18c2ecf20Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */ 28c2ecf20Sopenharmony_ci/* 38c2ecf20Sopenharmony_ci * Hardware-accelerated CRC-32 variants for Linux on z Systems 48c2ecf20Sopenharmony_ci * 58c2ecf20Sopenharmony_ci * Use the z/Architecture Vector Extension Facility to accelerate the 68c2ecf20Sopenharmony_ci * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet 78c2ecf20Sopenharmony_ci * and Castagnoli. 88c2ecf20Sopenharmony_ci * 98c2ecf20Sopenharmony_ci * This CRC-32 implementation algorithm is bitreflected and processes 108c2ecf20Sopenharmony_ci * the least-significant bit first (Little-Endian). 118c2ecf20Sopenharmony_ci * 128c2ecf20Sopenharmony_ci * Copyright IBM Corp. 2015 138c2ecf20Sopenharmony_ci * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> 148c2ecf20Sopenharmony_ci */ 158c2ecf20Sopenharmony_ci 168c2ecf20Sopenharmony_ci#include <linux/linkage.h> 178c2ecf20Sopenharmony_ci#include <asm/nospec-insn.h> 188c2ecf20Sopenharmony_ci#include <asm/vx-insn.h> 198c2ecf20Sopenharmony_ci 208c2ecf20Sopenharmony_ci/* Vector register range containing CRC-32 constants */ 218c2ecf20Sopenharmony_ci#define CONST_PERM_LE2BE %v9 228c2ecf20Sopenharmony_ci#define CONST_R2R1 %v10 238c2ecf20Sopenharmony_ci#define CONST_R4R3 %v11 248c2ecf20Sopenharmony_ci#define CONST_R5 %v12 258c2ecf20Sopenharmony_ci#define CONST_RU_POLY %v13 268c2ecf20Sopenharmony_ci#define CONST_CRC_POLY %v14 278c2ecf20Sopenharmony_ci 288c2ecf20Sopenharmony_ci.data 298c2ecf20Sopenharmony_ci.align 8 308c2ecf20Sopenharmony_ci 318c2ecf20Sopenharmony_ci/* 328c2ecf20Sopenharmony_ci * The CRC-32 constant block contains reduction constants to fold and 338c2ecf20Sopenharmony_ci * process particular chunks of the input data stream in parallel. 348c2ecf20Sopenharmony_ci * 358c2ecf20Sopenharmony_ci * For the CRC-32 variants, the constants are precomputed according to 368c2ecf20Sopenharmony_ci * these definitions: 378c2ecf20Sopenharmony_ci * 388c2ecf20Sopenharmony_ci * R1 = [(x4*128+32 mod P'(x) << 32)]' << 1 398c2ecf20Sopenharmony_ci * R2 = [(x4*128-32 mod P'(x) << 32)]' << 1 408c2ecf20Sopenharmony_ci * R3 = [(x128+32 mod P'(x) << 32)]' << 1 418c2ecf20Sopenharmony_ci * R4 = [(x128-32 mod P'(x) << 32)]' << 1 428c2ecf20Sopenharmony_ci * R5 = [(x64 mod P'(x) << 32)]' << 1 438c2ecf20Sopenharmony_ci * R6 = [(x32 mod P'(x) << 32)]' << 1 448c2ecf20Sopenharmony_ci * 458c2ecf20Sopenharmony_ci * The bitreflected Barret reduction constant, u', is defined as 468c2ecf20Sopenharmony_ci * the bit reversal of floor(x**64 / P(x)). 478c2ecf20Sopenharmony_ci * 488c2ecf20Sopenharmony_ci * where P(x) is the polynomial in the normal domain and the P'(x) is the 498c2ecf20Sopenharmony_ci * polynomial in the reversed (bitreflected) domain. 