigned long ext_sa_addr;
574	unsigned long lc;
575	freg_t fprs[NUM_FPRS];
576	union mci mci;
577	int rc;
578
579	/*
580	 * All other possible payload for a machine check (e.g. the register
581	 * contents in the save area) will be handled by the ultravisor, as
582	 * the hypervisor does not not have the needed information for
583	 * protected guests.
584	 */
585	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
586		vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK;
587		vcpu->arch.sie_block->mcic = mchk->mcic;
588		vcpu->arch.sie_block->faddr = mchk->failing_storage_address;
589		vcpu->arch.sie_block->edc = mchk->ext_damage_code;
590		return 0;
591	}
592
593	mci.val = mchk->mcic;
594	/* take care of lazy register loading */
595	save_fpu_regs();
596	save_access_regs(vcpu->run->s.regs.acrs);
597	if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
598		save_gs_cb(current->thread.gs_cb);
599
600	/* Extended save area */
601	rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
602			   sizeof(unsigned long));
603	/* Only bits 0 through 63-LC are used for address formation */
604	lc = ext_sa_addr & MCESA_LC_MASK;
605	if (test_kvm_facility(vcpu->kvm, 133)) {
606		switch (lc) {
607		case 0:
608		case 10:
609			ext_sa_addr &= ~0x3ffUL;
610			break;
611		case 11:
612			ext_sa_addr &= ~0x7ffUL;
613			break;
614		case 12:
615			ext_sa_addr &= ~0xfffUL;
616			break;
617		default:
618			ext_sa_addr = 0;
619			break;
620		}
621	} else {
622		ext_sa_addr &= ~0x3ffUL;
623	}
624
625	if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
626		if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
627				    512))
628			mci.vr = 0;
629	} else {
630		mci.vr = 0;
631	}
632	if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
633	    && (lc == 11 || lc == 12)) {
634		if (write_guest_abs(vcpu, ext_sa_addr + 1024,
635				    &vcpu->run->s.regs.gscb, 32))
636			mci.gs = 0;
637	} else {
638		mci.gs = 0;
639	}
640
641	/* General interruption information */
642	rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
643	rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
644			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
645	rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
646			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
647	rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
648
649	/* Register-save areas */
650	if (MACHINE_HAS_VX) {
651		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
652		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
653	} else {
654		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
655				     vcpu->run->s.regs.fprs, 128);
656	}
657	rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
658			     vcpu->run->s.regs.gprs, 128);
659	rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
660			   (u32 __user *) __LC_FP_CREG_SAVE_AREA);
661	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
662			   (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
663	rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
664			   (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
665	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
666			   (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
667	rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
668			     &vcpu->run->s.regs.acrs, 64);
669	rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
670			     &vcpu->arch.sie_block->gcr, 128);
671
672	/* Extended interruption information */
673	rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
674			   (u32 __user *) __LC_EXT_DAMAGE_CODE);
675	rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
676			   (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
677	rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
678			     sizeof(mchk->fixed_logout));
679	return rc ? -EFAULT : 0;
680}
681
682static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
683{
684	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
685	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
686	struct kvm_s390_mchk_info mchk = {};
687	int deliver = 0;
688	int rc = 0;
689
690	spin_lock(&fi->lock);
691	spin_lock(&li->lock);
692	if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
693	    test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
694		/*
695		 * If there was an exigent machine check pending, then any
696		 * repressible machine checks that might have been pending
697		 * are indicated along with it, so always clear bits for
698		 * repressible and exigent interrupts
699		 */
700		mchk = li->irq.mchk;
701		clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
702		clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
703		memset(&li->irq.mchk, 0, sizeof(mchk));
704		deliver = 1;
705	}
706	/*
707	 * We indicate floating repressible conditions along with
708	 * other pending conditions. Channel Report Pending and Channel
709	 * Subsystem damage are the only two and and are indicated by
710	 * bits in mcic and masked in cr14.
711	 */
712	if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
713		mchk.mcic |= fi->mchk.mcic;
714		mchk.cr14 |= fi->mchk.cr14;
715		memset(&fi->mchk, 0, sizeof(mchk));
716		deliver = 1;
717	}
718	spin_unlock(&li->lock);
719	spin_unlock(&fi->lock);
720
721	if (deliver) {
722		VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
723			   mchk.mcic);
724		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
725						 KVM_S390_MCHK,
726						 mchk.cr14, mchk.mcic);
727		vcpu->stat.deliver_machine_check++;
728		rc = __write_machine_check(vcpu, &mchk);
729	}
730	return rc;
731}
732
733static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
734{
735	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
736	int rc = 0;
737
738	VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
739	vcpu->stat.deliver_restart_signal++;
740	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
741
742	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
743		vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART;
744	} else {
745		rc  = write_guest_lc(vcpu,
746				     offsetof(struct lowcore, restart_old_psw),
747				     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
748		rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
749				    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
750	}
751	clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
752	return rc ? -EFAULT : 0;
753}
754
755static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
756{
757	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
758	struct kvm_s390_prefix_info prefix;
759
760	spin_lock(&li->lock);
761	prefix = li->irq.prefix;
762	li->irq.prefix.address = 0;
763	clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
764	spin_unlock(&li->lock);
765
766	vcpu->stat.deliver_prefix_signal++;
767	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
768					 KVM_S390_SIGP_SET_PREFIX,
769					 prefix.address, 0);
770
771	kvm_s390_set_prefix(vcpu, prefix.address);
772	return 0;
773}
774
775static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
776{
777	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
778	int rc;
779	int cpu_addr;
780
781	spin_lock(&li->lock);
782	cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
783	clear_bit(cpu_addr, li->sigp_emerg_pending);
784	if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
785		clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
786	spin_unlock(&li->lock);
787
788	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
789	vcpu->stat.deliver_emergency_signal++;
790	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
791					 cpu_addr, 0);
792	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
793		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
794		vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG;
795		vcpu->arch.sie_block->extcpuaddr = cpu_addr;
796		return 0;
797	}
798
799	rc  = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
800			   (u16 *)__LC_EXT_INT_CODE);
801	rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
802	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
803			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
804	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
805			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
806	return rc ? -EFAULT : 0;
807}
808
809static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
810{
811	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
812	struct kvm_s390_extcall_info extcall;
813	int rc;
814
815	spin_lock(&li->lock);
816	extcall = li->irq.extcall;
817	li->irq.extcall.code = 0;
818	clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
819	spin_unlock(&li->lock);
820
821	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
822	vcpu->stat.deliver_external_call++;
823	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
824					 KVM_S390_INT_EXTERNAL_CALL,
825					 extcall.code, 0);
826	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
827		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
828		vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL;
829		vcpu->arch.sie_block->extcpuaddr = extcall.code;
830		return 0;
831	}
832
833	rc  = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
834			   (u16 *)__LC_EXT_INT_CODE);
835	rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
836	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
837			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
838	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
839			    sizeof(psw_t));
840	return rc ? -EFAULT : 0;
841}
842
843static int __deliver_prog_pv(struct kvm_vcpu *vcpu, u16 code)
844{
845	switch (code) {
846	case PGM_SPECIFICATION:
847		vcpu->arch.sie_block->iictl = IICTL_CODE_SPECIFICATION;
848		break;
849	case PGM_OPERAND:
850		vcpu->arch.sie_block->iictl = IICTL_CODE_OPERAND;
851		break;
852	default:
853		return -EINVAL;
854	}
855	return 0;
856}
857
858static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
859{
860	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
861	struct kvm_s390_pgm_info pgm_info;
862	int rc = 0, nullifying = false;
863	u16 ilen;
864
865	spin_lock(&li->lock);
866	pgm_info = li->irq.pgm;
867	clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
868	memset(&li->irq.pgm, 0, sizeof(pgm_info));
869	spin_unlock(&li->lock);
870
871	ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
872	VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
873		   pgm_info.code, ilen);
874	vcpu->stat.deliver_program++;
875	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
876					 pgm_info.code, 0);
877
878	/* PER is handled by the ultravisor */
879	if (kvm_s390_pv_cpu_is_protected(vcpu))
880		return __deliver_prog_pv(vcpu, pgm_info.code & ~PGM_PER);
881
882	switch (pgm_info.code & ~PGM_PER) {
883	case PGM_AFX_TRANSLATION:
884	case PGM_ASX_TRANSLATION:
885	case PGM_EX_TRANSLATION:
886	case PGM_LFX_TRANSLATION:
887	case PGM_LSTE_SEQUENCE:
888	case PGM_LSX_TRANSLATION:
889	case PGM_LX_TRANSLATION:
890	case PGM_PRIMARY_AUTHORITY:
891	case PGM_SECONDARY_AUTHORITY:
892		nullifying = true;
893		fallthrough;
894	case PGM_SPACE_SWITCH:
895		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
896				  (u64 *)__LC_TRANS_EXC_CODE);
897		break;
898	case PGM_ALEN_TRANSLATION:
899	case PGM_ALE_SEQUENCE:
900	case PGM_ASTE_INSTANCE:
901	case PGM_ASTE_SEQUENCE:
902	case PGM_ASTE_VALIDITY:
903	case PGM_EXTENDED_AUTHORITY:
904		rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
905				  (u8 *)__LC_EXC_ACCESS_ID);
906		nullifying = true;
907		break;
908	case PGM_ASCE_TYPE:
909	case PGM_PAGE_TRANSLATION:
910	case PGM_REGION_FIRST_TRANS:
911	case PGM_REGION_SECOND_TRANS:
912	case PGM_REGION_THIRD_TRANS:
913	case PGM_SEGMENT_TRANSLATION:
914		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
915				  (u64 *)__LC_TRANS_EXC_CODE);
916		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
917				   (u8 *)__LC_EXC_ACCESS_ID);
918		rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
919				   (u8 *)__LC_OP_ACCESS_ID);
920		nullifying = true;
921		break;
922	case PGM_MONITOR:
923		rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
924				  (u16 *)__LC_MON_CLASS_NR);
925		rc |= put_guest_lc(vcpu, pgm_info.mon_code,
926				   (u64 *)__LC_MON_CODE);
927		break;
928	case PGM_VECTOR_PROCESSING:
929	case PGM_DATA:
930		rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
931				  (u32 *)__LC_DATA_EXC_CODE);
932		break;
933	case PGM_PROTECTION:
934		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
935				  (u64 *)__LC_TRANS_EXC_CODE);
936		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
937				   (u8 *)__LC_EXC_ACCESS_ID);
938		break;
939	case PGM_STACK_FULL:
940	case PGM_STACK_EMPTY:
941	case PGM_STACK_SPECIFICATION:
942	case PGM_STACK_TYPE:
943	case PGM_STACK_OPERATION:
944	case PGM_TRACE_TABEL:
945	case PGM_CRYPTO_OPERATION:
946		nullifying = true;
947		break;
948	}
949
950	if (pgm_info.code & PGM_PER) {
951		rc |= put_guest_lc(vcpu, pgm_info.per_code,
952				   (u8 *) __LC_PER_CODE);
953		rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
954				   (u8 *)__LC_PER_ATMID);
955		rc |= put_guest_lc(vcpu, pgm_info.per_address,
956				   (u64 *) __LC_PER_ADDRESS);
