1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * The file intends to implement the platform dependent EEH operations on pseries.
4 * Actually, the pseries platform is built based on RTAS heavily. That means the
5 * pseries platform dependent EEH operations will be built on RTAS calls. The functions
6 * are derived from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has
7 * been done.
8 *
9 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011.
10 * Copyright IBM Corporation 2001, 2005, 2006
11 * Copyright Dave Engebretsen & Todd Inglett 2001
12 * Copyright Linas Vepstas 2005, 2006
13 */
14
15#include <linux/atomic.h>
16#include <linux/delay.h>
17#include <linux/export.h>
18#include <linux/init.h>
19#include <linux/list.h>
20#include <linux/of.h>
21#include <linux/pci.h>
22#include <linux/proc_fs.h>
23#include <linux/rbtree.h>
24#include <linux/sched.h>
25#include <linux/seq_file.h>
26#include <linux/spinlock.h>
27#include <linux/crash_dump.h>
28
29#include <asm/eeh.h>
30#include <asm/eeh_event.h>
31#include <asm/io.h>
32#include <asm/machdep.h>
33#include <asm/ppc-pci.h>
34#include <asm/rtas.h>
35
36/* RTAS tokens */
37static int ibm_set_eeh_option;
38static int ibm_set_slot_reset;
39static int ibm_read_slot_reset_state;
40static int ibm_read_slot_reset_state2;
41static int ibm_slot_error_detail;
42static int ibm_get_config_addr_info;
43static int ibm_get_config_addr_info2;
44static int ibm_configure_pe;
45
46void pseries_pcibios_bus_add_device(struct pci_dev *pdev)
47{
48	struct pci_dn *pdn = pci_get_pdn(pdev);
49
50	if (eeh_has_flag(EEH_FORCE_DISABLED))
51		return;
52
53	dev_dbg(&pdev->dev, "EEH: Setting up device\n");
54#ifdef CONFIG_PCI_IOV
55	if (pdev->is_virtfn) {
56		pdn->device_id  =  pdev->device;
57		pdn->vendor_id  =  pdev->vendor;
58		pdn->class_code =  pdev->class;
59		/*
60		 * Last allow unfreeze return code used for retrieval
61		 * by user space in eeh-sysfs to show the last command
62		 * completion from platform.
63		 */
64		pdn->last_allow_rc =  0;
65	}
66#endif
67	pseries_eeh_init_edev(pdn);
68#ifdef CONFIG_PCI_IOV
69	if (pdev->is_virtfn) {
70		/*
71		 * FIXME: This really should be handled by choosing the right
72		 *        parent PE in in pseries_eeh_init_edev().
73		 */
74		struct eeh_pe *physfn_pe = pci_dev_to_eeh_dev(pdev->physfn)->pe;
75		struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
76
77		edev->pe_config_addr =  (pdn->busno << 16) | (pdn->devfn << 8);
78		eeh_pe_tree_remove(edev); /* Remove as it is adding to bus pe */
79		eeh_pe_tree_insert(edev, physfn_pe);   /* Add as VF PE type */
80	}
81#endif
82	eeh_probe_device(pdev);
83}
84
85
86/**
87 * pseries_eeh_get_pe_config_addr - Find the pe_config_addr for a device
88 * @pdn: pci_dn of the input device
89 *
90 * The EEH RTAS calls use a tuple consisting of: (buid_hi, buid_lo,
91 * pe_config_addr) as a handle to a given PE. This function finds the
92 * pe_config_addr based on the device's config addr.
93 *
94 * Keep in mind that the pe_config_addr *might* be numerically identical to the
95 * device's config addr, but the two are conceptually distinct.
96 *
97 * Returns the pe_config_addr, or a negative error code.
98 */
99static int pseries_eeh_get_pe_config_addr(struct pci_dn *pdn)
100{
101	int config_addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
102	struct pci_controller *phb = pdn->phb;
103	int ret, rets[3];
104
105	if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
106		/*
107		 * First of all, use function 1 to determine if this device is
108		 * part of a PE or not. ret[0] being zero indicates it's not.
