xref: /kernel/linux/linux-5.10/arch/s390/kvm/gaccess.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * guest access functions
4 *
5 * Copyright IBM Corp. 2014
6 *
7 */
8
9#include <linux/vmalloc.h>
10#include <linux/mm_types.h>
11#include <linux/err.h>
12#include <linux/pgtable.h>
13
14#include <asm/gmap.h>
15#include "kvm-s390.h"
16#include "gaccess.h"
17#include <asm/switch_to.h>
18
19union asce {
20	unsigned long val;
21	struct {
22		unsigned long origin : 52; /* Region- or Segment-Table Origin */
23		unsigned long	 : 2;
24		unsigned long g  : 1; /* Subspace Group Control */
25		unsigned long p  : 1; /* Private Space Control */
26		unsigned long s  : 1; /* Storage-Alteration-Event Control */
27		unsigned long x  : 1; /* Space-Switch-Event Control */
28		unsigned long r  : 1; /* Real-Space Control */
29		unsigned long	 : 1;
30		unsigned long dt : 2; /* Designation-Type Control */
31		unsigned long tl : 2; /* Region- or Segment-Table Length */
32	};
33};
34
35enum {
36	ASCE_TYPE_SEGMENT = 0,
37	ASCE_TYPE_REGION3 = 1,
38	ASCE_TYPE_REGION2 = 2,
39	ASCE_TYPE_REGION1 = 3
40};
41
42union region1_table_entry {
43	unsigned long val;
44	struct {
45		unsigned long rto: 52;/* Region-Table Origin */
46		unsigned long	 : 2;
47		unsigned long p  : 1; /* DAT-Protection Bit */
48		unsigned long	 : 1;
49		unsigned long tf : 2; /* Region-Second-Table Offset */
50		unsigned long i  : 1; /* Region-Invalid Bit */
51		unsigned long	 : 1;
52		unsigned long tt : 2; /* Table-Type Bits */
53		unsigned long tl : 2; /* Region-Second-Table Length */
54	};
55};
56
57union region2_table_entry {
58	unsigned long val;
59	struct {
60		unsigned long rto: 52;/* Region-Table Origin */
61		unsigned long	 : 2;
62		unsigned long p  : 1; /* DAT-Protection Bit */
63		unsigned long	 : 1;
64		unsigned long tf : 2; /* Region-Third-Table Offset */
65		unsigned long i  : 1; /* Region-Invalid Bit */
66		unsigned long	 : 1;
67		unsigned long tt : 2; /* Table-Type Bits */
68		unsigned long tl : 2; /* Region-Third-Table Length */
69	};
70};
71
72struct region3_table_entry_fc0 {
73	unsigned long sto: 52;/* Segment-Table Origin */
74	unsigned long	 : 1;
75	unsigned long fc : 1; /* Format-Control */
76	unsigned long p  : 1; /* DAT-Protection Bit */
77	unsigned long	 : 1;
78	unsigned long tf : 2; /* Segment-Table Offset */
79	unsigned long i  : 1; /* Region-Invalid Bit */
80	unsigned long cr : 1; /* Common-Region Bit */
81	unsigned long tt : 2; /* Table-Type Bits */
82	unsigned long tl : 2; /* Segment-Table Length */
83};
84
85struct region3_table_entry_fc1 {
86	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
87	unsigned long	 : 14;
88	unsigned long av : 1; /* ACCF-Validity Control */
89	unsigned long acc: 4; /* Access-Control Bits */
90	unsigned long f  : 1; /* Fetch-Protection Bit */
91	unsigned long fc : 1; /* Format-Control */
92	unsigned long p  : 1; /* DAT-Protection Bit */
93	unsigned long iep: 1; /* Instruction-Execution-Protection */
94	unsigned long	 : 2;
95	unsigned long i  : 1; /* Region-Invalid Bit */
96	unsigned long cr : 1; /* Common-Region Bit */
97	unsigned long tt : 2; /* Table-Type Bits */
98	unsigned long	 : 2;
99};
100
101union region3_table_entry {
102	unsigned long val;
103	struct region3_table_entry_fc0 fc0;
104	struct region3_table_entry_fc1 fc1;
105	struct {
106		unsigned long	 : 53;
107		unsigned long fc : 1; /* Format-Control */
108		unsigned long	 : 4;
109		unsigned long i  : 1; /* Region-Invalid Bit */
110		unsigned long cr : 1; /* Common-Region Bit */
111		unsigned long tt : 2; /* Table-Type Bits */
112		unsigned long	 : 2;
113	};
114};
115
116struct segment_entry_fc0 {
117	unsigned long pto: 53;/* Page-Table Origin */
118	unsigned long fc : 1; /* Format-Control */
119	unsigned long p  : 1; /* DAT-Protection Bit */
120	unsigned long	 : 3;
121	unsigned long i  : 1; /* Segment-Invalid Bit */
122	unsigned long cs : 1; /* Common-Segment Bit */
123	unsigned long tt : 2; /* Table-Type Bits */
124	unsigned long	 : 2;
125};
126
127struct segment_entry_fc1 {
128	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
129	unsigned long	 : 3;
130	unsigned long av : 1; /* ACCF-Validity Control */
131	unsigned long acc: 4; /* Access-Control Bits */
132	unsigned long f  : 1; /* Fetch-Protection Bit */
133	unsigned long fc : 1; /* Format-Control */
134	unsigned long p  : 1; /* DAT-Protection Bit */
135	unsigned long iep: 1; /* Instruction-Execution-Protection */
136	unsigned long	 : 2;
137	unsigned long i  : 1; /* Segment-Invalid Bit */
138	unsigned long cs : 1; /* Common-Segment Bit */
139	unsigned long tt : 2; /* Table-Type Bits */
140	unsigned long	 : 2;
141};
142
143union segment_table_entry {
144	unsigned long val;
145	struct segment_entry_fc0 fc0;
146	struct segment_entry_fc1 fc1;
147	struct {
148		unsigned long	 : 53;
149		unsigned long fc : 1; /* Format-Control */
150		unsigned long	 : 4;
151		unsigned long i  : 1; /* Segment-Invalid Bit */
152		unsigned long cs : 1; /* Common-Segment Bit */
153		unsigned long tt : 2; /* Table-Type Bits */
154		unsigned long	 : 2;
155	};
156};
157
158enum {
159	TABLE_TYPE_SEGMENT = 0,
160	TABLE_TYPE_REGION3 = 1,
161	TABLE_TYPE_REGION2 = 2,
162	TABLE_TYPE_REGION1 = 3
163};
164
165union page_table_entry {
166	unsigned long val;
167	struct {
168		unsigned long pfra : 52; /* Page-Frame Real Address */
169		unsigned long z  : 1; /* Zero Bit */
170		unsigned long i  : 1; /* Page-Invalid Bit */
171		unsigned long p  : 1; /* DAT-Protection Bit */
172		unsigned long iep: 1; /* Instruction-Execution-Protection */
173		unsigned long	 : 8;
174	};
175};
176
177/*
178 * vaddress union in order to easily decode a virtual address into its
179 * region first index, region second index etc. parts.