957		rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
958				   (u8 *) __LC_PER_ACCESS_ID);
959	}
960
961	if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
962		kvm_s390_rewind_psw(vcpu, ilen);
963
964	/* bit 1+2 of the target are the ilc, so we can directly use ilen */
965	rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
966	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
967				 (u64 *) __LC_LAST_BREAK);
968	rc |= put_guest_lc(vcpu, pgm_info.code,
969			   (u16 *)__LC_PGM_INT_CODE);
970	rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
971			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
972	rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
973			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
974	return rc ? -EFAULT : 0;
975}
976
977#define SCCB_MASK 0xFFFFFFF8
978#define SCCB_EVENT_PENDING 0x3
979
980static int write_sclp(struct kvm_vcpu *vcpu, u32 parm)
981{
982	int rc;
983
984	if (kvm_s390_pv_cpu_get_handle(vcpu)) {
985		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
986		vcpu->arch.sie_block->eic = EXT_IRQ_SERVICE_SIG;
987		vcpu->arch.sie_block->eiparams = parm;
988		return 0;
989	}
990
991	rc  = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
992	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
993	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
994			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
995	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
996			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
997	rc |= put_guest_lc(vcpu, parm,
998			   (u32 *)__LC_EXT_PARAMS);
999
1000	return rc ? -EFAULT : 0;
1001}
1002
1003static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
1004{
1005	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1006	struct kvm_s390_ext_info ext;
1007
1008	spin_lock(&fi->lock);
1009	if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs) ||
1010	    !(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
1011		spin_unlock(&fi->lock);
1012		return 0;
1013	}
1014	ext = fi->srv_signal;
1015	memset(&fi->srv_signal, 0, sizeof(ext));
1016	clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1017	clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1018	if (kvm_s390_pv_cpu_is_protected(vcpu))
1019		set_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs);
1020	spin_unlock(&fi->lock);
1021
1022	VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
1023		   ext.ext_params);
1024	vcpu->stat.deliver_service_signal++;
1025	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
1026					 ext.ext_params, 0);
1027
1028	return write_sclp(vcpu, ext.ext_params);
1029}
1030
1031static int __must_check __deliver_service_ev(struct kvm_vcpu *vcpu)
1032{
1033	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1034	struct kvm_s390_ext_info ext;
1035
1036	spin_lock(&fi->lock);
1037	if (!(test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs))) {
1038		spin_unlock(&fi->lock);
1039		return 0;
1040	}
1041	ext = fi->srv_signal;
1042	/* only clear the event bit */
1043	fi->srv_signal.ext_params &= ~SCCB_EVENT_PENDING;
1044	clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1045	spin_unlock(&fi->lock);
1046
1047	VCPU_EVENT(vcpu, 4, "%s", "deliver: sclp parameter event");
1048	vcpu->stat.deliver_service_signal++;
1049	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
1050					 ext.ext_params, 0);
1051
1052	return write_sclp(vcpu, SCCB_EVENT_PENDING);
1053}
1054
1055static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
1056{
1057	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1058	struct kvm_s390_interrupt_info *inti;
1059	int rc = 0;
1060
1061	spin_lock(&fi->lock);
1062	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
1063					struct kvm_s390_interrupt_info,
1064					list);
1065	if (inti) {
1066		list_del(&inti->list);
1067		fi->counters[FIRQ_CNTR_PFAULT] -= 1;
1068	}
1069	if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
1070		clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1071	spin_unlock(&fi->lock);
1072
1073	if (inti) {
1074		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1075						 KVM_S390_INT_PFAULT_DONE, 0,
1076						 inti->ext.ext_params2);
1077		VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
1078			   inti->ext.ext_params2);
1079
1080		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1081				(u16 *)__LC_EXT_INT_CODE);
1082		rc |= put_guest_lc(vcpu, PFAULT_DONE,
1083				(u16 *)__LC_EXT_CPU_ADDR);
1084		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1085				&vcpu->arch.sie_block->gpsw,
1086				sizeof(psw_t));
1087		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1088				&vcpu->arch.sie_block->gpsw,
1089				sizeof(psw_t));
1090		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1091				(u64 *)__LC_EXT_PARAMS2);
1092		kfree(inti);
1093	}
1094	return rc ? -EFAULT : 0;
1095}
1096
1097static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
1098{
1099	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1100	struct kvm_s390_interrupt_info *inti;
1101	int rc = 0;
1102
1103	spin_lock(&fi->lock);
1104	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
1105					struct kvm_s390_interrupt_info,
1106					list);
1107	if (inti) {
1108		VCPU_EVENT(vcpu, 4,
1109			   "deliver: virtio parm: 0x%x,parm64: 0x%llx",
1110			   inti->ext.ext_params, inti->ext.ext_params2);
1111		vcpu->stat.deliver_virtio++;
1112		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1113				inti->type,
1114				inti->ext.ext_params,
1115				inti->ext.ext_params2);
1116		list_del(&inti->list);
1117		fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
1118	}
1119	if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
1120		clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1121	spin_unlock(&fi->lock);
1122
1123	if (inti) {
1124		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1125				(u16 *)__LC_EXT_INT_CODE);
1126		rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
1127				(u16 *)__LC_EXT_CPU_ADDR);
1128		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1129				&vcpu->arch.sie_block->gpsw,
1130				sizeof(psw_t));
1131		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1132				&vcpu->arch.sie_block->gpsw,
1133				sizeof(psw_t));
1134		rc |= put_guest_lc(vcpu, inti->ext.ext_params,
1135				(u32 *)__LC_EXT_PARAMS);
1136		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1137				(u64 *)__LC_EXT_PARAMS2);
1138		kfree(inti);
1139	}
1140	return rc ? -EFAULT : 0;
1141}
1142
1143static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io)
1144{
1145	int rc;
1146
1147	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
1148		vcpu->arch.sie_block->iictl = IICTL_CODE_IO;
1149		vcpu->arch.sie_block->subchannel_id = io->subchannel_id;
1150		vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr;
1151		vcpu->arch.sie_block->io_int_parm = io->io_int_parm;
1152		vcpu->arch.sie_block->io_int_word = io->io_int_word;
1153		return 0;
1154	}
1155
1156	rc  = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID);
1157	rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR);
1158	rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM);
1159	rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD);
1160	rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
1161			     &vcpu->arch.sie_block->gpsw,
1162			     sizeof(psw_t));
1163	rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
1164			    &vcpu->arch.sie_block->gpsw,
1165			    sizeof(psw_t));
1166	return rc ? -EFAULT : 0;
1167}
1168
1169static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
1170				     unsigned long irq_type)
1171{
1172	struct list_head *isc_list;
1173	struct kvm_s390_float_interrupt *fi;
1174	struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1175	struct kvm_s390_interrupt_info *inti = NULL;
1176	struct kvm_s390_io_info io;
1177	u32 isc;
1178	int rc = 0;
1179
1180	fi = &vcpu->kvm->arch.float_int;
1181
1182	spin_lock(&fi->lock);
1183	isc = irq_type_to_isc(irq_type);
1184	isc_list = &fi->lists[isc];
1185	inti = list_first_entry_or_null(isc_list,
1186					struct kvm_s390_interrupt_info,
1187					list);
1188	if (inti) {
1189		if (inti->type & KVM_S390_INT_IO_AI_MASK)
1190			VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
1191		else
1192			VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
1193			inti->io.subchannel_id >> 8,
1194			inti->io.subchannel_id >> 1 & 0x3,
1195			inti->io.subchannel_nr);
1196
1197		vcpu->stat.deliver_io++;
1198		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1199				inti->type,
1200				((__u32)inti->io.subchannel_id << 16) |
1201				inti->io.subchannel_nr,
1202				((__u64)inti->io.io_int_parm << 32) |
1203				inti->io.io_int_word);
1204		list_del(&inti->list);
1205		fi->counters[FIRQ_CNTR_IO] -= 1;
1206	}
1207	if (list_empty(isc_list))
1208		clear_bit(irq_type, &fi->pending_irqs);
1209	spin_unlock(&fi->lock);
1210
1211	if (inti) {
1212		rc = __do_deliver_io(vcpu, &(inti->io));
1213		kfree(inti);
1214		goto out;
1215	}
1216
1217	if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) {
1218		/*
1219		 * in case an adapter interrupt was not delivered
1220		 * in SIE context KVM will handle the delivery
1221		 */
1222		VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc);
1223		memset(&io, 0, sizeof(io));
1224		io.io_int_word = isc_to_int_word(isc);
1225		vcpu->stat.deliver_io++;
1226		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1227			KVM_S390_INT_IO(1, 0, 0, 0),
1228			((__u32)io.subchannel_id << 16) |
1229			io.subchannel_nr,
1230			((__u64)io.io_int_parm << 32) |
1231			io.io_int_word);
1232		rc = __do_deliver_io(vcpu, &io);
1233	}
1234out:
1235	return rc;
1236}
1237
1238/* Check whether an external call is pending (deliverable or not) */
1239int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
1240{
1241	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1242
1243	if (!sclp.has_sigpif)
1244		return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
1245
1246	return sca_ext_call_pending(vcpu, NULL);
1247}
1248
1249int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
1250{
1251	if (deliverable_irqs(vcpu))
1252		return 1;
1253
1254	if (kvm_cpu_has_pending_timer(vcpu))
1255		return 1;
1256
1257	/* external call pending and deliverable */
1258	if (kvm_s390_ext_call_pending(vcpu) &&
1259	    !psw_extint_disabled(vcpu) &&
1260	    (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
1261		return 1;
1262
1263	if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
1264		return 1;
1265	return 0;
1266}
1267
1268int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1269{
1270	return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
1271}
1272
1273static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
1274{
1275	const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
1276	const u64 ckc = vcpu->arch.sie_block->ckc;
1277	u64 cputm, sltime = 0;
1278
1279	if (ckc_interrupts_enabled(vcpu)) {
1280		if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
1281			if ((s64)now < (s64)ckc)
1282				sltime = tod_to_ns((s64)ckc - (s64)now);
1283		} else if (now < ckc) {
1284			sltime = tod_to_ns(ckc - now);
1285		}
1286		/* already expired */
1287		if (!sltime)
1288			return 0;
1289		if (cpu_timer_interrupts_enabled(vcpu)) {
1290			cputm = kvm_s390_get_cpu_timer(vcpu);
1291			/* already expired? */
1292			if (cputm >> 63)
1293				return 0;
1294			return min(sltime, tod_to_ns(cputm));
1295		}
1296	} else if (cpu_timer_interrupts_enabled(vcpu)) {
1297		sltime = kvm_s390_get_cpu_timer(vcpu);
1298		/* already expired? */
1299		if (sltime >> 63)
1300			return 0;
1301	}
1302	return sltime;
1303}
1304
1305int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
1306{
1307	struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1308	u64 sltime;
1309
1310	vcpu->stat.exit_wait_state++;
1311
1312	/* fast path */
1313	if (kvm_arch_vcpu_runnable(vcpu))
1314		return 0;
1315
1316	if (psw_interrupts_disabled(vcpu)) {
1317		VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
1318		return -EOPNOTSUPP; /* disabled wait */
1319	}
1320
1321	if (gi->origin &&
1322	    (gisa_get_ipm_or_restore_iam(gi) &
1323	     vcpu->arch.sie_block->gcr[6] >> 24))
1324		return 0;
1325
1326	if (!ckc_interrupts_enabled(vcpu) &&
1327	    !cpu_timer_interrupts_enabled(vcpu)) {
1328		VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
1329		__set_cpu_idle(vcpu);
1330		goto no_timer;
1331	}
1332
1333	sltime = __calculate_sltime(vcpu);
1334	if (!sltime)
1335		return 0;
1336
1337	__set_cpu_idle(vcpu);
1338	hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
1339	VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
1340no_timer:
1341	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1342	kvm_vcpu_block(vcpu);
1343	__unset_cpu_idle(vcpu);
1344	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1345
1346	hrtimer_cancel(&vcpu->arch.ckc_timer);
1347	return 0;
1348}
1349
1350void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
1351{
1352	vcpu->valid_wakeup = true;
1353	kvm_vcpu_wake_up(vcpu);
1354
1355	/*
1356	 * The VCPU might not be sleeping but rather executing VSIE. Let's
1357	 * kick it, so it leaves the SIE to process the request.