109		 */
110		ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
111				config_addr, BUID_HI(phb->buid),
112				BUID_LO(phb->buid), 1);
113		if (ret || (rets[0] == 0))
114			return -ENOENT;
115
116		/* Retrieve the associated PE config address with function 0 */
117		ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
118				config_addr, BUID_HI(phb->buid),
119				BUID_LO(phb->buid), 0);
120		if (ret) {
121			pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n",
122				__func__, phb->global_number, config_addr);
123			return -ENXIO;
124		}
125
126		return rets[0];
127	}
128
129	if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
130		ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets,
131				config_addr, BUID_HI(phb->buid),
132				BUID_LO(phb->buid), 0);
133		if (ret) {
134			pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n",
135				__func__, phb->global_number, config_addr);
136			return -ENXIO;
137		}
138
139		return rets[0];
140	}
141
142	/*
143	 * PAPR does describe a process for finding the pe_config_addr that was
144	 * used before the ibm,get-config-addr-info calls were added. However,
145	 * I haven't found *any* systems that don't have that RTAS call
146	 * implemented. If you happen to find one that needs the old DT based
147	 * process, patches are welcome!
148	 */
149	return -ENOENT;
150}
151
152/**
153 * pseries_eeh_phb_reset - Reset the specified PHB
154 * @phb: PCI controller
155 * @config_adddr: the associated config address
156 * @option: reset option
157 *
158 * Reset the specified PHB/PE
159 */
160static int pseries_eeh_phb_reset(struct pci_controller *phb, int config_addr, int option)
161{
162	int ret;
163
164	/* Reset PE through RTAS call */
165	ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
166			config_addr, BUID_HI(phb->buid),
167			BUID_LO(phb->buid), option);
168
169	/* If fundamental-reset not supported, try hot-reset */
170	if (option == EEH_RESET_FUNDAMENTAL && ret == -8) {
171		option = EEH_RESET_HOT;
172		ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
173				config_addr, BUID_HI(phb->buid),
174				BUID_LO(phb->buid), option);
175	}
176
177	/* We need reset hold or settlement delay */
178	if (option == EEH_RESET_FUNDAMENTAL || option == EEH_RESET_HOT)
179		msleep(EEH_PE_RST_HOLD_TIME);
180	else
181		msleep(EEH_PE_RST_SETTLE_TIME);
182
183	return ret;
184}
185
186/**
187 * pseries_eeh_phb_configure_bridge - Configure PCI bridges in the indicated PE
188 * @phb: PCI controller
189 * @config_adddr: the associated config address
190 *
191 * The function will be called to reconfigure the bridges included
192 * in the specified PE so that the mulfunctional PE would be recovered
193 * again.
194 */
195static int pseries_eeh_phb_configure_bridge(struct pci_controller *phb, int config_addr)
196{
197	int ret;
198	/* Waiting 0.2s maximum before skipping configuration */
199	int max_wait = 200;
200
201	while (max_wait > 0) {
202		ret = rtas_call(ibm_configure_pe, 3, 1, NULL,
203				config_addr, BUID_HI(phb->buid),
204				BUID_LO(phb->buid));
205
206		if (!ret)
207			return ret;
208		if (ret < 0)
209			break;
210
211		/*
212		 * If RTAS returns a delay value that's above 100ms, cut it
213		 * down to 100ms in case firmware made a mistake.  For more
214		 * on how these delay values work see rtas_busy_delay_time
215		 */
216		if (ret > RTAS_EXTENDED_DELAY_MIN+2 &&
217		    ret <= RTAS_EXTENDED_DELAY_MAX)
218			ret = RTAS_EXTENDED_DELAY_MIN+2;
219
220		max_wait -= rtas_busy_delay_time(ret);
221
222		if (max_wait < 0)
223			break;
224
225		rtas_busy_delay(ret);
226	}
227
228	pr_warn("%s: Unable to configure bridge PHB#%x-PE#%x (%d)\n",
229		__func__, phb->global_number, config_addr, ret);
230	/* PAPR defines -3 as "Parameter Error" for this function: */
231	if (ret == -3)
232		return -EINVAL;
233	else
234		return -EIO;
235}
236
237/*
238 * Buffer for reporting slot-error-detail rtas calls. Its here
239 * in BSS, and not dynamically alloced, so that it ends up in
240 * RMO where RTAS can access it.