508c2ecf20Sopenharmony_ci * 518c2ecf20Sopenharmony_ci * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials: 528c2ecf20Sopenharmony_ci * 538c2ecf20Sopenharmony_ci * P(x) = 0x04C11DB7 548c2ecf20Sopenharmony_ci * P'(x) = 0xEDB88320 558c2ecf20Sopenharmony_ci * 568c2ecf20Sopenharmony_ci * CRC-32C (Castagnoli) polynomials: 578c2ecf20Sopenharmony_ci * 588c2ecf20Sopenharmony_ci * P(x) = 0x1EDC6F41 598c2ecf20Sopenharmony_ci * P'(x) = 0x82F63B78 608c2ecf20Sopenharmony_ci */ 618c2ecf20Sopenharmony_ci 628c2ecf20Sopenharmony_ci.Lconstants_CRC_32_LE: 638c2ecf20Sopenharmony_ci .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask 648c2ecf20Sopenharmony_ci .quad 0x1c6e41596, 0x154442bd4 # R2, R1 658c2ecf20Sopenharmony_ci .quad 0x0ccaa009e, 0x1751997d0 # R4, R3 668c2ecf20Sopenharmony_ci .octa 0x163cd6124 # R5 678c2ecf20Sopenharmony_ci .octa 0x1F7011641 # u' 688c2ecf20Sopenharmony_ci .octa 0x1DB710641 # P'(x) << 1 698c2ecf20Sopenharmony_ci 708c2ecf20Sopenharmony_ci.Lconstants_CRC_32C_LE: 718c2ecf20Sopenharmony_ci .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask 728c2ecf20Sopenharmony_ci .quad 0x09e4addf8, 0x740eef02 # R2, R1 738c2ecf20Sopenharmony_ci .quad 0x14cd00bd6, 0xf20c0dfe # R4, R3 748c2ecf20Sopenharmony_ci .octa 0x0dd45aab8 # R5 758c2ecf20Sopenharmony_ci .octa 0x0dea713f1 # u' 768c2ecf20Sopenharmony_ci .octa 0x105ec76f0 # P'(x) << 1 778c2ecf20Sopenharmony_ci 788c2ecf20Sopenharmony_ci.previous 798c2ecf20Sopenharmony_ci 808c2ecf20Sopenharmony_ci GEN_BR_THUNK %r14 818c2ecf20Sopenharmony_ci 828c2ecf20Sopenharmony_ci.text 838c2ecf20Sopenharmony_ci 848c2ecf20Sopenharmony_ci/* 858c2ecf20Sopenharmony_ci * The CRC-32 functions use these calling conventions: 868c2ecf20Sopenharmony_ci * 878c2ecf20Sopenharmony_ci * Parameters: 888c2ecf20Sopenharmony_ci * 898c2ecf20Sopenharmony_ci * %r2: Initial CRC value, typically ~0; and final CRC (return) value. 908c2ecf20Sopenharmony_ci * %r3: Input buffer pointer, performance might be improved if the 918c2ecf20Sopenharmony_ci * buffer is on a doubleword boundary. 928c2ecf20Sopenharmony_ci * %r4: Length of the buffer, must be 64 bytes or greater. 938c2ecf20Sopenharmony_ci * 948c2ecf20Sopenharmony_ci * Register usage: 958c2ecf20Sopenharmony_ci * 968c2ecf20Sopenharmony_ci * %r5: CRC-32 constant pool base pointer. 978c2ecf20Sopenharmony_ci * V0: Initial CRC value and intermediate constants and results. 988c2ecf20Sopenharmony_ci * V1..V4: Data for CRC computation. 998c2ecf20Sopenharmony_ci * V5..V8: Next data chunks that are fetched from the input buffer. 1008c2ecf20Sopenharmony_ci * V9: Constant for BE->LE conversion and shift operations 1018c2ecf20Sopenharmony_ci * 1028c2ecf20Sopenharmony_ci * V10..V14: CRC-32 constants. 1038c2ecf20Sopenharmony_ci */ 1048c2ecf20Sopenharmony_ci 1058c2ecf20Sopenharmony_ciENTRY(crc32_le_vgfm_16) 1068c2ecf20Sopenharmony_ci larl %r5,.Lconstants_CRC_32_LE 1078c2ecf20Sopenharmony_ci j crc32_le_vgfm_generic 1088c2ecf20Sopenharmony_ciENDPROC(crc32_le_vgfm_16) 1098c2ecf20Sopenharmony_ci 1108c2ecf20Sopenharmony_ciENTRY(crc32c_le_vgfm_16) 1118c2ecf20Sopenharmony_ci larl %r5,.Lconstants_CRC_32C_LE 1128c2ecf20Sopenharmony_ci j crc32_le_vgfm_generic 1138c2ecf20Sopenharmony_ciENDPROC(crc32c_le_vgfm_16) 1148c2ecf20Sopenharmony_ci 1158c2ecf20Sopenharmony_ciENTRY(crc32_le_vgfm_generic) 1168c2ecf20Sopenharmony_ci /* Load CRC-32 constants */ 1178c2ecf20Sopenharmony_ci VLM CONST_PERM_LE2BE,CONST_CRC_POLY,0,%r5 1188c2ecf20Sopenharmony_ci 1198c2ecf20Sopenharmony_ci /* 1208c2ecf20Sopenharmony_ci * Load the initial CRC value. 