1358	 */
1359	kvm_s390_vsie_kick(vcpu);
1360}
1361
1362enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
1363{
1364	struct kvm_vcpu *vcpu;
1365	u64 sltime;
1366
1367	vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
1368	sltime = __calculate_sltime(vcpu);
1369
1370	/*
1371	 * If the monotonic clock runs faster than the tod clock we might be
1372	 * woken up too early and have to go back to sleep to avoid deadlocks.
1373	 */
1374	if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
1375		return HRTIMER_RESTART;
1376	kvm_s390_vcpu_wakeup(vcpu);
1377	return HRTIMER_NORESTART;
1378}
1379
1380void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
1381{
1382	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1383
1384	spin_lock(&li->lock);
1385	li->pending_irqs = 0;
1386	bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
1387	memset(&li->irq, 0, sizeof(li->irq));
1388	spin_unlock(&li->lock);
1389
1390	sca_clear_ext_call(vcpu);
1391}
1392
1393int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
1394{
1395	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1396	int rc = 0;
1397	unsigned long irq_type;
1398	unsigned long irqs;
1399
1400	__reset_intercept_indicators(vcpu);
1401
1402	/* pending ckc conditions might have been invalidated */
1403	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1404	if (ckc_irq_pending(vcpu))
1405		set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1406
1407	/* pending cpu timer conditions might have been invalidated */
1408	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1409	if (cpu_timer_irq_pending(vcpu))
1410		set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1411
1412	while ((irqs = deliverable_irqs(vcpu)) && !rc) {
1413		/* bits are in the reverse order of interrupt priority */
1414		irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT);
1415		switch (irq_type) {
1416		case IRQ_PEND_IO_ISC_0:
1417		case IRQ_PEND_IO_ISC_1:
1418		case IRQ_PEND_IO_ISC_2:
1419		case IRQ_PEND_IO_ISC_3:
1420		case IRQ_PEND_IO_ISC_4:
1421		case IRQ_PEND_IO_ISC_5:
1422		case IRQ_PEND_IO_ISC_6:
1423		case IRQ_PEND_IO_ISC_7:
1424			rc = __deliver_io(vcpu, irq_type);
1425			break;
1426		case IRQ_PEND_MCHK_EX:
1427		case IRQ_PEND_MCHK_REP:
1428			rc = __deliver_machine_check(vcpu);
1429			break;
1430		case IRQ_PEND_PROG:
1431			rc = __deliver_prog(vcpu);
1432			break;
1433		case IRQ_PEND_EXT_EMERGENCY:
1434			rc = __deliver_emergency_signal(vcpu);
1435			break;
1436		case IRQ_PEND_EXT_EXTERNAL:
1437			rc = __deliver_external_call(vcpu);
1438			break;
1439		case IRQ_PEND_EXT_CLOCK_COMP:
1440			rc = __deliver_ckc(vcpu);
1441			break;
1442		case IRQ_PEND_EXT_CPU_TIMER:
1443			rc = __deliver_cpu_timer(vcpu);
1444			break;
1445		case IRQ_PEND_RESTART:
1446			rc = __deliver_restart(vcpu);
1447			break;
1448		case IRQ_PEND_SET_PREFIX:
1449			rc = __deliver_set_prefix(vcpu);
1450			break;
1451		case IRQ_PEND_PFAULT_INIT:
1452			rc = __deliver_pfault_init(vcpu);
1453			break;
1454		case IRQ_PEND_EXT_SERVICE:
1455			rc = __deliver_service(vcpu);
1456			break;
1457		case IRQ_PEND_EXT_SERVICE_EV:
1458			rc = __deliver_service_ev(vcpu);
1459			break;
1460		case IRQ_PEND_PFAULT_DONE:
1461			rc = __deliver_pfault_done(vcpu);
1462			break;
1463		case IRQ_PEND_VIRTIO:
1464			rc = __deliver_virtio(vcpu);
1465			break;
1466		default:
1467			WARN_ONCE(1, "Unknown pending irq type %ld", irq_type);
1468			clear_bit(irq_type, &li->pending_irqs);
1469		}
1470	}
1471
1472	set_intercept_indicators(vcpu);
1473
1474	return rc;
1475}
1476
1477static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1478{
1479	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1480
1481	vcpu->stat.inject_program++;
1482	VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
1483	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
1484				   irq->u.pgm.code, 0);
1485
1486	if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
1487		/* auto detection if no valid ILC was given */
1488		irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
1489		irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
1490		irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
1491	}
1492
1493	if (irq->u.pgm.code == PGM_PER) {
1494		li->irq.pgm.code |= PGM_PER;
1495		li->irq.pgm.flags = irq->u.pgm.flags;
1496		/* only modify PER related information */
1497		li->irq.pgm.per_address = irq->u.pgm.per_address;
1498		li->irq.pgm.per_code = irq->u.pgm.per_code;
1499		li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
1500		li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
1501	} else if (!(irq->u.pgm.code & PGM_PER)) {
1502		li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
1503				   irq->u.pgm.code;
1504		li->irq.pgm.flags = irq->u.pgm.flags;
1505		/* only modify non-PER information */
1506		li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
1507		li->irq.pgm.mon_code = irq->u.pgm.mon_code;
1508		li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
1509		li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
1510		li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
1511		li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
1512	} else {
1513		li->irq.pgm = irq->u.pgm;
1514	}
1515	set_bit(IRQ_PEND_PROG, &li->pending_irqs);
1516	return 0;
1517}
1518
1519static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1520{
1521	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1522
1523	vcpu->stat.inject_pfault_init++;
1524	VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
1525		   irq->u.ext.ext_params2);
1526	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
1527				   irq->u.ext.ext_params,
1528				   irq->u.ext.ext_params2);
1529
1530	li->irq.ext = irq->u.ext;
1531	set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1532	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1533	return 0;
1534}
1535
1536static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1537{
1538	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1539	struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1540	uint16_t src_id = irq->u.extcall.code;
1541
1542	vcpu->stat.inject_external_call++;
1543	VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
1544		   src_id);
1545	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1546				   src_id, 0);
1547
1548	/* sending vcpu invalid */
1549	if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
1550		return -EINVAL;
1551
1552	if (sclp.has_sigpif && !kvm_s390_pv_cpu_get_handle(vcpu))
1553		return sca_inject_ext_call(vcpu, src_id);
1554
1555	if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
1556		return -EBUSY;
1557	*extcall = irq->u.extcall;
1558	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1559	return 0;
1560}
1561
1562static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1563{
1564	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1565	struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1566
1567	vcpu->stat.inject_set_prefix++;
1568	VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
1569		   irq->u.prefix.address);
1570	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1571				   irq->u.prefix.address, 0);
1572
1573	if (!is_vcpu_stopped(vcpu))
1574		return -EBUSY;
1575
1576	*prefix = irq->u.prefix;
1577	set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1578	return 0;
1579}
1580
1581#define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
1582static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1583{
1584	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1585	struct kvm_s390_stop_info *stop = &li->irq.stop;
1586	int rc = 0;
1587
1588	vcpu->stat.inject_stop_signal++;
1589	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
1590
1591	if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
1592		return -EINVAL;
1593
1594	if (is_vcpu_stopped(vcpu)) {
1595		if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
1596			rc = kvm_s390_store_status_unloaded(vcpu,
1597						KVM_S390_STORE_STATUS_NOADDR);
1598		return rc;
1599	}
1600
1601	if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
1602		return -EBUSY;
1603	stop->flags = irq->u.stop.flags;
1604	kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
1605	return 0;
1606}
1607
1608static int __inject_sigp_restart(struct kvm_vcpu *vcpu)
1609{
1610	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1611
1612	vcpu->stat.inject_restart++;
1613	VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
1614	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
1615
1616	set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1617	return 0;
1618}
1619
1620static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1621				   struct kvm_s390_irq *irq)
1622{
1623	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1624
1625	vcpu->stat.inject_emergency_signal++;
1626	VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
1627		   irq->u.emerg.code);
1628	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1629				   irq->u.emerg.code, 0);
1630
1631	/* sending vcpu invalid */
1632	if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
1633		return -EINVAL;
1634
1635	set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1636	set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1637	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1638	return 0;
1639}
1640
1641static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1642{
1643	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1644	struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1645
1646	vcpu->stat.inject_mchk++;
1647	VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
1648		   irq->u.mchk.mcic);
1649	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1650				   irq->u.mchk.mcic);
1651
1652	/*
1653	 * Because repressible machine checks can be indicated along with
1654	 * exigent machine checks (PoP, Chapter 11, Interruption action)
1655	 * we need to combine cr14, mcic and external damage code.
