1// SPDX-License-Identifier: GPL-2.0-or-later
2
3#include <linux/kernel.h>
4#include <linux/ioport.h>
5#include <linux/bitmap.h>
6#include <linux/pci.h>
7
8#include <asm/opal.h>
9
10#include "pci.h"
11
12/* for pci_dev_is_added() */
13#include "../../../../drivers/pci/pci.h"
14
15/*
16 * The majority of the complexity in supporting SR-IOV on PowerNV comes from
17 * the need to put the MMIO space for each VF into a separate PE. Internally
18 * the PHB maps MMIO addresses to a specific PE using the "Memory BAR Table".
19 * The MBT historically only applied to the 64bit MMIO window of the PHB
20 * so it's common to see it referred to as the "M64BT".
21 *
22 * An MBT entry stores the mapped range as an <base>,<mask> pair. This forces
23 * the address range that we want to map to be power-of-two sized and aligned.
24 * For conventional PCI devices this isn't really an issue since PCI device BARs
25 * have the same requirement.
26 *
27 * For a SR-IOV BAR things are a little more awkward since size and alignment
28 * are not coupled. The alignment is set based on the the per-VF BAR size, but
29 * the total BAR area is: number-of-vfs * per-vf-size. The number of VFs
30 * isn't necessarily a power of two, so neither is the total size. To fix that
31 * we need to finesse (read: hack) the Linux BAR allocator so that it will
32 * allocate the SR-IOV BARs in a way that lets us map them using the MBT.
33 *
34 * The changes to size and alignment that we need to do depend on the "mode"
35 * of MBT entry that we use. We only support SR-IOV on PHB3 (IODA2) and above,
36 * so as a baseline we can assume that we have the following BAR modes
37 * available:
38 *
39 *   NB: $PE_COUNT is the number of PEs that the PHB supports.
40 *
41 * a) A segmented BAR that splits the mapped range into $PE_COUNT equally sized
42 *    segments. The n'th segment is mapped to the n'th PE.
43 * b) An un-segmented BAR that maps the whole address range to a specific PE.
44 *
45 *
46 * We prefer to use mode a) since it only requires one MBT entry per SR-IOV BAR
47 * For comparison b) requires one entry per-VF per-BAR, or:
48 * (num-vfs * num-sriov-bars) in total. To use a) we need the size of each segment
49 * to equal the size of the per-VF BAR area. So:
50 *
51 *	new_size = per-vf-size * number-of-PEs
52 *
53 * The alignment for the SR-IOV BAR also needs to be changed from per-vf-size
54 * to "new_size", calculated above. Implementing this is a convoluted process
55 * which requires several hooks in the PCI core:
56 *
57 * 1. In pcibios_add_device() we call pnv_pci_ioda_fixup_iov().
58 *
59 *    At this point the device has been probed and the device's BARs are sized,
60 *    but no resource allocations have been done. The SR-IOV BARs are sized
61 *    based on the maximum number of VFs supported by the device and we need
62 *    to increase that to new_size.
63 *
64 * 2. Later, when Linux actually assigns resources it tries to make the resource
65 *    allocations for each PCI bus as compact as possible. As a part of that it
66 *    sorts the BARs on a bus by their required alignment, which is calculated
67 *    using pci_resource_alignment().
68 *
69 *    For IOV resources this goes:
70 *    pci_resource_alignment()
71 *        pci_sriov_resource_alignment()
72 *            pcibios_sriov_resource_alignment()
73 *                pnv_pci_iov_resource_alignment()
74 *
75 *    Our hook overrides the default alignment, equal to the per-vf-size, with
76 *    new_size computed above.
77 *
78 * 3. When userspace enables VFs for a device:
79 *
80 *    sriov_enable()
81 *       pcibios_sriov_enable()
82 *           pnv_pcibios_sriov_enable()
83 *
84 *    This is where we actually allocate PE numbers for each VF and setup the
85 *    MBT mapping for each SR-IOV BAR. In steps 1) and 2) we setup an "arena"
86 *    where each MBT segment is equal in size to the VF BAR so we can shift
87 *    around the actual SR-IOV BAR location within this arena. We need this
88 *    ability because the PE space is shared by all devices on the same PHB.
