1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2012 Regents of the University of California
4 */
5
6#ifndef _ASM_RISCV_PGTABLE_H
7#define _ASM_RISCV_PGTABLE_H
8
9#include <linux/mmzone.h>
10#include <linux/sizes.h>
11
12#include <asm/pgtable-bits.h>
13
14#ifndef CONFIG_MMU
15#define KERNEL_LINK_ADDR	PAGE_OFFSET
16#else
17
18#define ADDRESS_SPACE_END	(UL(-1))
19
20#ifdef CONFIG_64BIT
21/* Leave 2GB for kernel and BPF at the end of the address space */
22#define KERNEL_LINK_ADDR	(ADDRESS_SPACE_END - SZ_2G + 1)
23#else
24#define KERNEL_LINK_ADDR	PAGE_OFFSET
25#endif
26
27#define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
28#define VMALLOC_END      (PAGE_OFFSET - 1)
29#define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)
30
31#define BPF_JIT_REGION_SIZE	(SZ_128M)
32#ifdef CONFIG_64BIT
33/* KASLR should leave at least 128MB for BPF after the kernel */
34#define BPF_JIT_REGION_START	PFN_ALIGN((unsigned long)&_end)
35#define BPF_JIT_REGION_END	(BPF_JIT_REGION_START + BPF_JIT_REGION_SIZE)
36#else
37#define BPF_JIT_REGION_START	(PAGE_OFFSET - BPF_JIT_REGION_SIZE)
38#define BPF_JIT_REGION_END	(VMALLOC_END)
39#endif
40
41/* Modules always live before the kernel */
42#ifdef CONFIG_64BIT
43#define MODULES_VADDR	(PFN_ALIGN((unsigned long)&_end) - SZ_2G)
44#define MODULES_END	(PFN_ALIGN((unsigned long)&_start))
45#endif
46
47/*
48 * Roughly size the vmemmap space to be large enough to fit enough
49 * struct pages to map half the virtual address space. Then
50 * position vmemmap directly below the VMALLOC region.
51 */
52#define VMEMMAP_SHIFT \
53	(CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
54#define VMEMMAP_SIZE	BIT(VMEMMAP_SHIFT)
55#define VMEMMAP_END	(VMALLOC_START - 1)
56#define VMEMMAP_START	(VMALLOC_START - VMEMMAP_SIZE)
57
58/*
59 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
60 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
61 */
62#define vmemmap		((struct page *)VMEMMAP_START)
63
64#define PCI_IO_SIZE      SZ_16M
65#define PCI_IO_END       VMEMMAP_START
66#define PCI_IO_START     (PCI_IO_END - PCI_IO_SIZE)
67
68#define FIXADDR_TOP      PCI_IO_START
69#ifdef CONFIG_64BIT
70#define FIXADDR_SIZE     PMD_SIZE
71#else
72#define FIXADDR_SIZE     PGDIR_SIZE
73#endif
74#define FIXADDR_START    (FIXADDR_TOP - FIXADDR_SIZE)
75#endif
76
77#ifndef __ASSEMBLY__
78
79/* Page Upper Directory not used in RISC-V */
80#include <asm-generic/pgtable-nopud.h>
81#include <asm/page.h>
82#include <asm/tlbflush.h>
83#include <linux/mm_types.h>
84
85#ifdef CONFIG_64BIT
86#include <asm/pgtable-64.h>
87#else
88#include <asm/pgtable-32.h>
89#endif /* CONFIG_64BIT */
90
91#ifdef CONFIG_MMU
92/* Number of entries in the page global directory */
93#define PTRS_PER_PGD    (PAGE_SIZE / sizeof(pgd_t))
94/* Number of entries in the page table */
95#define PTRS_PER_PTE    (PAGE_SIZE / sizeof(pte_t))
96
97/* Number of PGD entries that a user-mode program can use */
98#define USER_PTRS_PER_PGD   (TASK_SIZE / PGDIR_SIZE)
99
100/* Page protection bits */
101#define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
102
103#define PAGE_NONE		__pgprot(_PAGE_PROT_NONE)
104#define PAGE_READ		__pgprot(_PAGE_BASE | _PAGE_READ)
105#define PAGE_WRITE		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
106#define PAGE_EXEC		__pgprot(_PAGE_BASE | _PAGE_EXEC)
107#define PAGE_READ_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
108#define PAGE_WRITE_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ |	\
109					 _PAGE_EXEC | _PAGE_WRITE)
110
111#define PAGE_COPY		PAGE_READ