241 */
242static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
243static DEFINE_SPINLOCK(slot_errbuf_lock);
244static int eeh_error_buf_size;
245
246static int pseries_eeh_cap_start(struct pci_dn *pdn)
247{
248	u32 status;
249
250	if (!pdn)
251		return 0;
252
253	rtas_read_config(pdn, PCI_STATUS, 2, &status);
254	if (!(status & PCI_STATUS_CAP_LIST))
255		return 0;
256
257	return PCI_CAPABILITY_LIST;
258}
259
260
261static int pseries_eeh_find_cap(struct pci_dn *pdn, int cap)
262{
263	int pos = pseries_eeh_cap_start(pdn);
264	int cnt = 48;	/* Maximal number of capabilities */
265	u32 id;
266
267	if (!pos)
268		return 0;
269
270        while (cnt--) {
271		rtas_read_config(pdn, pos, 1, &pos);
272		if (pos < 0x40)
273			break;
274		pos &= ~3;
275		rtas_read_config(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
276		if (id == 0xff)
277			break;
278		if (id == cap)
279			return pos;
280		pos += PCI_CAP_LIST_NEXT;
281	}
282
283	return 0;
284}
285
286static int pseries_eeh_find_ecap(struct pci_dn *pdn, int cap)
287{
288	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
289	u32 header;
290	int pos = 256;
291	int ttl = (4096 - 256) / 8;
292
293	if (!edev || !edev->pcie_cap)
294		return 0;
295	if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
296		return 0;
297	else if (!header)
298		return 0;
299
300	while (ttl-- > 0) {
301		if (PCI_EXT_CAP_ID(header) == cap && pos)
302			return pos;
303
304		pos = PCI_EXT_CAP_NEXT(header);
305		if (pos < 256)
306			break;
307
308		if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
309			break;
310	}
311
312	return 0;
313}
314
315/**
316 * pseries_eeh_pe_get_parent - Retrieve the parent PE
317 * @edev: EEH device
318 *
319 * The whole PEs existing in the system are organized as hierarchy
320 * tree. The function is used to retrieve the parent PE according
321 * to the parent EEH device.
322 */
323static struct eeh_pe *pseries_eeh_pe_get_parent(struct eeh_dev *edev)
324{
325	struct eeh_dev *parent;
326	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
327
328	/*
329	 * It might have the case for the indirect parent
330	 * EEH device already having associated PE, but
331	 * the direct parent EEH device doesn't have yet.
332	 */
333	if (edev->physfn)
334		pdn = pci_get_pdn(edev->physfn);
335	else
336		pdn = pdn ? pdn->parent : NULL;
337	while (pdn) {
338		/* We're poking out of PCI territory */
339		parent = pdn_to_eeh_dev(pdn);
340		if (!parent)
341			return NULL;
342
343		if (parent->pe)
344			return parent->pe;
345
346		pdn = pdn->parent;
347	}
348
349	return NULL;
350}
351
352/**
353 * pseries_eeh_init_edev - initialise the eeh_dev and eeh_pe for a pci_dn
354 *
355 * @pdn: PCI device node
356 *
357 * When we discover a new PCI device via the device-tree we create a
358 * corresponding pci_dn and we allocate, but don't initialise, an eeh_dev.
359 * This function takes care of the initialisation and inserts the eeh_dev
360 * into the correct eeh_pe. If no eeh_pe exists we'll allocate one.
361 */
362void pseries_eeh_init_edev(struct pci_dn *pdn)
363{
364	struct eeh_pe pe, *parent;
365	struct eeh_dev *edev;
366	u32 pcie_flags;
367	int ret;
368
369	if (WARN_ON_ONCE(!eeh_has_flag(EEH_PROBE_MODE_DEVTREE)))
370		return;
371
372	/*
373	 * Find the eeh_dev for this pdn. The storage for the eeh_dev was
374	 * allocated at the same time as the pci_dn.
375	 *
376	 * XXX: We should probably re-visit that.
377	 */
378	edev = pdn_to_eeh_dev(pdn);
379	if (!edev)
380		return;
381
382	/*
383	 * If ->pe is set then we've already probed this device. We hit
384	 * this path when a pci_dev is removed and rescanned while recovering
385	 * a PE (i.e. for devices where the driver doesn't support error
386	 * recovery).
