1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  S390 version
4 *    Copyright IBM Corp. 1999, 2000
5 *    Author(s): Hartmut Penner (hp@de.ibm.com)
6 *               Ulrich Weigand (weigand@de.ibm.com)
7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 *  Derived from "include/asm-i386/pgtable.h"
10 */
11
12#ifndef _ASM_S390_PGTABLE_H
13#define _ASM_S390_PGTABLE_H
14
15#include <linux/sched.h>
16#include <linux/mm_types.h>
17#include <linux/page-flags.h>
18#include <linux/radix-tree.h>
19#include <linux/atomic.h>
20#include <asm/bug.h>
21#include <asm/page.h>
22#include <asm/uv.h>
23
24extern pgd_t swapper_pg_dir[];
25extern void paging_init(void);
26
27enum {
28	PG_DIRECT_MAP_4K = 0,
29	PG_DIRECT_MAP_1M,
30	PG_DIRECT_MAP_2G,
31	PG_DIRECT_MAP_MAX
32};
33
34extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
35
36static inline void update_page_count(int level, long count)
37{
38	if (IS_ENABLED(CONFIG_PROC_FS))
39		atomic_long_add(count, &direct_pages_count[level]);
40}
41
42struct seq_file;
43void arch_report_meminfo(struct seq_file *m);
44
45/*
46 * The S390 doesn't have any external MMU info: the kernel page
47 * tables contain all the necessary information.
48 */
49#define update_mmu_cache(vma, address, ptep)     do { } while (0)
50#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
51
52/*
53 * ZERO_PAGE is a global shared page that is always zero; used
54 * for zero-mapped memory areas etc..
55 */
56
57extern unsigned long empty_zero_page;
58extern unsigned long zero_page_mask;
59
60#define ZERO_PAGE(vaddr) \
61	(virt_to_page((void *)(empty_zero_page + \
62	 (((unsigned long)(vaddr)) &zero_page_mask))))
63#define __HAVE_COLOR_ZERO_PAGE
64
65/* TODO: s390 cannot support io_remap_pfn_range... */
66
67#define FIRST_USER_ADDRESS  0UL
68
69#define pte_ERROR(e) \
70	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
71#define pmd_ERROR(e) \
72	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
73#define pud_ERROR(e) \
74	printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
75#define p4d_ERROR(e) \
76	printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
77#define pgd_ERROR(e) \
78	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
79
80/*
81 * The vmalloc and module area will always be on the topmost area of the
82 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
83 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
84 * modules will reside. That makes sure that inter module branches always
85 * happen without trampolines and in addition the placement within a 2GB frame
86 * is branch prediction unit friendly.
87 */
88extern unsigned long VMALLOC_START;
89extern unsigned long VMALLOC_END;
90#define VMALLOC_DEFAULT_SIZE	((128UL << 30) - MODULES_LEN)
91extern struct page *vmemmap;
92extern unsigned long vmemmap_size;
93
94#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
95
96extern unsigned long MODULES_VADDR;
97extern unsigned long MODULES_END;
98#define MODULES_VADDR	MODULES_VADDR
99#define MODULES_END	MODULES_END
100#define MODULES_LEN	(1UL << 31)
101
102static inline int is_module_addr(void *addr)
103{
104	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
105	if (addr < (void *)MODULES_VADDR)
106		return 0;
107	if (addr > (void *)MODULES_END)
108		return 0;
109	return 1;
110}
111
112/*
113 * A 64 bit pagetable entry of S390 has following format:
114 * |			 PFRA			      |0IPC|  OS  |
115 * 0000000000111111111122222222223333333333444444444455555555556666
116 * 0123456789012345678901234567890123456789012345678901234567890123
117 *
118 * I Page-Invalid Bit:    Page is not available for address-translation
119 * P Page-Protection Bit: Store access not possible for page
120 * C Change-bit override: HW is not required to set change bit
121 *
122 * A 64 bit segmenttable entry of S390 has following format:
123 * |        P-table origin                              |      TT
124 * 0000000000111111111122222222223333333333444444444455555555556666
125 * 0123456789012345678901234567890123456789012345678901234567890123
126 *
127 * I Segment-Invalid Bit:    Segment is not available for address-translation
128 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
129 * P Page-Protection Bit: Store access not possible for page
130 * TT Type 00
131 *
132 * A 64 bit region table entry of S390 has following format:
133 * |        S-table origin                             |   TF  TTTL
134 * 0000000000111111111122222222223333333333444444444455555555556666
135 * 0123456789012345678901234567890123456789012345678901234567890123
136 *
137 * I Segment-Invalid Bit:    Segment is not available for address-translation
138 * TT Type 01
139 * TF
140 * TL Table length
141 *
142 * The 64 bit regiontable origin of S390 has following format:
143 * |      region table origon                          |       DTTL
144 * 0000000000111111111122222222223333333333444444444455555555556666
145 * 0123456789012345678901234567890123456789012345678901234567890123
146 *
147 * X Space-Switch event:
148 * G Segment-Invalid Bit:
149 * P Private-Space Bit:
150 * S Storage-Alteration:
151 * R Real space
152 * TL Table-Length:
153 *
154 * A storage key has the following format:
155 * | ACC |F|R|C|0|
156 *  0   3 4 5 6 7
157 * ACC: access key
158 * F  : fetch protection bit
159 * R  : referenced bit
160 * C  : changed bit
161 */
162
163/* Hardware bits in the page table entry */
164#define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
165#define _PAGE_PROTECT	0x200		/* HW read-only bit  */
166#define _PAGE_INVALID	0x400		/* HW invalid bit    */
167#define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
168
169/* Software bits in the page table entry */
170#define _PAGE_PRESENT	0x001		/* SW pte present bit */
171#define _PAGE_YOUNG	0x004		/* SW pte young bit */
172#define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
173#define _PAGE_READ	0x010		/* SW pte read bit */
174#define _PAGE_WRITE	0x020		/* SW pte write bit */
175#define _PAGE_SPECIAL	0x040		/* SW associated with special page */
176#define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
177
178#ifdef CONFIG_MEM_SOFT_DIRTY
179#define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
180#else
181#define _PAGE_SOFT_DIRTY 0x000
182#endif
183
184/* Set of bits not changed in pte_modify */
185#define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
186				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
187
188/*
189 * handle_pte_fault uses pte_present and pte_none to find out the pte type
190 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
191 * distinguish present from not-present ptes. It is changed only with the page
192 * table lock held.