89 *    When using mode a) described above segment 0 in maps to PE#0 which might
90 *    be already being used by another device on the PHB.
91 *
92 *    As a result we need allocate a contigious range of PE numbers, then shift
93 *    the address programmed into the SR-IOV BAR of the PF so that the address
94 *    of VF0 matches up with the segment corresponding to the first allocated
95 *    PE number. This is handled in pnv_pci_vf_resource_shift().
96 *
97 *    Once all that is done we return to the PCI core which then enables VFs,
98 *    scans them and creates pci_devs for each. The init process for a VF is
99 *    largely the same as a normal device, but the VF is inserted into the IODA
100 *    PE that we allocated for it rather than the PE associated with the bus.
101 *
102 * 4. When userspace disables VFs we unwind the above in
103 *    pnv_pcibios_sriov_disable(). Fortunately this is relatively simple since
104 *    we don't need to validate anything, just tear down the mappings and
105 *    move SR-IOV resource back to its "proper" location.
106 *
107 * That's how mode a) works. In theory mode b) (single PE mapping) is less work
108 * since we can map each individual VF with a separate BAR. However, there's a
109 * few limitations:
110 *
111 * 1) For IODA2 mode b) has a minimum alignment requirement of 32MB. This makes
112 *    it only usable for devices with very large per-VF BARs. Such devices are
113 *    similar to Big Foot. They definitely exist, but I've never seen one.
114 *
115 * 2) The number of MBT entries that we have is limited. PHB3 and PHB4 only
116 *    16 total and some are needed for. Most SR-IOV capable network cards can support
117 *    more than 16 VFs on each port.
118 *
119 * We use b) when using a) would use more than 1/4 of the entire 64 bit MMIO
120 * window of the PHB.
121 *
122 *
123 *
124 * PHB4 (IODA3) added a few new features that would be useful for SR-IOV. It
125 * allowed the MBT to map 32bit MMIO space in addition to 64bit which allows
126 * us to support SR-IOV BARs in the 32bit MMIO window. This is useful since
127 * the Linux BAR allocation will place any BAR marked as non-prefetchable into
128 * the non-prefetchable bridge window, which is 32bit only. It also added two
129 * new modes:
130 *
131 * c) A segmented BAR similar to a), but each segment can be individually
132 *    mapped to any PE. This is matches how the 32bit MMIO window worked on
133 *    IODA1&2.
134 *
135 * d) A segmented BAR with 8, 64, or 128 segments. This works similarly to a),
136 *    but with fewer segments and configurable base PE.
137 *
138 *    i.e. The n'th segment maps to the (n + base)'th PE.
139 *
140 *    The base PE is also required to be a multiple of the window size.
141 *
142 * Unfortunately, the OPAL API doesn't currently (as of skiboot v6.6) allow us
143 * to exploit any of the IODA3 features.
144 */
145
146static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
147{
148	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
149	struct resource *res;
150	int i;
151	resource_size_t vf_bar_sz;
152	struct pnv_iov_data *iov;
153	int mul;
154
155	iov = kzalloc(sizeof(*iov), GFP_KERNEL);
156	if (!iov)
157		goto disable_iov;
158	pdev->dev.archdata.iov_data = iov;
159	mul = phb->ioda.total_pe_num;
160
161	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
162		res = &pdev->resource[i + PCI_IOV_RESOURCES];
163		if (!res->flags || res->parent)
164			continue;
165		if (!pnv_pci_is_m64_flags(res->flags)) {
166			dev_warn(&pdev->dev, "Don't support SR-IOV with non M64 VF BAR%d: %pR. \n",
167				 i, res);
168			goto disable_iov;
169		}
170
171		vf_bar_sz = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
172
173		/*
174		 * Generally, one segmented M64 BAR maps one IOV BAR. However,
175		 * if a VF BAR is too large we end up wasting a lot of space.