180 */
181union vaddress {
182	unsigned long addr;
183	struct {
184		unsigned long rfx : 11;
185		unsigned long rsx : 11;
186		unsigned long rtx : 11;
187		unsigned long sx  : 11;
188		unsigned long px  : 8;
189		unsigned long bx  : 12;
190	};
191	struct {
192		unsigned long rfx01 : 2;
193		unsigned long	    : 9;
194		unsigned long rsx01 : 2;
195		unsigned long	    : 9;
196		unsigned long rtx01 : 2;
197		unsigned long	    : 9;
198		unsigned long sx01  : 2;
199		unsigned long	    : 29;
200	};
201};
202
203/*
204 * raddress union which will contain the result (real or absolute address)
205 * after a page table walk. The rfaa, sfaa and pfra members are used to
206 * simply assign them the value of a region, segment or page table entry.
207 */
208union raddress {
209	unsigned long addr;
210	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
211	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
212	unsigned long pfra : 52; /* Page-Frame Real Address */
213};
214
215union alet {
216	u32 val;
217	struct {
218		u32 reserved : 7;
219		u32 p        : 1;
220		u32 alesn    : 8;
221		u32 alen     : 16;
222	};
223};
224
225union ald {
226	u32 val;
227	struct {
228		u32     : 1;
229		u32 alo : 24;
230		u32 all : 7;
231	};
232};
233
234struct ale {
235	unsigned long i      : 1; /* ALEN-Invalid Bit */
236	unsigned long        : 5;
237	unsigned long fo     : 1; /* Fetch-Only Bit */
238	unsigned long p      : 1; /* Private Bit */
239	unsigned long alesn  : 8; /* Access-List-Entry Sequence Number */
240	unsigned long aleax  : 16; /* Access-List-Entry Authorization Index */
241	unsigned long        : 32;
242	unsigned long        : 1;
243	unsigned long asteo  : 25; /* ASN-Second-Table-Entry Origin */
244	unsigned long        : 6;
245	unsigned long astesn : 32; /* ASTE Sequence Number */
246};
247
248struct aste {
249	unsigned long i      : 1; /* ASX-Invalid Bit */
250	unsigned long ato    : 29; /* Authority-Table Origin */
251	unsigned long        : 1;
252	unsigned long b      : 1; /* Base-Space Bit */
253	unsigned long ax     : 16; /* Authorization Index */
254	unsigned long atl    : 12; /* Authority-Table Length */
255	unsigned long        : 2;
256	unsigned long ca     : 1; /* Controlled-ASN Bit */
257	unsigned long ra     : 1; /* Reusable-ASN Bit */
258	unsigned long asce   : 64; /* Address-Space-Control Element */
259	unsigned long ald    : 32;
260	unsigned long astesn : 32;
261	/* .. more fields there */
262};
263
264int ipte_lock_held(struct kvm_vcpu *vcpu)
265{
266	if (vcpu->arch.sie_block->eca & ECA_SII) {
267		int rc;
268
269		read_lock(&vcpu->kvm->arch.sca_lock);
270		rc = kvm_s390_get_ipte_control(vcpu->kvm)->kh != 0;
271		read_unlock(&vcpu->kvm->arch.sca_lock);
272		return rc;
273	}
274	return vcpu->kvm->arch.ipte_lock_count != 0;
275}
276
277static void ipte_lock_simple(struct kvm_vcpu *vcpu)
278{
279	union ipte_control old, new, *ic;
280
281	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
282	vcpu->kvm->arch.ipte_lock_count++;
283	if (vcpu->kvm->arch.ipte_lock_count > 1)
284		goto out;
285retry:
286	read_lock(&vcpu->kvm->arch.sca_lock);
287	ic = kvm_s390_get_ipte_control(vcpu->kvm);
288	do {
289		old = READ_ONCE(*ic);
290		if (old.k) {
291			read_unlock(&vcpu->kvm->arch.sca_lock);
292			cond_resched();
293			goto retry;
294		}
295		new = old;
296		new.k = 1;
297	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
298	read_unlock(&vcpu->kvm->arch.sca_lock);
299out:
300	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
301}
302
303static void ipte_unlock_simple(struct kvm_vcpu *vcpu)
304{
305	union ipte_control old, new, *ic;
306
307	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
308	vcpu->kvm->arch.ipte_lock_count--;
309	if (vcpu->kvm->arch.ipte_lock_count)
310		goto out;
311	read_lock(&vcpu->kvm->arch.sca_lock);
312	ic = kvm_s390_get_ipte_control(vcpu->kvm);
313	do {
314		old = READ_ONCE(*ic);
315		new = old;