1656	 * Failing storage address and the logout area should not be or'ed
1657	 * together, we just indicate the last occurrence of the corresponding
1658	 * machine check
1659	 */
1660	mchk->cr14 |= irq->u.mchk.cr14;
1661	mchk->mcic |= irq->u.mchk.mcic;
1662	mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
1663	mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
1664	memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
1665	       sizeof(mchk->fixed_logout));
1666	if (mchk->mcic & MCHK_EX_MASK)
1667		set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
1668	else if (mchk->mcic & MCHK_REP_MASK)
1669		set_bit(IRQ_PEND_MCHK_REP,  &li->pending_irqs);
1670	return 0;
1671}
1672
1673static int __inject_ckc(struct kvm_vcpu *vcpu)
1674{
1675	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1676
1677	vcpu->stat.inject_ckc++;
1678	VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
1679	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
1680				   0, 0);
1681
1682	set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1683	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1684	return 0;
1685}
1686
1687static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1688{
1689	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1690
1691	vcpu->stat.inject_cputm++;
1692	VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
1693	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
1694				   0, 0);
1695
1696	set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1697	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1698	return 0;
1699}
1700
1701static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
1702						  int isc, u32 schid)
1703{
1704	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1705	struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1706	struct kvm_s390_interrupt_info *iter;
1707	u16 id = (schid & 0xffff0000U) >> 16;
1708	u16 nr = schid & 0x0000ffffU;
1709
1710	spin_lock(&fi->lock);
1711	list_for_each_entry(iter, isc_list, list) {
1712		if (schid && (id != iter->io.subchannel_id ||
1713			      nr != iter->io.subchannel_nr))
1714			continue;
1715		/* found an appropriate entry */
1716		list_del_init(&iter->list);
1717		fi->counters[FIRQ_CNTR_IO] -= 1;
1718		if (list_empty(isc_list))
1719			clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1720		spin_unlock(&fi->lock);
1721		return iter;
1722	}
1723	spin_unlock(&fi->lock);
1724	return NULL;
1725}
1726
1727static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm,
1728						      u64 isc_mask, u32 schid)
1729{
1730	struct kvm_s390_interrupt_info *inti = NULL;
1731	int isc;
1732
1733	for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
1734		if (isc_mask & isc_to_isc_bits(isc))
1735			inti = get_io_int(kvm, isc, schid);
1736	}
1737	return inti;
1738}
1739
1740static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid)
1741{
1742	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1743	unsigned long active_mask;
1744	int isc;
1745
1746	if (schid)
1747		goto out;
1748	if (!gi->origin)
1749		goto out;
1750
1751	active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32;
1752	while (active_mask) {
1753		isc = __fls(active_mask) ^ (BITS_PER_LONG - 1);
1754		if (gisa_tac_ipm_gisc(gi->origin, isc))
1755			return isc;
1756		clear_bit_inv(isc, &active_mask);
1757	}
1758out:
1759	return -EINVAL;
1760}
1761
1762/*
1763 * Dequeue and return an I/O interrupt matching any of the interruption
1764 * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
1765 * Take into account the interrupts pending in the interrupt list and in GISA.
1766 *
1767 * Note that for a guest that does not enable I/O interrupts
1768 * but relies on TPI, a flood of classic interrupts may starve
1769 * out adapter interrupts on the same isc. Linux does not do
1770 * that, and it is possible to work around the issue by configuring
1771 * different iscs for classic and adapter interrupts in the guest,
1772 * but we may want to revisit this in the future.
1773 */
1774struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1775						    u64 isc_mask, u32 schid)
1776{
1777	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1778	struct kvm_s390_interrupt_info *inti, *tmp_inti;
1779	int isc;
1780
1781	inti = get_top_io_int(kvm, isc_mask, schid);
1782
1783	isc = get_top_gisa_isc(kvm, isc_mask, schid);
1784	if (isc < 0)
1785		/* no AI in GISA */
1786		goto out;
1787
1788	if (!inti)
1789		/* AI in GISA but no classical IO int */
1790		goto gisa_out;
1791
1792	/* both types of interrupts present */
1793	if (int_word_to_isc(inti->io.io_int_word) <= isc) {
1794		/* classical IO int with higher priority */
1795		gisa_set_ipm_gisc(gi->origin, isc);
1796		goto out;
1797	}
1798gisa_out:
1799	tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL);
1800	if (tmp_inti) {
1801		tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0);
1802		tmp_inti->io.io_int_word = isc_to_int_word(isc);
1803		if (inti)
1804			kvm_s390_reinject_io_int(kvm, inti);
1805		inti = tmp_inti;
1806	} else
1807		gisa_set_ipm_gisc(gi->origin, isc);
1808out:
1809	return inti;
1810}
1811
1812static int __inject_service(struct kvm *kvm,
1813			     struct kvm_s390_interrupt_info *inti)
1814{
1815	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1816
1817	kvm->stat.inject_service_signal++;
1818	spin_lock(&fi->lock);
1819	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
1820
1821	/* We always allow events, track them separately from the sccb ints */
1822	if (fi->srv_signal.ext_params & SCCB_EVENT_PENDING)
1823		set_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1824
1825	/*
1826	 * Early versions of the QEMU s390 bios will inject several
1827	 * service interrupts after another without handling a
1828	 * condition code indicating busy.
1829	 * We will silently ignore those superfluous sccb values.
1830	 * A future version of QEMU will take care of serialization
1831	 * of servc requests
1832	 */
1833	if (fi->srv_signal.ext_params & SCCB_MASK)
1834		goto out;
1835	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
1836	set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1837out:
1838	spin_unlock(&fi->lock);
1839	kfree(inti);
1840	return 0;
1841}
1842
1843static int __inject_virtio(struct kvm *kvm,
1844			    struct kvm_s390_interrupt_info *inti)
1845{
1846	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1847
1848	kvm->stat.inject_virtio++;
1849	spin_lock(&fi->lock);
1850	if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
1851		spin_unlock(&fi->lock);
1852		return -EBUSY;
1853	}
1854	fi->counters[FIRQ_CNTR_VIRTIO] += 1;
1855	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
1856	set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1857	spin_unlock(&fi->lock);
1858	return 0;
1859}
1860
1861static int __inject_pfault_done(struct kvm *kvm,
1862				 struct kvm_s390_interrupt_info *inti)
1863{
1864	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1865
1866	kvm->stat.inject_pfault_done++;
1867	spin_lock(&fi->lock);
1868	if (fi->counters[FIRQ_CNTR_PFAULT] >=
1869		(ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
1870		spin_unlock(&fi->lock);
1871		return -EBUSY;
1872	}
1873	fi->counters[FIRQ_CNTR_PFAULT] += 1;
1874	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
1875	set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1876	spin_unlock(&fi->lock);
1877	return 0;
1878}
1879
1880#define CR_PENDING_SUBCLASS 28
1881static int __inject_float_mchk(struct kvm *kvm,
1882				struct kvm_s390_interrupt_info *inti)
1883{
1884	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1885
1886	kvm->stat.inject_float_mchk++;
1887	spin_lock(&fi->lock);
1888	fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
1889	fi->mchk.mcic |= inti->mchk.mcic;
1890	set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
1891	spin_unlock(&fi->lock);
1892	kfree(inti);
1893	return 0;
1894}
1895
1896static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1897{
1898	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1899	struct kvm_s390_float_interrupt *fi;
1900	struct list_head *list;
1901	int isc;
1902
1903	kvm->stat.inject_io++;
1904	isc = int_word_to_isc(inti->io.io_int_word);
1905
1906	/*
1907	 * Do not make use of gisa in protected mode. We do not use the lock
1908	 * checking variant as this is just a performance optimization and we
1909	 * do not hold the lock here. This is ok as the code will pick
1910	 * interrupts from both "lists" for delivery.
1911	 */
1912	if (!kvm_s390_pv_get_handle(kvm) &&
1913	    gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) {
1914		VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc);
1915		gisa_set_ipm_gisc(gi->origin, isc);
1916		kfree(inti);
1917		return 0;
1918	}
1919
1920	fi = &kvm->arch.float_int;
1921	spin_lock(&fi->lock);
1922	if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
1923		spin_unlock(&fi->lock);
1924		return -EBUSY;
1925	}
1926	fi->counters[FIRQ_CNTR_IO] += 1;
1927
1928	if (inti->type & KVM_S390_INT_IO_AI_MASK)
1929		VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
1930	else
1931		VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
1932			inti->io.subchannel_id >> 8,
1933			inti->io.subchannel_id >> 1 & 0x3,
1934			inti->io.subchannel_nr);
1935	list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1936	list_add_tail(&inti->list, list);
1937	set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1938	spin_unlock(&fi->lock);
1939	return 0;
1940}
1941
1942/*
1943 * Find a destination VCPU for a floating irq and kick it.