176		 * If each VF needs more than 1/4 of the default m64 segment
177		 * then each VF BAR should be mapped in single-PE mode to reduce
178		 * the amount of space required. This does however limit the
179		 * number of VFs we can support.
180		 *
181		 * The 1/4 limit is arbitrary and can be tweaked.
182		 */
183		if (vf_bar_sz > (phb->ioda.m64_segsize >> 2)) {
184			/*
185			 * On PHB3, the minimum size alignment of M64 BAR in
186			 * single mode is 32MB. If this VF BAR is smaller than
187			 * 32MB, but still too large for a segmented window
188			 * then we can't map it and need to disable SR-IOV for
189			 * this device.
190			 */
191			if (vf_bar_sz < SZ_32M) {
192				pci_err(pdev, "VF BAR%d: %pR can't be mapped in single PE mode\n",
193					i, res);
194				goto disable_iov;
195			}
196
197			iov->m64_single_mode[i] = true;
198			continue;
199		}
200
201		/*
202		 * This BAR can be mapped with one segmented window, so adjust
203		 * te resource size to accommodate.
204		 */
205		pci_dbg(pdev, " Fixing VF BAR%d: %pR to\n", i, res);
206		res->end = res->start + vf_bar_sz * mul - 1;
207		pci_dbg(pdev, "                       %pR\n", res);
208
209		pci_info(pdev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
210			 i, res, mul);
211
212		iov->need_shift = true;
213	}
214
215	return;
216
217disable_iov:
218	/* Save ourselves some MMIO space by disabling the unusable BARs */
219	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
220		res = &pdev->resource[i + PCI_IOV_RESOURCES];
221		res->flags = 0;
222		res->end = res->start - 1;
223	}
224
225	pdev->dev.archdata.iov_data = NULL;
226	kfree(iov);
227}
228
229void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev)
230{
231	if (WARN_ON(pci_dev_is_added(pdev)))
232		return;
233
234	if (pdev->is_virtfn) {
235		struct pnv_ioda_pe *pe = pnv_ioda_get_pe(pdev);
236
237		/*
238		 * VF PEs are single-device PEs so their pdev pointer needs to
239		 * be set. The pdev doesn't exist when the PE is allocated (in
240		 * (pcibios_sriov_enable()) so we fix it up here.
241		 */
242		pe->pdev = pdev;
243		WARN_ON(!(pe->flags & PNV_IODA_PE_VF));
244	} else if (pdev->is_physfn) {
245		/*
246		 * For PFs adjust their allocated IOV resources to match what
247		 * the PHB can support using it's M64 BAR table.
248		 */
249		pnv_pci_ioda_fixup_iov_resources(pdev);
250	}
251}
252
253resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
254						      int resno)
255{
256	resource_size_t align = pci_iov_resource_size(pdev, resno);
257	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
258	struct pnv_iov_data *iov = pnv_iov_get(pdev);
259
260	/*
261	 * iov can be null if we have an SR-IOV device with IOV BAR that can't
262	 * be placed in the m64 space (i.e. The BAR is 32bit or non-prefetch).
263	 * In that case we don't allow VFs to be enabled since one of their
264	 * BARs would not be placed in the correct PE.
265	 */
266	if (!iov)
267		return align;
268
269	/*
270	 * If we're using single mode then we can just use the native VF BAR
271	 * alignment. We validated that it's possible to use a single PE
272	 * window above when we did the fixup.
273	 */
274	if (iov->m64_single_mode[resno - PCI_IOV_RESOURCES])
275		return align;
276
277	/*
278	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
279	 * SR-IOV. While from hardware perspective, the range mapped by M64
280	 * BAR should be size aligned.
281	 *
282	 * This function returns the total IOV BAR size if M64 BAR is in
283	 * Shared PE mode or just VF BAR size if not.