1218c2ecf20Sopenharmony_ci * 1228c2ecf20Sopenharmony_ci * The CRC value is loaded into the rightmost word of the 1238c2ecf20Sopenharmony_ci * vector register and is later XORed with the LSB portion 1248c2ecf20Sopenharmony_ci * of the loaded input data. 1258c2ecf20Sopenharmony_ci */ 1268c2ecf20Sopenharmony_ci VZERO %v0 /* Clear V0 */ 1278c2ecf20Sopenharmony_ci VLVGF %v0,%r2,3 /* Load CRC into rightmost word */ 1288c2ecf20Sopenharmony_ci 1298c2ecf20Sopenharmony_ci /* Load a 64-byte data chunk and XOR with CRC */ 1308c2ecf20Sopenharmony_ci VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */ 1318c2ecf20Sopenharmony_ci VPERM %v1,%v1,%v1,CONST_PERM_LE2BE 1328c2ecf20Sopenharmony_ci VPERM %v2,%v2,%v2,CONST_PERM_LE2BE 1338c2ecf20Sopenharmony_ci VPERM %v3,%v3,%v3,CONST_PERM_LE2BE 1348c2ecf20Sopenharmony_ci VPERM %v4,%v4,%v4,CONST_PERM_LE2BE 1358c2ecf20Sopenharmony_ci 1368c2ecf20Sopenharmony_ci VX %v1,%v0,%v1 /* V1 ^= CRC */ 1378c2ecf20Sopenharmony_ci aghi %r3,64 /* BUF = BUF + 64 */ 1388c2ecf20Sopenharmony_ci aghi %r4,-64 /* LEN = LEN - 64 */ 1398c2ecf20Sopenharmony_ci 1408c2ecf20Sopenharmony_ci cghi %r4,64 1418c2ecf20Sopenharmony_ci jl .Lless_than_64bytes 1428c2ecf20Sopenharmony_ci 1438c2ecf20Sopenharmony_ci.Lfold_64bytes_loop: 1448c2ecf20Sopenharmony_ci /* Load the next 64-byte data chunk into V5 to V8 */ 1458c2ecf20Sopenharmony_ci VLM %v5,%v8,0,%r3 1468c2ecf20Sopenharmony_ci VPERM %v5,%v5,%v5,CONST_PERM_LE2BE 1478c2ecf20Sopenharmony_ci VPERM %v6,%v6,%v6,CONST_PERM_LE2BE 1488c2ecf20Sopenharmony_ci VPERM %v7,%v7,%v7,CONST_PERM_LE2BE 1498c2ecf20Sopenharmony_ci VPERM %v8,%v8,%v8,CONST_PERM_LE2BE 1508c2ecf20Sopenharmony_ci 1518c2ecf20Sopenharmony_ci /* 1528c2ecf20Sopenharmony_ci * Perform a GF(2) multiplication of the doublewords in V1 with 1538c2ecf20Sopenharmony_ci * the R1 and R2 reduction constants in V0. The intermediate result 1548c2ecf20Sopenharmony_ci * is then folded (accumulated) with the next data chunk in V5 and 1558c2ecf20Sopenharmony_ci * stored in V1. Repeat this step for the register contents 1568c2ecf20Sopenharmony_ci * in V2, V3, and V4 respectively. 1578c2ecf20Sopenharmony_ci */ 1588c2ecf20Sopenharmony_ci VGFMAG %v1,CONST_R2R1,%v1,%v5 1598c2ecf20Sopenharmony_ci VGFMAG %v2,CONST_R2R1,%v2,%v6 1608c2ecf20Sopenharmony_ci VGFMAG %v3,CONST_R2R1,%v3,%v7 1618c2ecf20Sopenharmony_ci VGFMAG %v4,CONST_R2R1,%v4,%v8 1628c2ecf20Sopenharmony_ci 1638c2ecf20Sopenharmony_ci aghi %r3,64 /* BUF = BUF + 64 */ 1648c2ecf20Sopenharmony_ci aghi %r4,-64 /* LEN = LEN - 64 */ 1658c2ecf20Sopenharmony_ci 1668c2ecf20Sopenharmony_ci cghi %r4,64 1678c2ecf20Sopenharmony_ci jnl .Lfold_64bytes_loop 1688c2ecf20Sopenharmony_ci 1698c2ecf20Sopenharmony_ci.Lless_than_64bytes: 1708c2ecf20Sopenharmony_ci /* 1718c2ecf20Sopenharmony_ci * Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3 1728c2ecf20Sopenharmony_ci * and R4 and accumulating the next 128-bit chunk until a single 128-bit 1738c2ecf20Sopenharmony_ci * value remains. 