1944 */
1945static void __floating_irq_kick(struct kvm *kvm, u64 type)
1946{
1947	struct kvm_vcpu *dst_vcpu;
1948	int sigcpu, online_vcpus, nr_tries = 0;
1949
1950	online_vcpus = atomic_read(&kvm->online_vcpus);
1951	if (!online_vcpus)
1952		return;
1953
1954	/* find idle VCPUs first, then round robin */
1955	sigcpu = find_first_bit(kvm->arch.idle_mask, online_vcpus);
1956	if (sigcpu == online_vcpus) {
1957		do {
1958			sigcpu = kvm->arch.float_int.next_rr_cpu++;
1959			kvm->arch.float_int.next_rr_cpu %= online_vcpus;
1960			/* avoid endless loops if all vcpus are stopped */
1961			if (nr_tries++ >= online_vcpus)
1962				return;
1963		} while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
1964	}
1965	dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
1966
1967	/* make the VCPU drop out of the SIE, or wake it up if sleeping */
1968	switch (type) {
1969	case KVM_S390_MCHK:
1970		kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT);
1971		break;
1972	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1973		if (!(type & KVM_S390_INT_IO_AI_MASK &&
1974		      kvm->arch.gisa_int.origin) ||
1975		      kvm_s390_pv_cpu_get_handle(dst_vcpu))
1976			kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT);
1977		break;
1978	default:
1979		kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT);
1980		break;
1981	}
1982	kvm_s390_vcpu_wakeup(dst_vcpu);
1983}
1984
1985static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1986{
1987	u64 type = READ_ONCE(inti->type);
1988	int rc;
1989
1990	switch (type) {
1991	case KVM_S390_MCHK:
1992		rc = __inject_float_mchk(kvm, inti);
1993		break;
1994	case KVM_S390_INT_VIRTIO:
1995		rc = __inject_virtio(kvm, inti);
1996		break;
1997	case KVM_S390_INT_SERVICE:
1998		rc = __inject_service(kvm, inti);
1999		break;
2000	case KVM_S390_INT_PFAULT_DONE:
2001		rc = __inject_pfault_done(kvm, inti);
2002		break;
2003	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2004		rc = __inject_io(kvm, inti);
2005		break;
2006	default:
2007		rc = -EINVAL;
2008	}
2009	if (rc)
2010		return rc;
2011
2012	__floating_irq_kick(kvm, type);
2013	return 0;
2014}
2015
2016int kvm_s390_inject_vm(struct kvm *kvm,
2017		       struct kvm_s390_interrupt *s390int)
2018{
2019	struct kvm_s390_interrupt_info *inti;
2020	int rc;
2021
2022	inti = kzalloc(sizeof(*inti), GFP_KERNEL);
2023	if (!inti)
2024		return -ENOMEM;
2025
2026	inti->type = s390int->type;
2027	switch (inti->type) {
2028	case KVM_S390_INT_VIRTIO:
2029		VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
2030			 s390int->parm, s390int->parm64);
2031		inti->ext.ext_params = s390int->parm;
2032		inti->ext.ext_params2 = s390int->parm64;
2033		break;
2034	case KVM_S390_INT_SERVICE:
2035		VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
2036		inti->ext.ext_params = s390int->parm;
2037		break;
2038	case KVM_S390_INT_PFAULT_DONE:
2039		inti->ext.ext_params2 = s390int->parm64;
2040		break;
2041	case KVM_S390_MCHK:
2042		VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
2043			 s390int->parm64);
2044		inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
2045		inti->mchk.mcic = s390int->parm64;
2046		break;
2047	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2048		inti->io.subchannel_id = s390int->parm >> 16;
2049		inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
2050		inti->io.io_int_parm = s390int->parm64 >> 32;
2051		inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
2052		break;
2053	default:
2054		kfree(inti);
2055		return -EINVAL;
2056	}
2057	trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
2058				 2);
2059
2060	rc = __inject_vm(kvm, inti);
2061	if (rc)
2062		kfree(inti);
2063	return rc;
2064}
2065
2066int kvm_s390_reinject_io_int(struct kvm *kvm,
2067			      struct kvm_s390_interrupt_info *inti)
2068{
2069	return __inject_vm(kvm, inti);
2070}
2071
2072int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
2073		       struct kvm_s390_irq *irq)
2074{
2075	irq->type = s390int->type;
2076	switch (irq->type) {
2077	case KVM_S390_PROGRAM_INT:
2078		if (s390int->parm & 0xffff0000)
2079			return -EINVAL;
2080		irq->u.pgm.code = s390int->parm;
2081		break;
2082	case KVM_S390_SIGP_SET_PREFIX:
2083		irq->u.prefix.address = s390int->parm;
2084		break;
2085	case KVM_S390_SIGP_STOP:
2086		irq->u.stop.flags = s390int->parm;
2087		break;
2088	case KVM_S390_INT_EXTERNAL_CALL:
2089		if (s390int->parm & 0xffff0000)
2090			return -EINVAL;
2091		irq->u.extcall.code = s390int->parm;
2092		break;
2093	case KVM_S390_INT_EMERGENCY:
2094		if (s390int->parm & 0xffff0000)
2095			return -EINVAL;
2096		irq->u.emerg.code = s390int->parm;
2097		break;
2098	case KVM_S390_MCHK:
2099		irq->u.mchk.mcic = s390int->parm64;
2100		break;
2101	case KVM_S390_INT_PFAULT_INIT:
2102		irq->u.ext.ext_params = s390int->parm;
2103		irq->u.ext.ext_params2 = s390int->parm64;
2104		break;
2105	case KVM_S390_RESTART:
2106	case KVM_S390_INT_CLOCK_COMP:
2107	case KVM_S390_INT_CPU_TIMER:
2108		break;
2109	default:
2110		return -EINVAL;
2111	}
2112	return 0;
2113}
2114
2115int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
2116{
2117	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2118
2119	return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2120}
2121
2122int kvm_s390_is_restart_irq_pending(struct kvm_vcpu *vcpu)
2123{
2124	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2125
2126	return test_bit(IRQ_PEND_RESTART, &li->pending_irqs);
2127}
2128
2129void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
2130{
2131	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2132
2133	spin_lock(&li->lock);
2134	li->irq.stop.flags = 0;
2135	clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2136	spin_unlock(&li->lock);
2137}
2138
2139static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2140{
2141	int rc;
2142
2143	switch (irq->type) {
2144	case KVM_S390_PROGRAM_INT:
2145		rc = __inject_prog(vcpu, irq);
2146		break;
2147	case KVM_S390_SIGP_SET_PREFIX:
2148		rc = __inject_set_prefix(vcpu, irq);
2149		break;
2150	case KVM_S390_SIGP_STOP:
2151		rc = __inject_sigp_stop(vcpu, irq);
2152		break;
2153	case KVM_S390_RESTART:
2154		rc = __inject_sigp_restart(vcpu);
2155		break;
2156	case KVM_S390_INT_CLOCK_COMP:
2157		rc = __inject_ckc(vcpu);
2158		break;
2159	case KVM_S390_INT_CPU_TIMER:
2160		rc = __inject_cpu_timer(vcpu);
2161		break;
2162	case KVM_S390_INT_EXTERNAL_CALL:
2163		rc = __inject_extcall(vcpu, irq);
2164		break;
2165	case KVM_S390_INT_EMERGENCY:
2166		rc = __inject_sigp_emergency(vcpu, irq);
2167		break;
2168	case KVM_S390_MCHK:
2169		rc = __inject_mchk(vcpu, irq);
2170		break;
2171	case KVM_S390_INT_PFAULT_INIT:
2172		rc = __inject_pfault_init(vcpu, irq);
2173		break;
2174	case KVM_S390_INT_VIRTIO:
2175	case KVM_S390_INT_SERVICE:
2176	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2177	default:
2178		rc = -EINVAL;
2179	}
2180
2181	return rc;
2182}
2183
2184int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2185{
2186	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2187	int rc;
2188
2189	spin_lock(&li->lock);
2190	rc = do_inject_vcpu(vcpu, irq);
2191	spin_unlock(&li->lock);
2192	if (!rc)
2193		kvm_s390_vcpu_wakeup(vcpu);
2194	return rc;
2195}
2196
2197static inline void clear_irq_list(struct list_head *_list)
2198{
2199	struct kvm_s390_interrupt_info *inti, *n;
2200
2201	list_for_each_entry_safe(inti, n, _list, list) {
2202		list_del(&inti->list);
2203		kfree(inti);
2204	}
2205}
2206
2207static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
2208		       struct kvm_s390_irq *irq)
2209{
2210	irq->type = inti->type;
2211	switch (inti->type) {
2212	case KVM_S390_INT_PFAULT_INIT:
2213	case KVM_S390_INT_PFAULT_DONE:
2214	case KVM_S390_INT_VIRTIO:
2215		irq->u.ext = inti->ext;
2216		break;
2217	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2218		irq->u.io = inti->io;
2219		break;
2220	}
2221}
2222
2223void kvm_s390_clear_float_irqs(struct kvm *kvm)
2224{
2225	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2226	int i;
2227
2228	mutex_lock(&kvm->lock);
2229	if (!kvm_s390_pv_is_protected(kvm))
2230		fi->masked_irqs = 0;
2231	mutex_unlock(&kvm->lock);
2232	spin_lock(&fi->lock);
2233	fi->pending_irqs = 0;
2234	memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
2235	memset(&fi->mchk, 0, sizeof(fi->mchk));
2236	for (i = 0; i < FIRQ_LIST_COUNT; i++)
2237		clear_irq_list(&fi->lists[i]);
2238	for (i = 0; i < FIRQ_MAX_COUNT; i++)
2239		fi->counters[i] = 0;
2240	spin_unlock(&fi->lock);
2241	kvm_s390_gisa_clear(kvm);
2242};
2243
2244static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
2245{
2246	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
2247	struct kvm_s390_interrupt_info *inti;
2248	struct kvm_s390_float_interrupt *fi;
2249	struct kvm_s390_irq *buf;
2250	struct kvm_s390_irq *irq;
2251	int max_irqs;
2252	int ret = 0;
2253	int n = 0;
2254	int i;
2255
2256	if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
2257		return -EINVAL;
2258
2259	/*
2260	 * We are already using -ENOMEM to signal
2261	 * userspace it may retry with a bigger buffer,
2262	 * so we need to use something else for this case
2263	 */
2264	buf = vzalloc(len);
2265	if (!buf)
2266		return -ENOBUFS;
2267
2268	max_irqs = len / sizeof(struct kvm_s390_irq);
2269
2270	if (gi->origin && gisa_get_ipm(gi->origin)) {
2271		for (i = 0; i <= MAX_ISC; i++) {
2272			if (n == max_irqs) {
2273				/* signal userspace to try again */
2274				ret = -ENOMEM;
2275				goto out_nolock;
2276			}
2277			if (gisa_tac_ipm_gisc(gi->origin, i)) {
2278				irq = (struct kvm_s390_irq *) &buf[n];
2279				irq->type = KVM_S390_INT_IO(1, 0, 0, 0);
2280				irq->u.io.io_int_word = isc_to_int_word(i);
2281				n++;
2282			}
2283		}
2284	}
2285	fi = &kvm->arch.float_int;
2286	spin_lock(&fi->lock);
2287	for (i = 0; i < FIRQ_LIST_COUNT; i++) {
2288		list_for_each_entry(inti, &fi->lists[i], list) {
2289			if (n == max_irqs) {
2290				/* signal userspace to try again */
2291				ret = -ENOMEM;
2292				goto out;
2293			}
2294			inti_to_irq(inti, &buf[n]);
2295			n++;
2296		}
2297	}
2298	if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs) ||
2299	    test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs)) {
2300		if (n == max_irqs) {
2301			/* signal userspace to try again */
2302			ret = -ENOMEM;
2303			goto out;
2304		}
2305		irq = (struct kvm_s390_irq *) &buf[n];