284	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
285	 * M64 segment size if IOV BAR size is less.
286	 */
287	return phb->ioda.total_pe_num * align;
288}
289
290static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
291{
292	struct pnv_iov_data   *iov;
293	struct pnv_phb        *phb;
294	int window_id;
295
296	phb = pci_bus_to_pnvhb(pdev->bus);
297	iov = pnv_iov_get(pdev);
298
299	for_each_set_bit(window_id, iov->used_m64_bar_mask, MAX_M64_BARS) {
300		opal_pci_phb_mmio_enable(phb->opal_id,
301					 OPAL_M64_WINDOW_TYPE,
302					 window_id,
303					 0);
304
305		clear_bit(window_id, &phb->ioda.m64_bar_alloc);
306	}
307
308	return 0;
309}
310
311
312/*
313 * PHB3 and beyond support segmented windows. The window's address range
314 * is subdivided into phb->ioda.total_pe_num segments and there's a 1-1
315 * mapping between PEs and segments.
316 */
317static int64_t pnv_ioda_map_m64_segmented(struct pnv_phb *phb,
318					  int window_id,
319					  resource_size_t start,
320					  resource_size_t size)
321{
322	int64_t rc;
323
324	rc = opal_pci_set_phb_mem_window(phb->opal_id,
325					 OPAL_M64_WINDOW_TYPE,
326					 window_id,
327					 start,
328					 0, /* unused */
329					 size);
330	if (rc)
331		goto out;
332
333	rc = opal_pci_phb_mmio_enable(phb->opal_id,
334				      OPAL_M64_WINDOW_TYPE,
335				      window_id,
336				      OPAL_ENABLE_M64_SPLIT);
337out:
338	if (rc)
339		pr_err("Failed to map M64 window #%d: %lld\n", window_id, rc);
340
341	return rc;
342}
343
344static int64_t pnv_ioda_map_m64_single(struct pnv_phb *phb,
345				       int pe_num,
346				       int window_id,
347				       resource_size_t start,
348				       resource_size_t size)
349{
350	int64_t rc;
351
352	/*
353	 * The API for setting up m64 mmio windows seems to have been designed
354	 * with P7-IOC in mind. For that chip each M64 BAR (window) had a fixed
355	 * split of 8 equally sized segments each of which could individually
356	 * assigned to a PE.
357	 *
358	 * The problem with this is that the API doesn't have any way to
359	 * communicate the number of segments we want on a BAR. This wasn't
360	 * a problem for p7-ioc since you didn't have a choice, but the
361	 * single PE windows added in PHB3 don't map cleanly to this API.
362	 *
363	 * As a result we've got this slightly awkward process where we
364	 * call opal_pci_map_pe_mmio_window() to put the single in single
365	 * PE mode, and set the PE for the window before setting the address
366	 * bounds. We need to do it this way because the single PE windows
367	 * for PHB3 have different alignment requirements on PHB3.
368	 */
369	rc = opal_pci_map_pe_mmio_window(phb->opal_id,
370					 pe_num,
371					 OPAL_M64_WINDOW_TYPE,
372					 window_id,
373					 0);
374	if (rc)
375		goto out;
376
377	/*
378	 * NB: In single PE mode the window needs to be aligned to 32MB
379	 */
380	rc = opal_pci_set_phb_mem_window(phb->opal_id,
381					 OPAL_M64_WINDOW_TYPE,
382					 window_id,
383					 start,
384					 0, /* ignored by FW, m64 is 1-1 */
385					 size);
386	if (rc)
387		goto out;
388
389	/*
390	 * Now actually enable it. We specified the BAR should be in "non-split"
391	 * mode so FW will validate that the BAR is in single PE mode.