316		new.k = 0;
317	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
318	read_unlock(&vcpu->kvm->arch.sca_lock);
319	wake_up(&vcpu->kvm->arch.ipte_wq);
320out:
321	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
322}
323
324static void ipte_lock_siif(struct kvm_vcpu *vcpu)
325{
326	union ipte_control old, new, *ic;
327
328retry:
329	read_lock(&vcpu->kvm->arch.sca_lock);
330	ic = kvm_s390_get_ipte_control(vcpu->kvm);
331	do {
332		old = READ_ONCE(*ic);
333		if (old.kg) {
334			read_unlock(&vcpu->kvm->arch.sca_lock);
335			cond_resched();
336			goto retry;
337		}
338		new = old;
339		new.k = 1;
340		new.kh++;
341	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
342	read_unlock(&vcpu->kvm->arch.sca_lock);
343}
344
345static void ipte_unlock_siif(struct kvm_vcpu *vcpu)
346{
347	union ipte_control old, new, *ic;
348
349	read_lock(&vcpu->kvm->arch.sca_lock);
350	ic = kvm_s390_get_ipte_control(vcpu->kvm);
351	do {
352		old = READ_ONCE(*ic);
353		new = old;
354		new.kh--;
355		if (!new.kh)
356			new.k = 0;
357	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
358	read_unlock(&vcpu->kvm->arch.sca_lock);
359	if (!new.kh)
360		wake_up(&vcpu->kvm->arch.ipte_wq);
361}
362
363void ipte_lock(struct kvm_vcpu *vcpu)
364{
365	if (vcpu->arch.sie_block->eca & ECA_SII)
366		ipte_lock_siif(vcpu);
367	else
368		ipte_lock_simple(vcpu);
369}
370
371void ipte_unlock(struct kvm_vcpu *vcpu)
372{
373	if (vcpu->arch.sie_block->eca & ECA_SII)
374		ipte_unlock_siif(vcpu);
375	else
376		ipte_unlock_simple(vcpu);
377}
378
379static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, u8 ar,
380			  enum gacc_mode mode)
381{
382	union alet alet;
383	struct ale ale;
384	struct aste aste;
385	unsigned long ald_addr, authority_table_addr;
386	union ald ald;
387	int eax, rc;
388	u8 authority_table;
389
390	if (ar >= NUM_ACRS)
391		return -EINVAL;
392
393	save_access_regs(vcpu->run->s.regs.acrs);
394	alet.val = vcpu->run->s.regs.acrs[ar];
395
396	if (ar == 0 || alet.val == 0) {
397		asce->val = vcpu->arch.sie_block->gcr[1];
398		return 0;
399	} else if (alet.val == 1) {
400		asce->val = vcpu->arch.sie_block->gcr[7];
401		return 0;
402	}
403
404	if (alet.reserved)
405		return PGM_ALET_SPECIFICATION;
406
407	if (alet.p)
408		ald_addr = vcpu->arch.sie_block->gcr[5];
409	else
410		ald_addr = vcpu->arch.sie_block->gcr[2];
411	ald_addr &= 0x7fffffc0;
412
413	rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
414	if (rc)
415		return rc;
416
417	if (alet.alen / 8 > ald.all)
418		return PGM_ALEN_TRANSLATION;
419
420	if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
421		return PGM_ADDRESSING;
422
423	rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
424			     sizeof(struct ale));
425	if (rc)
426		return rc;
427
428	if (ale.i == 1)
429		return PGM_ALEN_TRANSLATION;
430	if (ale.alesn != alet.alesn)
431		return PGM_ALE_SEQUENCE;
432
433	rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
434	if (rc)
435		return rc;
436
437	if (aste.i)
438		return PGM_ASTE_VALIDITY;
439	if (aste.astesn != ale.astesn)
440		return PGM_ASTE_SEQUENCE;
441
442	if (ale.p == 1) {
443		eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
444		if (ale.aleax != eax) {
445			if (eax / 16 > aste.atl)
446				return PGM_EXTENDED_AUTHORITY;
447
448			authority_table_addr = aste.ato * 4 + eax / 4;
449
450			rc = read_guest_real(vcpu, authority_table_addr,
451					     &authority_table,
452					     sizeof(u8));
453			if (rc)
454				return rc;
455
456			if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
457				return PGM_EXTENDED_AUTHORITY;
458		}
459	}
460
461	if (ale.fo == 1 && mode == GACC_STORE)
462		return PGM_PROTECTION;
463
464	asce->val = aste.asce;
465	return 0;
466}
467
468struct trans_exc_code_bits {
469	unsigned long addr : 52; /* Translation-exception Address */
470	unsigned long fsi  : 2;  /* Access Exception Fetch/Store Indication */
471	unsigned long	   : 2;