2306		irq->type = KVM_S390_INT_SERVICE;
2307		irq->u.ext = fi->srv_signal;
2308		n++;
2309	}
2310	if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
2311		if (n == max_irqs) {
2312				/* signal userspace to try again */
2313				ret = -ENOMEM;
2314				goto out;
2315		}
2316		irq = (struct kvm_s390_irq *) &buf[n];
2317		irq->type = KVM_S390_MCHK;
2318		irq->u.mchk = fi->mchk;
2319		n++;
2320}
2321
2322out:
2323	spin_unlock(&fi->lock);
2324out_nolock:
2325	if (!ret && n > 0) {
2326		if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
2327			ret = -EFAULT;
2328	}
2329	vfree(buf);
2330
2331	return ret < 0 ? ret : n;
2332}
2333
2334static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
2335{
2336	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2337	struct kvm_s390_ais_all ais;
2338
2339	if (attr->attr < sizeof(ais))
2340		return -EINVAL;
2341
2342	if (!test_kvm_facility(kvm, 72))
2343		return -EOPNOTSUPP;
2344
2345	mutex_lock(&fi->ais_lock);
2346	ais.simm = fi->simm;
2347	ais.nimm = fi->nimm;
2348	mutex_unlock(&fi->ais_lock);
2349
2350	if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
2351		return -EFAULT;
2352
2353	return 0;
2354}
2355
2356static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2357{
2358	int r;
2359
2360	switch (attr->group) {
2361	case KVM_DEV_FLIC_GET_ALL_IRQS:
2362		r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
2363					  attr->attr);
2364		break;
2365	case KVM_DEV_FLIC_AISM_ALL:
2366		r = flic_ais_mode_get_all(dev->kvm, attr);
2367		break;
2368	default:
2369		r = -EINVAL;
2370	}
2371
2372	return r;
2373}
2374
2375static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
2376				     u64 addr)
2377{
2378	struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
2379	void *target = NULL;
2380	void __user *source;
2381	u64 size;
2382
2383	if (get_user(inti->type, (u64 __user *)addr))
2384		return -EFAULT;
2385
2386	switch (inti->type) {
2387	case KVM_S390_INT_PFAULT_INIT:
2388	case KVM_S390_INT_PFAULT_DONE:
2389	case KVM_S390_INT_VIRTIO:
2390	case KVM_S390_INT_SERVICE:
2391		target = (void *) &inti->ext;
2392		source = &uptr->u.ext;
2393		size = sizeof(inti->ext);
2394		break;
2395	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2396		target = (void *) &inti->io;
2397		source = &uptr->u.io;
2398		size = sizeof(inti->io);
2399		break;
2400	case KVM_S390_MCHK:
2401		target = (void *) &inti->mchk;
2402		source = &uptr->u.mchk;
2403		size = sizeof(inti->mchk);
2404		break;
2405	default:
2406		return -EINVAL;
2407	}
2408
2409	if (copy_from_user(target, source, size))
2410		return -EFAULT;
2411
2412	return 0;
2413}
2414
2415static int enqueue_floating_irq(struct kvm_device *dev,
2416				struct kvm_device_attr *attr)
2417{
2418	struct kvm_s390_interrupt_info *inti = NULL;
2419	int r = 0;
2420	int len = attr->attr;
2421
2422	if (len % sizeof(struct kvm_s390_irq) != 0)
2423		return -EINVAL;
2424	else if (len > KVM_S390_FLIC_MAX_BUFFER)
2425		return -EINVAL;
2426
2427	while (len >= sizeof(struct kvm_s390_irq)) {
2428		inti = kzalloc(sizeof(*inti), GFP_KERNEL);
2429		if (!inti)
2430			return -ENOMEM;
2431
2432		r = copy_irq_from_user(inti, attr->addr);
2433		if (r) {
2434			kfree(inti);
2435			return r;
2436		}
2437		r = __inject_vm(dev->kvm, inti);
2438		if (r) {
2439			kfree(inti);
2440			return r;
2441		}
2442		len -= sizeof(struct kvm_s390_irq);
2443		attr->addr += sizeof(struct kvm_s390_irq);
2444	}
2445
2446	return r;
2447}
2448
2449static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
2450{
2451	if (id >= MAX_S390_IO_ADAPTERS)
2452		return NULL;
2453	id = array_index_nospec(id, MAX_S390_IO_ADAPTERS);
2454	return kvm->arch.adapters[id];
2455}
2456
2457static int register_io_adapter(struct kvm_device *dev,
2458			       struct kvm_device_attr *attr)
2459{
2460	struct s390_io_adapter *adapter;
2461	struct kvm_s390_io_adapter adapter_info;
2462
2463	if (copy_from_user(&adapter_info,
2464			   (void __user *)attr->addr, sizeof(adapter_info)))
2465		return -EFAULT;
2466
2467	if (adapter_info.id >= MAX_S390_IO_ADAPTERS)
2468		return -EINVAL;
2469
2470	adapter_info.id = array_index_nospec(adapter_info.id,
2471					     MAX_S390_IO_ADAPTERS);
2472
2473	if (dev->kvm->arch.adapters[adapter_info.id] != NULL)
2474		return -EINVAL;
2475
2476	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2477	if (!adapter)
2478		return -ENOMEM;
2479
2480	adapter->id = adapter_info.id;
2481	adapter->isc = adapter_info.isc;
2482	adapter->maskable = adapter_info.maskable;
2483	adapter->masked = false;
2484	adapter->swap = adapter_info.swap;
2485	adapter->suppressible = (adapter_info.flags) &
2486				KVM_S390_ADAPTER_SUPPRESSIBLE;
2487	dev->kvm->arch.adapters[adapter->id] = adapter;
2488
2489	return 0;
2490}
2491
2492int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
2493{
2494	int ret;
2495	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2496
2497	if (!adapter || !adapter->maskable)
2498		return -EINVAL;
2499	ret = adapter->masked;
2500	adapter->masked = masked;
2501	return ret;
2502}
2503
2504void kvm_s390_destroy_adapters(struct kvm *kvm)
2505{
2506	int i;
2507
2508	for (i = 0; i < MAX_S390_IO_ADAPTERS; i++)
2509		kfree(kvm->arch.adapters[i]);
2510}
2511
2512static int modify_io_adapter(struct kvm_device *dev,
2513			     struct kvm_device_attr *attr)
2514{
2515	struct kvm_s390_io_adapter_req req;
2516	struct s390_io_adapter *adapter;
2517	int ret;
2518
2519	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2520		return -EFAULT;
2521
2522	adapter = get_io_adapter(dev->kvm, req.id);
2523	if (!adapter)
2524		return -EINVAL;
2525	switch (req.type) {
2526	case KVM_S390_IO_ADAPTER_MASK:
2527		ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
2528		if (ret > 0)
2529			ret = 0;
2530		break;
2531	/*
2532	 * The following operations are no longer needed and therefore no-ops.
2533	 * The gpa to hva translation is done when an IRQ route is set up. The
2534	 * set_irq code uses get_user_pages_remote() to do the actual write.
2535	 */
2536	case KVM_S390_IO_ADAPTER_MAP:
2537	case KVM_S390_IO_ADAPTER_UNMAP:
2538		ret = 0;
2539		break;
2540	default:
2541		ret = -EINVAL;
2542	}
2543
2544	return ret;
2545}
2546
2547static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
2548
2549{
2550	const u64 isc_mask = 0xffUL << 24; /* all iscs set */
2551	u32 schid;
2552
2553	if (attr->flags)
2554		return -EINVAL;
2555	if (attr->attr != sizeof(schid))
2556		return -EINVAL;
2557	if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
2558		return -EFAULT;
2559	if (!schid)
2560		return -EINVAL;
2561	kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
2562	/*
2563	 * If userspace is conforming to the architecture, we can have at most
2564	 * one pending I/O interrupt per subchannel, so this is effectively a
2565	 * clear all.
2566	 */
2567	return 0;
2568}
2569
2570static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
2571{
2572	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2573	struct kvm_s390_ais_req req;
2574	int ret = 0;
2575
2576	if (!test_kvm_facility(kvm, 72))
2577		return -EOPNOTSUPP;
2578
2579	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2580		return -EFAULT;
2581
2582	if (req.isc > MAX_ISC)
2583		return -EINVAL;
2584
2585	trace_kvm_s390_modify_ais_mode(req.isc,
2586				       (fi->simm & AIS_MODE_MASK(req.isc)) ?
2587				       (fi->nimm & AIS_MODE_MASK(req.isc)) ?
2588				       2 : KVM_S390_AIS_MODE_SINGLE :
2589				       KVM_S390_AIS_MODE_ALL, req.mode);
2590
2591	mutex_lock(&fi->ais_lock);
2592	switch (req.mode) {
2593	case KVM_S390_AIS_MODE_ALL:
2594		fi->simm &= ~AIS_MODE_MASK(req.isc);
2595		fi->nimm &= ~AIS_MODE_MASK(req.isc);
2596		break;
2597	case KVM_S390_AIS_MODE_SINGLE:
2598		fi->simm |= AIS_MODE_MASK(req.isc);
2599		fi->nimm &= ~AIS_MODE_MASK(req.isc);
2600		break;
2601	default:
2602		ret = -EINVAL;
2603	}
2604	mutex_unlock(&fi->ais_lock);
2605
2606	return ret;
2607}
2608
2609static int kvm_s390_inject_airq(struct kvm *kvm,
2610				struct s390_io_adapter *adapter)
2611{
2612	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2613	struct kvm_s390_interrupt s390int = {
2614		.type = KVM_S390_INT_IO(1, 0, 0, 0),
2615		.parm = 0,
2616		.parm64 = isc_to_int_word(adapter->isc),
2617	};
2618	int ret = 0;
2619
2620	if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
2621		return kvm_s390_inject_vm(kvm, &s390int);
2622
2623	mutex_lock(&fi->ais_lock);
2624	if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
2625		trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
2626		goto out;
2627	}
2628
2629	ret = kvm_s390_inject_vm(kvm, &s390int);
2630	if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
2631		fi->nimm |= AIS_MODE_MASK(adapter->isc);
2632		trace_kvm_s390_modify_ais_mode(adapter->isc,
2633					       KVM_S390_AIS_MODE_SINGLE, 2);
2634	}
2635out:
2636	mutex_unlock(&fi->ais_lock);
2637	return ret;
2638}
2639
2640static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
2641{
2642	unsigned int id = attr->attr;
2643	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2644
2645	if (!adapter)
2646		return -EINVAL;
2647
2648	return kvm_s390_inject_airq(kvm, adapter);
2649}
2650
2651static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
2652{
2653	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2654	struct kvm_s390_ais_all ais;
2655
2656	if (!test_kvm_facility(kvm, 72))
2657		return -EOPNOTSUPP;
2658
2659	if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
2660		return -EFAULT;
2661
2662	mutex_lock(&fi->ais_lock);
2663	fi->simm = ais.simm;
2664	fi->nimm = ais.nimm;
2665	mutex_unlock(&fi->ais_lock);
2666
2667	return 0;
2668}
2669
2670static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2671{
2672	int r = 0;
2673	unsigned int i;
2674	struct kvm_vcpu *vcpu;
2675
2676	switch (attr->group) {
2677	case KVM_DEV_FLIC_ENQUEUE:
2678		r = enqueue_floating_irq(dev, attr);
2679		break;
2680	case KVM_DEV_FLIC_CLEAR_IRQS:
2681		kvm_s390_clear_float_irqs(dev->kvm);
2682		break;
2683	case KVM_DEV_FLIC_APF_ENABLE:
2684		dev->kvm->arch.gmap->pfault_enabled = 1;
2685		break;
2686	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2687		dev->kvm->arch.gmap->pfault_enabled = 0;
2688		/*
2689		 * Make sure no async faults are in transition when
2690		 * clearing the queues. So we don't need to worry
2691		 * about late coming workers.