193 *
194 * The following table gives the different possible bit combinations for
195 * the pte hardware and software bits in the last 12 bits of a pte
196 * (. unassigned bit, x don't care, t swap type):
197 *
198 *				842100000000
199 *				000084210000
200 *				000000008421
201 *				.IR.uswrdy.p
202 * empty			.10.00000000
203 * swap				.11..ttttt.0
204 * prot-none, clean, old	.11.xx0000.1
205 * prot-none, clean, young	.11.xx0001.1
206 * prot-none, dirty, old	.11.xx0010.1
207 * prot-none, dirty, young	.11.xx0011.1
208 * read-only, clean, old	.11.xx0100.1
209 * read-only, clean, young	.01.xx0101.1
210 * read-only, dirty, old	.11.xx0110.1
211 * read-only, dirty, young	.01.xx0111.1
212 * read-write, clean, old	.11.xx1100.1
213 * read-write, clean, young	.01.xx1101.1
214 * read-write, dirty, old	.10.xx1110.1
215 * read-write, dirty, young	.00.xx1111.1
216 * HW-bits: R read-only, I invalid
217 * SW-bits: p present, y young, d dirty, r read, w write, s special,
218 *	    u unused, l large
219 *
220 * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
221 * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
222 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
223 */
224
225/* Bits in the segment/region table address-space-control-element */
226#define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
227#define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
228#define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
229#define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
230#define _ASCE_REAL_SPACE	0x20	/* real space control		    */
231#define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
232#define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
233#define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
234#define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
235#define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
236#define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
237
238/* Bits in the region table entry */
239#define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
240#define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
241#define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
242#define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
243#define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
244#define _REGION_ENTRY_TYPE_MASK	0x0c	/* region table type mask	    */
245#define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
246#define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
247#define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
248#define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
249
250#define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
251#define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
252#define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
253#define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
254#define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
255#define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
256
257#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
258#define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
259#define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
260#define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
261#define _REGION3_ENTRY_READ	0x0002	/* SW region read bit */
262#define _REGION3_ENTRY_WRITE	0x0001	/* SW region write bit */
263
264#ifdef CONFIG_MEM_SOFT_DIRTY
265#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
266#else
267#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
268#endif
269
270#define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
271
272/* Bits in the segment table entry */
273#define _SEGMENT_ENTRY_BITS			0xfffffffffffffe33UL
274#define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe30UL
275#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff00730UL
276#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
277#define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
278#define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
279#define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
280#define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
281#define _SEGMENT_ENTRY_TYPE_MASK 0x0c	/* segment table type mask	    */
282
283#define _SEGMENT_ENTRY		(0)
284#define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
285
286#define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
287#define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
288#define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
289#define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
290#define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
291
292#ifdef CONFIG_MEM_SOFT_DIRTY
293#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
294#else
295#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
296#endif
297
298#define _CRST_ENTRIES	2048	/* number of region/segment table entries */
299#define _PAGE_ENTRIES	256	/* number of page table entries	*/
300
301#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
302#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
303
304#define _REGION1_SHIFT	53
305#define _REGION2_SHIFT	42
306#define _REGION3_SHIFT	31
307#define _SEGMENT_SHIFT	20
308
309#define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
310#define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
311#define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
312#define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
313#define _PAGE_INDEX	(0xffUL  << _PAGE_SHIFT)
314
315#define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
316#define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
317#define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
318#define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
319
320#define _REGION1_MASK	(~(_REGION1_SIZE - 1))
321#define _REGION2_MASK	(~(_REGION2_SIZE - 1))
322#define _REGION3_MASK	(~(_REGION3_SIZE - 1))
323#define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
324
325#define PMD_SHIFT	_SEGMENT_SHIFT
326#define PUD_SHIFT	_REGION3_SHIFT
327#define P4D_SHIFT	_REGION2_SHIFT
328#define PGDIR_SHIFT	_REGION1_SHIFT
329
330#define PMD_SIZE	_SEGMENT_SIZE
331#define PUD_SIZE	_REGION3_SIZE
332#define P4D_SIZE	_REGION2_SIZE
333#define PGDIR_SIZE	_REGION1_SIZE
334
335#define PMD_MASK	_SEGMENT_MASK
336#define PUD_MASK	_REGION3_MASK
337#define P4D_MASK	_REGION2_MASK
338#define PGDIR_MASK	_REGION1_MASK
339
340#define PTRS_PER_PTE	_PAGE_ENTRIES
341#define PTRS_PER_PMD	_CRST_ENTRIES
342#define PTRS_PER_PUD	_CRST_ENTRIES
343#define PTRS_PER_P4D	_CRST_ENTRIES
344#define PTRS_PER_PGD	_CRST_ENTRIES
345
346#define MAX_PTRS_PER_P4D	PTRS_PER_P4D
347
348/*
349 * Segment table and region3 table entry encoding
350 * (R = read-only, I = invalid, y = young bit):
351 *				dy..R...I...wr
352 * prot-none, clean, old	00..1...1...00
353 * prot-none, clean, young	01..1...1...00
354 * prot-none, dirty, old	10..1...1...00
355 * prot-none, dirty, young	11..1...1...00
356 * read-only, clean, old	00..1...1...01
357 * read-only, clean, young	01..1...0...01
358 * read-only, dirty, old	10..1...1...01
359 * read-only, dirty, young	11..1...0...01
360 * read-write, clean, old	00..1...1...11
361 * read-write, clean, young	01..1...0...11
362 * read-write, dirty, old	10..0...1...11
363 * read-write, dirty, young	11..0...0...11
364 * The segment table origin is used to distinguish empty (origin==0) from
365 * read-write, old segment table entries (origin!=0)
366 * HW-bits: R read-only, I invalid
367 * SW-bits: y young, d dirty, r read, w write
368 */
369
370/* Page status table bits for virtualization */
371#define PGSTE_ACC_BITS	0xf000000000000000UL
372#define PGSTE_FP_BIT	0x0800000000000000UL
373#define PGSTE_PCL_BIT	0x0080000000000000UL
374#define PGSTE_HR_BIT	0x0040000000000000UL
375#define PGSTE_HC_BIT	0x0020000000000000UL
376#define PGSTE_GR_BIT	0x0004000000000000UL
377#define PGSTE_GC_BIT	0x0002000000000000UL
378#define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
379#define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
380#define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
381
382/* Guest Page State used for virtualization */
383#define _PGSTE_GPS_ZERO			0x0000000080000000UL
384#define _PGSTE_GPS_NODAT		0x0000000040000000UL
385#define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
386#define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
387#define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
388#define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
389#define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
390
391/*
392 * A user page table pointer has the space-switch-event bit, the
393 * private-space-control bit and the storage-alteration-event-control
394 * bit set. A kernel page table pointer doesn't need them.