472	unsigned long b56  : 1;
473	unsigned long	   : 3;
474	unsigned long b60  : 1;
475	unsigned long b61  : 1;
476	unsigned long as   : 2;  /* ASCE Identifier */
477};
478
479enum {
480	FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
481	FSI_STORE   = 1, /* Exception was due to store operation */
482	FSI_FETCH   = 2  /* Exception was due to fetch operation */
483};
484
485enum prot_type {
486	PROT_TYPE_LA   = 0,
487	PROT_TYPE_KEYC = 1,
488	PROT_TYPE_ALC  = 2,
489	PROT_TYPE_DAT  = 3,
490	PROT_TYPE_IEP  = 4,
491};
492
493static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva,
494		     u8 ar, enum gacc_mode mode, enum prot_type prot)
495{
496	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
497	struct trans_exc_code_bits *tec;
498
499	memset(pgm, 0, sizeof(*pgm));
500	pgm->code = code;
501	tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
502
503	switch (code) {
504	case PGM_PROTECTION:
505		switch (prot) {
506		case PROT_TYPE_IEP:
507			tec->b61 = 1;
508			fallthrough;
509		case PROT_TYPE_LA:
510			tec->b56 = 1;
511			break;
512		case PROT_TYPE_KEYC:
513			tec->b60 = 1;
514			break;
515		case PROT_TYPE_ALC:
516			tec->b60 = 1;
517			fallthrough;
518		case PROT_TYPE_DAT:
519			tec->b61 = 1;
520			break;
521		}
522		fallthrough;
523	case PGM_ASCE_TYPE:
524	case PGM_PAGE_TRANSLATION:
525	case PGM_REGION_FIRST_TRANS:
526	case PGM_REGION_SECOND_TRANS:
527	case PGM_REGION_THIRD_TRANS:
528	case PGM_SEGMENT_TRANSLATION:
529		/*
530		 * op_access_id only applies to MOVE_PAGE -> set bit 61
531		 * exc_access_id has to be set to 0 for some instructions. Both
532		 * cases have to be handled by the caller.
533		 */
534		tec->addr = gva >> PAGE_SHIFT;
535		tec->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH;
536		tec->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
537		fallthrough;
538	case PGM_ALEN_TRANSLATION:
539	case PGM_ALE_SEQUENCE:
540	case PGM_ASTE_VALIDITY:
541	case PGM_ASTE_SEQUENCE:
542	case PGM_EXTENDED_AUTHORITY:
543		/*
544		 * We can always store exc_access_id, as it is
545		 * undefined for non-ar cases. It is undefined for
546		 * most DAT protection exceptions.
547		 */
548		pgm->exc_access_id = ar;
549		break;
550	}
551	return code;
552}
553
554static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
555			 unsigned long ga, u8 ar, enum gacc_mode mode)
556{
557	int rc;
558	struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
559
560	if (!psw.dat) {
561		asce->val = 0;
562		asce->r = 1;
563		return 0;
564	}
565
566	if ((mode == GACC_IFETCH) && (psw.as != PSW_BITS_AS_HOME))
567		psw.as = PSW_BITS_AS_PRIMARY;
568
569	switch (psw.as) {
570	case PSW_BITS_AS_PRIMARY:
571		asce->val = vcpu->arch.sie_block->gcr[1];
572		return 0;
573	case PSW_BITS_AS_SECONDARY:
574		asce->val = vcpu->arch.sie_block->gcr[7];
575		return 0;
576	case PSW_BITS_AS_HOME:
577		asce->val = vcpu->arch.sie_block->gcr[13];
578		return 0;
579	case PSW_BITS_AS_ACCREG:
580		rc = ar_translation(vcpu, asce, ar, mode);
581		if (rc > 0)
582			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC);
583		return rc;
584	}
585	return 0;
586}
587
588static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
589{
590	return kvm_read_guest(kvm, gpa, val, sizeof(*val));
591}
592
593/**
594 * guest_translate - translate a guest virtual into a guest absolute address
595 * @vcpu: virtual cpu
596 * @gva: guest virtual address
597 * @gpa: points to where guest physical (absolute) address should be stored
598 * @asce: effective asce
599 * @mode: indicates the access mode to be used
600 * @prot: returns the type for protection exceptions
601 *
602 * Translate a guest virtual address into a guest absolute address by means
603 * of dynamic address translation as specified by the architecture.
604 * If the resulting absolute address is not available in the configuration
605 * an addressing exception is indicated and @gpa will not be changed.