2692		 */
2693		synchronize_srcu(&dev->kvm->srcu);
2694		kvm_for_each_vcpu(i, vcpu, dev->kvm)
2695			kvm_clear_async_pf_completion_queue(vcpu);
2696		break;
2697	case KVM_DEV_FLIC_ADAPTER_REGISTER:
2698		r = register_io_adapter(dev, attr);
2699		break;
2700	case KVM_DEV_FLIC_ADAPTER_MODIFY:
2701		r = modify_io_adapter(dev, attr);
2702		break;
2703	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2704		r = clear_io_irq(dev->kvm, attr);
2705		break;
2706	case KVM_DEV_FLIC_AISM:
2707		r = modify_ais_mode(dev->kvm, attr);
2708		break;
2709	case KVM_DEV_FLIC_AIRQ_INJECT:
2710		r = flic_inject_airq(dev->kvm, attr);
2711		break;
2712	case KVM_DEV_FLIC_AISM_ALL:
2713		r = flic_ais_mode_set_all(dev->kvm, attr);
2714		break;
2715	default:
2716		r = -EINVAL;
2717	}
2718
2719	return r;
2720}
2721
2722static int flic_has_attr(struct kvm_device *dev,
2723			     struct kvm_device_attr *attr)
2724{
2725	switch (attr->group) {
2726	case KVM_DEV_FLIC_GET_ALL_IRQS:
2727	case KVM_DEV_FLIC_ENQUEUE:
2728	case KVM_DEV_FLIC_CLEAR_IRQS:
2729	case KVM_DEV_FLIC_APF_ENABLE:
2730	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2731	case KVM_DEV_FLIC_ADAPTER_REGISTER:
2732	case KVM_DEV_FLIC_ADAPTER_MODIFY:
2733	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2734	case KVM_DEV_FLIC_AISM:
2735	case KVM_DEV_FLIC_AIRQ_INJECT:
2736	case KVM_DEV_FLIC_AISM_ALL:
2737		return 0;
2738	}
2739	return -ENXIO;
2740}
2741
2742static int flic_create(struct kvm_device *dev, u32 type)
2743{
2744	if (!dev)
2745		return -EINVAL;
2746	if (dev->kvm->arch.flic)
2747		return -EINVAL;
2748	dev->kvm->arch.flic = dev;
2749	return 0;
2750}
2751
2752static void flic_destroy(struct kvm_device *dev)
2753{
2754	dev->kvm->arch.flic = NULL;
2755	kfree(dev);
2756}
2757
2758/* s390 floating irq controller (flic) */
2759struct kvm_device_ops kvm_flic_ops = {
2760	.name = "kvm-flic",
2761	.get_attr = flic_get_attr,
2762	.set_attr = flic_set_attr,
2763	.has_attr = flic_has_attr,
2764	.create = flic_create,
2765	.destroy = flic_destroy,
2766};
2767
2768static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
2769{
2770	unsigned long bit;
2771
2772	bit = bit_nr + (addr % PAGE_SIZE) * 8;
2773
2774	return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
2775}
2776
2777static struct page *get_map_page(struct kvm *kvm, u64 uaddr)
2778{
2779	struct page *page = NULL;
2780
2781	mmap_read_lock(kvm->mm);
2782	get_user_pages_remote(kvm->mm, uaddr, 1, FOLL_WRITE,
2783			      &page, NULL, NULL);
2784	mmap_read_unlock(kvm->mm);
2785	return page;
2786}
2787
2788static int adapter_indicators_set(struct kvm *kvm,
2789				  struct s390_io_adapter *adapter,
2790				  struct kvm_s390_adapter_int *adapter_int)
2791{
2792	unsigned long bit;
2793	int summary_set, idx;
2794	struct page *ind_page, *summary_page;
2795	void *map;
2796
2797	ind_page = get_map_page(kvm, adapter_int->ind_addr);
2798	if (!ind_page)
2799		return -1;
2800	summary_page = get_map_page(kvm, adapter_int->summary_addr);
2801	if (!summary_page) {
2802		put_page(ind_page);
2803		return -1;
2804	}
2805
2806	idx = srcu_read_lock(&kvm->srcu);
2807	map = page_address(ind_page);
2808	bit = get_ind_bit(adapter_int->ind_addr,
2809			  adapter_int->ind_offset, adapter->swap);
2810	set_bit(bit, map);
2811	mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT);
2812	set_page_dirty_lock(ind_page);
2813	map = page_address(summary_page);
2814	bit = get_ind_bit(adapter_int->summary_addr,
2815			  adapter_int->summary_offset, adapter->swap);
2816	summary_set = test_and_set_bit(bit, map);
2817	mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT);
2818	set_page_dirty_lock(summary_page);
2819	srcu_read_unlock(&kvm->srcu, idx);
2820
2821	put_page(ind_page);
2822	put_page(summary_page);
2823	return summary_set ? 0 : 1;
2824}
2825
2826/*
2827 * < 0 - not injected due to error
2828 * = 0 - coalesced, summary indicator already active
2829 * > 0 - injected interrupt
2830 */
2831static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
2832			   struct kvm *kvm, int irq_source_id, int level,
2833			   bool line_status)
2834{
2835	int ret;
2836	struct s390_io_adapter *adapter;
2837
2838	/* We're only interested in the 0->1 transition. */
2839	if (!level)
2840		return 0;
2841	adapter = get_io_adapter(kvm, e->adapter.adapter_id);
2842	if (!adapter)
2843		return -1;
2844	ret = adapter_indicators_set(kvm, adapter, &e->adapter);
2845	if ((ret > 0) && !adapter->masked) {
2846		ret = kvm_s390_inject_airq(kvm, adapter);
2847		if (ret == 0)
2848			ret = 1;
2849	}
2850	return ret;
2851}
2852
2853/*
2854 * Inject the machine check to the guest.
2855 */
2856void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
2857				     struct mcck_volatile_info *mcck_info)
2858{
2859	struct kvm_s390_interrupt_info inti;
2860	struct kvm_s390_irq irq;
2861	struct kvm_s390_mchk_info *mchk;
2862	union mci mci;
2863	__u64 cr14 = 0;         /* upper bits are not used */
2864	int rc;
2865
2866	mci.val = mcck_info->mcic;
2867	if (mci.sr)
2868		cr14 |= CR14_RECOVERY_SUBMASK;
2869	if (mci.dg)
2870		cr14 |= CR14_DEGRADATION_SUBMASK;
2871	if (mci.w)
2872		cr14 |= CR14_WARNING_SUBMASK;
2873
2874	mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
2875	mchk->cr14 = cr14;
2876	mchk->mcic = mcck_info->mcic;
2877	mchk->ext_damage_code = mcck_info->ext_damage_code;
2878	mchk->failing_storage_address = mcck_info->failing_storage_address;
2879	if (mci.ck) {
2880		/* Inject the floating machine check */
2881		inti.type = KVM_S390_MCHK;
2882		rc = __inject_vm(vcpu->kvm, &inti);
2883	} else {
2884		/* Inject the machine check to specified vcpu */
2885		irq.type = KVM_S390_MCHK;
2886		rc = kvm_s390_inject_vcpu(vcpu, &irq);
2887	}
2888	WARN_ON_ONCE(rc);
2889}
2890
2891int kvm_set_routing_entry(struct kvm *kvm,
2892			  struct kvm_kernel_irq_routing_entry *e,
2893			  const struct kvm_irq_routing_entry *ue)
2894{
2895	u64 uaddr;
2896
2897	switch (ue->type) {
2898	/* we store the userspace addresses instead of the guest addresses */
2899	case KVM_IRQ_ROUTING_S390_ADAPTER:
2900		e->set = set_adapter_int;
2901		uaddr =  gmap_translate(kvm->arch.gmap, ue->u.adapter.summary_addr);
2902		if (uaddr == -EFAULT)
2903			return -EFAULT;
2904		e->adapter.summary_addr = uaddr;
2905		uaddr =  gmap_translate(kvm->arch.gmap, ue->u.adapter.ind_addr);
2906		if (uaddr == -EFAULT)
2907			return -EFAULT;
2908		e->adapter.ind_addr = uaddr;
2909		e->adapter.summary_offset = ue->u.adapter.summary_offset;
2910		e->adapter.ind_offset = ue->u.adapter.ind_offset;
2911		e->adapter.adapter_id = ue->u.adapter.adapter_id;
2912		return 0;
2913	default:
2914		return -EINVAL;
2915	}
2916}
2917
2918int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
2919		int irq_source_id, int level, bool line_status)
2920{
2921	return -EINVAL;
2922}
2923
2924int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
2925{
2926	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2927	struct kvm_s390_irq *buf;
2928	int r = 0;
2929	int n;
2930
2931	buf = vmalloc(len);
2932	if (!buf)
2933		return -ENOMEM;
2934
2935	if (copy_from_user((void *) buf, irqstate, len)) {
2936		r = -EFAULT;
2937		goto out_free;
2938	}
2939
2940	/*
2941	 * Don't allow setting the interrupt state
2942	 * when there are already interrupts pending
2943	 */
2944	spin_lock(&li->lock);
2945	if (li->pending_irqs) {
2946		r = -EBUSY;
2947		goto out_unlock;
2948	}
2949
2950	for (n = 0; n < len / sizeof(*buf); n++) {
2951		r = do_inject_vcpu(vcpu, &buf[n]);
2952		if (r)
2953			break;
2954	}
2955
2956out_unlock:
2957	spin_unlock(&li->lock);
2958out_free:
2959	vfree(buf);
2960
2961	return r;
2962}
2963
2964static void store_local_irq(struct kvm_s390_local_interrupt *li,
2965			    struct kvm_s390_irq *irq,
2966			    unsigned long irq_type)
2967{
2968	switch (irq_type) {
2969	case IRQ_PEND_MCHK_EX:
2970	case IRQ_PEND_MCHK_REP:
2971		irq->type = KVM_S390_MCHK;
2972		irq->u.mchk = li->irq.mchk;
2973		break;
2974	case IRQ_PEND_PROG:
2975		irq->type = KVM_S390_PROGRAM_INT;
2976		irq->u.pgm = li->irq.pgm;
2977		break;
2978	case IRQ_PEND_PFAULT_INIT:
2979		irq->type = KVM_S390_INT_PFAULT_INIT;
2980		irq->u.ext = li->irq.ext;
2981		break;
2982	case IRQ_PEND_EXT_EXTERNAL:
2983		irq->type = KVM_S390_INT_EXTERNAL_CALL;
2984		irq->u.extcall = li->irq.extcall;
2985		break;
2986	case IRQ_PEND_EXT_CLOCK_COMP:
2987		irq->type = KVM_S390_INT_CLOCK_COMP;
2988		break;
2989	case IRQ_PEND_EXT_CPU_TIMER:
2990		irq->type = KVM_S390_INT_CPU_TIMER;
2991		break;
2992	case IRQ_PEND_SIGP_STOP:
2993		irq->type = KVM_S390_SIGP_STOP;
2994		irq->u.stop = li->irq.stop;
2995		break;
2996	case IRQ_PEND_RESTART:
2997		irq->type = KVM_S390_RESTART;
2998		break;
2999	case IRQ_PEND_SET_PREFIX:
3000		irq->type = KVM_S390_SIGP_SET_PREFIX;
3001		irq->u.prefix = li->irq.prefix;
3002		break;
3003	}
3004}
3005
3006int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
3007{
3008	int scn;
3009	DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS);
3010	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
3011	unsigned long pending_irqs;
3012	struct kvm_s390_irq irq;
3013	unsigned long irq_type;
3014	int cpuaddr;
3015	int n = 0;
3016
3017	spin_lock(&li->lock);
3018	pending_irqs = li->pending_irqs;
3019	memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
3020	       sizeof(sigp_emerg_pending));
3021	spin_unlock(&li->lock);
3022
3023	for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
3024		memset(&irq, 0, sizeof(irq));
3025		if (irq_type == IRQ_PEND_EXT_EMERGENCY)
3026			continue;
3027		if (n + sizeof(irq) > len)
3028			return -ENOBUFS;
3029		store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
3030		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3031			return -EFAULT;
3032		n += sizeof(irq);
3033	}
3034
3035	if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
3036		for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
3037			memset(&irq, 0, sizeof(irq));
3038			if (n + sizeof(irq) > len)
3039				return -ENOBUFS;
3040			irq.type = KVM_S390_INT_EMERGENCY;
3041			irq.u.emerg.code = cpuaddr;
3042			if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3043				return -EFAULT;
3044			n += sizeof(irq);
3045		}
3046	}
3047
3048	if (sca_ext_call_pending(vcpu, &scn)) {
3049		if (n + sizeof(irq) > len)
3050			return -ENOBUFS;
3051		memset(&irq, 0, sizeof(irq));
3052		irq.type = KVM_S390_INT_EXTERNAL_CALL;
3053		irq.u.extcall.code = scn;
3054		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3055			return -EFAULT;
3056		n += sizeof(irq);
3057	}
3058
3059	return n;
3060}
3061
3062static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask)
3063{
3064	int vcpu_idx, online_vcpus = atomic_read(&kvm->online_vcpus);
3065	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3066	struct kvm_vcpu *vcpu;
3067	u8 vcpu_isc_mask;
3068
3069	for_each_set_bit(vcpu_idx, kvm->arch.idle_mask, online_vcpus) {
3070		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
3071		if (psw_ioint_disabled(vcpu))
3072			continue;
3073		vcpu_isc_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24);
3074		if (deliverable_mask & vcpu_isc_mask) {
3075			/* lately kicked but not yet running */
3076			if (test_and_set_bit(vcpu_idx, gi->kicked_mask))
3077				return;
3078			kvm_s390_vcpu_wakeup(vcpu);
3079			return;
3080		}
3081	}
3082}
3083
3084static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer)
3085{
3086	struct kvm_s390_gisa_interrupt *gi =
3087		container_of(timer, struct kvm_s390_gisa_interrupt, timer);
3088	struct kvm *kvm =
3089		container_of(gi->origin, struct sie_page2, gisa)->kvm;
3090	u8 pending_mask;
3091
3092	pending_mask = gisa_get_ipm_or_restore_iam(gi);
3093	if (pending_mask) {
3094		__airqs_kick_single_vcpu(kvm, pending_mask);
3095		hrtimer_forward_now(timer, ns_to_ktime(gi->expires));
3096		return HRTIMER_RESTART;
3097	}
3098
3099	return HRTIMER_NORESTART;
3100}
3101
3102#define NULL_GISA_ADDR 0x00000000UL
3103#define NONE_GISA_ADDR 0x00000001UL
3104#define GISA_ADDR_MASK 0xfffff000UL
3105
3106static void process_gib_alert_list(void)
3107{
3108	struct kvm_s390_gisa_interrupt *gi;
3109	struct kvm_s390_gisa *gisa;
3110	struct kvm *kvm;
3111	u32 final, origin = 0UL;
3112
3113	do {
3114		/*
3115		 * If the NONE_GISA_ADDR is still stored in the alert list
3116		 * origin, we will leave the outer loop. No further GISA has
3117		 * been added to the alert list by millicode while processing
3118		 * the current alert list.