395 */
396#define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
397				 _ASCE_ALT_EVENT)
398
399/*
400 * Page protection definitions.
401 */
402#define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
403#define PAGE_RO		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
404				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
405#define PAGE_RX		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
406				 _PAGE_INVALID | _PAGE_PROTECT)
407#define PAGE_RW		__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
409#define PAGE_RWX	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
410				 _PAGE_INVALID | _PAGE_PROTECT)
411
412#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
414#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
415				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
416#define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
417				 _PAGE_PROTECT | _PAGE_NOEXEC)
418#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
419				  _PAGE_YOUNG |	_PAGE_DIRTY)
420
421/*
422 * On s390 the page table entry has an invalid bit and a read-only bit.
423 * Read permission implies execute permission and write permission
424 * implies read permission.
425 */
426         /*xwr*/
427#define __P000	PAGE_NONE
428#define __P001	PAGE_RO
429#define __P010	PAGE_RO
430#define __P011	PAGE_RO
431#define __P100	PAGE_RX
432#define __P101	PAGE_RX
433#define __P110	PAGE_RX
434#define __P111	PAGE_RX
435
436#define __S000	PAGE_NONE
437#define __S001	PAGE_RO
438#define __S010	PAGE_RW
439#define __S011	PAGE_RW
440#define __S100	PAGE_RX
441#define __S101	PAGE_RX
442#define __S110	PAGE_RWX
443#define __S111	PAGE_RWX
444
445/*
446 * Segment entry (large page) protection definitions.
447 */
448#define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
449				 _SEGMENT_ENTRY_PROTECT)
450#define SEGMENT_RO	__pgprot(_SEGMENT_ENTRY_PROTECT | \
451				 _SEGMENT_ENTRY_READ | \
452				 _SEGMENT_ENTRY_NOEXEC)
453#define SEGMENT_RX	__pgprot(_SEGMENT_ENTRY_PROTECT | \
454				 _SEGMENT_ENTRY_READ)
455#define SEGMENT_RW	__pgprot(_SEGMENT_ENTRY_READ | \
456				 _SEGMENT_ENTRY_WRITE | \
457				 _SEGMENT_ENTRY_NOEXEC)
458#define SEGMENT_RWX	__pgprot(_SEGMENT_ENTRY_READ | \
459				 _SEGMENT_ENTRY_WRITE)
460#define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
461				 _SEGMENT_ENTRY_LARGE |	\
462				 _SEGMENT_ENTRY_READ |	\
463				 _SEGMENT_ENTRY_WRITE | \
464				 _SEGMENT_ENTRY_YOUNG | \
465				 _SEGMENT_ENTRY_DIRTY | \
466				 _SEGMENT_ENTRY_NOEXEC)
467#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
468				 _SEGMENT_ENTRY_LARGE |	\
469				 _SEGMENT_ENTRY_READ |	\
470				 _SEGMENT_ENTRY_YOUNG |	\
471				 _SEGMENT_ENTRY_PROTECT | \
472				 _SEGMENT_ENTRY_NOEXEC)
473#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |	\
474				 _SEGMENT_ENTRY_LARGE |	\
475				 _SEGMENT_ENTRY_READ |	\
476				 _SEGMENT_ENTRY_WRITE | \
477				 _SEGMENT_ENTRY_YOUNG |	\
478				 _SEGMENT_ENTRY_DIRTY)
479
480/*
481 * Region3 entry (large page) protection definitions.