606 *
607 * Returns: - zero on success; @gpa contains the resulting absolute address
608 *	    - a negative value if guest access failed due to e.g. broken
609 *	      guest mapping
610 *	    - a positve value if an access exception happened. In this case
611 *	      the returned value is the program interruption code as defined
612 *	      by the architecture
613 */
614static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
615				     unsigned long *gpa, const union asce asce,
616				     enum gacc_mode mode, enum prot_type *prot)
617{
618	union vaddress vaddr = {.addr = gva};
619	union raddress raddr = {.addr = gva};
620	union page_table_entry pte;
621	int dat_protection = 0;
622	int iep_protection = 0;
623	union ctlreg0 ctlreg0;
624	unsigned long ptr;
625	int edat1, edat2, iep;
626
627	ctlreg0.val = vcpu->arch.sie_block->gcr[0];
628	edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
629	edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
630	iep = ctlreg0.iep && test_kvm_facility(vcpu->kvm, 130);
631	if (asce.r)
632		goto real_address;
633	ptr = asce.origin * PAGE_SIZE;
634	switch (asce.dt) {
635	case ASCE_TYPE_REGION1:
636		if (vaddr.rfx01 > asce.tl)
637			return PGM_REGION_FIRST_TRANS;
638		ptr += vaddr.rfx * 8;
639		break;
640	case ASCE_TYPE_REGION2:
641		if (vaddr.rfx)
642			return PGM_ASCE_TYPE;
643		if (vaddr.rsx01 > asce.tl)
644			return PGM_REGION_SECOND_TRANS;
645		ptr += vaddr.rsx * 8;
646		break;
647	case ASCE_TYPE_REGION3:
648		if (vaddr.rfx || vaddr.rsx)
649			return PGM_ASCE_TYPE;
650		if (vaddr.rtx01 > asce.tl)
651			return PGM_REGION_THIRD_TRANS;
652		ptr += vaddr.rtx * 8;
653		break;
654	case ASCE_TYPE_SEGMENT:
655		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
656			return PGM_ASCE_TYPE;
657		if (vaddr.sx01 > asce.tl)
658			return PGM_SEGMENT_TRANSLATION;
659		ptr += vaddr.sx * 8;
660		break;
661	}
662	switch (asce.dt) {
663	case ASCE_TYPE_REGION1:	{
664		union region1_table_entry rfte;
665
666		if (kvm_is_error_gpa(vcpu->kvm, ptr))
667			return PGM_ADDRESSING;
668		if (deref_table(vcpu->kvm, ptr, &rfte.val))
669			return -EFAULT;
670		if (rfte.i)
671			return PGM_REGION_FIRST_TRANS;
672		if (rfte.tt != TABLE_TYPE_REGION1)
673			return PGM_TRANSLATION_SPEC;
674		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
675			return PGM_REGION_SECOND_TRANS;
676		if (edat1)
677			dat_protection |= rfte.p;
678		ptr = rfte.rto * PAGE_SIZE + vaddr.rsx * 8;
679	}
680		fallthrough;
681	case ASCE_TYPE_REGION2: {
682		union region2_table_entry rste;
683
684		if (kvm_is_error_gpa(vcpu->kvm, ptr))
685			return PGM_ADDRESSING;
686		if (deref_table(vcpu->kvm, ptr, &rste.val))
687			return -EFAULT;
688		if (rste.i)
689			return PGM_REGION_SECOND_TRANS;
690		if (rste.tt != TABLE_TYPE_REGION2)
691			return PGM_TRANSLATION_SPEC;
692		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
693			return PGM_REGION_THIRD_TRANS;
694		if (edat1)
695			dat_protection |= rste.p;
696		ptr = rste.rto * PAGE_SIZE + vaddr.rtx * 8;
697	}
698		fallthrough;
699	case ASCE_TYPE_REGION3: {
700		union region3_table_entry rtte;
701
702		if (kvm_is_error_gpa(vcpu->kvm, ptr))
703			return PGM_ADDRESSING;
704		if (deref_table(vcpu->kvm, ptr, &rtte.val))
705			return -EFAULT;
706		if (rtte.i)
707			return PGM_REGION_THIRD_TRANS;
708		if (rtte.tt != TABLE_TYPE_REGION3)
709			return PGM_TRANSLATION_SPEC;
710		if (rtte.cr && asce.p && edat2)
711			return PGM_TRANSLATION_SPEC;
712		if (rtte.fc && edat2) {
713			dat_protection |= rtte.fc1.p;
714			iep_protection = rtte.fc1.iep;
715			raddr.rfaa = rtte.fc1.rfaa;
716			goto absolute_address;
717		}
718		if (vaddr.sx01 < rtte.fc0.tf)
719			return PGM_SEGMENT_TRANSLATION;
720		if (vaddr.sx01 > rtte.fc0.tl)
721			return PGM_SEGMENT_TRANSLATION;
722		if (edat1)
723			dat_protection |= rtte.fc0.p;
724		ptr = rtte.fc0.sto * PAGE_SIZE + vaddr.sx * 8;
725	}
726		fallthrough;
727	case ASCE_TYPE_SEGMENT: {
728		union segment_table_entry ste;
729
730		if (kvm_is_error_gpa(vcpu->kvm, ptr))
731			return PGM_ADDRESSING;
732		if (deref_table(vcpu->kvm, ptr, &ste.val))
733			return -EFAULT;
734		if (ste.i)
735			return PGM_SEGMENT_TRANSLATION;
736		if (ste.tt != TABLE_TYPE_SEGMENT)
737			return PGM_TRANSLATION_SPEC;
738		if (ste.cs && asce.p)
739			return PGM_TRANSLATION_SPEC;
740		if (ste.fc && edat1) {
741			dat_protection |= ste.fc1.p;
742			iep_protection = ste.fc1.iep;
743			raddr.sfaa = ste.fc1.sfaa;
744			goto absolute_address;
745		}
746		dat_protection |= ste.fc0.p;
747		ptr = ste.fc0.pto * (PAGE_SIZE / 2) + vaddr.px * 8;
748	}
749	}