387	 */
388	if (edev->pe)
389		return;
390
391	/* Check class/vendor/device IDs */
392	if (!pdn->vendor_id || !pdn->device_id || !pdn->class_code)
393		return;
394
395	/* Skip for PCI-ISA bridge */
396        if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA)
397		return;
398
399	eeh_edev_dbg(edev, "Probing device\n");
400
401	/*
402	 * Update class code and mode of eeh device. We need
403	 * correctly reflects that current device is root port
404	 * or PCIe switch downstream port.
405	 */
406	edev->pcix_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
407	edev->pcie_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
408	edev->aer_cap = pseries_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
409	edev->mode &= 0xFFFFFF00;
410	if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
411		edev->mode |= EEH_DEV_BRIDGE;
412		if (edev->pcie_cap) {
413			rtas_read_config(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
414					 2, &pcie_flags);
415			pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
416			if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
417				edev->mode |= EEH_DEV_ROOT_PORT;
418			else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
419				edev->mode |= EEH_DEV_DS_PORT;
420		}
421	}
422
423	/* first up, find the pe_config_addr for the PE containing the device */
424	ret = pseries_eeh_get_pe_config_addr(pdn);
425	if (ret < 0) {
426		eeh_edev_dbg(edev, "Unable to find pe_config_addr\n");
427		goto err;
428	}
429
430	/* Try enable EEH on the fake PE */
431	memset(&pe, 0, sizeof(struct eeh_pe));
432	pe.phb = pdn->phb;
433	pe.addr = ret;
434
435	eeh_edev_dbg(edev, "Enabling EEH on device\n");
436	ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE);
437	if (ret) {
438		eeh_edev_dbg(edev, "EEH failed to enable on device (code %d)\n", ret);
439		goto err;
440	}
441
442	edev->pe_config_addr = pe.addr;
443
444	eeh_add_flag(EEH_ENABLED);
445
446	parent = pseries_eeh_pe_get_parent(edev);
447	eeh_pe_tree_insert(edev, parent);
448	eeh_save_bars(edev);
449	eeh_edev_dbg(edev, "EEH enabled for device");
450
451	return;
452
453err:
454	eeh_edev_dbg(edev, "EEH is unsupported on device (code = %d)\n", ret);
455}
456
457static struct eeh_dev *pseries_eeh_probe(struct pci_dev *pdev)
458{
459	struct eeh_dev *edev;
460	struct pci_dn *pdn;
461
462	pdn = pci_get_pdn_by_devfn(pdev->bus, pdev->devfn);
463	if (!pdn)
464		return NULL;
465
466	/*
467	 * If the system supports EEH on this device then the eeh_dev was
468	 * configured and inserted into a PE in pseries_eeh_init_edev()
469	 */
470	edev = pdn_to_eeh_dev(pdn);
471	if (!edev || !edev->pe)
472		return NULL;
473
474	return edev;
475}
476
477/**
478 * pseries_eeh_init_edev_recursive - Enable EEH for the indicated device
479 * @pdn: PCI device node
480 *
481 * This routine must be used to perform EEH initialization for the
482 * indicated PCI device that was added after system boot (e.g.
483 * hotplug, dlpar).
484 */
485void pseries_eeh_init_edev_recursive(struct pci_dn *pdn)
486{
487	struct pci_dn *n;
488
489	if (!pdn)
490		return;
491
492	list_for_each_entry(n, &pdn->child_list, list)
493		pseries_eeh_init_edev_recursive(n);
494
495	pseries_eeh_init_edev(pdn);
496}
497EXPORT_SYMBOL_GPL(pseries_eeh_init_edev_recursive);
498
499/**
500 * pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable
501 * @pe: EEH PE
502 * @option: operation to be issued
503 *
504 * The function is used to control the EEH functionality globally.
505 * Currently, following options are support according to PAPR:
506 * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
507 */
508static int pseries_eeh_set_option(struct eeh_pe *pe, int option)
509{
510	int ret = 0;
511
512	/*
513	 * When we're enabling or disabling EEH functioality on
514	 * the particular PE, the PE config address is possibly
515	 * unavailable. Therefore, we have to figure it out from
516	 * the FDT node.