482 */
483
484#define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
485				 _REGION3_ENTRY_LARGE |	 \
486				 _REGION3_ENTRY_READ |	 \
487				 _REGION3_ENTRY_WRITE |	 \
488				 _REGION3_ENTRY_YOUNG |	 \
489				 _REGION3_ENTRY_DIRTY | \
490				 _REGION_ENTRY_NOEXEC)
491#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
492				   _REGION3_ENTRY_LARGE |  \
493				   _REGION3_ENTRY_READ |   \
494				   _REGION3_ENTRY_YOUNG |  \
495				   _REGION_ENTRY_PROTECT | \
496				   _REGION_ENTRY_NOEXEC)
497
498static inline bool mm_p4d_folded(struct mm_struct *mm)
499{
500	return mm->context.asce_limit <= _REGION1_SIZE;
501}
502#define mm_p4d_folded(mm) mm_p4d_folded(mm)
503
504static inline bool mm_pud_folded(struct mm_struct *mm)
505{
506	return mm->context.asce_limit <= _REGION2_SIZE;
507}
508#define mm_pud_folded(mm) mm_pud_folded(mm)
509
510static inline bool mm_pmd_folded(struct mm_struct *mm)
511{
512	return mm->context.asce_limit <= _REGION3_SIZE;
513}
514#define mm_pmd_folded(mm) mm_pmd_folded(mm)
515
516static inline int mm_has_pgste(struct mm_struct *mm)
517{
518#ifdef CONFIG_PGSTE
519	if (unlikely(mm->context.has_pgste))
520		return 1;
521#endif
522	return 0;
523}
524
525static inline int mm_is_protected(struct mm_struct *mm)
526{
527#ifdef CONFIG_PGSTE
528	if (unlikely(atomic_read(&mm->context.is_protected)))
529		return 1;
530#endif
531	return 0;
532}
533
534static inline int mm_alloc_pgste(struct mm_struct *mm)
535{
536#ifdef CONFIG_PGSTE
537	if (unlikely(mm->context.alloc_pgste))
538		return 1;
539#endif
540	return 0;
541}
542
543/*
544 * In the case that a guest uses storage keys
545 * faults should no longer be backed by zero pages
546 */
547#define mm_forbids_zeropage mm_has_pgste
548static inline int mm_uses_skeys(struct mm_struct *mm)
549{
550#ifdef CONFIG_PGSTE
551	if (mm->context.uses_skeys)
552		return 1;
553#endif
554	return 0;
555}
556
557static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
558{
559	register unsigned long reg2 asm("2") = old;
560	register unsigned long reg3 asm("3") = new;
561	unsigned long address = (unsigned long)ptr | 1;
562
563	asm volatile(
564		"	csp	%0,%3"
565		: "+d" (reg2), "+m" (*ptr)
566		: "d" (reg3), "d" (address)
567		: "cc");
568}
569
570static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
571{
572	register unsigned long reg2 asm("2") = old;
573	register unsigned long reg3 asm("3") = new;
574	unsigned long address = (unsigned long)ptr | 1;
575
576	asm volatile(
577		"	.insn	rre,0xb98a0000,%0,%3"
578		: "+d" (reg2), "+m" (*ptr)
579		: "d" (reg3), "d" (address)
580		: "cc");
581}
582
583#define CRDTE_DTT_PAGE		0x00UL
584#define CRDTE_DTT_SEGMENT	0x10UL
585#define CRDTE_DTT_REGION3	0x14UL
586#define CRDTE_DTT_REGION2	0x18UL
587#define CRDTE_DTT_REGION1	0x1cUL
588
589static inline void crdte(unsigned long old, unsigned long new,
590			 unsigned long table, unsigned long dtt,
591			 unsigned long address, unsigned long asce)
592{
593	register unsigned long reg2 asm("2") = old;
594	register unsigned long reg3 asm("3") = new;
595	register unsigned long reg4 asm("4") = table | dtt;
596	register unsigned long reg5 asm("5") = address;
597
598	asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
599		     : "+d" (reg2)
600		     : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
601		     : "memory", "cc");
602}
603
604/*
605 * pgd/p4d/pud/pmd/pte query functions
606 */
607static inline int pgd_folded(pgd_t pgd)
608{
609	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
610}
611
612static inline int pgd_present(pgd_t pgd)
613{
614	if (pgd_folded(pgd))
615		return 1;
616	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
617}
618
619static inline int pgd_none(pgd_t pgd)
620{
621	if (pgd_folded(pgd))
622		return 0;
623	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
624}
625
626static inline int pgd_bad(pgd_t pgd)
627{
628	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
629		return 0;
630	return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
631}
632
633static inline unsigned long pgd_pfn(pgd_t pgd)
634{
635	unsigned long origin_mask;
636
637	origin_mask = _REGION_ENTRY_ORIGIN;
638	return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
639}
640
641static inline int p4d_folded(p4d_t p4d)
642{
643	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
644}
645
646static inline int p4d_present(p4d_t p4d)
647{
648	if (p4d_folded(p4d))
649		return 1;
650	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
651}
652
653static inline int p4d_none(p4d_t p4d)
654{
655	if (p4d_folded(p4d))
656		return 0;
657	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
658}
659
660static inline unsigned long p4d_pfn(p4d_t p4d)
661{
662	unsigned long origin_mask;
663
664	origin_mask = _REGION_ENTRY_ORIGIN;
665	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
666}
667
668static inline int pud_folded(pud_t pud)
669{
670	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
671}
672
673static inline int pud_present(pud_t pud)
674{
675	if (pud_folded(pud))
676		return 1;
677	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
678}
679
680static inline int pud_none(pud_t pud)
681{
682	if (pud_folded(pud))
683		return 0;
684	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
685}
686
687#define pud_leaf	pud_large
688static inline int pud_large(pud_t pud)
689{
690	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
691		return 0;
692	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
693}
694
695#define pmd_leaf	pmd_large
696static inline int pmd_large(pmd_t pmd)
697{
698	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
699}
700
701static inline int pmd_bad(pmd_t pmd)
702{
703	if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
704		return 1;
705	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
706}
707
708static inline int pud_bad(pud_t pud)
709{
710	unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
711
712	if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
713		return 1;
714	if (type < _REGION_ENTRY_TYPE_R3)
715		return 0;
716	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
717}
718
719static inline int p4d_bad(p4d_t p4d)
720{
721	unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
722
723	if (type > _REGION_ENTRY_TYPE_R2)
724		return 1;
725	if (type < _REGION_ENTRY_TYPE_R2)
726		return 0;
727	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
728}
729
730static inline int pmd_present(pmd_t pmd)
731{
732	return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
733}
734
735static inline int pmd_none(pmd_t pmd)
736{
737	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
738}
739
740#define pmd_write pmd_write
741static inline int pmd_write(pmd_t pmd)
742{
743	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
744}
745
746#define pud_write pud_write
747static inline int pud_write(pud_t pud)
748{
749	return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
750}
751
752static inline int pmd_dirty(pmd_t pmd)
753{
754	return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
755}
756
757static inline int pmd_young(pmd_t pmd)
758{
759	return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
760}
761
762static inline int pte_present(pte_t pte)
763{
764	/* Bit pattern: (pte & 0x001) == 0x001 */
765	return (pte_val(pte) & _PAGE_PRESENT) != 0;
766}
767
768static inline int pte_none(pte_t pte)
769{
770	/* Bit pattern: pte == 0x400 */
771	return pte_val(pte) == _PAGE_INVALID;
772}
773
774static inline int pte_swap(pte_t pte)
775{
776	/* Bit pattern: (pte & 0x201) == 0x200 */
777	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
778		== _PAGE_PROTECT;
779}
780
781static inline int pte_special(pte_t pte)
782{
783	return (pte_val(pte) & _PAGE_SPECIAL);
784}
785
786#define __HAVE_ARCH_PTE_SAME
787static inline int pte_same(pte_t a, pte_t b)
788{
789	return pte_val(a) == pte_val(b);
790}
791
792#ifdef CONFIG_NUMA_BALANCING
793static inline int pte_protnone(pte_t pte)
794{
795	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
796}
797
798static inline int pmd_protnone(pmd_t pmd)
799{
800	/* pmd_large(pmd) implies pmd_present(pmd) */
801	return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
802}
803#endif
804
805static inline int pte_soft_dirty(pte_t pte)
806{
807	return pte_val(pte) & _PAGE_SOFT_DIRTY;
808}
809#define pte_swp_soft_dirty pte_soft_dirty
810
811static inline pte_t pte_mksoft_dirty(pte_t pte)
812{
813	pte_val(pte) |= _PAGE_SOFT_DIRTY;
814	return pte;
815}
816#define pte_swp_mksoft_dirty pte_mksoft_dirty
817
818static inline pte_t pte_clear_soft_dirty(pte_t pte)
819{
820	pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
821	return pte;
822}
823#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
824
825static inline int pmd_soft_dirty(pmd_t pmd)
826{
827	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
828}
829
830static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
831{
832	pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
833	return pmd;
834}
835
836static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
837{
838	pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
839	return pmd;
840}
841
842/*
843 * query functions pte_write/pte_dirty/pte_young only work if
844 * pte_present() is true. Undefined behaviour if not..