392	 */
393	rc = opal_pci_phb_mmio_enable(phb->opal_id,
394				      OPAL_M64_WINDOW_TYPE,
395				      window_id,
396				      OPAL_ENABLE_M64_NON_SPLIT);
397out:
398	if (rc)
399		pr_err("Error mapping single PE BAR\n");
400
401	return rc;
402}
403
404static int pnv_pci_alloc_m64_bar(struct pnv_phb *phb, struct pnv_iov_data *iov)
405{
406	int win;
407
408	do {
409		win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
410				phb->ioda.m64_bar_idx + 1, 0);
411
412		if (win >= phb->ioda.m64_bar_idx + 1)
413			return -1;
414	} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
415
416	set_bit(win, iov->used_m64_bar_mask);
417
418	return win;
419}
420
421static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
422{
423	struct pnv_iov_data   *iov;
424	struct pnv_phb        *phb;
425	int                    win;
426	struct resource       *res;
427	int                    i, j;
428	int64_t                rc;
429	resource_size_t        size, start;
430	int                    base_pe_num;
431
432	phb = pci_bus_to_pnvhb(pdev->bus);
433	iov = pnv_iov_get(pdev);
434
435	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
436		res = &pdev->resource[i + PCI_IOV_RESOURCES];
437		if (!res->flags || !res->parent)
438			continue;
439
440		/* don't need single mode? map everything in one go! */
441		if (!iov->m64_single_mode[i]) {
442			win = pnv_pci_alloc_m64_bar(phb, iov);
443			if (win < 0)
444				goto m64_failed;
445
446			size = resource_size(res);
447			start = res->start;
448
449			rc = pnv_ioda_map_m64_segmented(phb, win, start, size);
450			if (rc)
451				goto m64_failed;
452
453			continue;
454		}
455
456		/* otherwise map each VF with single PE BARs */
457		size = pci_iov_resource_size(pdev, PCI_IOV_RESOURCES + i);
458		base_pe_num = iov->vf_pe_arr[0].pe_number;
459
460		for (j = 0; j < num_vfs; j++) {
461			win = pnv_pci_alloc_m64_bar(phb, iov);
462			if (win < 0)
463				goto m64_failed;
464
465			start = res->start + size * j;
466			rc = pnv_ioda_map_m64_single(phb, win,
467						     base_pe_num + j,
468						     start,
469						     size);
470			if (rc)
471				goto m64_failed;
472		}
473	}
474	return 0;
475
476m64_failed:
477	pnv_pci_vf_release_m64(pdev, num_vfs);
478	return -EBUSY;
479}
480
481static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
482{
483	struct pnv_phb        *phb;
484	struct pnv_ioda_pe    *pe, *pe_n;
485
486	phb = pci_bus_to_pnvhb(pdev->bus);
487
488	if (!pdev->is_physfn)
489		return;
490
491	/* FIXME: Use pnv_ioda_release_pe()? */
492	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
493		if (pe->parent_dev != pdev)
494			continue;
495
496		pnv_pci_ioda2_release_pe_dma(pe);
497
498		/* Remove from list */
499		mutex_lock(&phb->ioda.pe_list_mutex);
500		list_del(&pe->list);
501		mutex_unlock(&phb->ioda.pe_list_mutex);
502
503		pnv_ioda_deconfigure_pe(phb, pe);
504
505		pnv_ioda_free_pe(pe);
506	}
507}
508
509static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
510{
511	struct resource *res, res2;
512	struct pnv_iov_data *iov;
513	resource_size_t size;
514	u16 num_vfs;
515	int i;
516
517	if (!dev->is_physfn)
518		return -EINVAL;
519	iov = pnv_iov_get(dev);
520
521	/*
522	 * "offset" is in VFs.  The M64 windows are sized so that when they
523	 * are segmented, each segment is the same size as the IOV BAR.
524	 * Each segment is in a separate PE, and the high order bits of the
525	 * address are the PE number.  Therefore, each VF's BAR is in a
526	 * separate PE, and changing the IOV BAR start address changes the
527	 * range of PEs the VFs are in.