3119		 */
3120		final = (origin & NONE_GISA_ADDR);
3121		/*
3122		 * Cut off the alert list and store the NONE_GISA_ADDR in the
3123		 * alert list origin to avoid further GAL interruptions.
3124		 * A new alert list can be build up by millicode in parallel
3125		 * for guests not in the yet cut-off alert list. When in the
3126		 * final loop, store the NULL_GISA_ADDR instead. This will re-
3127		 * enable GAL interruptions on the host again.
3128		 */
3129		origin = xchg(&gib->alert_list_origin,
3130			      (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR);
3131		/*
3132		 * Loop through the just cut-off alert list and start the
3133		 * gisa timers to kick idle vcpus to consume the pending
3134		 * interruptions asap.
3135		 */
3136		while (origin & GISA_ADDR_MASK) {
3137			gisa = (struct kvm_s390_gisa *)(u64)origin;
3138			origin = gisa->next_alert;
3139			gisa->next_alert = (u32)(u64)gisa;
3140			kvm = container_of(gisa, struct sie_page2, gisa)->kvm;
3141			gi = &kvm->arch.gisa_int;
3142			if (hrtimer_active(&gi->timer))
3143				hrtimer_cancel(&gi->timer);
3144			hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
3145		}
3146	} while (!final);
3147
3148}
3149
3150void kvm_s390_gisa_clear(struct kvm *kvm)
3151{
3152	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3153
3154	if (!gi->origin)
3155		return;
3156	gisa_clear_ipm(gi->origin);
3157	VM_EVENT(kvm, 3, "gisa 0x%pK cleared", gi->origin);
3158}
3159
3160void kvm_s390_gisa_init(struct kvm *kvm)
3161{
3162	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3163
3164	if (!css_general_characteristics.aiv)
3165		return;
3166	gi->origin = &kvm->arch.sie_page2->gisa;
3167	gi->alert.mask = 0;
3168	spin_lock_init(&gi->alert.ref_lock);
3169	gi->expires = 50 * 1000; /* 50 usec */
3170	hrtimer_init(&gi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3171	gi->timer.function = gisa_vcpu_kicker;
3172	memset(gi->origin, 0, sizeof(struct kvm_s390_gisa));
3173	gi->origin->next_alert = (u32)(u64)gi->origin;
3174	VM_EVENT(kvm, 3, "gisa 0x%pK initialized", gi->origin);
3175}
3176
3177void kvm_s390_gisa_destroy(struct kvm *kvm)
3178{
3179	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3180
3181	if (!gi->origin)
3182		return;
3183	if (gi->alert.mask)
3184		KVM_EVENT(3, "vm 0x%pK has unexpected iam 0x%02x",
3185			  kvm, gi->alert.mask);
3186	while (gisa_in_alert_list(gi->origin))
3187		cpu_relax();
3188	hrtimer_cancel(&gi->timer);
3189	gi->origin = NULL;
3190}
3191
3192/**
3193 * kvm_s390_gisc_register - register a guest ISC
3194 *
3195 * @kvm:  the kernel vm to work with
3196 * @gisc: the guest interruption sub class to register
3197 *
3198 * The function extends the vm specific alert mask to use.
3199 * The effective IAM mask in the GISA is updated as well
3200 * in case the GISA is not part of the GIB alert list.
3201 * It will be updated latest when the IAM gets restored
3202 * by gisa_get_ipm_or_restore_iam().
3203 *
3204 * Returns: the nonspecific ISC (NISC) the gib alert mechanism
3205 *          has registered with the channel subsystem.
3206 *          -ENODEV in case the vm uses no GISA
3207 *          -ERANGE in case the guest ISC is invalid
3208 */
3209int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc)
3210{
3211	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3212
3213	if (!gi->origin)
3214		return -ENODEV;
3215	if (gisc > MAX_ISC)
3216		return -ERANGE;
3217
3218	spin_lock(&gi->alert.ref_lock);
3219	gi->alert.ref_count[gisc]++;
3220	if (gi->alert.ref_count[gisc] == 1) {
3221		gi->alert.mask |= 0x80 >> gisc;
3222		gisa_set_iam(gi->origin, gi->alert.mask);
3223	}
3224	spin_unlock(&gi->alert.ref_lock);
3225
3226	return gib->nisc;
3227}
3228EXPORT_SYMBOL_GPL(kvm_s390_gisc_register);
3229
3230/**
3231 * kvm_s390_gisc_unregister - unregister a guest ISC
3232 *
3233 * @kvm:  the kernel vm to work with
3234 * @gisc: the guest interruption sub class to register
3235 *
3236 * The function reduces the vm specific alert mask to use.
3237 * The effective IAM mask in the GISA is updated as well
3238 * in case the GISA is not part of the GIB alert list.
3239 * It will be updated latest when the IAM gets restored
3240 * by gisa_get_ipm_or_restore_iam().
3241 *
3242 * Returns: the nonspecific ISC (NISC) the gib alert mechanism
3243 *          has registered with the channel subsystem.
3244 *          -ENODEV in case the vm uses no GISA
3245 *          -ERANGE in case the guest ISC is invalid
3246 *          -EINVAL in case the guest ISC is not registered
3247 */
3248int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc)
3249{
3250	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3251	int rc = 0;
3252
3253	if (!gi->origin)
3254		return -ENODEV;
3255	if (gisc > MAX_ISC)
3256		return -ERANGE;
3257
3258	spin_lock(&gi->alert.ref_lock);
3259	if (gi->alert.ref_count[gisc] == 0) {
3260		rc = -EINVAL;
3261		goto out;
3262	}
3263	gi->alert.ref_count[gisc]--;
3264	if (gi->alert.ref_count[gisc] == 0) {
3265		gi->alert.mask &= ~(0x80 >> gisc);
3266		gisa_set_iam(gi->origin, gi->alert.mask);
3267	}
3268out:
3269	spin_unlock(&gi->alert.ref_lock);
3270
3271	return rc;
3272}
3273EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister);
3274
3275static void gib_alert_irq_handler(struct airq_struct *airq, bool floating)
3276{
3277	inc_irq_stat(IRQIO_GAL);
3278	process_gib_alert_list();
3279}
3280
3281static struct airq_struct gib_alert_irq = {
3282	.handler = gib_alert_irq_handler,
3283	.lsi_ptr = &gib_alert_irq.lsi_mask,
3284};
3285
3286void kvm_s390_gib_destroy(void)
3287{
3288	if (!gib)
3289		return;
3290	chsc_sgib(0);
3291	unregister_adapter_interrupt(&gib_alert_irq);
3292	free_page((unsigned long)gib);
3293	gib = NULL;
3294}
3295
3296int kvm_s390_gib_init(u8 nisc)
3297{
3298	int rc = 0;
3299
3300	if (!css_general_characteristics.aiv) {
3301		KVM_EVENT(3, "%s", "gib not initialized, no AIV facility");
3302		goto out;
3303	}
3304
3305	gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
3306	if (!gib) {
3307		rc = -ENOMEM;
3308		goto out;
3309	}
3310
3311	gib_alert_irq.isc = nisc;
3312	if (register_adapter_interrupt(&gib_alert_irq)) {
3313		pr_err("Registering the GIB alert interruption handler failed\n");
3314		rc = -EIO;
3315		goto out_free_gib;
3316	}
3317
3318	gib->nisc = nisc;
3319	if (chsc_sgib((u32)(u64)gib)) {
3320		pr_err("Associating the GIB with the AIV facility failed\n");
3321		free_page((unsigned long)gib);
3322		gib = NULL;
3323		rc = -EIO;
3324		goto out_unreg_gal;
3325	}
3326
3327	KVM_EVENT(3, "gib 0x%pK (nisc=%d) initialized", gib, gib->nisc);
3328	goto out;
3329
3330out_unreg_gal:
3331	unregister_adapter_interrupt(&gib_alert_irq);
3332out_free_gib:
3333	free_page((unsigned long)gib);
3334	gib = NULL;
3335out:
3336	return rc;
3337}
3338