517	 */
518	switch (option) {
519	case EEH_OPT_DISABLE:
520	case EEH_OPT_ENABLE:
521	case EEH_OPT_THAW_MMIO:
522	case EEH_OPT_THAW_DMA:
523		break;
524	case EEH_OPT_FREEZE_PE:
525		/* Not support */
526		return 0;
527	default:
528		pr_err("%s: Invalid option %d\n", __func__, option);
529		return -EINVAL;
530	}
531
532	ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
533			pe->addr, BUID_HI(pe->phb->buid),
534			BUID_LO(pe->phb->buid), option);
535
536	return ret;
537}
538
539/**
540 * pseries_eeh_get_state - Retrieve PE state
541 * @pe: EEH PE
542 * @delay: suggested time to wait if state is unavailable
543 *
544 * Retrieve the state of the specified PE. On RTAS compliant
545 * pseries platform, there already has one dedicated RTAS function
546 * for the purpose. It's notable that the associated PE config address
547 * might be ready when calling the function. Therefore, endeavour to
548 * use the PE config address if possible. Further more, there're 2
549 * RTAS calls for the purpose, we need to try the new one and back
550 * to the old one if the new one couldn't work properly.
551 */
552static int pseries_eeh_get_state(struct eeh_pe *pe, int *delay)
553{
554	int ret;
555	int rets[4];
556	int result;
557
558	if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
559		ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets,
560				pe->addr, BUID_HI(pe->phb->buid),
561				BUID_LO(pe->phb->buid));
562	} else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) {
563		/* Fake PE unavailable info */
564		rets[2] = 0;
565		ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets,
566				pe->addr, BUID_HI(pe->phb->buid),
567				BUID_LO(pe->phb->buid));
568	} else {
569		return EEH_STATE_NOT_SUPPORT;
570	}
571
572	if (ret)
573		return ret;
574
575	/* Parse the result out */
576	if (!rets[1])
577		return EEH_STATE_NOT_SUPPORT;
578
579	switch(rets[0]) {
580	case 0:
581		result = EEH_STATE_MMIO_ACTIVE |
582			 EEH_STATE_DMA_ACTIVE;
583		break;
584	case 1:
585		result = EEH_STATE_RESET_ACTIVE |
586			 EEH_STATE_MMIO_ACTIVE  |
587			 EEH_STATE_DMA_ACTIVE;
588		break;
589	case 2:
590		result = 0;
591		break;
592	case 4:
593		result = EEH_STATE_MMIO_ENABLED;
594		break;
595	case 5:
596		if (rets[2]) {
597			if (delay)
598				*delay = rets[2];
599			result = EEH_STATE_UNAVAILABLE;
600		} else {
601			result = EEH_STATE_NOT_SUPPORT;
602		}
603		break;
604	default:
605		result = EEH_STATE_NOT_SUPPORT;
606	}
607
608	return result;
609}
610
611/**
612 * pseries_eeh_reset - Reset the specified PE
613 * @pe: EEH PE
614 * @option: reset option
615 *
616 * Reset the specified PE
617 */
618static int pseries_eeh_reset(struct eeh_pe *pe, int option)
619{
620	return pseries_eeh_phb_reset(pe->phb, pe->addr, option);
621}
622
623/**
624 * pseries_eeh_get_log - Retrieve error log
625 * @pe: EEH PE
626 * @severity: temporary or permanent error log
627 * @drv_log: driver log to be combined with retrieved error log
628 * @len: length of driver log
629 *
630 * Retrieve the temporary or permanent error from the PE.
631 * Actually, the error will be retrieved through the dedicated
632 * RTAS call.