528	 */
529	num_vfs = iov->num_vfs;
530	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
531		res = &dev->resource[i + PCI_IOV_RESOURCES];
532		if (!res->flags || !res->parent)
533			continue;
534		if (iov->m64_single_mode[i])
535			continue;
536
537		/*
538		 * The actual IOV BAR range is determined by the start address
539		 * and the actual size for num_vfs VFs BAR.  This check is to
540		 * make sure that after shifting, the range will not overlap
541		 * with another device.
542		 */
543		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
544		res2.flags = res->flags;
545		res2.start = res->start + (size * offset);
546		res2.end = res2.start + (size * num_vfs) - 1;
547
548		if (res2.end > res->end) {
549			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
550				i, &res2, res, num_vfs, offset);
551			return -EBUSY;
552		}
553	}
554
555	/*
556	 * Since M64 BAR shares segments among all possible 256 PEs,
557	 * we have to shift the beginning of PF IOV BAR to make it start from
558	 * the segment which belongs to the PE number assigned to the first VF.
559	 * This creates a "hole" in the /proc/iomem which could be used for
560	 * allocating other resources so we reserve this area below and
561	 * release when IOV is released.
562	 */
563	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
564		res = &dev->resource[i + PCI_IOV_RESOURCES];
565		if (!res->flags || !res->parent)
566			continue;
567		if (iov->m64_single_mode[i])
568			continue;
569
570		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
571		res2 = *res;
572		res->start += size * offset;
573
574		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
575			 i, &res2, res, (offset > 0) ? "En" : "Dis",
576			 num_vfs, offset);
577
578		if (offset < 0) {
579			devm_release_resource(&dev->dev, &iov->holes[i]);
580			memset(&iov->holes[i], 0, sizeof(iov->holes[i]));
581		}
582
583		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
584
585		if (offset > 0) {
586			iov->holes[i].start = res2.start;
587			iov->holes[i].end = res2.start + size * offset - 1;
588			iov->holes[i].flags = IORESOURCE_BUS;
589			iov->holes[i].name = "pnv_iov_reserved";
590			devm_request_resource(&dev->dev, res->parent,
591					&iov->holes[i]);
592		}
593	}
594	return 0;
595}
596
597static void pnv_pci_sriov_disable(struct pci_dev *pdev)
598{
599	u16                    num_vfs, base_pe;
600	struct pnv_iov_data   *iov;
601
602	iov = pnv_iov_get(pdev);
603	if (WARN_ON(!iov))
604		return;
605
606	num_vfs = iov->num_vfs;
607	base_pe = iov->vf_pe_arr[0].pe_number;
608
609	/* Release VF PEs */
610	pnv_ioda_release_vf_PE(pdev);
611
612	/* Un-shift the IOV BARs if we need to */
613	if (iov->need_shift)
614		pnv_pci_vf_resource_shift(pdev, -base_pe);
615
616	/* Release M64 windows */
617	pnv_pci_vf_release_m64(pdev, num_vfs);
618}
619
620static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
621{
622	struct pnv_phb        *phb;
623	struct pnv_ioda_pe    *pe;
624	int                    pe_num;
625	u16                    vf_index;
626	struct pnv_iov_data   *iov;
627	struct pci_dn         *pdn;
628
629	if (!pdev->is_physfn)
630		return;
631
632	phb = pci_bus_to_pnvhb(pdev->bus);
633	pdn = pci_get_pdn(pdev);
634	iov = pnv_iov_get(pdev);
635
636	/* Reserve PE for each VF */
637	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
638		int vf_devfn = pci_iov_virtfn_devfn(pdev, vf_index);
639		int vf_bus = pci_iov_virtfn_bus(pdev, vf_index);