112#define PAGE_COPY_EXEC		PAGE_EXEC
113#define PAGE_COPY_READ_EXEC	PAGE_READ_EXEC
114#define PAGE_SHARED		PAGE_WRITE
115#define PAGE_SHARED_EXEC	PAGE_WRITE_EXEC
116
117#define _PAGE_KERNEL		(_PAGE_READ \
118				| _PAGE_WRITE \
119				| _PAGE_PRESENT \
120				| _PAGE_ACCESSED \
121				| _PAGE_DIRTY)
122
123#define PAGE_KERNEL		__pgprot(_PAGE_KERNEL)
124#define PAGE_KERNEL_READ	__pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
125#define PAGE_KERNEL_EXEC	__pgprot(_PAGE_KERNEL | _PAGE_EXEC)
126#define PAGE_KERNEL_READ_EXEC	__pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
127					 | _PAGE_EXEC)
128
129#define PAGE_TABLE		__pgprot(_PAGE_TABLE)
130
131/*
132 * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't
133 * change the properties of memory regions.
134 */
135#define _PAGE_IOREMAP _PAGE_KERNEL
136
137extern pgd_t swapper_pg_dir[];
138
139/* MAP_PRIVATE permissions: xwr (copy-on-write) */
140#define __P000	PAGE_NONE
141#define __P001	PAGE_READ
142#define __P010	PAGE_COPY
143#define __P011	PAGE_COPY
144#define __P100	PAGE_EXEC
145#define __P101	PAGE_READ_EXEC
146#define __P110	PAGE_COPY_EXEC
147#define __P111	PAGE_COPY_READ_EXEC
148
149/* MAP_SHARED permissions: xwr */
150#define __S000	PAGE_NONE
151#define __S001	PAGE_READ
152#define __S010	PAGE_SHARED
153#define __S011	PAGE_SHARED
154#define __S100	PAGE_EXEC
155#define __S101	PAGE_READ_EXEC
156#define __S110	PAGE_SHARED_EXEC
157#define __S111	PAGE_SHARED_EXEC
158
159static inline int pmd_present(pmd_t pmd)
160{
161	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
162}
163
164static inline int pmd_none(pmd_t pmd)
165{
166	return (pmd_val(pmd) == 0);
167}
168
169static inline int pmd_bad(pmd_t pmd)
170{
171	return !pmd_present(pmd);
172}
173
174#define pmd_leaf	pmd_leaf
175static inline int pmd_leaf(pmd_t pmd)
176{
177	return pmd_present(pmd) &&
178	       (pmd_val(pmd) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC));
179}
180
181static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
182{
183	*pmdp = pmd;
184}
185
186static inline void pmd_clear(pmd_t *pmdp)
187{
188	set_pmd(pmdp, __pmd(0));
189}
190
191static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
192{
193	return __pgd((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
194}
195
196static inline unsigned long _pgd_pfn(pgd_t pgd)
197{
198	return pgd_val(pgd) >> _PAGE_PFN_SHIFT;
199}
200
201static inline struct page *pmd_page(pmd_t pmd)
202{
203	return pfn_to_page(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
204}
205
206static inline unsigned long pmd_page_vaddr(pmd_t pmd)
207{
208	return (unsigned long)pfn_to_virt(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
209}
210
211/* Yields the page frame number (PFN) of a page table entry */
212static inline unsigned long pte_pfn(pte_t pte)
213{
214	return (pte_val(pte) >> _PAGE_PFN_SHIFT);
215}
216
217#define pte_page(x)     pfn_to_page(pte_pfn(x))
218
219/* Constructs a page table entry */
220static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
221{
222	return __pte((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
223}
224
225#define mk_pte(page, prot)       pfn_pte(page_to_pfn(page), prot)
226
227static inline int pte_present(pte_t pte)
228{
229	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
230}
231
232static inline int pte_none(pte_t pte)
233{
234	return (pte_val(pte) == 0);
235}
236
237static inline int pte_write(pte_t pte)
238{
239	return pte_val(pte) & _PAGE_WRITE;
240}
241
242static inline int pte_exec(pte_t pte)
243{
244	return pte_val(pte) & _PAGE_EXEC;
245}
246