633 */
634static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len)
635{
636	unsigned long flags;
637	int ret;
638
639	spin_lock_irqsave(&slot_errbuf_lock, flags);
640	memset(slot_errbuf, 0, eeh_error_buf_size);
641
642	ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, pe->addr,
643			BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid),
644			virt_to_phys(drv_log), len,
645			virt_to_phys(slot_errbuf), eeh_error_buf_size,
646			severity);
647	if (!ret)
648		log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
649	spin_unlock_irqrestore(&slot_errbuf_lock, flags);
650
651	return ret;
652}
653
654/**
655 * pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE
656 * @pe: EEH PE
657 *
658 */
659static int pseries_eeh_configure_bridge(struct eeh_pe *pe)
660{
661	return pseries_eeh_phb_configure_bridge(pe->phb, pe->addr);
662}
663
664/**
665 * pseries_eeh_read_config - Read PCI config space
666 * @edev: EEH device handle
667 * @where: PCI config space offset
668 * @size: size to read
669 * @val: return value
670 *
671 * Read config space from the speicifed device
672 */
673static int pseries_eeh_read_config(struct eeh_dev *edev, int where, int size, u32 *val)
674{
675	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
676
677	return rtas_read_config(pdn, where, size, val);
678}
679
680/**
681 * pseries_eeh_write_config - Write PCI config space
682 * @edev: EEH device handle
683 * @where: PCI config space offset
684 * @size: size to write
685 * @val: value to be written
686 *
687 * Write config space to the specified device
688 */
689static int pseries_eeh_write_config(struct eeh_dev *edev, int where, int size, u32 val)
690{
691	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
692
693	return rtas_write_config(pdn, where, size, val);
694}
695
696#ifdef CONFIG_PCI_IOV
697int pseries_send_allow_unfreeze(struct pci_dn *pdn,
698				u16 *vf_pe_array, int cur_vfs)
699{
700	int rc;
701	int ibm_allow_unfreeze = rtas_token("ibm,open-sriov-allow-unfreeze");
702	unsigned long buid, addr;
703
704	addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
705	buid = pdn->phb->buid;
706	spin_lock(&rtas_data_buf_lock);
707	memcpy(rtas_data_buf, vf_pe_array, RTAS_DATA_BUF_SIZE);
708	rc = rtas_call(ibm_allow_unfreeze, 5, 1, NULL,
709		       addr,
710		       BUID_HI(buid),
711		       BUID_LO(buid),
712		       rtas_data_buf, cur_vfs * sizeof(u16));
713	spin_unlock(&rtas_data_buf_lock);
714	if (rc)
715		pr_warn("%s: Failed to allow unfreeze for PHB#%x-PE#%lx, rc=%x\n",
716			__func__,
717			pdn->phb->global_number, addr, rc);
718	return rc;
719}
720
721static int pseries_call_allow_unfreeze(struct eeh_dev *edev)
722{
723	int cur_vfs = 0, rc = 0, vf_index, bus, devfn, vf_pe_num;
724	struct pci_dn *pdn, *tmp, *parent, *physfn_pdn;
725	u16 *vf_pe_array;
726
727	vf_pe_array = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL);
728	if (!vf_pe_array)
729		return -ENOMEM;
730	if (pci_num_vf(edev->physfn ? edev->physfn : edev->pdev)) {
731		if (edev->pdev->is_physfn) {
732			cur_vfs = pci_num_vf(edev->pdev);
733			pdn = eeh_dev_to_pdn(edev);
734			parent = pdn->parent;
735			for (vf_index = 0; vf_index < cur_vfs; vf_index++)
736				vf_pe_array[vf_index] =
737					cpu_to_be16(pdn->pe_num_map[vf_index]);
738			rc = pseries_send_allow_unfreeze(pdn, vf_pe_array,
739							 cur_vfs);
740			pdn->last_allow_rc = rc;
741			for (vf_index = 0; vf_index < cur_vfs; vf_index++) {
742				list_for_each_entry_safe(pdn, tmp,
743							 &parent->child_list,
744							 list) {
745					bus = pci_iov_virtfn_bus(edev->pdev,
746								 vf_index);
747					devfn = pci_iov_virtfn_devfn(edev->pdev,
748								     vf_index);
749					if (pdn->busno != bus ||
750					    pdn->devfn != devfn)
751						continue;
752					pdn->last_allow_rc = rc;
753				}
754			}
755		} else {
756			pdn = pci_get_pdn(edev->pdev);
757			physfn_pdn = pci_get_pdn(edev->physfn);
758
759			vf_pe_num = physfn_pdn->pe_num_map[edev->vf_index];
760			vf_pe_array[0] = cpu_to_be16(vf_pe_num);
761			rc = pseries_send_allow_unfreeze(physfn_pdn,
762							 vf_pe_array, 1);
763			pdn->last_allow_rc = rc;
764		}
765	}
766
767	kfree(vf_pe_array);
768	return rc;
769}
770
771static int pseries_notify_resume(struct eeh_dev *edev)
772{
773	if (!edev)
774		return -EEXIST;
775
776	if (rtas_token("ibm,open-sriov-allow-unfreeze") == RTAS_UNKNOWN_SERVICE)
777		return -EINVAL;
778
779	if (edev->pdev->is_physfn || edev->pdev->is_virtfn)
780		return pseries_call_allow_unfreeze(edev);
781
782	return 0;
783}
784#endif
785
786static struct eeh_ops pseries_eeh_ops = {
787	.name			= "pseries",
788	.probe			= pseries_eeh_probe,
789	.set_option		= pseries_eeh_set_option,
790	.get_state		= pseries_eeh_get_state,
791	.reset			= pseries_eeh_reset,
792	.get_log		= pseries_eeh_get_log,
793	.configure_bridge       = pseries_eeh_configure_bridge,
794	.err_inject		= NULL,
795	.read_config		= pseries_eeh_read_config,
796	.write_config		= pseries_eeh_write_config,
797	.next_error		= NULL,
798	.restore_config		= NULL, /* NB: configure_bridge() does this */
799#ifdef CONFIG_PCI_IOV
800	.notify_resume		= pseries_notify_resume
801#endif
802};
803
804/**
805 * eeh_pseries_init - Register platform dependent EEH operations
806 *
807 * EEH initialization on pseries platform. This function should be
808 * called before any EEH related functions.