1748c2ecf20Sopenharmony_ci */ 1758c2ecf20Sopenharmony_ci VGFMAG %v1,CONST_R4R3,%v1,%v2 1768c2ecf20Sopenharmony_ci VGFMAG %v1,CONST_R4R3,%v1,%v3 1778c2ecf20Sopenharmony_ci VGFMAG %v1,CONST_R4R3,%v1,%v4 1788c2ecf20Sopenharmony_ci 1798c2ecf20Sopenharmony_ci cghi %r4,16 1808c2ecf20Sopenharmony_ci jl .Lfinal_fold 1818c2ecf20Sopenharmony_ci 1828c2ecf20Sopenharmony_ci.Lfold_16bytes_loop: 1838c2ecf20Sopenharmony_ci 1848c2ecf20Sopenharmony_ci VL %v2,0,,%r3 /* Load next data chunk */ 1858c2ecf20Sopenharmony_ci VPERM %v2,%v2,%v2,CONST_PERM_LE2BE 1868c2ecf20Sopenharmony_ci VGFMAG %v1,CONST_R4R3,%v1,%v2 /* Fold next data chunk */ 1878c2ecf20Sopenharmony_ci 1888c2ecf20Sopenharmony_ci aghi %r3,16 1898c2ecf20Sopenharmony_ci aghi %r4,-16 1908c2ecf20Sopenharmony_ci 1918c2ecf20Sopenharmony_ci cghi %r4,16 1928c2ecf20Sopenharmony_ci jnl .Lfold_16bytes_loop 1938c2ecf20Sopenharmony_ci 1948c2ecf20Sopenharmony_ci.Lfinal_fold: 1958c2ecf20Sopenharmony_ci /* 1968c2ecf20Sopenharmony_ci * Set up a vector register for byte shifts. The shift value must 1978c2ecf20Sopenharmony_ci * be loaded in bits 1-4 in byte element 7 of a vector register. 1988c2ecf20Sopenharmony_ci * Shift by 8 bytes: 0x40 1998c2ecf20Sopenharmony_ci * Shift by 4 bytes: 0x20 2008c2ecf20Sopenharmony_ci */ 2018c2ecf20Sopenharmony_ci VLEIB %v9,0x40,7 2028c2ecf20Sopenharmony_ci 2038c2ecf20Sopenharmony_ci /* 2048c2ecf20Sopenharmony_ci * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes 2058c2ecf20Sopenharmony_ci * to move R4 into the rightmost doubleword and set the leftmost 2068c2ecf20Sopenharmony_ci * doubleword to 0x1. 2078c2ecf20Sopenharmony_ci */ 2088c2ecf20Sopenharmony_ci VSRLB %v0,CONST_R4R3,%v9 2098c2ecf20Sopenharmony_ci VLEIG %v0,1,0 2108c2ecf20Sopenharmony_ci 2118c2ecf20Sopenharmony_ci /* 2128c2ecf20Sopenharmony_ci * Compute GF(2) product of V1 and V0. The rightmost doubleword 2138c2ecf20Sopenharmony_ci * of V1 is multiplied with R4. The leftmost doubleword of V1 is 2148c2ecf20Sopenharmony_ci * multiplied by 0x1 and is then XORed with rightmost product. 2158c2ecf20Sopenharmony_ci * Implicitly, the intermediate leftmost product becomes padded 2168c2ecf20Sopenharmony_ci */ 2178c2ecf20Sopenharmony_ci VGFMG %v1,%v0,%v1 2188c2ecf20Sopenharmony_ci 2198c2ecf20Sopenharmony_ci /* 2208c2ecf20Sopenharmony_ci * Now do the final 32-bit fold by multiplying the rightmost word 2218c2ecf20Sopenharmony_ci * in V1 with R5 and XOR the result with the remaining bits in V1. 