247static inline int pte_huge(pte_t pte)
248{
249	return pte_present(pte)
250		&& (pte_val(pte) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC));
251}
252
253static inline int pte_dirty(pte_t pte)
254{
255	return pte_val(pte) & _PAGE_DIRTY;
256}
257
258static inline int pte_young(pte_t pte)
259{
260	return pte_val(pte) & _PAGE_ACCESSED;
261}
262
263static inline int pte_special(pte_t pte)
264{
265	return pte_val(pte) & _PAGE_SPECIAL;
266}
267
268/* static inline pte_t pte_rdprotect(pte_t pte) */
269
270static inline pte_t pte_wrprotect(pte_t pte)
271{
272	return __pte(pte_val(pte) & ~(_PAGE_WRITE));
273}
274
275/* static inline pte_t pte_mkread(pte_t pte) */
276
277static inline pte_t pte_mkwrite(pte_t pte)
278{
279	return __pte(pte_val(pte) | _PAGE_WRITE);
280}
281
282/* static inline pte_t pte_mkexec(pte_t pte) */
283
284static inline pte_t pte_mkdirty(pte_t pte)
285{
286	return __pte(pte_val(pte) | _PAGE_DIRTY);
287}
288
289static inline pte_t pte_mkclean(pte_t pte)
290{
291	return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
292}
293
294static inline pte_t pte_mkyoung(pte_t pte)
295{
296	return __pte(pte_val(pte) | _PAGE_ACCESSED);
297}
298
299static inline pte_t pte_mkold(pte_t pte)
300{
301	return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
302}
303
304static inline pte_t pte_mkspecial(pte_t pte)
305{
306	return __pte(pte_val(pte) | _PAGE_SPECIAL);
307}
308
309static inline pte_t pte_mkhuge(pte_t pte)
310{
311	return pte;
312}
313
314/* Modify page protection bits */
315static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
316{
317	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
318}
319
320#define pgd_ERROR(e) \
321	pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
322
323
324/* Commit new configuration to MMU hardware */
325static inline void update_mmu_cache(struct vm_area_struct *vma,
326	unsigned long address, pte_t *ptep)
327{
328	/*
329	 * The kernel assumes that TLBs don't cache invalid entries, but
330	 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
331	 * cache flush; it is necessary even after writing invalid entries.
332	 * Relying on flush_tlb_fix_spurious_fault would suffice, but
333	 * the extra traps reduce performance.  So, eagerly SFENCE.VMA.
334	 */
335	local_flush_tlb_page(address);
336}
337
338#define __HAVE_ARCH_PTE_SAME
339static inline int pte_same(pte_t pte_a, pte_t pte_b)
340{
341	return pte_val(pte_a) == pte_val(pte_b);
342}
343
344/*
345 * Certain architectures need to do special things when PTEs within
346 * a page table are directly modified.  Thus, the following hook is
347 * made available.
348 */
349static inline void set_pte(pte_t *ptep, pte_t pteval)
350{
351	*ptep = pteval;
352}
353
354void flush_icache_pte(pte_t pte);
355
356static inline void set_pte_at(struct mm_struct *mm,
357	unsigned long addr, pte_t *ptep, pte_t pteval)
358{
359	if (pte_present(pteval) && pte_exec(pteval))
360		flush_icache_pte(pteval);
361
362	set_pte(ptep, pteval);
363}
364
365static inline void pte_clear(struct mm_struct *mm,
366	unsigned long addr, pte_t *ptep)
367{
368	set_pte_at(mm, addr, ptep, __pte(0));
369}
370
371#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
372static inline int ptep_set_access_flags(struct vm_area_struct *vma,
373					unsigned long address, pte_t *ptep,
374					pte_t entry, int dirty)
375{
376	if (!pte_same(*ptep, entry))
377		set_pte_at(vma->vm_mm, address, ptep, entry);
378	/*
379	 * update_mmu_cache will unconditionally execute, handling both
380	 * the case that the PTE changed and the spurious fault case.