750	if (kvm_is_error_gpa(vcpu->kvm, ptr))
751		return PGM_ADDRESSING;
752	if (deref_table(vcpu->kvm, ptr, &pte.val))
753		return -EFAULT;
754	if (pte.i)
755		return PGM_PAGE_TRANSLATION;
756	if (pte.z)
757		return PGM_TRANSLATION_SPEC;
758	dat_protection |= pte.p;
759	iep_protection = pte.iep;
760	raddr.pfra = pte.pfra;
761real_address:
762	raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
763absolute_address:
764	if (mode == GACC_STORE && dat_protection) {
765		*prot = PROT_TYPE_DAT;
766		return PGM_PROTECTION;
767	}
768	if (mode == GACC_IFETCH && iep_protection && iep) {
769		*prot = PROT_TYPE_IEP;
770		return PGM_PROTECTION;
771	}
772	if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
773		return PGM_ADDRESSING;
774	*gpa = raddr.addr;
775	return 0;
776}
777
778static inline int is_low_address(unsigned long ga)
779{
780	/* Check for address ranges 0..511 and 4096..4607 */
781	return (ga & ~0x11fful) == 0;
782}
783
784static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
785					  const union asce asce)
786{
787	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
788	psw_t *psw = &vcpu->arch.sie_block->gpsw;
789
790	if (!ctlreg0.lap)
791		return 0;
792	if (psw_bits(*psw).dat && asce.p)
793		return 0;
794	return 1;
795}
796
797static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
798			    unsigned long *pages, unsigned long nr_pages,
799			    const union asce asce, enum gacc_mode mode)
800{
801	psw_t *psw = &vcpu->arch.sie_block->gpsw;
802	int lap_enabled, rc = 0;
803	enum prot_type prot;
804
805	lap_enabled = low_address_protection_enabled(vcpu, asce);
806	while (nr_pages) {
807		ga = kvm_s390_logical_to_effective(vcpu, ga);
808		if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
809			return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
810					 PROT_TYPE_LA);
811		ga &= PAGE_MASK;
812		if (psw_bits(*psw).dat) {
813			rc = guest_translate(vcpu, ga, pages, asce, mode, &prot);
814			if (rc < 0)
815				return rc;
816		} else {
817			*pages = kvm_s390_real_to_abs(vcpu, ga);
818			if (kvm_is_error_gpa(vcpu->kvm, *pages))
819				rc = PGM_ADDRESSING;
820		}
821		if (rc)
822			return trans_exc(vcpu, rc, ga, ar, mode, prot);
823		ga += PAGE_SIZE;
824		pages++;
825		nr_pages--;
826	}
827	return 0;
828}
829
830int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar, void *data,
831		 unsigned long len, enum gacc_mode mode)
832{
833	psw_t *psw = &vcpu->arch.sie_block->gpsw;
834	unsigned long _len, nr_pages, gpa, idx;
835	unsigned long pages_array[2];
836	unsigned long *pages;
837	int need_ipte_lock;
838	union asce asce;
839	int rc;
840
841	if (!len)
842		return 0;
843	ga = kvm_s390_logical_to_effective(vcpu, ga);
844	rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode);
845	if (rc)
846		return rc;
847	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
848	pages = pages_array;
849	if (nr_pages > ARRAY_SIZE(pages_array))
850		pages = vmalloc(array_size(nr_pages, sizeof(unsigned long)));
851	if (!pages)
852		return -ENOMEM;
853	need_ipte_lock = psw_bits(*psw).dat && !asce.r;
854	if (need_ipte_lock)
855		ipte_lock(vcpu);
856	rc = guest_page_range(vcpu, ga, ar, pages, nr_pages, asce, mode);
857	for (idx = 0; idx < nr_pages && !rc; idx++) {
858		gpa = *(pages + idx) + (ga & ~PAGE_MASK);
859		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
860		if (mode == GACC_STORE)
861			rc = kvm_write_guest(vcpu->kvm, gpa, data, _len);
862		else
863			rc = kvm_read_guest(vcpu->kvm, gpa, data, _len);
864		len -= _len;
865		ga += _len;
866		data += _len;
867	}
868	if (need_ipte_lock)
869		ipte_unlock(vcpu);
870	if (nr_pages > ARRAY_SIZE(pages_array))
871		vfree(pages);
872	return rc;
873}
874
875int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
876		      void *data, unsigned long len, enum gacc_mode mode)
877{
878	unsigned long _len, gpa;
879	int rc = 0;
880
881	while (len && !rc) {
882		gpa = kvm_s390_real_to_abs(vcpu, gra);
883		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
884		if (mode)
885			rc = write_guest_abs(vcpu, gpa, data, _len);
886		else
887			rc = read_guest_abs(vcpu, gpa, data, _len);
888		len -= _len;
889		gra += _len;
890		data += _len;
891	}
892	return rc;
893}
894
895/**
896 * guest_translate_address - translate guest logical into guest absolute address
897 *
898 * Parameter semantics are the same as the ones from guest_translate.
899 * The memory contents at the guest address are not changed.
900 *
901 * Note: The IPTE lock is not taken during this function, so the caller
902 * has to take care of this.