640		struct pci_dn *vf_pdn;
641
642		pe = &iov->vf_pe_arr[vf_index];
643		pe->phb = phb;
644		pe->flags = PNV_IODA_PE_VF;
645		pe->pbus = NULL;
646		pe->parent_dev = pdev;
647		pe->mve_number = -1;
648		pe->rid = (vf_bus << 8) | vf_devfn;
649
650		pe_num = pe->pe_number;
651		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
652			pci_domain_nr(pdev->bus), pdev->bus->number,
653			PCI_SLOT(vf_devfn), PCI_FUNC(vf_devfn), pe_num);
654
655		if (pnv_ioda_configure_pe(phb, pe)) {
656			/* XXX What do we do here ? */
657			pnv_ioda_free_pe(pe);
658			pe->pdev = NULL;
659			continue;
660		}
661
662		/* Put PE to the list */
663		mutex_lock(&phb->ioda.pe_list_mutex);
664		list_add_tail(&pe->list, &phb->ioda.pe_list);
665		mutex_unlock(&phb->ioda.pe_list_mutex);
666
667		/* associate this pe to it's pdn */
668		list_for_each_entry(vf_pdn, &pdn->parent->child_list, list) {
669			if (vf_pdn->busno == vf_bus &&
670			    vf_pdn->devfn == vf_devfn) {
671				vf_pdn->pe_number = pe_num;
672				break;
673			}
674		}
675
676		pnv_pci_ioda2_setup_dma_pe(phb, pe);
677	}
678}
679
680static int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
681{
682	struct pnv_ioda_pe    *base_pe;
683	struct pnv_iov_data   *iov;
684	struct pnv_phb        *phb;
685	int                    ret;
686	u16                    i;
687
688	phb = pci_bus_to_pnvhb(pdev->bus);
689	iov = pnv_iov_get(pdev);
690
691	/*
692	 * There's a calls to IODA2 PE setup code littered throughout. We could
693	 * probably fix that, but we'd still have problems due to the
694	 * restriction inherent on IODA1 PHBs.
695	 *
696	 * NB: We class IODA3 as IODA2 since they're very similar.
697	 */
698	if (phb->type != PNV_PHB_IODA2) {
699		pci_err(pdev, "SR-IOV is not supported on this PHB\n");
700		return -ENXIO;
701	}
702
703	if (!iov) {
704		dev_info(&pdev->dev, "don't support this SRIOV device with non 64bit-prefetchable IOV BAR\n");
705		return -ENOSPC;
706	}
707
708	/* allocate a contigious block of PEs for our VFs */
709	base_pe = pnv_ioda_alloc_pe(phb, num_vfs);
710	if (!base_pe) {
711		pci_err(pdev, "Unable to allocate PEs for %d VFs\n", num_vfs);
712		return -EBUSY;
713	}
714
715	iov->vf_pe_arr = base_pe;
716	iov->num_vfs = num_vfs;
717
718	/* Assign M64 window accordingly */
719	ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
720	if (ret) {
721		dev_info(&pdev->dev, "Not enough M64 window resources\n");
722		goto m64_failed;
723	}
724
725	/*
726	 * When using one M64 BAR to map one IOV BAR, we need to shift
727	 * the IOV BAR according to the PE# allocated to the VFs.
728	 * Otherwise, the PE# for the VF will conflict with others.
729	 */
730	if (iov->need_shift) {
731		ret = pnv_pci_vf_resource_shift(pdev, base_pe->pe_number);
732		if (ret)
733			goto shift_failed;
734	}
735
736	/* Setup VF PEs */
737	pnv_ioda_setup_vf_PE(pdev, num_vfs);
738
739	return 0;
740
741shift_failed:
742	pnv_pci_vf_release_m64(pdev, num_vfs);
743
744m64_failed:
745	for (i = 0; i < num_vfs; i++)
746		pnv_ioda_free_pe(&iov->vf_pe_arr[i]);
747
748	return ret;
749}
750
751int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
752{
753	pnv_pci_sriov_disable(pdev);
754
755	/* Release PCI data */
756	remove_sriov_vf_pdns(pdev);
757	return 0;
758}
759
760int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
761{
762	/* Allocate PCI data */
763	add_sriov_vf_pdns(pdev);
764
765	return pnv_pci_sriov_enable(pdev, num_vfs);
766}
767