381	 */
382	return true;
383}
384
385#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
386static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
387				       unsigned long address, pte_t *ptep)
388{
389	return __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
390}
391
392#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
393static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
394					    unsigned long address,
395					    pte_t *ptep)
396{
397	if (!pte_young(*ptep))
398		return 0;
399	return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
400}
401
402#define __HAVE_ARCH_PTEP_SET_WRPROTECT
403static inline void ptep_set_wrprotect(struct mm_struct *mm,
404				      unsigned long address, pte_t *ptep)
405{
406	atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
407}
408
409#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
410static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
411					 unsigned long address, pte_t *ptep)
412{
413	/*
414	 * This comment is borrowed from x86, but applies equally to RISC-V:
415	 *
416	 * Clearing the accessed bit without a TLB flush
417	 * doesn't cause data corruption. [ It could cause incorrect
418	 * page aging and the (mistaken) reclaim of hot pages, but the
419	 * chance of that should be relatively low. ]
420	 *
421	 * So as a performance optimization don't flush the TLB when
422	 * clearing the accessed bit, it will eventually be flushed by
423	 * a context switch or a VM operation anyway. [ In the rare
424	 * event of it not getting flushed for a long time the delay
425	 * shouldn't really matter because there's no real memory
426	 * pressure for swapout to react to. ]
427	 */
428	return ptep_test_and_clear_young(vma, address, ptep);
429}
430
431/*
432 * Encode and decode a swap entry
433 *
434 * Format of swap PTE:
435 *	bit            0:	_PAGE_PRESENT (zero)
436 *	bit            1:	_PAGE_PROT_NONE (zero)
437 *	bits      2 to 6:	swap type
438 *	bits 7 to XLEN-1:	swap offset
439 */
440#define __SWP_TYPE_SHIFT	2
441#define __SWP_TYPE_BITS		5
442#define __SWP_TYPE_MASK		((1UL << __SWP_TYPE_BITS) - 1)
443#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
444
445#define MAX_SWAPFILES_CHECK()	\
446	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
447
448#define __swp_type(x)	(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
449#define __swp_offset(x)	((x).val >> __SWP_OFFSET_SHIFT)
450#define __swp_entry(type, offset) ((swp_entry_t) \
451	{ ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
452
453#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
454#define __swp_entry_to_pte(x)	((pte_t) { (x).val })
455
456/*
457 * In the RV64 Linux scheme, we give the user half of the virtual-address space
458 * and give the kernel the other (upper) half.
459 */
460#ifdef CONFIG_64BIT
461#define KERN_VIRT_START	(-(BIT(CONFIG_VA_BITS)) + TASK_SIZE)
462#else
463#define KERN_VIRT_START	FIXADDR_START
464#endif
465
466/*
467 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
468 * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
469 */
470#ifdef CONFIG_64BIT
471#define TASK_SIZE (PGDIR_SIZE * PTRS_PER_PGD / 2)
472#else
473#define TASK_SIZE FIXADDR_START
474#endif
475
476#else /* CONFIG_MMU */
477
478#define PAGE_SHARED		__pgprot(0)
479#define PAGE_KERNEL		__pgprot(0)
480#define swapper_pg_dir		NULL
481#define TASK_SIZE		0xffffffffUL
482#define VMALLOC_START		0
483#define VMALLOC_END		TASK_SIZE
484
485static inline void __kernel_map_pages(struct page *page, int numpages, int enable) {}
486
487#endif /* !CONFIG_MMU */
488
489#define kern_addr_valid(addr)   (1) /* FIXME */
490
491extern char _start[];
492extern void *dtb_early_va;
493extern uintptr_t dtb_early_pa;
494void setup_bootmem(void);
495void paging_init(void);
496void misc_mem_init(void);
497
498#define FIRST_USER_ADDRESS  0
499
500/*
501 * ZERO_PAGE is a global shared page that is always zero,
502 * used for zero-mapped memory areas, etc.
503 */
504extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
505#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
506
507#endif /* !__ASSEMBLY__ */
508
509#endif /* _ASM_RISCV_PGTABLE_H */
510