809 */
810static int __init eeh_pseries_init(void)
811{
812	struct pci_controller *phb;
813	struct pci_dn *pdn;
814	int ret, config_addr;
815
816	/* figure out EEH RTAS function call tokens */
817	ibm_set_eeh_option		= rtas_token("ibm,set-eeh-option");
818	ibm_set_slot_reset		= rtas_token("ibm,set-slot-reset");
819	ibm_read_slot_reset_state2	= rtas_token("ibm,read-slot-reset-state2");
820	ibm_read_slot_reset_state	= rtas_token("ibm,read-slot-reset-state");
821	ibm_slot_error_detail		= rtas_token("ibm,slot-error-detail");
822	ibm_get_config_addr_info2	= rtas_token("ibm,get-config-addr-info2");
823	ibm_get_config_addr_info	= rtas_token("ibm,get-config-addr-info");
824	ibm_configure_pe		= rtas_token("ibm,configure-pe");
825
826	/*
827	 * ibm,configure-pe and ibm,configure-bridge have the same semantics,
828	 * however ibm,configure-pe can be faster.  If we can't find
829	 * ibm,configure-pe then fall back to using ibm,configure-bridge.
830	 */
831	if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE)
832		ibm_configure_pe	= rtas_token("ibm,configure-bridge");
833
834	/*
835	 * Necessary sanity check. We needn't check "get-config-addr-info"
836	 * and its variant since the old firmware probably support address
837	 * of domain/bus/slot/function for EEH RTAS operations.
838	 */
839	if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE		||
840	    ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE		||
841	    (ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE &&
842	     ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE)	||
843	    ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE	||
844	    ibm_configure_pe == RTAS_UNKNOWN_SERVICE) {
845		pr_info("EEH functionality not supported\n");
846		return -EINVAL;
847	}
848
849	/* Initialize error log size */
850	eeh_error_buf_size = rtas_get_error_log_max();
851
852	/* Set EEH probe mode */
853	eeh_add_flag(EEH_PROBE_MODE_DEVTREE | EEH_ENABLE_IO_FOR_LOG);
854
855	/* Set EEH machine dependent code */
856	ppc_md.pcibios_bus_add_device = pseries_pcibios_bus_add_device;
857
858	if (is_kdump_kernel() || reset_devices) {
859		pr_info("Issue PHB reset ...\n");
860		list_for_each_entry(phb, &hose_list, list_node) {
861			// Skip if the slot is empty
862			if (list_empty(&PCI_DN(phb->dn)->child_list))
863				continue;
864
865			pdn = list_first_entry(&PCI_DN(phb->dn)->child_list, struct pci_dn, list);
866			config_addr = pseries_eeh_get_pe_config_addr(pdn);
867
868			/* invalid PE config addr */
869			if (config_addr < 0)
870				continue;
871
872			pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_FUNDAMENTAL);
873			pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_DEACTIVATE);
874			pseries_eeh_phb_configure_bridge(phb, config_addr);
875		}
876	}
877
878	ret = eeh_init(&pseries_eeh_ops);
879	if (!ret)
880		pr_info("EEH: pSeries platform initialized\n");
881	else
882		pr_info("EEH: pSeries platform initialization failure (%d)\n",
883			ret);
884	return ret;
885}
886machine_arch_initcall(pseries, eeh_pseries_init);
887