903 */
904int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
905			    unsigned long *gpa, enum gacc_mode mode)
906{
907	psw_t *psw = &vcpu->arch.sie_block->gpsw;
908	enum prot_type prot;
909	union asce asce;
910	int rc;
911
912	gva = kvm_s390_logical_to_effective(vcpu, gva);
913	rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
914	if (rc)
915		return rc;
916	if (is_low_address(gva) && low_address_protection_enabled(vcpu, asce)) {
917		if (mode == GACC_STORE)
918			return trans_exc(vcpu, PGM_PROTECTION, gva, 0,
919					 mode, PROT_TYPE_LA);
920	}
921
922	if (psw_bits(*psw).dat && !asce.r) {	/* Use DAT? */
923		rc = guest_translate(vcpu, gva, gpa, asce, mode, &prot);
924		if (rc > 0)
925			return trans_exc(vcpu, rc, gva, 0, mode, prot);
926	} else {
927		*gpa = kvm_s390_real_to_abs(vcpu, gva);
928		if (kvm_is_error_gpa(vcpu->kvm, *gpa))
929			return trans_exc(vcpu, rc, gva, PGM_ADDRESSING, mode, 0);
930	}
931
932	return rc;
933}
934
935/**
936 * check_gva_range - test a range of guest virtual addresses for accessibility
937 */
938int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
939		    unsigned long length, enum gacc_mode mode)
940{
941	unsigned long gpa;
942	unsigned long currlen;
943	int rc = 0;
944
945	ipte_lock(vcpu);
946	while (length > 0 && !rc) {
947		currlen = min(length, PAGE_SIZE - (gva % PAGE_SIZE));
948		rc = guest_translate_address(vcpu, gva, ar, &gpa, mode);
949		gva += currlen;
950		length -= currlen;
951	}
952	ipte_unlock(vcpu);
953
954	return rc;
955}
956
957/**
958 * kvm_s390_check_low_addr_prot_real - check for low-address protection
959 * @gra: Guest real address
960 *
961 * Checks whether an address is subject to low-address protection and set
962 * up vcpu->arch.pgm accordingly if necessary.
963 *
964 * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
965 */
966int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
967{
968	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
969
970	if (!ctlreg0.lap || !is_low_address(gra))
971		return 0;
972	return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA);
973}
974
975/**
976 * kvm_s390_shadow_tables - walk the guest page table and create shadow tables
977 * @sg: pointer to the shadow guest address space structure
978 * @saddr: faulting address in the shadow gmap
979 * @pgt: pointer to the beginning of the page table for the given address if
980 *	 successful (return value 0), or to the first invalid DAT entry in
981 *	 case of exceptions (return value > 0)
982 * @fake: pgt references contiguous guest memory block, not a pgtable
983 */
984static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
985				  unsigned long *pgt, int *dat_protection,
986				  int *fake)
987{
988	struct gmap *parent;
989	union asce asce;
990	union vaddress vaddr;
991	unsigned long ptr;
992	int rc;
993
994	*fake = 0;
995	*dat_protection = 0;
996	parent = sg->parent;
997	vaddr.addr = saddr;
998	asce.val = sg->orig_asce;
999	ptr = asce.origin * PAGE_SIZE;
1000	if (asce.r) {
1001		*fake = 1;
1002		ptr = 0;
1003		asce.dt = ASCE_TYPE_REGION1;
1004	}
1005	switch (asce.dt) {
1006	case ASCE_TYPE_REGION1:
1007		if (vaddr.rfx01 > asce.tl && !*fake)
1008			return PGM_REGION_FIRST_TRANS;
1009		break;
1010	case ASCE_TYPE_REGION2:
1011		if (vaddr.rfx)
1012			return PGM_ASCE_TYPE;
1013		if (vaddr.rsx01 > asce.tl)
1014			return PGM_REGION_SECOND_TRANS;
1015		break;
1016	case ASCE_TYPE_REGION3:
1017		if (vaddr.rfx || vaddr.rsx)
1018			return PGM_ASCE_TYPE;
1019		if (vaddr.rtx01 > asce.tl)
1020			return PGM_REGION_THIRD_TRANS;
1021		break;
1022	case ASCE_TYPE_SEGMENT:
1023		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
1024			return PGM_ASCE_TYPE;
1025		if (vaddr.sx01 > asce.tl)
1026			return PGM_SEGMENT_TRANSLATION;
1027		break;
1028	}
1029
1030	switch (asce.dt) {
1031	case ASCE_TYPE_REGION1: {
1032		union region1_table_entry rfte;
1033
1034		if (*fake) {
1035			ptr += vaddr.rfx * _REGION1_SIZE;
1036			rfte.val = ptr;
1037			goto shadow_r2t;
1038		}
1039		*pgt = ptr + vaddr.rfx * 8;
1040		rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
1041		if (rc)
1042			return rc;
1043		if (rfte.i)
1044			return PGM_REGION_FIRST_TRANS;
1045		if (rfte.tt != TABLE_TYPE_REGION1)
1046			return PGM_TRANSLATION_SPEC;
1047		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
1048			return PGM_REGION_SECOND_TRANS;
1049		if (sg->edat_level >= 1)
1050			*dat_protection |= rfte.p;
1051		ptr = rfte.rto * PAGE_SIZE;
1052shadow_r2t:
1053		rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake);
1054		if (rc)
1055			return rc;
1056	}
1057		fallthrough;
1058	case ASCE_TYPE_REGION2: {
1059		union region2_table_entry rste;
1060
1061		if (*fake) {
1062			ptr += vaddr.rsx * _REGION2_SIZE;
1063			rste.val = ptr;
1064			goto shadow_r3t;
1065		}
1066		*pgt = ptr + vaddr.rsx * 8;