845 */
846static inline int pte_write(pte_t pte)
847{
848	return (pte_val(pte) & _PAGE_WRITE) != 0;
849}
850
851static inline int pte_dirty(pte_t pte)
852{
853	return (pte_val(pte) & _PAGE_DIRTY) != 0;
854}
855
856static inline int pte_young(pte_t pte)
857{
858	return (pte_val(pte) & _PAGE_YOUNG) != 0;
859}
860
861#define __HAVE_ARCH_PTE_UNUSED
862static inline int pte_unused(pte_t pte)
863{
864	return pte_val(pte) & _PAGE_UNUSED;
865}
866
867/*
868 * Extract the pgprot value from the given pte while at the same time making it
869 * usable for kernel address space mappings where fault driven dirty and
870 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
871 * must not be set.
872 */
873static inline pgprot_t pte_pgprot(pte_t pte)
874{
875	unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
876
877	if (pte_write(pte))
878		pte_flags |= pgprot_val(PAGE_KERNEL);
879	else
880		pte_flags |= pgprot_val(PAGE_KERNEL_RO);
881	pte_flags |= pte_val(pte) & mio_wb_bit_mask;
882
883	return __pgprot(pte_flags);
884}
885
886/*
887 * pgd/pmd/pte modification functions
888 */
889
890static inline void pgd_clear(pgd_t *pgd)
891{
892	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
893		pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
894}
895
896static inline void p4d_clear(p4d_t *p4d)
897{
898	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
899		p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
900}
901
902static inline void pud_clear(pud_t *pud)
903{
904	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
905		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
906}
907
908static inline void pmd_clear(pmd_t *pmdp)
909{
910	pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
911}
912
913static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
914{
915	pte_val(*ptep) = _PAGE_INVALID;
916}
917
918/*
919 * The following pte modification functions only work if
920 * pte_present() is true. Undefined behaviour if not..
921 */
922static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
923{
924	pte_val(pte) &= _PAGE_CHG_MASK;
925	pte_val(pte) |= pgprot_val(newprot);
926	/*
927	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
928	 * has the invalid bit set, clear it again for readable, young pages
929	 */
930	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
931		pte_val(pte) &= ~_PAGE_INVALID;
932	/*
933	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
934	 * protection bit set, clear it again for writable, dirty pages
935	 */
936	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
937		pte_val(pte) &= ~_PAGE_PROTECT;
938	return pte;
939}
940
941static inline pte_t pte_wrprotect(pte_t pte)
942{
943	pte_val(pte) &= ~_PAGE_WRITE;
944	pte_val(pte) |= _PAGE_PROTECT;
945	return pte;
946}
947
948static inline pte_t pte_mkwrite(pte_t pte)
949{
950	pte_val(pte) |= _PAGE_WRITE;
951	if (pte_val(pte) & _PAGE_DIRTY)
952		pte_val(pte) &= ~_PAGE_PROTECT;
953	return pte;
954}
955
956static inline pte_t pte_mkclean(pte_t pte)
957{
958	pte_val(pte) &= ~_PAGE_DIRTY;
959	pte_val(pte) |= _PAGE_PROTECT;
960	return pte;
961}
962
963static inline pte_t pte_mkdirty(pte_t pte)
964{
965	pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
966	if (pte_val(pte) & _PAGE_WRITE)
967		pte_val(pte) &= ~_PAGE_PROTECT;
968	return pte;
969}
970
971static inline pte_t pte_mkold(pte_t pte)
972{
973	pte_val(pte) &= ~_PAGE_YOUNG;
974	pte_val(pte) |= _PAGE_INVALID;
975	return pte;
976}
977
978static inline pte_t pte_mkyoung(pte_t pte)
979{
980	pte_val(pte) |= _PAGE_YOUNG;
981	if (pte_val(pte) & _PAGE_READ)
982		pte_val(pte) &= ~_PAGE_INVALID;
983	return pte;
984}
985
986static inline pte_t pte_mkspecial(pte_t pte)
987{
988	pte_val(pte) |= _PAGE_SPECIAL;
989	return pte;
990}
991
992#ifdef CONFIG_HUGETLB_PAGE
993static inline pte_t pte_mkhuge(pte_t pte)
994{
995	pte_val(pte) |= _PAGE_LARGE;
996	return pte;
997}
998#endif
999
1000#define IPTE_GLOBAL	0
1001#define	IPTE_LOCAL	1
1002
1003#define IPTE_NODAT	0x400
1004#define IPTE_GUEST_ASCE	0x800
1005
1006static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1007					unsigned long opt, unsigned long asce,
1008					int local)
1009{
1010	unsigned long pto = (unsigned long) ptep;
1011
1012	if (__builtin_constant_p(opt) && opt == 0) {
1013		/* Invalidation + TLB flush for the pte */
1014		asm volatile(
1015			"	.insn	rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1016			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1017			  [m4] "i" (local));
1018		return;
1019	}
1020
1021	/* Invalidate ptes with options + TLB flush of the ptes */
1022	opt = opt | (asce & _ASCE_ORIGIN);
1023	asm volatile(
1024		"	.insn	rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1025		: [r2] "+a" (address), [r3] "+a" (opt)
1026		: [r1] "a" (pto), [m4] "i" (local) : "memory");
1027}
1028
1029static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1030					      pte_t *ptep, int local)
1031{
1032	unsigned long pto = (unsigned long) ptep;
1033
1034	/* Invalidate a range of ptes + TLB flush of the ptes */
1035	do {
1036		asm volatile(
1037			"       .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1038			: [r2] "+a" (address), [r3] "+a" (nr)
1039			: [r1] "a" (pto), [m4] "i" (local) : "memory");
1040	} while (nr != 255);
1041}
1042
1043/*
1044 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1045 * both clear the TLB for the unmapped pte. The reason is that
1046 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1047 * to modify an active pte. The sequence is
1048 *   1) ptep_get_and_clear
1049 *   2) set_pte_at
1050 *   3) flush_tlb_range
1051 * On s390 the tlb needs to get flushed with the modification of the pte
1052 * if the pte is active. The only way how this can be implemented is to
1053 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1054 * is a nop.