2228c2ecf20Sopenharmony_ci * 2238c2ecf20Sopenharmony_ci * To achieve this by a single VGFMAG, right shift V1 by a word 2248c2ecf20Sopenharmony_ci * and store the result in V2 which is then accumulated. Use the 2258c2ecf20Sopenharmony_ci * vector unpack instruction to load the rightmost half of the 2268c2ecf20Sopenharmony_ci * doubleword into the rightmost doubleword element of V1; the other 2278c2ecf20Sopenharmony_ci * half is loaded in the leftmost doubleword. 2288c2ecf20Sopenharmony_ci * The vector register with CONST_R5 contains the R5 constant in the 2298c2ecf20Sopenharmony_ci * rightmost doubleword and the leftmost doubleword is zero to ignore 2308c2ecf20Sopenharmony_ci * the leftmost product of V1. 2318c2ecf20Sopenharmony_ci */ 2328c2ecf20Sopenharmony_ci VLEIB %v9,0x20,7 /* Shift by words */ 2338c2ecf20Sopenharmony_ci VSRLB %v2,%v1,%v9 /* Store remaining bits in V2 */ 2348c2ecf20Sopenharmony_ci VUPLLF %v1,%v1 /* Split rightmost doubleword */ 2358c2ecf20Sopenharmony_ci VGFMAG %v1,CONST_R5,%v1,%v2 /* V1 = (V1 * R5) XOR V2 */ 2368c2ecf20Sopenharmony_ci 2378c2ecf20Sopenharmony_ci /* 2388c2ecf20Sopenharmony_ci * Apply a Barret reduction to compute the final 32-bit CRC value. 2398c2ecf20Sopenharmony_ci * 2408c2ecf20Sopenharmony_ci * The input values to the Barret reduction are the degree-63 polynomial 2418c2ecf20Sopenharmony_ci * in V1 (R(x)), degree-32 generator polynomial, and the reduction 2428c2ecf20Sopenharmony_ci * constant u. The Barret reduction result is the CRC value of R(x) mod 2438c2ecf20Sopenharmony_ci * P(x). 2448c2ecf20Sopenharmony_ci * 2458c2ecf20Sopenharmony_ci * The Barret reduction algorithm is defined as: 2468c2ecf20Sopenharmony_ci * 2478c2ecf20Sopenharmony_ci * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u 2488c2ecf20Sopenharmony_ci * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x) 2498c2ecf20Sopenharmony_ci * 3. C(x) = R(x) XOR T2(x) mod x^32 2508c2ecf20Sopenharmony_ci * 2518c2ecf20Sopenharmony_ci * Note: The leftmost doubleword of vector register containing 2528c2ecf20Sopenharmony_ci * CONST_RU_POLY is zero and, thus, the intermediate GF(2) product 2538c2ecf20Sopenharmony_ci * is zero and does not contribute to the final result. 2548c2ecf20Sopenharmony_ci */ 2558c2ecf20Sopenharmony_ci 2568c2ecf20Sopenharmony_ci /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */ 2578c2ecf20Sopenharmony_ci VUPLLF %v2,%v1 2588c2ecf20Sopenharmony_ci VGFMG %v2,CONST_RU_POLY,%v2 2598c2ecf20Sopenharmony_ci 2608c2ecf20Sopenharmony_ci /* 2618c2ecf20Sopenharmony_ci * Compute the GF(2) product of the CRC polynomial with T1(x) in 2628c2ecf20Sopenharmony_ci * V2 and XOR the intermediate result, T2(x), with the value in V1. 2638c2ecf20Sopenharmony_ci * The final result is stored in word element 2 of V2. 2648c2ecf20Sopenharmony_ci */ 2658c2ecf20Sopenharmony_ci VUPLLF %v2,%v2 2668c2ecf20Sopenharmony_ci VGFMAG %v2,CONST_CRC_POLY,%v2,%v1 2678c2ecf20Sopenharmony_ci 2688c2ecf20Sopenharmony_ci.Ldone: 2698c2ecf20Sopenharmony_ci VLGVF %r2,%v2,2 2708c2ecf20Sopenharmony_ci BR_EX %r14 2718c2ecf20Sopenharmony_ciENDPROC(crc32_le_vgfm_generic) 2728c2ecf20Sopenharmony_ci 2738c2ecf20Sopenharmony_ci.previous 274