1067		rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
1068		if (rc)
1069			return rc;
1070		if (rste.i)
1071			return PGM_REGION_SECOND_TRANS;
1072		if (rste.tt != TABLE_TYPE_REGION2)
1073			return PGM_TRANSLATION_SPEC;
1074		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
1075			return PGM_REGION_THIRD_TRANS;
1076		if (sg->edat_level >= 1)
1077			*dat_protection |= rste.p;
1078		ptr = rste.rto * PAGE_SIZE;
1079shadow_r3t:
1080		rste.p |= *dat_protection;
1081		rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake);
1082		if (rc)
1083			return rc;
1084	}
1085		fallthrough;
1086	case ASCE_TYPE_REGION3: {
1087		union region3_table_entry rtte;
1088
1089		if (*fake) {
1090			ptr += vaddr.rtx * _REGION3_SIZE;
1091			rtte.val = ptr;
1092			goto shadow_sgt;
1093		}
1094		*pgt = ptr + vaddr.rtx * 8;
1095		rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
1096		if (rc)
1097			return rc;
1098		if (rtte.i)
1099			return PGM_REGION_THIRD_TRANS;
1100		if (rtte.tt != TABLE_TYPE_REGION3)
1101			return PGM_TRANSLATION_SPEC;
1102		if (rtte.cr && asce.p && sg->edat_level >= 2)
1103			return PGM_TRANSLATION_SPEC;
1104		if (rtte.fc && sg->edat_level >= 2) {
1105			*dat_protection |= rtte.fc0.p;
1106			*fake = 1;
1107			ptr = rtte.fc1.rfaa * _REGION3_SIZE;
1108			rtte.val = ptr;
1109			goto shadow_sgt;
1110		}
1111		if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl)
1112			return PGM_SEGMENT_TRANSLATION;
1113		if (sg->edat_level >= 1)
1114			*dat_protection |= rtte.fc0.p;
1115		ptr = rtte.fc0.sto * PAGE_SIZE;
1116shadow_sgt:
1117		rtte.fc0.p |= *dat_protection;
1118		rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake);
1119		if (rc)
1120			return rc;
1121	}
1122		fallthrough;
1123	case ASCE_TYPE_SEGMENT: {
1124		union segment_table_entry ste;
1125
1126		if (*fake) {
1127			ptr += vaddr.sx * _SEGMENT_SIZE;
1128			ste.val = ptr;
1129			goto shadow_pgt;
1130		}
1131		*pgt = ptr + vaddr.sx * 8;
1132		rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
1133		if (rc)
1134			return rc;
1135		if (ste.i)
1136			return PGM_SEGMENT_TRANSLATION;
1137		if (ste.tt != TABLE_TYPE_SEGMENT)
1138			return PGM_TRANSLATION_SPEC;
1139		if (ste.cs && asce.p)
1140			return PGM_TRANSLATION_SPEC;
1141		*dat_protection |= ste.fc0.p;
1142		if (ste.fc && sg->edat_level >= 1) {
1143			*fake = 1;
1144			ptr = ste.fc1.sfaa * _SEGMENT_SIZE;
1145			ste.val = ptr;
1146			goto shadow_pgt;
1147		}
1148		ptr = ste.fc0.pto * (PAGE_SIZE / 2);
1149shadow_pgt:
1150		ste.fc0.p |= *dat_protection;
1151		rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake);
1152		if (rc)
1153			return rc;
1154	}
1155	}
1156	/* Return the parent address of the page table */
1157	*pgt = ptr;
1158	return 0;
1159}
1160
1161/**
1162 * kvm_s390_shadow_fault - handle fault on a shadow page table
1163 * @vcpu: virtual cpu
1164 * @sg: pointer to the shadow guest address space structure
1165 * @saddr: faulting address in the shadow gmap
1166 * @datptr: will contain the address of the faulting DAT table entry, or of
1167 *	    the valid leaf, plus some flags
1168 *
1169 * Returns: - 0 if the shadow fault was successfully resolved
1170 *	    - > 0 (pgm exception code) on exceptions while faulting
1171 *	    - -EAGAIN if the caller can retry immediately
1172 *	    - -EFAULT when accessing invalid guest addresses
1173 *	    - -ENOMEM if out of memory
1174 */
1175int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
1176			  unsigned long saddr, unsigned long *datptr)
1177{
1178	union vaddress vaddr;
1179	union page_table_entry pte;
1180	unsigned long pgt = 0;
1181	int dat_protection, fake;
1182	int rc;
1183
1184	mmap_read_lock(sg->mm);
1185	/*
1186	 * We don't want any guest-2 tables to change - so the parent
1187	 * tables/pointers we read stay valid - unshadowing is however
1188	 * always possible - only guest_table_lock protects us.
1189	 */
1190	ipte_lock(vcpu);
1191
1192	rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake);
1193	if (rc)
1194		rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection,
1195					    &fake);
1196
1197	vaddr.addr = saddr;
1198	if (fake) {
1199		pte.val = pgt + vaddr.px * PAGE_SIZE;
1200		goto shadow_page;
1201	}
1202
1203	switch (rc) {
1204	case PGM_SEGMENT_TRANSLATION:
1205	case PGM_REGION_THIRD_TRANS:
1206	case PGM_REGION_SECOND_TRANS:
1207	case PGM_REGION_FIRST_TRANS:
1208		pgt |= PEI_NOT_PTE;
1209		break;
1210	case 0:
1211		pgt += vaddr.px * 8;
1212		rc = gmap_read_table(sg->parent, pgt, &pte.val);
1213	}
1214	if (datptr)
1215		*datptr = pgt | dat_protection * PEI_DAT_PROT;
1216	if (!rc && pte.i)
1217		rc = PGM_PAGE_TRANSLATION;
1218	if (!rc && pte.z)
1219		rc = PGM_TRANSLATION_SPEC;
1220shadow_page:
1221	pte.p |= dat_protection;
1222	if (!rc)
1223		rc = gmap_shadow_page(sg, saddr, __pte(pte.val));
1224	ipte_unlock(vcpu);
1225	mmap_read_unlock(sg->mm);
1226	return rc;
1227}
1228