1055 */
1056pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1057pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1058
1059#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1060static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1061					    unsigned long addr, pte_t *ptep)
1062{
1063	pte_t pte = *ptep;
1064
1065	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1066	return pte_young(pte);
1067}
1068
1069#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1070static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1071					 unsigned long address, pte_t *ptep)
1072{
1073	return ptep_test_and_clear_young(vma, address, ptep);
1074}
1075
1076#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1077static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1078				       unsigned long addr, pte_t *ptep)
1079{
1080	pte_t res;
1081
1082	res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1083	if (mm_is_protected(mm) && pte_present(res))
1084		uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1085	return res;
1086}
1087
1088#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1089pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1090void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1091			     pte_t *, pte_t, pte_t);
1092
1093#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1094static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1095				     unsigned long addr, pte_t *ptep)
1096{
1097	pte_t res;
1098
1099	res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1100	if (mm_is_protected(vma->vm_mm) && pte_present(res))
1101		uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1102	return res;
1103}
1104
1105/*
1106 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1107 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1108 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1109 * cannot be accessed while the batched unmap is running. In this case
1110 * full==1 and a simple pte_clear is enough. See tlb.h.
1111 */
1112#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1113static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1114					    unsigned long addr,
1115					    pte_t *ptep, int full)
1116{
1117	pte_t res;
1118
1119	if (full) {
1120		res = *ptep;
1121		*ptep = __pte(_PAGE_INVALID);
1122	} else {
1123		res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1124	}
1125	if (mm_is_protected(mm) && pte_present(res))
1126		uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1127	return res;
1128}
1129
1130#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1131static inline void ptep_set_wrprotect(struct mm_struct *mm,
1132				      unsigned long addr, pte_t *ptep)
1133{
1134	pte_t pte = *ptep;
1135
1136	if (pte_write(pte))
1137		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1138}
1139
1140#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1141static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1142					unsigned long addr, pte_t *ptep,
1143					pte_t entry, int dirty)
1144{
1145	if (pte_same(*ptep, entry))
1146		return 0;
1147	ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1148	return 1;
1149}
1150
1151/*
1152 * Additional functions to handle KVM guest page tables
1153 */
1154void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1155		     pte_t *ptep, pte_t entry);
1156void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1157void ptep_notify(struct mm_struct *mm, unsigned long addr,
1158		 pte_t *ptep, unsigned long bits);
1159int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1160		    pte_t *ptep, int prot, unsigned long bit);
1161void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1162		     pte_t *ptep , int reset);
1163void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1164int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1165		    pte_t *sptep, pte_t *tptep, pte_t pte);
1166void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1167
1168bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1169			    pte_t *ptep);
1170int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1171			  unsigned char key, bool nq);
1172int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1173			       unsigned char key, unsigned char *oldkey,
1174			       bool nq, bool mr, bool mc);
1175int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1176int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1177			  unsigned char *key);
1178
1179int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1180				unsigned long bits, unsigned long value);
1181int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1182int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1183			unsigned long *oldpte, unsigned long *oldpgste);
1184void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1185void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1186void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1187void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1188
1189#define pgprot_writecombine	pgprot_writecombine
1190pgprot_t pgprot_writecombine(pgprot_t prot);
1191
1192#define pgprot_writethrough	pgprot_writethrough
1193pgprot_t pgprot_writethrough(pgprot_t prot);
1194
1195/*
1196 * Certain architectures need to do special things when PTEs
1197 * within a page table are directly modified.  Thus, the following
1198 * hook is made available.
1199 */
1200static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1201			      pte_t *ptep, pte_t entry)
1202{
1203	if (pte_present(entry))
1204		pte_val(entry) &= ~_PAGE_UNUSED;
1205	if (mm_has_pgste(mm))
1206		ptep_set_pte_at(mm, addr, ptep, entry);
1207	else
1208		*ptep = entry;
1209}
1210
1211/*
1212 * Conversion functions: convert a page and protection to a page entry,
1213 * and a page entry and page directory to the page they refer to.
1214 */
1215static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1216{
1217	pte_t __pte;
1218
1219	pte_val(__pte) = physpage | pgprot_val(pgprot);
1220	if (!MACHINE_HAS_NX)
1221		pte_val(__pte) &= ~_PAGE_NOEXEC;
1222	return pte_mkyoung(__pte);
1223}
1224
1225static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1226{
1227	unsigned long physpage = page_to_phys(page);
1228	pte_t __pte = mk_pte_phys(physpage, pgprot);
1229
1230	if (pte_write(__pte) && PageDirty(page))
1231		__pte = pte_mkdirty(__pte);
1232	return __pte;
1233}
1234
1235#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1236#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1237#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1238#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1239
1240#define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1241#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1242
1243static inline unsigned long pmd_deref(pmd_t pmd)
1244{
1245	unsigned long origin_mask;
1246
1247	origin_mask = _SEGMENT_ENTRY_ORIGIN;
1248	if (pmd_large(pmd))
1249		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1250	return pmd_val(pmd) & origin_mask;
1251}
1252
1253static inline unsigned long pmd_pfn(pmd_t pmd)
1254{
1255	return pmd_deref(pmd) >> PAGE_SHIFT;
1256}
1257
1258static inline unsigned long pud_deref(pud_t pud)
1259{
1260	unsigned long origin_mask;
1261
1262	origin_mask = _REGION_ENTRY_ORIGIN;
1263	if (pud_large(pud))
1264		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1265	return pud_val(pud) & origin_mask;
1266}
1267
1268static inline unsigned long pud_pfn(pud_t pud)
1269{
1270	return pud_deref(pud) >> PAGE_SHIFT;
1271}
1272
1273/*
1274 * The pgd_offset function *always* adds the index for the top-level
1275 * region/segment table. This is done to get a sequence like the
1276 * following to work:
1277 *	pgdp = pgd_offset(current->mm, addr);
1278 *	pgd = READ_ONCE(*pgdp);
1279 *	p4dp = p4d_offset(&pgd, addr);
1280 *	...
1281 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1282 * only add an index if they dereferenced the pointer.
1283 */
1284static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1285{
1286	unsigned long rste;
1287	unsigned int shift;
1288
1289	/* Get the first entry of the top level table */
1290	rste = pgd_val(*pgd);
1291	/* Pick up the shift from the table type of the first entry */
1292	shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1293	return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1294}
1295
1296#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1297
1298static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1299{
1300	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1301		return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1302	return (p4d_t *) pgdp;
1303}
1304#define p4d_offset_lockless p4d_offset_lockless
1305
1306static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1307{
1308	return p4d_offset_lockless(pgdp, *pgdp, address);
1309}
1310
1311static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1312{
1313	if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1314		return (pud_t *) p4d_deref(p4d) + pud_index(address);
1315	return (pud_t *) p4dp;
1316}
1317#define pud_offset_lockless pud_offset_lockless
1318
1319static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1320{
1321	return pud_offset_lockless(p4dp, *p4dp, address);
1322}
1323#define pud_offset pud_offset
1324
1325static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1326{
1327	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1328		return (pmd_t *) pud_deref(pud) + pmd_index(address);
1329	return (pmd_t *) pudp;
1330}
1331#define pmd_offset_lockless pmd_offset_lockless
1332
1333static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1334{
1335	return pmd_offset_lockless(pudp, *pudp, address);
1336}
1337#define pmd_offset pmd_offset
1338
1339static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1340{
1341	return (unsigned long) pmd_deref(pmd);
1342}
1343
1344static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1345{
1346	return end <= current->mm->context.asce_limit;
1347}
1348#define gup_fast_permitted gup_fast_permitted
1349
1350#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1351#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1352#define pte_page(x) pfn_to_page(pte_pfn(x))
1353
1354#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1355#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1356#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1357#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1358
1359static inline pmd_t pmd_wrprotect(pmd_t pmd)
1360{
1361	pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1362	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1363	return pmd;
1364}
1365
1366static inline pmd_t pmd_mkwrite(pmd_t pmd)
1367{
1368	pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1369	if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1370		pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1371	return pmd;
1372}
1373
1374static inline pmd_t pmd_mkclean(pmd_t pmd)
1375{
1376	pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1377	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1378	return pmd;
1379}
1380
1381static inline pmd_t pmd_mkdirty(pmd_t pmd)
1382{
1383	pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY;
1384	if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1385		pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1386	return pmd;
1387}
1388
1389static inline pud_t pud_wrprotect(pud_t pud)
1390{
1391	pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1392	pud_val(pud) |= _REGION_ENTRY_PROTECT;
1393	return pud;
1394}
1395
1396static inline pud_t pud_mkwrite(pud_t pud)
1397{
1398	pud_val(pud) |= _REGION3_ENTRY_WRITE;
1399	if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1400		pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1401	return pud;
1402}
1403
1404static inline pud_t pud_mkclean(pud_t pud)
1405{
1406	pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1407	pud_val(pud) |= _REGION_ENTRY_PROTECT;
1408	return pud;
1409}
1410
1411static inline pud_t pud_mkdirty(pud_t pud)
1412{
1413	pud_val(pud) |= _REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY;
1414	if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1415		pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1416	return pud;
1417}
1418
1419#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1420static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1421{
1422	/*
1423	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1424	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1425	 */
1426	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1427		return pgprot_val(SEGMENT_NONE);
1428	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1429		return pgprot_val(SEGMENT_RO);
1430	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1431		return pgprot_val(SEGMENT_RX);
1432	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1433		return pgprot_val(SEGMENT_RW);
1434	return pgprot_val(SEGMENT_RWX);
1435}
1436
1437static inline pmd_t pmd_mkyoung(pmd_t pmd)
1438{
1439	pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1440	if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1441		pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1442	return pmd;
1443}
1444
1445static inline pmd_t pmd_mkold(pmd_t pmd)
1446{
1447	pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1448	pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1449	return pmd;
1450}
1451
1452static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1453{
1454	pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1455		_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1456		_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1457	pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1458	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1459		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1460	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1461		pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1462	return pmd;
1463}
1464
1465static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1466{
1467	pmd_t __pmd;
1468	pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1469	return __pmd;
1470}
1471
1472#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1473
1474static inline void __pmdp_csp(pmd_t *pmdp)
1475{
1476	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1477	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1478}
1479
1480#define IDTE_GLOBAL	0
1481#define IDTE_LOCAL	1
1482
1483#define IDTE_PTOA	0x0800
1484#define IDTE_NODAT	0x1000
1485#define IDTE_GUEST_ASCE	0x2000
1486
1487static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1488					unsigned long opt, unsigned long asce,
1489					int local)
1490{
1491	unsigned long sto;
1492
1493	sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1494	if (__builtin_constant_p(opt) && opt == 0) {
1495		/* flush without guest asce */
1496		asm volatile(
1497			"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1498			: "+m" (*pmdp)
1499			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1500			  [m4] "i" (local)
1501			: "cc" );
1502	} else {
1503		/* flush with guest asce */
1504		asm volatile(
1505			"	.insn	rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1506			: "+m" (*pmdp)
1507			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1508			  [r3] "a" (asce), [m4] "i" (local)
1509			: "cc" );
1510	}
1511}
1512
1513static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1514					unsigned long opt, unsigned long asce,
1515					int local)
1516{
1517	unsigned long r3o;
1518
1519	r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1520	r3o |= _ASCE_TYPE_REGION3;
1521	if (__builtin_constant_p(opt) && opt == 0) {
1522		/* flush without guest asce */
1523		asm volatile(
1524			"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1525			: "+m" (*pudp)
1526			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1527			  [m4] "i" (local)
1528			: "cc");
1529	} else {
1530		/* flush with guest asce */
1531		asm volatile(
1532			"	.insn	rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1533			: "+m" (*pudp)
1534			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1535			  [r3] "a" (asce), [m4] "i" (local)
1536			: "cc" );
1537	}
1538}
1539
1540pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1541pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1542pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1543
1544#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1545
1546#define __HAVE_ARCH_PGTABLE_DEPOSIT
1547void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1548				pgtable_t pgtable);
1549
1550#define __HAVE_ARCH_PGTABLE_WITHDRAW
1551pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1552
1553#define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1554static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1555					unsigned long addr, pmd_t *pmdp,
1556					pmd_t entry, int dirty)
1557{
1558	VM_BUG_ON(addr & ~HPAGE_MASK);
1559
1560	entry = pmd_mkyoung(entry);
1561	if (dirty)
1562		entry = pmd_mkdirty(entry);
1563	if (pmd_val(*pmdp) == pmd_val(entry))
1564		return 0;
1565	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1566	return 1;
1567}
1568
1569#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1570static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1571					    unsigned long addr, pmd_t *pmdp)
1572{
1573	pmd_t pmd = *pmdp;
1574
1575	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1576	return pmd_young(pmd);
1577}
1578
1579#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1580static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1581					 unsigned long addr, pmd_t *pmdp)
1582{
1583	VM_BUG_ON(addr & ~HPAGE_MASK);
1584	return pmdp_test_and_clear_young(vma, addr, pmdp);
1585}
1586
1587static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1588			      pmd_t *pmdp, pmd_t entry)
1589{
1590	if (!MACHINE_HAS_NX)
1591		pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1592	*pmdp = entry;
1593}
1594
1595static inline pmd_t pmd_mkhuge(pmd_t pmd)
1596{
1597	pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1598	pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1599	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1600	return pmd;
1601}
1602
1603#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1604static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1605					    unsigned long addr, pmd_t *pmdp)
1606{
1607	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1608}
1609
1610#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1611static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1612						 unsigned long addr,
1613						 pmd_t *pmdp, int full)
1614{
1615	if (full) {
1616		pmd_t pmd = *pmdp;
1617		*pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1618		return pmd;
1619	}
1620	return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1621}
1622
1623#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1624static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1625					  unsigned long addr, pmd_t *pmdp)
1626{
1627	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1628}
1629
1630#define __HAVE_ARCH_PMDP_INVALIDATE
1631static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1632				   unsigned long addr, pmd_t *pmdp)
1633{
1634	pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1635
1636	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1637}
1638
1639#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1640static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1641				      unsigned long addr, pmd_t *pmdp)
1642{
1643	pmd_t pmd = *pmdp;
1644
1645	if (pmd_write(pmd))
1646		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1647}
1648
1649static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1650					unsigned long address,
1651					pmd_t *pmdp)
1652{
1653	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1654}
1655#define pmdp_collapse_flush pmdp_collapse_flush
1656
1657#define pfn_pmd(pfn, pgprot)	mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1658#define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1659
1660static inline int pmd_trans_huge(pmd_t pmd)
1661{
1662	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1663}
1664
1665#define has_transparent_hugepage has_transparent_hugepage
1666static inline int has_transparent_hugepage(void)
1667{
1668	return MACHINE_HAS_EDAT1 ? 1 : 0;
1669}
1670#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1671
1672/*
1673 * 64 bit swap entry format:
1674 * A page-table entry has some bits we have to treat in a special way.
1675 * Bits 52 and bit 55 have to be zero, otherwise a specification
1676 * exception will occur instead of a page translation exception. The
1677 * specification exception has the bad habit not to store necessary
1678 * information in the lowcore.
1679 * Bits 54 and 63 are used to indicate the page type.
1680 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1681 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1682 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1683 * for the offset.
1684 * |			  offset			|01100|type |00|
1685 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1686 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1687 */
1688
1689#define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1690#define __SWP_OFFSET_SHIFT	12
1691#define __SWP_TYPE_MASK		((1UL << 5) - 1)
1692#define __SWP_TYPE_SHIFT	2
1693
1694static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1695{
1696	pte_t pte;
1697
1698	pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1699	pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1700	pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1701	return pte;
1702}
1703
1704static inline unsigned long __swp_type(swp_entry_t entry)
1705{
1706	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1707}
1708
1709static inline unsigned long __swp_offset(swp_entry_t entry)
1710{
1711	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1712}
1713
1714static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1715{
1716	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1717}
1718
1719#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1720#define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1721
1722#define kern_addr_valid(addr)   (1)
1723
1724extern int vmem_add_mapping(unsigned long start, unsigned long size);
1725extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1726extern int s390_enable_sie(void);
1727extern int s390_enable_skey(void);
1728extern void s390_reset_cmma(struct mm_struct *mm);
1729
1730/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1731#define HAVE_ARCH_UNMAPPED_AREA
1732#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1733
1734#endif /* _S390_PAGE_H */
1735